code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowercase_ : str = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : str = ['''BeitFeatureExtractor'''] lowercase_ : Optional[Any] = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : List[Any] = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowercase_ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
572
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCamelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=30 , snake_case__=2 , snake_case__=3 , snake_case__=True , snake_case__=True , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=10 , snake_case__=0.02 , snake_case__=3 , snake_case__=None , snake_case__=2 , ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = parent _SCREAMING_SNAKE_CASE : str = batch_size _SCREAMING_SNAKE_CASE : List[str] = image_size _SCREAMING_SNAKE_CASE : Optional[int] = patch_size _SCREAMING_SNAKE_CASE : List[str] = num_channels _SCREAMING_SNAKE_CASE : Dict = is_training _SCREAMING_SNAKE_CASE : Optional[int] = use_labels _SCREAMING_SNAKE_CASE : Tuple = hidden_size _SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers _SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size _SCREAMING_SNAKE_CASE : Optional[int] = hidden_act _SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size _SCREAMING_SNAKE_CASE : Any = initializer_range _SCREAMING_SNAKE_CASE : Any = scope _SCREAMING_SNAKE_CASE : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _SCREAMING_SNAKE_CASE : Optional[Any] = (image_size // patch_size) ** 2 _SCREAMING_SNAKE_CASE : int = num_patches + 2 def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : str = None if self.use_labels: _SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : int = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = DeiTModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() _SCREAMING_SNAKE_CASE : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = DeiTForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() _SCREAMING_SNAKE_CASE : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _SCREAMING_SNAKE_CASE : Optional[Any] = 1 _SCREAMING_SNAKE_CASE : Dict = DeiTForMaskedImageModeling(snake_case__ ) model.to(snake_case__ ) model.eval() _SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : Tuple = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = self.type_sequence_label_size _SCREAMING_SNAKE_CASE : Tuple = DeiTForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _SCREAMING_SNAKE_CASE : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _SCREAMING_SNAKE_CASE : Optional[Any] = 1 _SCREAMING_SNAKE_CASE : Optional[int] = DeiTForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : str = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) : int = config_and_inputs _SCREAMING_SNAKE_CASE : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) A__ = ( { """feature-extraction""": DeiTModel, """image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) A__ = False A__ = False A__ = False def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = DeiTModelTester(self ) _SCREAMING_SNAKE_CASE : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Optional[int] = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _SCREAMING_SNAKE_CASE : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE : str = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__=False ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" if not self.model_tester.is_training: return _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Optional[Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(snake_case__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue _SCREAMING_SNAKE_CASE : Optional[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() _SCREAMING_SNAKE_CASE : str = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) _SCREAMING_SNAKE_CASE : List[str] = model(**snake_case__ ).loss loss.backward() def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(snake_case__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue _SCREAMING_SNAKE_CASE : Any = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() _SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = model(**snake_case__ ).loss loss.backward() def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Tuple = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(snake_case__ ), *get_values(snake_case__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): _SCREAMING_SNAKE_CASE : Optional[int] = problem_type["title"] _SCREAMING_SNAKE_CASE : List[str] = problem_type["num_labels"] _SCREAMING_SNAKE_CASE : str = model_class(snake_case__ ) model.to(snake_case__ ) model.train() _SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if problem_type["num_labels"] > 1: _SCREAMING_SNAKE_CASE : Tuple = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) _SCREAMING_SNAKE_CASE : List[str] = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=snake_case__ ) as warning_list: _SCREAMING_SNAKE_CASE : str = model(**snake_case__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE : Optional[Any] = DeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _lowerCAmelCase ( ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( snake_case__ ) _SCREAMING_SNAKE_CASE : str = self.default_image_processor _SCREAMING_SNAKE_CASE : str = prepare_img() _SCREAMING_SNAKE_CASE : str = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE : Optional[Any] = model(**snake_case__ ) # verify the logits _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) _SCREAMING_SNAKE_CASE : Any = self.default_image_processor _SCREAMING_SNAKE_CASE : Dict = prepare_img() _SCREAMING_SNAKE_CASE : Dict = image_processor(images=snake_case__ , return_tensors="pt" ) _SCREAMING_SNAKE_CASE : str = inputs.pixel_values.to(snake_case__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _SCREAMING_SNAKE_CASE : Optional[Any] = model(snake_case__ )
572
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device UpperCamelCase : Tuple = False class A__ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Any ): a__ : Optional[int] = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : Optional[Any] = "A painting of a squirrel eating a burger " a__ : List[Any] = torch.manual_seed(0 ) a__ : Dict = pipe( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) a__ : List[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : str = generator.manual_seed(0 ) a__ : Optional[int] = pipe( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _UpperCamelCase( self : List[str] ): a__ : List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : Tuple = "A painting of a squirrel eating a burger " a__ : Union[str, Any] = torch.manual_seed(0 ) a__ : str = pipe( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images a__ : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) a__ : Tuple = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
700
from copy import deepcopy class A__ : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase__ : list[int] | None = None , lowerCamelCase__ : int | None = None ): if arr is None and size is not None: a__ : Union[str, Any] = size a__ : Optional[Any] = [0] * size elif arr is not None: self.init(lowerCamelCase__ ) else: raise ValueError("Either arr or size must be specified" ) def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : list[int] ): a__ : Any = len(lowerCamelCase__ ) a__ : List[Any] = deepcopy(lowerCamelCase__ ) for i in range(1 , self.size ): a__ : Union[str, Any] = self.next_(lowerCamelCase__ ) if j < self.size: self.tree[j] += self.tree[i] def _UpperCamelCase( self : Tuple ): a__ : List[str] = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): a__ : Optional[Any] = self.next_(lowerCamelCase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _UpperCamelCase( lowerCamelCase__ : int ): return index + (index & (-index)) @staticmethod def _UpperCamelCase( lowerCamelCase__ : int ): return index - (index & (-index)) def _UpperCamelCase( self : str , lowerCamelCase__ : int , lowerCamelCase__ : int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value a__ : Optional[int] = self.next_(lowerCamelCase__ ) def _UpperCamelCase( self : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : int ): self.add(lowerCamelCase__ , value - self.get(lowerCamelCase__ ) ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : int ): if right == 0: return 0 a__ : Tuple = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] a__ : List[Any] = self.prev(lowerCamelCase__ ) return result def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int ): return self.prefix(lowerCamelCase__ ) - self.prefix(lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : int ): return self.query(lowerCamelCase__ , index + 1 ) def _UpperCamelCase( self : int , lowerCamelCase__ : int ): value -= self.tree[0] if value < 0: return -1 a__ : Union[str, Any] = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 a__ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
151
0
from __future__ import annotations def snake_case__ ( lowercase , lowercase , lowercase , ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
613
from ...configuration_utils import PretrainedConfig from ...utils import logging a : Any = logging.get_logger(__name__) a : List[str] = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE: Optional[Any] = 'transfo-xl' SCREAMING_SNAKE_CASE: List[Any] = ['mems'] SCREAMING_SNAKE_CASE: List[Any] = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , lowerCamelCase__=267_735 , lowerCamelCase__=[20_000, 40_000, 200_000] , lowerCamelCase__=1_024 , lowerCamelCase__=1_024 , lowerCamelCase__=16 , lowerCamelCase__=64 , lowerCamelCase__=4_096 , lowerCamelCase__=4 , lowerCamelCase__=False , lowerCamelCase__=18 , lowerCamelCase__=1_600 , lowerCamelCase__=1_000 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=0 , lowerCamelCase__=-1 , lowerCamelCase__=True , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=True , lowerCamelCase__="normal" , lowerCamelCase__=0.0_1 , lowerCamelCase__=0.0_1 , lowerCamelCase__=0.0_2 , lowerCamelCase__=1E-5 , lowerCamelCase__=0 , **lowerCamelCase__ , ): lowerCAmelCase_: Dict = vocab_size lowerCAmelCase_: Any = [] self.cutoffs.extend(lowerCamelCase__ ) if proj_share_all_but_first: lowerCAmelCase_: int = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase_: Any = [False] + [False] * len(self.cutoffs ) lowerCAmelCase_: Dict = d_model lowerCAmelCase_: Union[str, Any] = d_embed lowerCAmelCase_: Dict = d_head lowerCAmelCase_: Dict = d_inner lowerCAmelCase_: List[str] = div_val lowerCAmelCase_: List[str] = pre_lnorm lowerCAmelCase_: List[str] = n_layer lowerCAmelCase_: List[str] = n_head lowerCAmelCase_: str = mem_len lowerCAmelCase_: Any = same_length lowerCAmelCase_: Optional[Any] = attn_type lowerCAmelCase_: int = clamp_len lowerCAmelCase_: Optional[int] = sample_softmax lowerCAmelCase_: Optional[Any] = adaptive lowerCAmelCase_: Optional[int] = dropout lowerCAmelCase_: Union[str, Any] = dropatt lowerCAmelCase_: Tuple = untie_r lowerCAmelCase_: Union[str, Any] = init lowerCAmelCase_: Optional[Any] = init_range lowerCAmelCase_: Optional[Any] = proj_init_std lowerCAmelCase_: Tuple = init_std lowerCAmelCase_: Tuple = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) @property def _a ( self ): # Message copied from Transformer-XL documentation logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def _a ( self , lowerCamelCase__ ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
613
1
"""simple docstring""" import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def lowerCamelCase__ ( _lowerCamelCase : np.ndarray ) -> np.ndarray: return input_array.reshape((input_array.size, 1) ) def lowerCamelCase__ ( _lowerCamelCase : np.ndarray , _lowerCamelCase : np.ndarray , _lowerCamelCase : int ) -> np.ndarray: lowerCamelCase_ = np.nan for i in range(_lowerCamelCase ): lowerCamelCase_ = features[:, labels == i] lowerCamelCase_ = data.mean(1 ) # Centralize the data of class i lowerCamelCase_ = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCamelCase_ = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def lowerCamelCase__ ( _lowerCamelCase : np.ndarray , _lowerCamelCase : np.ndarray , _lowerCamelCase : int ) -> np.ndarray: lowerCamelCase_ = features.mean(1 ) lowerCamelCase_ = np.nan for i in range(_lowerCamelCase ): lowerCamelCase_ = features[:, labels == i] lowerCamelCase_ = data.shape[1] lowerCamelCase_ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCamelCase_ = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def lowerCamelCase__ ( _lowerCamelCase : np.ndarray , _lowerCamelCase : int ) -> np.ndarray: # Check if the features have been loaded if features.any(): lowerCamelCase_ = features.mean(1 ) # Center the dataset lowerCamelCase_ = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) lowerCamelCase_ = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] lowerCamelCase_ , lowerCamelCase_ = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first lowerCamelCase_ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowerCamelCase_ = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=_lowerCamelCase ) logging.error('Dataset empty' ) raise AssertionError def lowerCamelCase__ ( _lowerCamelCase : np.ndarray , _lowerCamelCase : np.ndarray , _lowerCamelCase : int , _lowerCamelCase : int ) -> np.ndarray: assert classes > dimensions # Check if features have been already loaded if features.any: lowerCamelCase_ , lowerCamelCase_ = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) lowerCamelCase_ = eigenvectors[:, ::-1][:, :dimensions] lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = np.linalg.svd(_lowerCamelCase ) lowerCamelCase_ = svd_matrix[:, 0:dimensions] lowerCamelCase_ = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=_lowerCamelCase ) logging.error('Dataset empty' ) raise AssertionError def lowerCamelCase__ ( ) -> None: # Create dummy dataset with 2 classes and 3 features lowerCamelCase_ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowerCamelCase_ = np.array([0, 0, 0, 1, 1] ) lowerCamelCase_ = 2 lowerCamelCase_ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: lowerCamelCase_ = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def lowerCamelCase__ ( ) -> None: lowerCamelCase_ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowerCamelCase_ = 2 lowerCamelCase_ = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: lowerCamelCase_ = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
137
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase : str ) -> bool: lowerCamelCase_ = 0 for ch in input_str: lowerCamelCase_ = ord(_lowerCamelCase ) lowerCamelCase_ = pow(2 , _lowerCamelCase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
137
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib snake_case = get_logger() snake_case = None class A_ ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): """simple docstring""" def __init__( self : List[Any] ,__A : Tuple=None ,__A : int=None ,**__A : Any ) -> str: super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A ,__A ): raise ValueError( F"""Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowercase = device if isinstance(__A ,__A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowercase = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowercase = str(jax.devices()[0] ) _lowercase = jnp_array_kwargs @staticmethod def __UpperCAmelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(__A ): device for device in jax.devices()} def __UpperCAmelCase ( self : Union[str, Any] ,__A : Optional[int] ) -> Optional[int]: import jax import jax.numpy as jnp if isinstance(__A ,__A ) and column: if all( isinstance(__A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A ,axis=0 ) return column def __UpperCAmelCase ( self : Optional[int] ,__A : Optional[int] ) -> Dict: import jax import jax.numpy as jnp if isinstance(__A ,(str, bytes, type(__A )) ): return value elif isinstance(__A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowercase = {} if isinstance(__A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowercase = {'dtype': jnp.intaa} else: _lowercase = {'dtype': jnp.intaa} elif isinstance(__A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowercase = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A ,PIL.Image.Image ): _lowercase = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowercase = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCAmelCase ( self : Optional[Any] ,__A : int ) -> List[str]: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A ,'__array__' ) and not isinstance(__A ,jax.Array ): _lowercase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def __UpperCAmelCase ( self : Optional[Any] ,__A : dict ) -> Tuple: return map_nested(self._recursive_tensorize ,__A ,map_list=__A ) def __UpperCAmelCase ( self : List[Any] ,__A : pa.Table ) -> Mapping: _lowercase = self.numpy_arrow_extractor().extract_row(__A ) _lowercase = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def __UpperCAmelCase ( self : Union[str, Any] ,__A : pa.Table ) -> "jax.Array": _lowercase = self.numpy_arrow_extractor().extract_column(__A ) _lowercase = self.python_features_decoder.decode_column(__A ,pa_table.column_names[0] ) _lowercase = self.recursive_tensorize(__A ) _lowercase = self._consolidate(__A ) return column def __UpperCAmelCase ( self : Dict ,__A : pa.Table ) -> Mapping: _lowercase = self.numpy_arrow_extractor().extract_batch(__A ) _lowercase = self.python_features_decoder.decode_batch(__A ) _lowercase = self.recursive_tensorize(__A ) for column_name in batch: _lowercase = self._consolidate(batch[column_name] ) return batch
67
'''simple docstring''' import heapq import sys import numpy as np a : Dict = tuple[int, int] class a : def __init__( self : Dict ): snake_case_ = [] snake_case_ = set() def A_ ( self : int ): if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def A_ ( self : List[str] ): return len(self.elements ) == 0 def A_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : List[str] ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(lowercase_ ) else: # update # print("update", item) snake_case_ = [] ((snake_case_) ,(snake_case_)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((snake_case_) ,(snake_case_)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def A_ ( self : Union[str, Any] , lowercase_ : List[Any] ): if item in self.set: self.set.remove(lowercase_ ) snake_case_ = [] ((snake_case_) ,(snake_case_)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((snake_case_) ,(snake_case_)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def A_ ( self : Optional[int] ): return self.elements[0][1] def A_ ( self : Tuple ): ((snake_case_) ,(snake_case_)) = heapq.heappop(self.elements ) self.set.remove(lowercase_ ) return (priority, item) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Any: '''simple docstring''' snake_case_ = np.array(__UpperCAmelCase ) snake_case_ = np.array(__UpperCAmelCase ) return np.linalg.norm(a - b ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> int: '''simple docstring''' return consistent_heuristic(__UpperCAmelCase, __UpperCAmelCase ) // t def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> List[str]: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' snake_case_ = g_function[start] + Wa * heuristics[i](__UpperCAmelCase, __UpperCAmelCase ) return ans def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' snake_case_ = np.chararray((n, n) ) for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): snake_case_ = '''*''' for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): if (j, (n - 1) - i) in blocks: snake_case_ = '''#''' snake_case_ = '''-''' snake_case_ = back_pointer[goal] while x != start: ((snake_case_) ,(snake_case_)) = x # print(x) snake_case_ = '''-''' snake_case_ = back_pointer[x] snake_case_ = '''-''' for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): if (i, j) == (0, n - 1): print(grid[i][j], end=''' ''' ) print('''<-- End position''', end=''' ''' ) else: print(grid[i][j], end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) snake_case_ = back_pointer[goal] while x != start: print(__UpperCAmelCase, end=''' ''' ) snake_case_ = back_pointer[x] print(__UpperCAmelCase ) sys.exit() def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, ) -> str: '''simple docstring''' for itera in range(__UpperCAmelCase ): open_list[itera].remove_element(__UpperCAmelCase ) # print("s", s) # print("j", j) ((snake_case_) ,(snake_case_)) = s snake_case_ = (x - 1, y) snake_case_ = (x + 1, y) snake_case_ = (x, y + 1) snake_case_ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__UpperCAmelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__UpperCAmelCase ) snake_case_ = -1 snake_case_ = float('''inf''' ) if valid(__UpperCAmelCase ) and g_function[neighbours] > g_function[s] + 1: snake_case_ = g_function[s] + 1 snake_case_ = s if neighbours not in close_list_anchor: open_list[0].put(__UpperCAmelCase, key(__UpperCAmelCase, 0, __UpperCAmelCase, __UpperCAmelCase ) ) if neighbours not in close_list_inad: for var in range(1, __UpperCAmelCase ): if key(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) <= Wa * key( __UpperCAmelCase, 0, __UpperCAmelCase, __UpperCAmelCase ): open_list[j].put( __UpperCAmelCase, key(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) ) def __magic_name__ ( ) -> str: '''simple docstring''' snake_case_ = [] for x in range(1, 5 ): for y in range(1, 6 ): some_list.append((x, y) ) for x in range(15, 20 ): some_list.append((x, 17) ) for x in range(10, 19 ): for y in range(1, 15 ): some_list.append((x, y) ) # L block for x in range(1, 4 ): for y in range(12, 19 ): some_list.append((x, y) ) for x in range(3, 13 ): for y in range(16, 19 ): some_list.append((x, y) ) return some_list a : Tuple = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a : Dict = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a : List[str] = make_common_ground() a : Optional[int] = blocks_blk # hyper parameters a : Union[str, Any] = 1 a : str = 1 a : int = 20 a : Optional[int] = 3 # one consistent and two other inconsistent # start and end destination a : List[str] = (0, 0) a : str = (n - 1, n - 1) a : str = 1 def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> List[str]: '''simple docstring''' snake_case_ = {start: 0, goal: float('''inf''' )} snake_case_ = {start: -1, goal: -1} snake_case_ = [] snake_case_ = set() for i in range(__UpperCAmelCase ): open_list.append(PriorityQueue() ) open_list[i].put(__UpperCAmelCase, key(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) ) snake_case_ = [] snake_case_ = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1, __UpperCAmelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) else: snake_case_ ,snake_case_ = open_list[i].top_show() visited.add(__UpperCAmelCase ) expand_state( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, ) close_list_inad.append(__UpperCAmelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) else: snake_case_ = open_list[0].top_show() visited.add(__UpperCAmelCase ) expand_state( __UpperCAmelCase, 0, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, ) close_list_anchor.append(__UpperCAmelCase ) print('''No path found to goal''' ) print() for i in range(n - 1, -1, -1 ): for j in range(__UpperCAmelCase ): if (j, i) in blocks: print('''#''', end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''', end=''' ''' ) else: print('''-''', end=''' ''' ) else: print('''*''', end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''', end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
640
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class A_: """simple docstring""" @staticmethod def _lowerCAmelCase ( *A , **A ): pass def UpperCAmelCase_ ( __a : str ): '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. a_ = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class A_(unittest.TestCase ): """simple docstring""" a_ : Any = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _lowerCAmelCase ( self , A , A , A ): _lowerCamelCase : List[Any] = pipeline( 'document-question-answering' , model=A , tokenizer=A , image_processor=A ) _lowerCamelCase : Tuple = INVOICE_URL _lowerCamelCase : Union[str, Any] = list(zip(*apply_tesseract(load_image(A ) , A , '' ) ) ) _lowerCamelCase : Optional[Any] = 'What is the placebo?' _lowerCamelCase : Any = [ { 'image': load_image(A ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def _lowerCAmelCase ( self , A , A ): _lowerCamelCase : Optional[Any] = dqa_pipeline(A , top_k=2 ) self.assertEqual( A , [ [ {'score': ANY(A ), 'answer': ANY(A ), 'start': ANY(A ), 'end': ANY(A )}, {'score': ANY(A ), 'answer': ANY(A ), 'start': ANY(A ), 'end': ANY(A )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _lowerCAmelCase ( self ): _lowerCamelCase : int = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) _lowerCamelCase : List[str] = INVOICE_URL _lowerCamelCase : Union[str, Any] = 'How many cats are there?' _lowerCamelCase : List[str] = [ {'score': 0.0_0_0_1, 'answer': 'oy 2312/2019', 'start': 38, 'end': 39}, {'score': 0.0_0_0_1, 'answer': 'oy 2312/2019 DUE', 'start': 38, 'end': 40}, ] _lowerCamelCase : int = dqa_pipeline(image=A , question=A , top_k=2 ) self.assertEqual(nested_simplify(A , decimals=4 ) , A ) _lowerCamelCase : Optional[Any] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(A , decimals=4 ) , A ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably _lowerCamelCase : Any = './tests/fixtures/tests_samples/COCO/000000039769.png' _lowerCamelCase : Any = dqa_pipeline(image=A , question=A , top_k=2 ) self.assertEqual(A , [] ) # We can optionnally pass directly the words and bounding boxes _lowerCamelCase : Tuple = './tests/fixtures/tests_samples/COCO/000000039769.png' _lowerCamelCase : int = [] _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : List[str] = dqa_pipeline(image=A , question=A , words=A , boxes=A , top_k=2 ) self.assertEqual(A , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) _lowerCamelCase : Tuple = INVOICE_URL _lowerCamelCase : Optional[int] = 'What is the invoice number?' _lowerCamelCase : str = dqa_pipeline(image=A , question=A , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {'score': 0.9_9_4_4, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_0_0_9, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) _lowerCamelCase : Optional[int] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {'score': 0.9_9_4_4, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_0_0_9, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) _lowerCamelCase : str = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ [ {'score': 0.9_9_4_4, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_0_0_9, 'answer': 'us-001', 'start': 16, 'end': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=50 , ) _lowerCamelCase : Optional[Any] = INVOICE_URL _lowerCamelCase : Tuple = 'What is the invoice number?' _lowerCamelCase : str = dqa_pipeline(image=A , question=A , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {'score': 0.9_9_7_4, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_9_4_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) _lowerCamelCase : Dict = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {'score': 0.9_9_7_4, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_9_4_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) _lowerCamelCase : str = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ [ {'score': 0.9_9_7_4, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_9_4_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _lowerCAmelCase ( self ): _lowerCamelCase : Any = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=A ) _lowerCamelCase : List[Any] = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=A , revision='3dc6de3' , ) _lowerCamelCase : Optional[int] = INVOICE_URL _lowerCamelCase : Optional[int] = 'What is the invoice number?' _lowerCamelCase : Union[str, Any] = dqa_pipeline(image=A , question=A , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) _lowerCamelCase : Union[str, Any] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) _lowerCamelCase : Tuple = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ] * 2 , ) _lowerCamelCase : List[Any] = list(zip(*apply_tesseract(load_image(A ) , A , '' ) ) ) # This model should also work if `image` is set to None _lowerCamelCase : str = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=A ) _lowerCamelCase : Any = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=A , revision='3dc6de3' , max_seq_len=50 , ) _lowerCamelCase : Any = INVOICE_URL _lowerCamelCase : Tuple = 'What is the invoice number?' _lowerCamelCase : Dict = dqa_pipeline(image=A , question=A , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {'score': 0.9_9_9_9, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_9_9_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) _lowerCamelCase : Tuple = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ [ {'score': 0.9_9_9_9, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_9_9_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) _lowerCamelCase : Dict = list(zip(*apply_tesseract(load_image(A ) , A , '' ) ) ) # This model should also work if `image` is set to None _lowerCamelCase : List[str] = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [ {'score': 0.9_9_9_9, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_9_9_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) @slow @require_torch def _lowerCAmelCase ( self ): _lowerCamelCase : int = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) _lowerCamelCase : Union[str, Any] = INVOICE_URL _lowerCamelCase : Optional[int] = 'What is the invoice number?' _lowerCamelCase : Union[str, Any] = dqa_pipeline(image=A , question=A , top_k=2 ) self.assertEqual(nested_simplify(A , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def _lowerCAmelCase ( self ): pass
702
"""simple docstring""" def UpperCAmelCase_ ( __a : list[int] ): '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError('List is empty' ) _lowerCamelCase : List[str] = sum(__a ) / len(__a ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
349
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowercase ,lowercase ,lowercase : Dict = False, False, False @dataclass class UpperCAmelCase_ : '''simple docstring''' A : Optional[int] = None A : bool = True A : bool = True A : Optional[str] = None # Automatically constructed A : ClassVar[str] = "dict" A : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) A : str = field(default='Audio' , init=SCREAMING_SNAKE_CASE__ , repr=SCREAMING_SNAKE_CASE__ ) def __call__( self ) -> str: return self.pa_type def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"bytes": None, "path": value} elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes snake_case_ : str = BytesIO() sf.write(_SCREAMING_SNAKE_CASE , value["array"] , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) snake_case_ : List[Any] = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 3_2767 else: snake_case_ : Tuple = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 3_2767 snake_case_ : Optional[Any] = BytesIO(bytes() ) sf.write(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> dict: if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) snake_case_ , snake_case_ : str = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err snake_case_ : List[Any] = xsplitext(_SCREAMING_SNAKE_CASE )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: snake_case_ : int = token_per_repo_id or {} snake_case_ : List[str] = path.split("::" )[-1] try: snake_case_ : str = string_to_dict(_SCREAMING_SNAKE_CASE , config.HUB_DATASETS_URL )["repo_id"] snake_case_ : Optional[int] = token_per_repo_id[repo_id] except (ValueError, KeyError): snake_case_ : Optional[int] = None with xopen(_SCREAMING_SNAKE_CASE , "rb" , use_auth_token=_SCREAMING_SNAKE_CASE ) as f: snake_case_ , snake_case_ : Union[str, Any] = sf.read(_SCREAMING_SNAKE_CASE ) else: snake_case_ , snake_case_ : Dict = sf.read(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = array.T if self.mono: snake_case_ : Dict = librosa.to_mono(_SCREAMING_SNAKE_CASE ) if self.sampling_rate and self.sampling_rate != sampling_rate: snake_case_ : Optional[Any] = librosa.resample(_SCREAMING_SNAKE_CASE , orig_sr=_SCREAMING_SNAKE_CASE , target_sr=self.sampling_rate ) snake_case_ : Dict = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _lowerCAmelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> pa.StructArray: if pa.types.is_string(storage.type ): snake_case_ : int = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) snake_case_ : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): snake_case_ : Tuple = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) snake_case_ : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): snake_case_ : Optional[Any] = pa.array([Audio().encode_example(_SCREAMING_SNAKE_CASE ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: snake_case_ : List[Any] = storage.field("bytes" ) else: snake_case_ : Optional[int] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: snake_case_ : List[str] = storage.field("path" ) else: snake_case_ : Dict = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) snake_case_ : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_SCREAMING_SNAKE_CASE ): with xopen(_SCREAMING_SNAKE_CASE , "rb" ) as f: snake_case_ : Dict = f.read() return bytes_ snake_case_ : Optional[Any] = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) snake_case_ : List[str] = pa.array( [os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) snake_case_ : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type )
568
def lowerCAmelCase__ ( _a : float , _a : float , _a : float , _a : float , _a : float , ): snake_case_ : int = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: snake_case_ : List[Any] = 1 - (matter_density + radiation_density + dark_energy) snake_case_ : List[Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) snake_case_ : Optional[int] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowercase : Union[str, Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
568
1
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCAmelCase =16 __UpperCAmelCase =32 def __a ( A , A , A , A , A = 16 ) -> Optional[Any]: '''simple docstring''' A__ = AutoTokenizer.from_pretrained("bert-base-cased" ) A__ = DatasetDict( { "train": dataset["train"].select(A ), "validation": dataset["train"].select(A ), "test": dataset["validation"], } ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( A , padding="longest" , max_length=A , pad_to_multiple_of=A , return_tensors="pt" , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A ) A__ = DataLoader( tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A ) A__ = DataLoader( tokenized_datasets["test"] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader, test_dataloader def __a ( A , A ) -> Union[str, Any]: '''simple docstring''' A__ = [] # Download the dataset A__ = load_dataset("glue" , "mrpc" ) # Create our splits A__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config["lr"] A__ = int(config["num_epochs"] ) A__ = int(config["seed"] ) A__ = int(config["batch_size"] ) A__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE set_seed(A ) # New Code # # Create our folds: A__ = kfold.split(np.zeros(datasets["train"].num_rows ) , datasets["train"]["label"] ) A__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(A ): A__ , A__ , A__ = get_fold_dataloaders( A , A , A , A , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=100 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( A , A , A , A , A ) # Now we train the model for epoch in range(A ): model.train() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**A ) A__ = outputs.loss A__ = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**A ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=A , references=A , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # We also run predictions on the test set at the very end A__ = [] for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**A ) A__ = outputs.logits A__ , A__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(A , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: A__ = torch.cat(A , dim=0 ) A__ = torch.stack(A , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) A__ = metric.compute(predictions=A , references=A ) accelerator.print("Average test metrics from all folds:" , A ) def __a ( ) -> List[Any]: '''simple docstring''' A__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=A , default=A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) # New Code # parser.add_argument("--num_folds" , type=A , default=3 , help="The number of splits to perform across the dataset" ) A__ = parser.parse_args() A__ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(A , A ) if __name__ == "__main__": main()
709
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __UpperCAmelCase ="""base_with_context""" def __a ( A , A ) -> str: '''simple docstring''' A__ = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) A__ = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=A ) for lyr_num, lyr in enumerate(model.encoders ): A__ = weights[f"""layers_{lyr_num}"""] A__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) A__ = ly_weight["attention"] A__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def __a ( A , A ) -> Dict: '''simple docstring''' A__ = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) A__ = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=A ) for lyr_num, lyr in enumerate(model.encoders ): A__ = weights[f"""layers_{lyr_num}"""] A__ = ly_weight["attention"] A__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) A__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def __a ( A , A ) -> Union[str, Any]: '''simple docstring''' A__ = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) A__ = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=A ) A__ = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): A__ = weights[f"""layers_{lyr_num}"""] A__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) A__ = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) A__ = ly_weight["self_attention"] A__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) A__ = ly_weight["MultiHeadDotProductAttention_0"] A__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) A__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) A__ = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def __a ( A ) -> str: '''simple docstring''' A__ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) A__ = jnp.tree_util.tree_map(onp.array , A ) A__ = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] A__ = os.path.join(args.checkpoint_path , ".." , "config.gin" ) A__ = inference.parse_training_gin_file(A , A ) A__ = inference.InferenceModel(args.checkpoint_path , A ) A__ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" ) A__ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) A__ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) A__ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) A__ = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , A ) A__ = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , A ) A__ = load_decoder(ta_checkpoint["target"]["decoder"] , A ) A__ = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) A__ = SpectrogramDiffusionPipeline( notes_encoder=A , continuous_encoder=A , decoder=A , scheduler=A , melgan=A , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help="""Path to the original jax model checkpoint.""", ) __UpperCAmelCase =parser.parse_args() main(args)
261
0
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class A__ ( unittest.TestCase): _UpperCAmelCase : List[Any] = JukeboxTokenizer _UpperCAmelCase : Dict = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def UpperCamelCase__ ( self ): import torch lowerCamelCase : Dict = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) lowerCamelCase : List[str] = tokenizer(**self.metas )["""input_ids"""] # fmt: off lowerCamelCase : Any = [ torch.tensor([[ 0, 0, 0, 7_1_6_9, 5_0_7, 9, 7_6, 3_9, 3_1, 4_6, 7_6, 2_7, 7_6, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_6, 3_2, 4_4, 4_1, 3_9, 7_6, 2_7, 4_0, 7_6, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_6, 3_8, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 4_1, 7_6, 4_5, 2_7, 3_5, 3_0, 7_6, 7_1, 2_0, 4_9, 4_1, 7_6, 4_8, 2_7, 4_5, 4_6, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_6, 3_8, 3_1, 3_3, 4_5, 7_6, 4_1, 3_2, 7_6, 4_5, 4_6, 4_1, 4_0, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_9, 4_6, 2_7, 4_0, 3_0, 7_6, 3_5, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 1_4, 3_1, 2_7, 4_4, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_5, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 8, 2_7, 3_8, 3_2, 7_6, 4_5, 4_7, 4_0, 3_7, 7_6, 2_7, 7_6, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_6, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_6, 3_8, 3_5, 3_1, 4_5, 6_4, 7_6, 4_9, 3_4, 4_1, 4_5, 3_1, 7_6, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_6, 3_8, 3_5, 4_2, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_5, 4_0, 3_1, 3_1, 4_4, 7_6, 4_1, 3_2, 7_6, 2_9, 4_1, 3_8, 3_0, 7_6, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_5, 4_6, 4_5, 7_6, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_6, 4_9, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 4_1, 4_5, 3_1, 7_6, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_6, 4_4, 3_1, 2_7, 3_0, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 3_5, 2_9, 3_4, 7_6, 5_1, 3_1, 4_6, 7_6, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_6, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_6, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_4, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_4, 3_1, 2_7, 4_4, 4_6, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_2, 3_1, 3_0, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 4_9, 4_1, 4_4, 3_0, 4_5, 7_6, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_3, 5_1, 7_6, 4_0, 2_7, 3_9, 3_1, 7_6, 3_5, 4_5, 7_6, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_6, 1_1, 3_5, 4_0, 3_3, 7_6, 4_1, 3_2, 7_6, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_2, 4_1, 4_1, 3_7, 7_6, 4_1, 4_0, 7_6, 3_9, 5_1, 7_6, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_6, 5_1, 3_1, 7_6, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_6, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_6, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_6, 1_8, 4_1, 4_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 2_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_5, 3_2, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_6, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_6, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_6, 2_7, 4_0, 3_0, 7_6, 2_8, 2_7, 4_4, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_8, 4_1, 4_0, 3_1, 7_6, 2_7, 4_0, 3_0, 7_6, 3_8, 3_1, 4_8, 3_1, 3_8, 7_6, 4_5, 2_7, 4_0, 3_0, 4_5, 7_6, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_6, 3_2, 2_7, 4_4, 7_6, 2_7, 4_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCamelCase__ ( self ): import torch lowerCamelCase : Union[str, Any] = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) lowerCamelCase : Any = tokenizer(**self.metas )["""input_ids"""] # fmt: off lowerCamelCase : str = [ torch.tensor([[ 0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1, 9, 7_7, 3_9, 3_1, 4_6, 7_7, 2_7, 7_7, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_7, 3_2, 4_4, 4_1, 3_9, 7_7, 2_7, 4_0, 7_7, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_7, 3_8, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 4_1, 7_7, 4_5, 2_7, 3_5, 3_0, 7_7, 7_2, 2_0, 4_9, 4_1, 7_7, 4_8, 2_7, 4_5, 4_6, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_7, 3_8, 3_1, 3_3, 4_5, 7_7, 4_1, 3_2, 7_7, 4_5, 4_6, 4_1, 4_0, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_9, 4_6, 2_7, 4_0, 3_0, 7_7, 3_5, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 1_4, 3_1, 2_7, 4_4, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_5, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 8, 2_7, 3_8, 3_2, 7_7, 4_5, 4_7, 4_0, 3_7, 7_7, 2_7, 7_7, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_7, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_7, 3_8, 3_5, 3_1, 4_5, 6_4, 7_7, 4_9, 3_4, 4_1, 4_5, 3_1, 7_7, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_7, 3_8, 3_5, 4_2, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_5, 4_0, 3_1, 3_1, 4_4, 7_7, 4_1, 3_2, 7_7, 2_9, 4_1, 3_8, 3_0, 7_7, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_5, 4_6, 4_5, 7_7, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_7, 4_9, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 4_1, 4_5, 3_1, 7_7, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_7, 4_4, 3_1, 2_7, 3_0, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 3_5, 2_9, 3_4, 7_7, 5_1, 3_1, 4_6, 7_7, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_7, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_7, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_4, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_4, 3_1, 2_7, 4_4, 4_6, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_2, 3_1, 3_0, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 4_9, 4_1, 4_4, 3_0, 4_5, 7_7, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_3, 5_1, 7_7, 4_0, 2_7, 3_9, 3_1, 7_7, 3_5, 4_5, 7_7, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_7, 1_1, 3_5, 4_0, 3_3, 7_7, 4_1, 3_2, 7_7, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_2, 4_1, 4_1, 3_7, 7_7, 4_1, 4_0, 7_7, 3_9, 5_1, 7_7, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_7, 5_1, 3_1, 7_7, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_7, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_7, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_7, 1_8, 4_1, 4_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 2_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_5, 3_2, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_7, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_7, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_7, 2_7, 4_0, 3_0, 7_7, 2_8, 2_7, 4_4, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_8, 4_1, 4_0, 3_1, 7_7, 2_7, 4_0, 3_0, 7_7, 3_8, 3_1, 4_8, 3_1, 3_8, 7_7, 4_5, 2_7, 4_0, 3_0, 4_5, 7_7, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_7, 3_2, 2_7, 4_4, 7_7, 2_7, 4_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
681
def _a ( lowerCamelCase ): if num < 0: return False lowerCamelCase : int = num lowerCamelCase : int = 0 while num > 0: lowerCamelCase : str = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
681
1
"""simple docstring""" def lowerCAmelCase__ ( _UpperCamelCase : int = 2_0_0 ) -> int: """simple docstring""" snake_case = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] snake_case = [0] * (pence + 1) snake_case = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_UpperCamelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73_682
104
"""simple docstring""" import numpy as np from PIL import Image def lowerCAmelCase__ ( _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : int ) -> np.ndarray: """simple docstring""" snake_case = np.array(_UpperCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) snake_case = 0 snake_case = 0 snake_case = 0 snake_case = 0 # compute the shape of the output matrix snake_case = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape snake_case = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix snake_case = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 snake_case = 0 snake_case = 0 return updated_arr def lowerCAmelCase__ ( _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : int ) -> np.ndarray: """simple docstring""" snake_case = np.array(_UpperCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) snake_case = 0 snake_case = 0 snake_case = 0 snake_case = 0 # compute the shape of the output matrix snake_case = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape snake_case = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix snake_case = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 snake_case = 0 snake_case = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image SCREAMING_SNAKE_CASE__ = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
104
1
'''simple docstring''' from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> tuple[int, int]: if b == 0: return (1, 0) ((UpperCAmelCase__) , (UpperCAmelCase__)) : List[str] = extended_euclid(lowerCAmelCase__ , a % b ) UpperCAmelCase__ : List[str] = a // b return (y, x - k * y) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: ((UpperCAmelCase__) , (UpperCAmelCase__)) : Optional[int] = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = na * na UpperCAmelCase__ : Any = ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> int: ((UpperCAmelCase__) , (UpperCAmelCase__)) : Tuple = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) if b < 0: UpperCAmelCase__ : int = (b % n + n) % n return b def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ), invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Any = na * na UpperCAmelCase__ : Optional[int] = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
75
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCamelCase__ = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def a__ ( ) -> List[str]: UpperCAmelCase__ : Optional[int] = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: UpperCAmelCase__ : Any = get_sagemaker_input() else: UpperCAmelCase__ : List[str] = get_cluster_input() return config def a__ ( lowerCAmelCase__=None ) -> List[Any]: if subparsers is not None: UpperCAmelCase__ : Union[str, Any] = subparsers.add_parser('''config''' , description=lowerCAmelCase__ ) else: UpperCAmelCase__ : Dict = argparse.ArgumentParser('''Accelerate config command''' , description=lowerCAmelCase__ ) parser.add_argument( '''--config_file''' , default=lowerCAmelCase__ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase__ ) return parser def a__ ( lowerCAmelCase__ ) -> List[Any]: UpperCAmelCase__ : List[Any] = get_user_input() if args.config_file is not None: UpperCAmelCase__ : Any = args.config_file else: if not os.path.isdir(lowerCAmelCase__ ): os.makedirs(lowerCAmelCase__ ) UpperCAmelCase__ : int = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(lowerCAmelCase__ ) else: config.to_yaml_file(lowerCAmelCase__ ) print(F"""accelerate configuration saved at {config_file}""" ) def a__ ( ) -> str: UpperCAmelCase__ : Optional[int] = config_command_parser() UpperCAmelCase__ : Any = parser.parse_args() config_command(lowerCAmelCase__ ) if __name__ == "__main__": main()
75
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __a ( unittest.TestCase ): def __init__( self : Optional[int] ,lowerCamelCase : str ,lowerCamelCase : List[str]=13 ,lowerCamelCase : Optional[Any]=30 ,lowerCamelCase : Dict=2 ,lowerCamelCase : List[Any]=3 ,lowerCamelCase : List[str]=True ,lowerCamelCase : str=True ,lowerCamelCase : Optional[int]=32 ,lowerCamelCase : Dict=5 ,lowerCamelCase : Optional[int]=4 ,lowerCamelCase : List[Any]=37 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Any=0.1 ,lowerCamelCase : str=10 ,lowerCamelCase : Dict=0.02 ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE = num_patches + 1 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase ,initializer_range=self.initializer_range ,) return config, pixel_values def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModel(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) __SCREAMING_SNAKE_CASE = (self.patch_size, self.patch_size) __SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.type_sequence_label_size __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(lowerCamelCase ) __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,has_text_modality=lowerCamelCase ,hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) __SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) @jax.jit def model_jitted(lowerCamelCase : int ,**lowerCamelCase : Union[str, Any] ): return model(pixel_values=lowerCamelCase ,**lowerCamelCase ) with self.subTest("""JIT Enabled""" ): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) ,len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase ,lowerCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) __SCREAMING_SNAKE_CASE = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase )
13
1
from typing import Any import numpy as np def __snake_case ( __UpperCamelCase : np.ndarray ): """simple docstring""" return np.array_equal(__UpperCamelCase ,matrix.conjugate().T ) def __snake_case ( __UpperCamelCase : np.ndarray ,__UpperCamelCase : np.ndarray ): """simple docstring""" A_ = v.conjugate().T A_ = v_star.dot(__UpperCamelCase ) assert isinstance(__UpperCamelCase ,np.ndarray ) return (v_star_dot.dot(__UpperCamelCase )) / (v_star.dot(__UpperCamelCase )) def __snake_case ( ): """simple docstring""" A_ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) A_ = np.array([[1], [2], [3]] ) assert is_hermitian(__UpperCamelCase ), f'''{a} is not hermitian.''' print(rayleigh_quotient(__UpperCamelCase ,__UpperCamelCase ) ) A_ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__UpperCamelCase ), f'''{a} is not hermitian.''' assert rayleigh_quotient(__UpperCamelCase ,__UpperCamelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
86
__a :Optional[int] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution __a :list[bool | None] = [None] * 1000_0000 __a :Optional[Any] = True __a :List[Any] = False def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore A_ = chain(next_number(__UpperCamelCase ) ) A_ = number_chain while number < 1000_0000: A_ = number_chain number *= 10 return number_chain def __snake_case ( __UpperCamelCase : int = 1000_0000 ): """simple docstring""" for i in range(1 ,__UpperCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F"{solution() = }")
86
1
'''simple docstring''' class a__: '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = name lowerCAmelCase = value lowerCAmelCase = weight def __repr__( self): """simple docstring""" return f"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def a_ ( self): """simple docstring""" return self.value def a_ ( self): """simple docstring""" return self.name def a_ ( self): """simple docstring""" return self.weight def a_ ( self): """simple docstring""" return self.value / self.weight def snake_case__ ( _A: List[str] , _A: Optional[Any] , _A: List[str] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = [] for i in range(len(_lowerCamelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def snake_case__ ( _A: Dict , _A: Union[str, Any] , _A: Any ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase = sorted(_lowerCamelCase , key=_lowerCamelCase , reverse=_lowerCamelCase ) lowerCAmelCase = [] lowerCAmelCase = 0.0, 0.0 for i in range(len(_lowerCamelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def snake_case__ ( ) -> List[Any]: '''simple docstring''' pass if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__( unittest.TestCase ): '''simple docstring''' def a_ ( self): """simple docstring""" lowerCAmelCase = tempfile.mkdtemp() # fmt: off lowerCAmelCase = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowerCAmelCase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase)))) lowerCAmelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] lowerCAmelCase = {"""unk_token""": """<unk>"""} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(__lowerCAmelCase) + """\n""") with open(self.merges_file , """w""" , encoding="""utf-8""") as fp: fp.write("""\n""".join(__lowerCAmelCase)) lowerCAmelCase = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } lowerCAmelCase = os.path.join(self.tmpdirname , __lowerCAmelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase) def a_ ( self , **__lowerCAmelCase): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase) def a_ ( self , **__lowerCAmelCase): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase) def a_ ( self , **__lowerCAmelCase): """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase) def a_ ( self): """simple docstring""" shutil.rmtree(self.tmpdirname) def a_ ( self): """simple docstring""" lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1)) for x in image_inputs] return image_inputs def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = self.get_image_processor() lowerCAmelCase = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) processor_slow.save_pretrained(self.tmpdirname) lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase) lowerCAmelCase = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) processor_fast.save_pretrained(self.tmpdirname) lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") lowerCAmelCase = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0) lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowerCAmelCase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(__lowerCAmelCase , return_tensors="""np""") lowerCAmelCase = processor(images=__lowerCAmelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = """lower newer""" lowerCAmelCase = processor(text=__lowerCAmelCase) lowerCAmelCase = tokenizer(__lowerCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=__lowerCAmelCase , images=__lowerCAmelCase) self.assertListEqual(list(inputs.keys()) , ["""input_ids""", """attention_mask""", """pixel_values"""]) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase): processor() def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(__lowerCAmelCase) lowerCAmelCase = tokenizer.batch_decode(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=__lowerCAmelCase , images=__lowerCAmelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
605
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = SamImageProcessor() _lowerCAmelCase = SamProcessor(A_ ) processor.save_pretrained(self.tmpdirname ) def _lowercase ( self , **_lowercase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **A_ ).image_processor def _lowercase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_image_processor(do_normalize=A_ , padding_value=1.0 ) _lowerCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = SamProcessor(image_processor=A_ ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(A_ , return_tensors="""np""" ) _lowerCAmelCase = processor(images=A_ , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = SamProcessor(image_processor=A_ ) _lowerCAmelCase = [torch.ones((1, 3, 5, 5) )] _lowerCAmelCase = [[1_764, 2_646]] _lowerCAmelCase = [[683, 1_024]] _lowerCAmelCase = processor.post_process_masks(A_ , A_ , A_ ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) _lowerCAmelCase = processor.post_process_masks( A_ , torch.tensor(A_ ) , torch.tensor(A_ ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np _lowerCAmelCase = [np.ones((1, 3, 5, 5) )] _lowerCAmelCase = processor.post_process_masks(A_ , np.array(A_ ) , np.array(A_ ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) _lowerCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(A_ ): _lowerCAmelCase = processor.post_process_masks(A_ , np.array(A_ ) , np.array(A_ ) ) @require_vision @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = SamImageProcessor() _lowerCAmelCase = SamProcessor(A_ ) processor.save_pretrained(self.tmpdirname ) def _lowercase ( self , **_lowercase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **A_ ).image_processor def _lowercase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_image_processor(do_normalize=A_ , padding_value=1.0 ) _lowerCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = SamProcessor(image_processor=A_ ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(A_ , return_tensors="""np""" ) _lowerCAmelCase = processor(images=A_ , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = SamProcessor(image_processor=A_ ) _lowerCAmelCase = [tf.ones((1, 3, 5, 5) )] _lowerCAmelCase = [[1_764, 2_646]] _lowerCAmelCase = [[683, 1_024]] _lowerCAmelCase = processor.post_process_masks(A_ , A_ , A_ , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) _lowerCAmelCase = processor.post_process_masks( A_ , tf.convert_to_tensor(A_ ) , tf.convert_to_tensor(A_ ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np _lowerCAmelCase = [np.ones((1, 3, 5, 5) )] _lowerCAmelCase = processor.post_process_masks( A_ , np.array(A_ ) , np.array(A_ ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) _lowerCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): _lowerCAmelCase = processor.post_process_masks( A_ , np.array(A_ ) , np.array(A_ ) , return_tensors="""tf""" ) @require_vision @require_torchvision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = SamImageProcessor() _lowerCAmelCase = SamProcessor(A_ ) processor.save_pretrained(self.tmpdirname ) def _lowercase ( self , **_lowercase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **A_ ).image_processor def _lowercase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = SamProcessor(image_processor=A_ ) _lowerCAmelCase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) _lowerCAmelCase = [tf.convert_to_tensor(A_ )] _lowerCAmelCase = [torch.tensor(A_ )] _lowerCAmelCase = [[1_764, 2_646]] _lowerCAmelCase = [[683, 1_024]] _lowerCAmelCase = processor.post_process_masks( A_ , A_ , A_ , return_tensors="""tf""" ) _lowerCAmelCase = processor.post_process_masks( A_ , A_ , A_ , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = SamProcessor(image_processor=A_ ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(A_ , return_tensors="""pt""" )['''pixel_values'''].numpy() _lowerCAmelCase = processor(images=A_ , return_tensors="""pt""" )['''pixel_values'''].numpy() _lowerCAmelCase = image_processor(A_ , return_tensors="""tf""" )['''pixel_values'''].numpy() _lowerCAmelCase = processor(images=A_ , return_tensors="""tf""" )['''pixel_values'''].numpy() self.assertTrue(np.allclose(A_ , A_ ) ) self.assertTrue(np.allclose(A_ , A_ ) ) self.assertTrue(np.allclose(A_ , A_ ) )
5
import fire from utils import calculate_rouge, save_json def UpperCamelCase( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : str=None ,**__UpperCamelCase : Optional[Any] ): lowerCAmelCase_ : int = [x.strip() for x in open(__UpperCamelCase ).readlines()] lowerCAmelCase_ : Optional[Any] = [x.strip() for x in open(__UpperCamelCase ).readlines()][: len(__UpperCamelCase )] lowerCAmelCase_ : Tuple = calculate_rouge(__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) if save_path is not None: save_json(__UpperCamelCase ,__UpperCamelCase ,indent=__UpperCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
171
0
_a = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _a = [{"type": "code", "content": INSTALL_CONTENT}] _a = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
709
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCAmelCase__(__snake_case ) -> Union[str, Any]: '''simple docstring''' def wrapper(*__snake_case ,**__snake_case ): lowerCamelCase__ = timeit.default_timer() lowerCamelCase__ = func(*__snake_case ,**__snake_case ) lowerCamelCase__ = timeit.default_timer() - starttime return delta lowerCamelCase__ = func.__name__ return wrapper def lowerCAmelCase__(__snake_case ,__snake_case=100 ,__snake_case=None ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = seq_shapes or {} for i in range(__snake_case ): lowerCamelCase__ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__snake_case ,_ArrayXD ): lowerCamelCase__ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__snake_case ,datasets.Value ): if v.dtype == "string": lowerCamelCase__ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCamelCase__ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(__snake_case ,datasets.Sequence ): while isinstance(__snake_case ,datasets.Sequence ): lowerCamelCase__ = v.feature lowerCamelCase__ = seq_shapes[k] lowerCamelCase__ = np.random.rand(*__snake_case ).astype(v.dtype ) lowerCamelCase__ = data dummy_data.append((i, example) ) return dummy_data def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=100 ,__snake_case=None ) -> str: '''simple docstring''' lowerCamelCase__ = generate_examples(__snake_case ,num_examples=__snake_case ,seq_shapes=__snake_case ) with ArrowWriter(features=__snake_case ,path=__snake_case ) as writer: for key, record in dummy_data: lowerCamelCase__ = features.encode_example(__snake_case ) writer.write(__snake_case ) lowerCamelCase__ , lowerCamelCase__ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) lowerCamelCase__ = datasets.Dataset.from_file(filename=__snake_case ,info=datasets.DatasetInfo(features=__snake_case ) ) return dataset
29
0
def __UpperCamelCase ( A ): UpperCamelCase__ = abs(A ) UpperCamelCase__ = 0 while n > 0: res += n % 10 n //= 10 return res def __UpperCamelCase ( A ): UpperCamelCase__ = abs(A ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __UpperCamelCase ( A ): return sum(int(A ) for c in str(abs(A ) ) ) def __UpperCamelCase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(A , A ) -> None: UpperCamelCase__ = f"{func.__name__}({value})" UpperCamelCase__ = timeit(f"__main__.{call}" , setup='''import __main__''' ) print(f"{call:56} = {func(A )} -- {timing:.4f} seconds" ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(A , A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
415
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __UpperCamelCase ( A ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __magic_name__ =''' transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. ''' class _A ( __UpperCamelCase ): @staticmethod def _a (SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=SCREAMING_SNAKE_CASE_ , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , ) -> Dict: '''simple docstring''' UpperCamelCase__ = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(F"Loading model {model_type}" ) UpperCamelCase__ = model_type UpperCamelCase__ = tf_checkpoint UpperCamelCase__ = pytorch_dump_output UpperCamelCase__ = config UpperCamelCase__ = finetuning_task_name def _a (self ) -> Tuple: '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) if "ckpt" in self._tf_checkpoint.lower(): UpperCamelCase__ = self._tf_checkpoint UpperCamelCase__ = '''''' else: UpperCamelCase__ = self._tf_checkpoint UpperCamelCase__ = '''''' convert_transfo_xl_checkpoint_to_pytorch( SCREAMING_SNAKE_CASE_ , self._config , self._pytorch_dump_output , SCREAMING_SNAKE_CASE_ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
415
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ : Optional[int] = { """configuration_longformer""": [ """LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongformerConfig""", """LongformerOnnxConfig""", ], """tokenization_longformer""": ["""LongformerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = ["""LongformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : str = [ """LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongformerForMaskedLM""", """LongformerForMultipleChoice""", """LongformerForQuestionAnswering""", """LongformerForSequenceClassification""", """LongformerForTokenClassification""", """LongformerModel""", """LongformerPreTrainedModel""", """LongformerSelfAttention""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = [ """TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLongformerForMaskedLM""", """TFLongformerForMultipleChoice""", """TFLongformerForQuestionAnswering""", """TFLongformerForSequenceClassification""", """TFLongformerForTokenClassification""", """TFLongformerModel""", """TFLongformerPreTrainedModel""", """TFLongformerSelfAttention""", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
def _snake_case (__lowercase , __lowercase): _enforce_args(__lowercase , __lowercase) if n == 0: return 0 UpperCamelCase_ = float('-inf') for i in range(1 , n + 1): UpperCamelCase_ = max( __lowercase , prices[i - 1] + naive_cut_rod_recursive(n - i , __lowercase)) return max_revue def _snake_case (__lowercase , __lowercase): _enforce_args(__lowercase , __lowercase) UpperCamelCase_ = [float('-inf') for _ in range(n + 1)] return _top_down_cut_rod_recursive(__lowercase , __lowercase , __lowercase) def _snake_case (__lowercase , __lowercase , __lowercase): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: UpperCamelCase_ = float('-inf') for i in range(1 , n + 1): UpperCamelCase_ = max( __lowercase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __lowercase , __lowercase) , ) UpperCamelCase_ = max_revenue return max_rev[n] def _snake_case (__lowercase , __lowercase): _enforce_args(__lowercase , __lowercase) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. UpperCamelCase_ = [float('-inf') for _ in range(n + 1)] UpperCamelCase_ = 0 for i in range(1 , n + 1): UpperCamelCase_ = max_rev[i] for j in range(1 , i + 1): UpperCamelCase_ = max(__lowercase , prices[j - 1] + max_rev[i - j]) UpperCamelCase_ = max_revenue_i return max_rev[n] def _snake_case (__lowercase , __lowercase): if n < 0: UpperCamelCase_ = f"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(__lowercase) if n > len(__lowercase): UpperCamelCase_ = ( 'Each integral piece of rod must have a corresponding price. ' f"""Got n = {n} but length of prices = {len(__lowercase)}""" ) raise ValueError(__lowercase) def _snake_case (): UpperCamelCase_ = [6, 10, 12, 15, 20, 23] UpperCamelCase_ = len(__lowercase) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. UpperCamelCase_ = 36 UpperCamelCase_ = top_down_cut_rod(__lowercase , __lowercase) UpperCamelCase_ = bottom_up_cut_rod(__lowercase , __lowercase) UpperCamelCase_ = naive_cut_rod_recursive(__lowercase , __lowercase) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
618
0
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput a =8 def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase=BITS ) -> List[Any]: '''simple docstring''' lowerCamelCase__ =x.device lowerCamelCase__ =(x * 255).int().clamp(0 , 255 ) lowerCamelCase__ =2 ** torch.arange(bits - 1 , -1 , -1 , device=__lowerCAmelCase ) lowerCamelCase__ =rearrange(__lowerCAmelCase , "d -> d 1 1" ) lowerCamelCase__ =rearrange(__lowerCAmelCase , "b c h w -> b c 1 h w" ) lowerCamelCase__ =((x & mask) != 0).float() lowerCamelCase__ =rearrange(__lowerCAmelCase , "b c d h w -> b (c d) h w" ) lowerCamelCase__ =bits * 2 - 1 return bits def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase=BITS ) -> List[Any]: '''simple docstring''' lowerCamelCase__ =x.device lowerCamelCase__ =(x > 0).int() lowerCamelCase__ =2 ** torch.arange(bits - 1 , -1 , -1 , device=__lowerCAmelCase , dtype=torch.intaa ) lowerCamelCase__ =rearrange(__lowerCAmelCase , "d -> d 1 1" ) lowerCamelCase__ =rearrange(__lowerCAmelCase , "b (c d) h w -> b c d h w" , d=8 ) lowerCamelCase__ =reduce(x * mask , "b c d h w -> b c h w" , "sum" ) return (dec / 255).clamp(0.0 , 1.0 ) def lowerCamelCase_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = True , __lowerCAmelCase=None , __lowerCAmelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowerCamelCase__ =timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowerCamelCase__ =self.alphas_cumprod[timestep] lowerCamelCase__ =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowerCamelCase__ =1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowerCamelCase__ =self.bit_scale if self.config.clip_sample: lowerCamelCase__ =torch.clamp(__lowerCAmelCase , -scale , __lowerCAmelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowerCamelCase__ =self._get_variance(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ =eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowerCamelCase__ =(sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ =(1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ =alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowerCamelCase__ =model_output.device if torch.is_tensor(__lowerCAmelCase ) else "cpu" lowerCamelCase__ =torch.randn(model_output.shape , dtype=model_output.dtype , generator=__lowerCAmelCase ).to(__lowerCAmelCase ) lowerCamelCase__ =self._get_variance(__lowerCAmelCase , __lowerCAmelCase ) ** 0.5 * eta * noise lowerCamelCase__ =prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase ) def lowerCamelCase_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="epsilon" , __lowerCAmelCase=None , __lowerCAmelCase = True , ) -> Union[DDPMSchedulerOutput, Tuple]: '''simple docstring''' lowerCamelCase__ =timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowerCamelCase__ , lowerCamelCase__ =torch.split(__lowerCAmelCase , sample.shape[1] , dim=1 ) else: lowerCamelCase__ =None # 1. compute alphas, betas lowerCamelCase__ =self.alphas_cumprod[t] lowerCamelCase__ =self.alphas_cumprod[t - 1] if t > 0 else self.one lowerCamelCase__ =1 - alpha_prod_t lowerCamelCase__ =1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowerCamelCase__ =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowerCamelCase__ =model_output else: raise ValueError(F'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" lowerCamelCase__ =self.bit_scale if self.config.clip_sample: lowerCamelCase__ =torch.clamp(__lowerCAmelCase , -scale , __lowerCAmelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ =(alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowerCamelCase__ =self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCamelCase__ =0 if t > 0: lowerCamelCase__ =torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=__lowerCAmelCase ).to(model_output.device ) lowerCamelCase__ =(self._get_variance(__lowerCAmelCase , predicted_variance=__lowerCAmelCase ) ** 0.5) * noise lowerCamelCase__ =pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase ) class __UpperCAmelCase ( __lowerCAmelCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1.0 , ): super().__init__() lowerCamelCase__ =bit_scale lowerCamelCase__ =( ddim_bit_scheduler_step if isinstance(_lowerCamelCase , _lowerCamelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self , _lowerCamelCase = 256 , _lowerCamelCase = 256 , _lowerCamelCase = 50 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = "pil" , _lowerCamelCase = True , **_lowerCamelCase , ): lowerCamelCase__ =torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=_lowerCamelCase , ) lowerCamelCase__ =decimal_to_bits(_lowerCamelCase ) * self.bit_scale lowerCamelCase__ =latents.to(self.device ) self.scheduler.set_timesteps(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowerCamelCase__ =self.unet(_lowerCamelCase , _lowerCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ =self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample lowerCamelCase__ =bits_to_decimal(_lowerCamelCase ) if output_type == "pil": lowerCamelCase__ =self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
530
"""simple docstring""" from math import sqrt def lowerCamelCase_ ( __lowerCAmelCase ) -> bool: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" lowerCamelCase__ =True # 0 and 1 are none primes. if number <= 1: lowerCamelCase__ =False for divisor in range(2 , int(round(sqrt(__lowerCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCamelCase__ =False break # precondition assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "'status' must been from type bool" return status def lowerCamelCase_ ( __lowerCAmelCase ) -> List[str]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCamelCase__ =list(range(2 , n + 1 ) ) lowerCamelCase__ =[] # this list will be returns. # actual sieve of erathostenes for i in range(len(__lowerCAmelCase ) ): for j in range(i + 1 , len(__lowerCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCamelCase__ =0 # filters actual prime numbers. lowerCamelCase__ =[x for x in begin_list if x != 0] # precondition assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "'ans' must been from type list" return ans def lowerCamelCase_ ( __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" lowerCamelCase__ =[] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(__lowerCAmelCase ): ans.append(__lowerCAmelCase ) # precondition assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "'ans' must been from type list" return ans def lowerCamelCase_ ( __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and number >= 0, "'number' must been an int and >= 0" lowerCamelCase__ =[] # this list will be returns of the function. # potential prime number factors. lowerCamelCase__ =2 lowerCamelCase__ =number if number == 0 or number == 1: ans.append(__lowerCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__lowerCAmelCase ): while quotient != 1: if is_prime(__lowerCAmelCase ) and (quotient % factor == 0): ans.append(__lowerCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(__lowerCAmelCase ) # precondition assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "'ans' must been from type list" return ans def lowerCamelCase_ ( __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCamelCase__ =0 # prime factorization of 'number' lowerCamelCase__ =prime_factorization(__lowerCAmelCase ) lowerCamelCase__ =max(__lowerCAmelCase ) # precondition assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "'ans' must been from type int" return ans def lowerCamelCase_ ( __lowerCAmelCase ) -> List[Any]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCamelCase__ =0 # prime factorization of 'number' lowerCamelCase__ =prime_factorization(__lowerCAmelCase ) lowerCamelCase__ =min(__lowerCAmelCase ) # precondition assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "'ans' must been from type int" return ans def lowerCamelCase_ ( __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , __lowerCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def lowerCamelCase_ ( __lowerCAmelCase ) -> List[Any]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , __lowerCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def lowerCamelCase_ ( __lowerCAmelCase ) -> int: '''simple docstring''' assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (number > 2) and is_even(__lowerCAmelCase ) ), "'number' must been an int, even and > 2" lowerCamelCase__ =[] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCamelCase__ =get_prime_numbers(__lowerCAmelCase ) lowerCamelCase__ =len(__lowerCAmelCase ) # run variable for while-loops. lowerCamelCase__ =0 lowerCamelCase__ =None # exit variable. for break up the loops lowerCamelCase__ =True while i < len_pn and loop: lowerCamelCase__ =i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCamelCase__ =False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (len(__lowerCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCamelCase__ =0 while numbera != 0: lowerCamelCase__ =numbera % numbera lowerCamelCase__ =numbera lowerCamelCase__ =rest # precondition assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCamelCase__ =1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCamelCase__ =prime_factorization(__lowerCAmelCase ) lowerCamelCase__ =prime_factorization(__lowerCAmelCase ) elif numbera == 1 or numbera == 1: lowerCamelCase__ =[] lowerCamelCase__ =[] lowerCamelCase__ =max(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ =0 lowerCamelCase__ =0 lowerCamelCase__ =[] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCamelCase__ =prime_fac_a.count(__lowerCAmelCase ) lowerCamelCase__ =prime_fac_a.count(__lowerCAmelCase ) for _ in range(max(__lowerCAmelCase , __lowerCAmelCase ) ): ans *= n else: lowerCamelCase__ =prime_fac_a.count(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ): ans *= n done.append(__lowerCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCamelCase__ =prime_fac_a.count(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ): ans *= n done.append(__lowerCAmelCase ) # precondition assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCamelCase_ ( __lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (n >= 0), "'number' must been a positive int" lowerCamelCase__ =0 lowerCamelCase__ =2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__lowerCAmelCase ): ans += 1 # precondition assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and is_prime( __lowerCAmelCase ), "'ans' must been a prime number and from type int" return ans def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' assert ( is_prime(__lowerCAmelCase ) and is_prime(__lowerCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCamelCase__ =p_number_a + 1 # jump to the next number lowerCamelCase__ =[] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__lowerCAmelCase ): number += 1 while number < p_number_a: ans.append(__lowerCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(__lowerCAmelCase ): number += 1 # precondition assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and ans[0] != p_number_a and ans[len(__lowerCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCamelCase_ ( __lowerCAmelCase ) -> int: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (n >= 1), "'n' must been int and >= 1" lowerCamelCase__ =[] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(__lowerCAmelCase ) # precondition assert ans[0] == 1 and ans[len(__lowerCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCamelCase_ ( __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCamelCase__ =get_divisors(__lowerCAmelCase ) # precondition assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (divisors[0] == 1) and (divisors[len(__lowerCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCamelCase__ =gcd(abs(__lowerCAmelCase ) , abs(__lowerCAmelCase ) ) # precondition assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCamelCase_ ( __lowerCAmelCase ) -> List[Any]: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" lowerCamelCase__ =1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCamelCase_ ( __lowerCAmelCase ) -> Tuple: '''simple docstring''' assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" lowerCamelCase__ =0 lowerCamelCase__ =1 lowerCamelCase__ =1 # this will be return for _ in range(n - 1 ): lowerCamelCase__ =ans ans += fiba lowerCamelCase__ =tmp return ans
530
1
'''simple docstring''' from math import pi def lowercase (_A , _A ) -> float: """simple docstring""" return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
708
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = pad_token_id _lowerCAmelCase : List[Any] = max_length _lowerCAmelCase : Tuple = vocab _lowerCAmelCase : str = merges _lowerCAmelCase : List[str] = BytePairTokenizer(snake_case__ , snake_case__ , sequence_length=snake_case__ ) @classmethod def a ( cls , snake_case__ , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = [' '.join(snake_case__ ) for m in tokenizer.bpe_ranks.keys()] _lowerCAmelCase : Any = tokenizer.get_vocab() return cls(snake_case__ , snake_case__ , *snake_case__ , **snake_case__ ) @classmethod def a ( cls , snake_case__ , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = GPTaTokenizer.from_pretrained(snake_case__ , *snake_case__ , **snake_case__ ) return cls.from_tokenizer(snake_case__ , *snake_case__ , **snake_case__ ) @classmethod def a ( cls , snake_case__ ): '''simple docstring''' return cls(**snake_case__ ) def a ( self ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = self.tf_tokenizer(snake_case__ ) _lowerCAmelCase : str = tf.ones_like(snake_case__ ) if self.pad_token_id is not None: # pad the tokens up to max length _lowerCAmelCase : Optional[int] = max_length if max_length is not None else self.max_length if max_length is not None: _lowerCAmelCase , _lowerCAmelCase : str = pad_model_inputs( snake_case__ , max_seq_length=snake_case__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
630
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCamelCase = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''ViTFeatureExtractor'''] __lowerCamelCase = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
467
from math import asin, atan, cos, radians, sin, sqrt, tan SCREAMING_SNAKE_CASE = 6_37_81_37.0 SCREAMING_SNAKE_CASE = 6_35_67_52.31_42_45 SCREAMING_SNAKE_CASE = 6378137 def _lowerCamelCase ( __A : float , __A : float , __A : float , __A : float ) -> float: _UpperCAmelCase : Any = (AXIS_A - AXIS_B) / AXIS_A _UpperCAmelCase : str = atan((1 - flattening) * tan(radians(__A ) ) ) _UpperCAmelCase : List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) _UpperCAmelCase : Dict = radians(__A ) _UpperCAmelCase : List[str] = radians(__A ) # Equation _UpperCAmelCase : Optional[Any] = sin((phi_a - phi_a) / 2 ) _UpperCAmelCase : Optional[Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _UpperCAmelCase : Any = sqrt(sin_sq_phi + (cos(__A ) * cos(__A ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__A ) if __name__ == "__main__": import doctest doctest.testmod()
485
0
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( _a ): a : str =(UnCLIPScheduler,) def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> Tuple: UpperCamelCase__ = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**snake_case_ ) return config def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=snake_case_ , prev_timestep=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(variance_type='fixed_small_log' ) UpperCamelCase__ = scheduler_class(**snake_case_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1E-5 def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(variance_type='learned_range' ) UpperCamelCase__ = scheduler_class(**snake_case_ ) UpperCamelCase__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=snake_case_ ) - -10.1_712_790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=snake_case_ ) - -5.7_998_052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=snake_case_ ) - -0.0_010_011 < 1E-5 def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**snake_case_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter UpperCamelCase__ = torch.manual_seed(0 ) for i, t in enumerate(snake_case_ ): # 1. predict noise residual UpperCamelCase__ = model(snake_case_ , snake_case_ ) # 2. predict previous mean of sample x_t-1 UpperCamelCase__ = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(snake_case_ ) ) UpperCamelCase__ = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1E-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**snake_case_ ) scheduler.set_timesteps(25 ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter UpperCamelCase__ = torch.manual_seed(0 ) for i, t in enumerate(snake_case_ ): # 1. predict noise residual UpperCamelCase__ = model(snake_case_ , snake_case_ ) if i + 1 == timesteps.shape[0]: UpperCamelCase__ = None else: UpperCamelCase__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 UpperCamelCase__ = scheduler.step( snake_case_ , snake_case_ , snake_case_ , prev_timestep=snake_case_ , generator=snake_case_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(snake_case_ ) ) UpperCamelCase__ = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1E-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> str: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: pass
20
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Tuple: UpperCamelCase__ = parent UpperCamelCase__ = 13 UpperCamelCase__ = 7 UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = 99 UpperCamelCase__ = 384 UpperCamelCase__ = 2 UpperCamelCase__ = 4 UpperCamelCase__ = 37 UpperCamelCase__ = 'gelu' UpperCamelCase__ = 0.1 UpperCamelCase__ = 0.1 UpperCamelCase__ = 512 UpperCamelCase__ = 16 UpperCamelCase__ = 2 UpperCamelCase__ = 0.02 UpperCamelCase__ = 3 UpperCamelCase__ = 4 UpperCamelCase__ = 128 UpperCamelCase__ = 2 UpperCamelCase__ = 9 UpperCamelCase__ = 1 UpperCamelCase__ = None def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertModel(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertForMaskedLM(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForSequenceClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = self.num_choices UpperCamelCase__ = TFConvBertForMultipleChoice(config=snake_case_ ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForTokenClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = TFConvBertForQuestionAnswering(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a : str =( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a : Any =False a : Dict =False a : str =False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = TFConvBertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = True if hasattr(snake_case_ , 'use_cache' ): UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) for model_class in self.all_model_classes: UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = len(model(snake_case_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) UpperCamelCase__ = os.path.join(snake_case_ , 'saved_model' , '1' ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = outputs['encoder_hidden_states'] UpperCamelCase__ = outputs['encoder_attentions'] else: UpperCamelCase__ = outputs['hidden_states'] UpperCamelCase__ = outputs['attentions'] self.assertEqual(len(snake_case_ ) , snake_case_ ) UpperCamelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) def check_decoder_attentions_output(snake_case_ ): UpperCamelCase__ = len(snake_case_ ) self.assertEqual(out_len % 2 , 0 ) UpperCamelCase__ = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case_ ): UpperCamelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) UpperCamelCase__ = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ = model(snake_case_ )[0] UpperCamelCase__ = [1, 6, 768] self.assertEqual(output.shape , snake_case_ ) UpperCamelCase__ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
20
1
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> List[str]: '''simple docstring''' snake_case_ = StableDiffusionPipeline.from_pretrained(__UpperCAmelCase, torch_dtype=torch.floataa ) # load LoRA weight from .safetensors snake_case_ = load_file(__UpperCAmelCase ) snake_case_ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: snake_case_ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) snake_case_ = pipeline.text_encoder else: snake_case_ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) snake_case_ = pipeline.unet # find the target layer snake_case_ = layer_infos.pop(0 ) while len(__UpperCAmelCase ) > -1: try: snake_case_ = curr_layer.__getattr__(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: snake_case_ = layer_infos.pop(0 ) elif len(__UpperCAmelCase ) == 0: break except Exception: if len(__UpperCAmelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: snake_case_ = layer_infos.pop(0 ) snake_case_ = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''', '''lora_up''' ) ) pair_keys.append(__UpperCAmelCase ) else: pair_keys.append(__UpperCAmelCase ) pair_keys.append(key.replace('''lora_up''', '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: snake_case_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) snake_case_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__UpperCAmelCase, __UpperCAmelCase ).unsqueeze(2 ).unsqueeze(3 ) else: snake_case_ = state_dict[pair_keys[0]].to(torch.floataa ) snake_case_ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__UpperCAmelCase, __UpperCAmelCase ) # update visited list for item in pair_keys: visited.append(__UpperCAmelCase ) return pipeline if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') a : Tuple = parser.parse_args() a : Optional[Any] = args.base_model_path a : List[Any] = args.checkpoint_path a : Dict = args.dump_path a : int = args.lora_prefix_unet a : Optional[int] = args.lora_prefix_text_encoder a : int = args.alpha a : Union[str, Any] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) a : List[str] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
640
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) # TODO: upload to AWS __magic_name__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "retribert" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Tuple = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Union[str, Any] = hidden_act __snake_case : str = intermediate_size __snake_case : Any = hidden_dropout_prob __snake_case : int = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : str = type_vocab_size __snake_case : str = initializer_range __snake_case : Union[str, Any] = layer_norm_eps __snake_case : Tuple = share_encoders __snake_case : int = projection_dim
576
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
430
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase__ : def __init__( self : Dict , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any]=2 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Any=False , _lowerCamelCase : Optional[int]=10 , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : str=32 * 8 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Optional[Any]=4 , _lowerCamelCase : Union[str, Any]=64 , ): _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = hidden_dim _snake_case = hidden_dim def lowercase ( self : Optional[int] ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCamelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCamelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCamelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCamelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase ( self : Union[str, Any] ): _snake_case = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _snake_case = self.num_queries _snake_case = self.num_labels _snake_case = [1, 1, 1, 1] _snake_case = self.num_channels _snake_case = 64 _snake_case = 128 _snake_case = self.hidden_dim _snake_case = self.hidden_dim _snake_case = self.hidden_dim return config def lowercase ( self : Union[str, Any] ): _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.prepare_config_and_inputs() _snake_case = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowercase ( self : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , config.decoder_layers ) def lowercase ( self : Any , _lowerCamelCase : int , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Any=False ): with torch.no_grad(): _snake_case = MaskaFormerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : str , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : List[Any] ): _snake_case = MaskaFormerForUniversalSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() def comm_check_on_output(_lowerCamelCase : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) _snake_case = model( pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __a = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} __a = False __a = False __a = False __a = False def lowercase ( self : Any ): _snake_case = MaskaFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowercase ( self : Dict ): self.config_tester.run_common_tests() def lowercase ( self : List[str] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : int ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCamelCase ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def lowercase ( self : Union[str, Any] ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def lowercase ( self : Optional[Any] ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def lowercase ( self : Optional[Any] ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def lowercase ( self : Dict ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase ( self : Tuple ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase ( self : Union[str, Any] ): pass def lowercase ( self : str ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @slow def lowercase ( self : Dict ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _snake_case = MaskaFormerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def lowercase ( self : Tuple ): _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { '''pixel_values''': torch.randn((2, 3, *size) , device=_lowerCamelCase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_lowerCamelCase ), '''class_labels''': torch.zeros(2 , 10 , device=_lowerCamelCase ).long(), } _snake_case = self.model_tester.get_config() _snake_case = MaskaFormerForUniversalSegmentation(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def lowercase ( self : List[str] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : Any ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase ( self : int ): if not self.model_tester.is_training: return _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ).loss loss.backward() def lowercase ( self : Dict ): _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase__ = 1e-4 def _UpperCAmelCase ( ) -> int: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : Tuple ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase ( self : Optional[Any] ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase ( self : Any ): _snake_case = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) _snake_case = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : List[Any] ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _snake_case = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] _snake_case = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : List[str] ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) _snake_case = inputs['''pixel_values'''].to(_lowerCamelCase ) _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''mask_labels''']] _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None )
430
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase :Optional[int] = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :int = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCAmelCase :Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
251
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Optional[int] = '''rwkv''' A__ : int = {'''max_position_embeddings''': '''context_length'''} def __init__( self : List[str] , _snake_case : List[Any]=5_0277 , _snake_case : List[Any]=1024 , _snake_case : Optional[int]=4096 , _snake_case : str=32 , _snake_case : Dict=None , _snake_case : Any=None , _snake_case : str=1E-5 , _snake_case : str=0 , _snake_case : Union[str, Any]=0 , _snake_case : List[Any]=6 , _snake_case : Any=False , _snake_case : int=True , **_snake_case : Optional[Any] , ): __lowercase : Dict = vocab_size __lowercase : Tuple = context_length __lowercase : str = hidden_size __lowercase : Tuple = num_hidden_layers __lowercase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowercase : Dict = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowercase : Optional[Any] = layer_norm_epsilon __lowercase : List[str] = rescale_every __lowercase : Union[str, Any] = use_cache __lowercase : Dict = bos_token_id __lowercase : Optional[int] = eos_token_id super().__init__( tie_word_embeddings=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case )
509
0
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __UpperCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def A_ ( lowercase_ , lowercase_ , lowercase_ = 1_6_0_0_0 ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE = int(round(sample_rate * max_length ) ) if len(lowercase_ ) <= sample_length: return wav SCREAMING_SNAKE_CASE = randint(0 , len(lowercase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class a_: """simple docstring""" __snake_case : Optional[str] =field(default=lowercase__ , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __snake_case : Optional[str] =field( default=lowercase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __snake_case : Optional[str] =field( default=lowercase__ , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) __snake_case : Optional[str] =field( default=lowercase__ , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) __snake_case : str =field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __snake_case : str =field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __snake_case : str =field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) __snake_case : str =field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) __snake_case : Optional[int] =field( default=lowercase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __snake_case : Optional[int] =field( default=lowercase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __snake_case : float =field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class a_: """simple docstring""" __snake_case : str =field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) __snake_case : Optional[str] =field( default=lowercase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __snake_case : Optional[str] =field( default=lowercase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) __snake_case : str =field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __snake_case : Optional[str] =field( default=lowercase__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __snake_case : bool =field( default=lowercase__ , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) __snake_case : bool =field( default=lowercase__ , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) __snake_case : bool =field( default=lowercase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __snake_case : Optional[bool] =field( default=lowercase__ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __snake_case : bool =field( default=lowercase__ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def __UpperCamelCase ( self : Any) -> List[Any]: """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( 'The argument `--freeze_feature_extractor` is deprecated and ' 'will be removed in a future version. Use `--freeze_feature_encoder`' 'instead. Setting `freeze_feature_encoder==True`.' , lowerCAmelCase__ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( 'The argument `--freeze_feature_extractor` is deprecated and ' 'should not be used in combination with `--freeze_feature_encoder`.' 'Only make use of `--freeze_feature_encoder`.') def A_ ( ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_audio_classification' , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to train from scratch.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset and prepare it for the audio classification task. SCREAMING_SNAKE_CASE = DatasetDict() SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' 'Make sure to set `--audio_column_name` to the correct audio column - one of ' f'''{', '.join(raw_datasets['train'].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' 'Make sure to set `--label_column_name` to the correct text column - one of ' f'''{', '.join(raw_datasets['train'].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. SCREAMING_SNAKE_CASE = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) SCREAMING_SNAKE_CASE = feature_extractor.model_input_names[0] def train_transforms(lowercase_ ): SCREAMING_SNAKE_CASE = [] for audio in batch[data_args.audio_column_name]: SCREAMING_SNAKE_CASE = random_subsample( audio['array'] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowercase_ ) SCREAMING_SNAKE_CASE = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) SCREAMING_SNAKE_CASE = {model_input_name: inputs.get(lowercase_ )} SCREAMING_SNAKE_CASE = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowercase_ ): SCREAMING_SNAKE_CASE = [audio['array'] for audio in batch[data_args.audio_column_name]] SCREAMING_SNAKE_CASE = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) SCREAMING_SNAKE_CASE = {model_input_name: inputs.get(lowercase_ )} SCREAMING_SNAKE_CASE = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. SCREAMING_SNAKE_CASE = raw_datasets['train'].features[data_args.label_column_name].names SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = {}, {} for i, label in enumerate(lowercase_ ): SCREAMING_SNAKE_CASE = str(lowercase_ ) SCREAMING_SNAKE_CASE = label # Load the accuracy metric from the datasets package SCREAMING_SNAKE_CASE = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowercase_ ): SCREAMING_SNAKE_CASE = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowercase_ , references=eval_pred.label_ids ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task='audio-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE = ( raw_datasets['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowercase_ , output_all_columns=lowercase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE = ( raw_datasets['eval'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowercase_ , output_all_columns=lowercase_ ) # Initialize our trainer SCREAMING_SNAKE_CASE = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=raw_datasets['train'] if training_args.do_train else None , eval_dataset=raw_datasets['eval'] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE = last_checkpoint SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE = trainer.evaluate() trainer.log_metrics('eval' , lowercase_ ) trainer.save_metrics('eval' , lowercase_ ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'audio-classification', 'dataset': data_args.dataset_name, 'tags': ['audio-classification'], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
709
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A_ ( lowercase_ , lowercase_ ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = args.log_outputs SCREAMING_SNAKE_CASE = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric SCREAMING_SNAKE_CASE = load_metric('wer' ) SCREAMING_SNAKE_CASE = load_metric('cer' ) # compute metrics SCREAMING_SNAKE_CASE = wer.compute(references=result['target'] , predictions=result['prediction'] ) SCREAMING_SNAKE_CASE = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results SCREAMING_SNAKE_CASE = f'''WER: {wer_result}\nCER: {cer_result}''' print(lowercase_ ) with open(f'''{dataset_id}_eval_results.txt''' , 'w' ) as f: f.write(lowercase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: SCREAMING_SNAKE_CASE = f'''log_{dataset_id}_predictions.txt''' SCREAMING_SNAKE_CASE = f'''log_{dataset_id}_targets.txt''' with open(lowercase_ , 'w' ) as p, open(lowercase_ , 'w' ) as t: # mapping function to write output def write_to_file(lowercase_ , lowercase_ ): p.write(f'''{i}''' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f'''{i}''' + '\n' ) t.write(batch['target'] + '\n' ) result.map(lowercase_ , with_indices=lowercase_ ) def A_ ( lowercase_ ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training SCREAMING_SNAKE_CASE = re.sub(lowercase_ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! SCREAMING_SNAKE_CASE = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: SCREAMING_SNAKE_CASE = ' '.join(text.split(lowercase_ ) ) return text def A_ ( lowercase_ ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(args.model_id ) SCREAMING_SNAKE_CASE = feature_extractor.sampling_rate # resample audio SCREAMING_SNAKE_CASE = dataset.cast_column('audio' , Audio(sampling_rate=lowercase_ ) ) # load eval pipeline if args.device is None: SCREAMING_SNAKE_CASE = 0 if torch.cuda.is_available() else -1 SCREAMING_SNAKE_CASE = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowercase_ ): SCREAMING_SNAKE_CASE = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) SCREAMING_SNAKE_CASE = prediction['text'] SCREAMING_SNAKE_CASE = normalize_text(batch['sentence'] ) return batch # run inference on all examples SCREAMING_SNAKE_CASE = dataset.map(lowercase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowercase_ , lowercase_ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) __UpperCAmelCase = parser.parse_args() main(args)
259
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = ['''image_processor''', '''tokenizer'''] _UpperCAmelCase = '''BridgeTowerImageProcessor''' _UpperCAmelCase = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , snake_case , snake_case ) -> Optional[int]: super().__init__(snake_case , snake_case ) def __call__( self , snake_case , snake_case = None , snake_case = True , snake_case = False , snake_case = None , snake_case = None , snake_case = 0 , snake_case = None , snake_case = None , snake_case = None , snake_case = False , snake_case = False , snake_case = False , snake_case = False , snake_case = True , snake_case = None , **snake_case , ) -> BatchEncoding: _UpperCAmelCase = self.tokenizer( text=snake_case , add_special_tokens=snake_case , padding=snake_case , truncation=snake_case , max_length=snake_case , stride=snake_case , pad_to_multiple_of=snake_case , return_token_type_ids=snake_case , return_attention_mask=snake_case , return_overflowing_tokens=snake_case , return_special_tokens_mask=snake_case , return_offsets_mapping=snake_case , return_length=snake_case , verbose=snake_case , return_tensors=snake_case , **snake_case , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( snake_case , return_tensors=snake_case , do_normalize=snake_case , do_center_crop=snake_case , **snake_case ) encoding.update(snake_case ) return encoding def lowerCamelCase_ ( self , *snake_case , **snake_case ) -> Dict: return self.tokenizer.batch_decode(*snake_case , **snake_case ) def lowerCamelCase_ ( self , *snake_case , **snake_case ) -> str: return self.tokenizer.decode(*snake_case , **snake_case ) @property def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
573
"""simple docstring""" import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowercase = logging.get_logger(__name__) class lowercase__ ( A ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ) -> None: warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case )
573
1
'''simple docstring''' from timeit import timeit def lowercase__ ( __UpperCamelCase )-> int: if number < 0: raise ValueError("""the value of input must not be negative""" ) UpperCamelCase = 0 while number: number &= number - 1 result += 1 return result def lowercase__ ( __UpperCamelCase )-> int: if number < 0: raise ValueError("""the value of input must not be negative""" ) UpperCamelCase = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def lowercase__ ( )-> None: def do_benchmark(__UpperCamelCase ) -> None: UpperCamelCase = """import __main__ as z""" print(F"Benchmark when {number = }:" ) print(F"{get_set_bits_count_using_modulo_operator(__UpperCamelCase ) = }" ) UpperCamelCase = timeit("""z.get_set_bits_count_using_modulo_operator(25)""" , setup=__UpperCamelCase ) print(F"timeit() runs in {timing} seconds" ) print(F"{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCamelCase ) = }" ) UpperCamelCase = timeit( """z.get_set_bits_count_using_brian_kernighans_algorithm(25)""" , setup=__UpperCamelCase , ) print(F"timeit() runs in {timing} seconds" ) for number in (25, 37, 58, 0): do_benchmark(__UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
714
'''simple docstring''' from math import sqrt def lowercase__ ( __UpperCamelCase )-> int: UpperCamelCase = 0 for i in range(1 , int(sqrt(__UpperCamelCase ) + 1 ) ): if n % i == 0 and i != sqrt(__UpperCamelCase ): total += i + n // i elif i == sqrt(__UpperCamelCase ): total += i return total - n def lowercase__ ( __UpperCamelCase = 10000 )-> int: UpperCamelCase = sum( i for i in range(1 , __UpperCamelCase ) if sum_of_divisors(sum_of_divisors(__UpperCamelCase ) ) == i and sum_of_divisors(__UpperCamelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
35
0
"""simple docstring""" from math import asin, atan, cos, radians, sin, sqrt, tan _lowerCAmelCase : Dict = 6_3_7_8_1_3_7.0 _lowerCAmelCase : Union[str, Any] = 6_3_5_6_7_5_2.3_1_4_2_4_5 _lowerCAmelCase : List[str] = 6_37_81_37 def __snake_case ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' _UpperCAmelCase : int = (AXIS_A - AXIS_B) / AXIS_A _UpperCAmelCase : List[str] = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) _UpperCAmelCase : Dict = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) _UpperCAmelCase : Any = radians(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : List[Any] = radians(SCREAMING_SNAKE_CASE__ ) # Equation _UpperCAmelCase : Any = sin((phi_a - phi_a) / 2 ) _UpperCAmelCase : Union[str, Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _UpperCAmelCase : Optional[Any] = sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE__ ) * cos(SCREAMING_SNAKE_CASE__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
289
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Any = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Optional[int] = 'roberta' def __init__( self : str , A : Optional[int]=5_0_2_6_5 , A : Optional[int]=7_6_8 , A : Tuple=1_2 , A : Optional[Any]=1_2 , A : Optional[int]=3_0_7_2 , A : str="gelu" , A : List[Any]=0.1 , A : Optional[Any]=0.1 , A : Any=5_1_2 , A : Dict=2 , A : Union[str, Any]=0.02 , A : str=1e-12 , A : Optional[int]=1 , A : List[str]=0 , A : int=2 , A : Any="absolute" , A : Optional[int]=True , A : int=None , **A : str , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _UpperCAmelCase : str = vocab_size _UpperCAmelCase : Dict = hidden_size _UpperCAmelCase : List[str] = num_hidden_layers _UpperCAmelCase : Any = num_attention_heads _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : Tuple = max_position_embeddings _UpperCAmelCase : Union[str, Any] = type_vocab_size _UpperCAmelCase : str = initializer_range _UpperCAmelCase : int = layer_norm_eps _UpperCAmelCase : Tuple = position_embedding_type _UpperCAmelCase : int = use_cache _UpperCAmelCase : Dict = classifier_dropout class UpperCAmelCase_ ( _UpperCamelCase ): @property def snake_case_ ( self : Tuple ): if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
289
1
"""simple docstring""" import unittest from knapsack import knapsack as k class __a ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCamelCase = 0 UpperCamelCase = [0] UpperCamelCase = [0] UpperCamelCase = len(UpperCAmelCase_ ) self.assertEqual(k.knapsack(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , 0 ) UpperCamelCase = [60] UpperCamelCase = [10] UpperCamelCase = len(UpperCAmelCase_ ) self.assertEqual(k.knapsack(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , 0 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" UpperCamelCase = 3 UpperCamelCase = [1, 2, 3] UpperCamelCase = [3, 2, 1] UpperCamelCase = len(UpperCAmelCase_ ) self.assertEqual(k.knapsack(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , 5 ) def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> str: """simple docstring""" UpperCamelCase = 50 UpperCamelCase = [60, 100, 120] UpperCamelCase = [10, 20, 30] UpperCamelCase = len(UpperCAmelCase_ ) self.assertEqual(k.knapsack(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , 220 ) if __name__ == "__main__": unittest.main()
556
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __a ( _lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : Any = BarthezTokenizer UpperCamelCase_ : Tuple = BarthezTokenizerFast UpperCamelCase_ : str = True UpperCamelCase_ : Dict = True def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> int: """simple docstring""" super().setUp() UpperCamelCase = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=UpperCAmelCase_ ) UpperCamelCase = tokenizer def _SCREAMING_SNAKE_CASE ( self : Dict )-> Optional[Any]: """simple docstring""" UpperCamelCase = "<pad>" UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> int: """simple docstring""" UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(UpperCAmelCase_ ) , 101_122 ) def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> List[str]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 101_122 ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> int: """simple docstring""" UpperCamelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCamelCase = [0, 57, 3_018, 70_307, 91, 2] UpperCamelCase = self.tokenizer( UpperCAmelCase_ , max_length=len(UpperCAmelCase_ ) , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="pt" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Optional[int]: """simple docstring""" if not self.test_rust_tokenizer: return UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = "I was born in 92000, and this is falsé." UpperCamelCase = tokenizer.tokenize(UpperCAmelCase_ ) UpperCamelCase = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) UpperCamelCase = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = tokenizer.encode(UpperCAmelCase_ ) UpperCamelCase = rust_tokenizer.encode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : int )-> Union[str, Any]: """simple docstring""" # fmt: off UpperCamelCase = {"input_ids": [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=UpperCAmelCase_ , )
556
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> str: return " ".join(input_str.split()[::-1]) if __name__ == "__main__": import doctest doctest.testmod()
596
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class a ( UpperCamelCase_ ): __lowercase = ["""pixel_values"""] def __init__( self , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = 1 / 2_55 , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> None: '''simple docstring''' super().__init__(**__UpperCamelCase ) A__ : List[Any] =size if size is not None else {'''shortest_edge''': 2_56} A__ : Union[str, Any] =get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) A__ : List[Any] =crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} A__ : Tuple =get_size_dict(__UpperCamelCase ) A__ : int =do_resize A__ : List[str] =size A__ : str =resample A__ : Union[str, Any] =do_center_crop A__ : Dict =crop_size A__ : int =do_rescale A__ : Union[str, Any] =rescale_factor A__ : Optional[Any] =do_normalize A__ : Dict =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A__ : Any =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = PILImageResampling.BICUBIC , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: '''simple docstring''' A__ : Union[str, Any] =get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A__ : Union[str, Any] =get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: '''simple docstring''' A__ : int =get_size_dict(__UpperCamelCase ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase )-> np.ndarray: '''simple docstring''' return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: '''simple docstring''' return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , **__UpperCamelCase , )-> int: '''simple docstring''' A__ : int =do_resize if do_resize is not None else self.do_resize A__ : Optional[Any] =size if size is not None else self.size A__ : Optional[Any] =get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) A__ : Tuple =resample if resample is not None else self.resample A__ : Optional[int] =do_center_crop if do_center_crop is not None else self.do_center_crop A__ : int =crop_size if crop_size is not None else self.crop_size A__ : Optional[Any] =get_size_dict(__UpperCamelCase ) A__ : int =do_rescale if do_rescale is not None else self.do_rescale A__ : Tuple =rescale_factor if rescale_factor is not None else self.rescale_factor A__ : Optional[Any] =do_normalize if do_normalize is not None else self.do_normalize A__ : List[str] =image_mean if image_mean is not None else self.image_mean A__ : Optional[int] =image_std if image_std is not None else self.image_std A__ : Optional[Any] =make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A__ : List[Any] =[to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: A__ : List[Any] =[self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: A__ : Dict =[self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: A__ : Dict =[self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: A__ : Tuple =[self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] A__ : List[Any] =[to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] A__ : List[str] ={'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
416
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __magic_name__ = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def __magic_name__ ( lowerCAmelCase_=True): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__lowerCamelCase ) ) class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : int = None __UpperCAmelCase : Union[str, Any] = None def _UpperCamelCase ( self , a_ , a_ ): with TemporaryDirectory() as tmp_dir: lowerCamelCase_ : Tuple = dataset_module_factory(a_ , cache_dir=a_ ) lowerCamelCase_ : List[str] = import_main_class(dataset_module.module_path , dataset=a_ ) lowerCamelCase_ : DatasetBuilder = builder_cls( cache_dir=a_ , config_name=a_ , hash=dataset_module.hash , ) lowerCamelCase_ : List[Any] = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=a_ ).replace(os.sep , "/" ), config.DATASET_INFO_FILENAME, ] ) lowerCamelCase_ : str = cached_path(a_ , cache_dir=a_ ) self.assertTrue(os.path.exists(a_ ) ) @pytest.mark.integration def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : Optional[Any] = tmp_path_factory.mktemp("test_hf_gcp") / "test_wikipedia_simple" lowerCamelCase_ : Optional[Any] = dataset_module_factory("wikipedia" , cache_dir=lowerCAmelCase_) lowerCamelCase_ : Any = import_main_class(dataset_module.module_path) lowerCamelCase_ : DatasetBuilder = builder_cls( cache_dir=lowerCAmelCase_ , config_name="20220301.frr" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowerCamelCase_ : Any = None builder_instance.download_and_prepare() lowerCamelCase_ : Optional[Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : List[Any] = dataset_module_factory("wikipedia" , cache_dir=lowerCAmelCase_) lowerCamelCase_ : int = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase_) lowerCamelCase_ : DatasetBuilder = builder_cls( cache_dir=lowerCAmelCase_ , config_name="20220301.frr" , hash=dataset_module.hash , ) lowerCamelCase_ : Any = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowerCAmelCase_ , lowerCAmelCase_) assert "train" in ds assert isinstance(ds["train"] , lowerCAmelCase_) assert next(iter(ds["train"]))
73
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False): '''simple docstring''' if radian_mode: return [magnitude * cos(lowerCAmelCase_), magnitude * sin(lowerCAmelCase_)] return [magnitude * cos(radians(lowerCAmelCase_)), magnitude * sin(radians(lowerCAmelCase_))] def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10**-1): '''simple docstring''' lowerCamelCase_ : NDArray[floataa] = cross(lowerCAmelCase_ , lowerCAmelCase_) lowerCamelCase_ : float = sum(lowerCAmelCase_) return abs(lowerCAmelCase_) < eps if __name__ == "__main__": # Test to check if it works __magic_name__ = array( [ polar_force(7_18.4, 1_8_0 - 3_0), polar_force(8_79.54, 4_5), polar_force(1_0_0, -9_0), ] ) __magic_name__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg __magic_name__ = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) __magic_name__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg __magic_name__ = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) __magic_name__ = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
73
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
91
"""simple docstring""" from __future__ import annotations def a__ ( __SCREAMING_SNAKE_CASE ) -> list[int]: __lowerCAmelCase: str = [True] * limit __lowerCAmelCase: List[Any] = False __lowerCAmelCase: List[str] = False __lowerCAmelCase: int = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): __lowerCAmelCase: Tuple = i * 2 while index < limit: __lowerCAmelCase: List[Any] = False __lowerCAmelCase: Optional[int] = index + i __lowerCAmelCase: Tuple = [2] for i in range(3 , __SCREAMING_SNAKE_CASE , 2 ): if is_prime[i]: primes.append(__SCREAMING_SNAKE_CASE ) return primes def a__ ( __SCREAMING_SNAKE_CASE = 1_0_0_0_0_0_0 ) -> int: __lowerCAmelCase: Tuple = prime_sieve(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = 0 __lowerCAmelCase: str = 0 for i in range(len(__SCREAMING_SNAKE_CASE ) ): for j in range(i + length , len(__SCREAMING_SNAKE_CASE ) ): __lowerCAmelCase: Optional[Any] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __lowerCAmelCase: str = j - i __lowerCAmelCase: List[str] = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
346
0
from ..utils import DummyObject, requires_backends class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch""", """transformers""", """onnx"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch""", """transformers""", """onnx"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch""", """transformers""", """onnx"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch""", """transformers""", """onnx"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch""", """transformers""", """onnx"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch""", """transformers""", """onnx"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
86
def __magic_name__ ( __a : str ): '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def __magic_name__ ( __a : str ): '''simple docstring''' UpperCamelCase__ = credit_card_number UpperCamelCase__ = 0 UpperCamelCase__ = len(__a ) - 2 for i in range(__a , -1 , -2 ): # double the value of every second digit UpperCamelCase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCamelCase__ = cc_number[:i] + str(__a ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__a ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __magic_name__ ( __a : str ): '''simple docstring''' UpperCamelCase__ = f"{credit_card_number} is an invalid credit card number because" if not credit_card_number.isdigit(): print(f"{error_message} it has nonnumerical characters." ) return False if not 13 <= len(__a ) <= 16: print(f"{error_message} of its length." ) return False if not validate_initial_digits(__a ): print(f"{error_message} of its first two digits." ) return False if not luhn_validation(__a ): print(f"{error_message} it fails the Luhn check." ) return False print(f"{credit_card_number} is a valid credit card number." ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('''4111111111111111''') validate_credit_card_number('''32323''')
86
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def A__ ( snake_case_ : Any ): SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: List[str]= image.size SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: int= (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 SCREAMING_SNAKE_CASE__: Tuple= image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) SCREAMING_SNAKE_CASE__: List[Any]= np.array(snake_case_ ).astype(np.floataa ) / 2_55.0 SCREAMING_SNAKE_CASE__: Optional[int]= image[None].transpose(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE__: Dict= torch.from_numpy(snake_case_ ) return 2.0 * image - 1.0 class _lowerCamelCase ( UpperCamelCase_ ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) -> List[Any]: super().__init__() self.register_modules(vqvae=lowerCAmelCase , unet=lowerCAmelCase , scheduler=lowerCAmelCase ) @torch.no_grad() def __call__( self , lowerCAmelCase = None , lowerCAmelCase = 1 , lowerCAmelCase = 100 , lowerCAmelCase = 0.0 , lowerCAmelCase = None , lowerCAmelCase = "pil" , lowerCAmelCase = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(lowerCAmelCase , PIL.Image.Image ): SCREAMING_SNAKE_CASE__: str= 1 elif isinstance(lowerCAmelCase , torch.Tensor ): SCREAMING_SNAKE_CASE__: int= image.shape[0] else: raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCAmelCase )}' ) if isinstance(lowerCAmelCase , PIL.Image.Image ): SCREAMING_SNAKE_CASE__: Union[str, Any]= preprocess(lowerCAmelCase ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Tuple= image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image SCREAMING_SNAKE_CASE__: Union[str, Any]= (batch_size, self.unet.config.in_channels // 2, height, width) SCREAMING_SNAKE_CASE__: Optional[Any]= next(self.unet.parameters() ).dtype SCREAMING_SNAKE_CASE__: Optional[int]= randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=self.device , dtype=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= image.to(device=self.device , dtype=lowerCAmelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCAmelCase , device=self.device ) SCREAMING_SNAKE_CASE__: Any= self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE__: List[Any]= latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] SCREAMING_SNAKE_CASE__: Dict= '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) SCREAMING_SNAKE_CASE__: str= {} if accepts_eta: SCREAMING_SNAKE_CASE__: List[Any]= eta for t in self.progress_bar(lowerCAmelCase ): # concat latents and low resolution image in the channel dimension. SCREAMING_SNAKE_CASE__: Optional[Any]= torch.cat([latents, image] , dim=1 ) SCREAMING_SNAKE_CASE__: Optional[Any]= self.scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) # predict the noise residual SCREAMING_SNAKE_CASE__: Dict= self.unet(lowerCAmelCase , lowerCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE__: Any= self.scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample # decode the image latents with the VQVAE SCREAMING_SNAKE_CASE__: Tuple= self.vqvae.decode(lowerCAmelCase ).sample SCREAMING_SNAKE_CASE__: Optional[int]= torch.clamp(lowerCAmelCase , -1.0 , 1.0 ) SCREAMING_SNAKE_CASE__: Optional[Any]= image / 2 + 0.5 SCREAMING_SNAKE_CASE__: List[Any]= image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__: Tuple= self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase )
64
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _UpperCamelCase : Any = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' _UpperCamelCase : List[Any] = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' _UpperCamelCase : List[str] = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowercase( datasets.Metric ): """simple docstring""" def snake_case ( self: int ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ,id='token' ) ,id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' ,id='token' ) ,id='sequence' ) ,id='references' ), } ) ,) def snake_case ( self: Dict ,a: List[List[List[str]]] ,a: List[List[str]] ,a: int = 1 ,a: int = 4 ,): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=a ,hypotheses=a ,min_len=a ,max_len=a ) }
396
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__ = { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
706
'''simple docstring''' from __future__ import annotations class __magic_name__: def __init__( self : Dict , __UpperCamelCase : str , __UpperCamelCase : str ): '''simple docstring''' snake_case__ , snake_case__ = text, pattern snake_case__ , snake_case__ = len(__UpperCamelCase ), len(__UpperCamelCase ) def __lowerCAmelCase( self : Dict , __UpperCamelCase : str ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __lowerCAmelCase( self : Any , __UpperCamelCase : int ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __lowerCAmelCase( self : str ): '''simple docstring''' snake_case__ = [] for i in range(self.textLen - self.patLen + 1 ): snake_case__ = self.mismatch_in_text(__UpperCamelCase ) if mismatch_index == -1: positions.append(__UpperCamelCase ) else: snake_case__ = self.match_in_pattern(self.text[mismatch_index] ) snake_case__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions a__ = '''ABAABA''' a__ = '''AB''' a__ = BoyerMooreSearch(text, pattern) a__ = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
566
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __UpperCamelCase : Union[str, Any] = '\nHuman: <<task>>\n\nAssistant: ' __UpperCamelCase : str = 'huggingface-tools/default-prompts' __UpperCamelCase : Optional[Any] = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def A ( _lowercase , _lowercase , _lowercase="run" ): if prompt_or_repo_id is None: SCREAMING_SNAKE_CASE : str = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , _lowercase ) is not None: return prompt_or_repo_id SCREAMING_SNAKE_CASE : Any = cached_file( _lowercase , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name} ) with open(_lowercase , '''r''' , encoding='''utf-8''' ) as f: return f.read()
248
def A ( _lowercase = 10**9 ): SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value SCREAMING_SNAKE_CASE : List[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
248
1
"""simple docstring""" import argparse import os import re SCREAMING_SNAKE_CASE__ = "src/diffusers" # Pattern that looks at the indentation in a line. SCREAMING_SNAKE_CASE__ = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. SCREAMING_SNAKE_CASE__ = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. SCREAMING_SNAKE_CASE__ = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. SCREAMING_SNAKE_CASE__ = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. SCREAMING_SNAKE_CASE__ = re.compile(r"\[([^\]]+)\]") def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase = _re_indent.search(__A ) return "" if search is None else search.groups()[0] def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple="" , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' lowerCAmelCase = 0 lowerCAmelCase = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(__A ): index += 1 lowerCAmelCase = ['''\n'''.join(lines[:index] )] else: lowerCAmelCase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase = [lines[index]] index += 1 while index < len(__A ) and (end_prompt is None or not lines[index].startswith(__A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(__A ) ) if index < len(__A ) - 1: lowerCAmelCase = [lines[index + 1]] index += 1 else: lowerCAmelCase = [] else: blocks.append("""\n""".join(__A ) ) lowerCAmelCase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__A ) > 0: blocks.append("""\n""".join(__A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__A ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' def _inner(SCREAMING_SNAKE_CASE : Tuple ): return key(__A ).lower().replace("""_""" , """""" ) return _inner def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[str, Any]=None ): '''simple docstring''' def noop(SCREAMING_SNAKE_CASE : Optional[Any] ): return x if key is None: lowerCAmelCase = noop # Constants are all uppercase, they go first. lowerCAmelCase = [obj for obj in objects if key(__A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase = [obj for obj in objects if key(__A )[0].isupper() and not key(__A ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase = [obj for obj in objects if not key(__A )[0].isupper()] lowerCAmelCase = ignore_underscore(__A ) return sorted(__A , key=__A ) + sorted(__A , key=__A ) + sorted(__A , key=__A ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' def _replace(SCREAMING_SNAKE_CASE : List[str] ): lowerCAmelCase = match.groups()[0] if "," not in imports: return F'[{imports}]' lowerCAmelCase = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase = keys[:-1] return "[" + ", ".join([F'"{k}"' for k in sort_objects(__A )] ) + "]" lowerCAmelCase = import_statement.split("""\n""" ) if len(__A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase = 2 if lines[1].strip() == '''[''' else 1 lowerCAmelCase = [(i, _re_strip_line.search(__A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase = sort_objects(__A , key=lambda SCREAMING_SNAKE_CASE : x[1] ) lowerCAmelCase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase = keys[:-1] lowerCAmelCase = get_indent(lines[1] ) + ''', '''.join([F'"{k}"' for k in sort_objects(__A )] ) return "\n".join(__A ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase = _re_bracket_content.sub(_replace , __A ) return import_statement def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int=True ): '''simple docstring''' with open(__A , """r""" ) as f: lowerCAmelCase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase = split_code_in_indented_blocks( __A , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase = main_blocks[block_idx] lowerCAmelCase = block.split("""\n""" ) # Get to the start of the imports. lowerCAmelCase = 0 while line_idx < len(__A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase = len(__A ) else: line_idx += 1 if line_idx >= len(__A ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase = '''\n'''.join(block_lines[line_idx:-1] ) lowerCAmelCase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase = split_code_in_indented_blocks(__A , indent_level=__A ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase = [(pattern.search(__A ).groups()[0] if pattern.search(__A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase = [(i, key) for i, key in enumerate(__A ) if key is not None] lowerCAmelCase = [x[0] for x in sorted(__A , key=lambda SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase = 0 lowerCAmelCase = [] for i in range(len(__A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__A ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__A ): if check_only: return True else: print(F'Overwriting {file}.' ) with open(__A , """w""" ) as f: f.write("""\n""".join(__A ) ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple=True ): '''simple docstring''' lowerCAmelCase = [] for root, _, files in os.walk(__A ): if "__init__.py" in files: lowerCAmelCase = sort_imports(os.path.join(__A , """__init__.py""" ) , check_only=__A ) if result: lowerCAmelCase = [os.path.join(__A , """__init__.py""" )] if len(__A ) > 0: raise ValueError(F'Would overwrite {len(__A )} files, run `make style`.' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") SCREAMING_SNAKE_CASE__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
708
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = "cpu" SCREAMING_SNAKE_CASE__ = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" SCREAMING_SNAKE_CASE__ = "path-to-your-trained-model" SCREAMING_SNAKE_CASE__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: SCREAMING_SNAKE_CASE__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) SCREAMING_SNAKE_CASE__ = pipe.to(device) # to channels last SCREAMING_SNAKE_CASE__ = pipe.unet.to(memory_format=torch.channels_last) SCREAMING_SNAKE_CASE__ = pipe.vae.to(memory_format=torch.channels_last) SCREAMING_SNAKE_CASE__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: SCREAMING_SNAKE_CASE__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex SCREAMING_SNAKE_CASE__ = torch.randn(2, 4, 64, 64) SCREAMING_SNAKE_CASE__ = torch.rand(1) * 999 SCREAMING_SNAKE_CASE__ = torch.randn(2, 77, 768) SCREAMING_SNAKE_CASE__ = (sample, timestep, encoder_hidden_status) try: SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute SCREAMING_SNAKE_CASE__ = 666 SCREAMING_SNAKE_CASE__ = torch.Generator(device).manual_seed(seed) SCREAMING_SNAKE_CASE__ = {"generator": generator} if args.steps is not None: SCREAMING_SNAKE_CASE__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): SCREAMING_SNAKE_CASE__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
393
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _lowerCamelCase =field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _lowerCamelCase =Features({"text": Value("string" )} ) _lowerCamelCase =Features({"labels": ClassLabel} ) _lowerCamelCase ="text" _lowerCamelCase ="labels" def __snake_case ( self : str , a__ : str ): if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , a__ ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) UpperCAmelCase = copy.deepcopy(self ) UpperCAmelCase = self.label_schema.copy() UpperCAmelCase = features[self.label_column] UpperCAmelCase = label_schema return task_template @property def __snake_case ( self : Dict ): return { self.text_column: "text", self.label_column: "labels", }
51
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''MaskFormerFeatureExtractor'''] __lowerCamelCase = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] __lowerCamelCase = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
467
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __a ( _snake_case ,_snake_case ,unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionPanoramaPipeline __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def _UpperCAmelCase ( self : Any) ->Any: """simple docstring""" torch.manual_seed(0) _lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _lowercase = DDIMScheduler() torch.manual_seed(0) _lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0) _lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _lowercase = CLIPTextModel(lowercase__) _lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""") _lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _UpperCAmelCase ( self : List[str] , lowercase__ : str , lowercase__ : Tuple=0) ->Dict: """simple docstring""" _lowercase = torch.manual_seed(lowercase__) _lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _UpperCAmelCase ( self : Union[str, Any]) ->List[Any]: """simple docstring""" _lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowercase = self.get_dummy_components() _lowercase = StableDiffusionPanoramaPipeline(**lowercase__) _lowercase = sd_pipe.to(lowercase__) sd_pipe.set_progress_bar_config(disable=lowercase__) _lowercase = self.get_dummy_inputs(lowercase__) _lowercase = sd_pipe(**lowercase__).images _lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def _UpperCAmelCase ( self : Union[str, Any]) ->Optional[int]: """simple docstring""" super().test_inference_batch_consistent(batch_sizes=[1, 2]) def _UpperCAmelCase ( self : Any) ->Union[str, Any]: """simple docstring""" super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3) def _UpperCAmelCase ( self : List[Any]) ->str: """simple docstring""" _lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowercase = self.get_dummy_components() _lowercase = StableDiffusionPanoramaPipeline(**lowercase__) _lowercase = sd_pipe.to(lowercase__) sd_pipe.set_progress_bar_config(disable=lowercase__) _lowercase = self.get_dummy_inputs(lowercase__) _lowercase = """french fries""" _lowercase = sd_pipe(**lowercase__ , negative_prompt=lowercase__) _lowercase = output.images _lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def _UpperCAmelCase ( self : Optional[Any]) ->Union[str, Any]: """simple docstring""" _lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowercase = self.get_dummy_components() _lowercase = StableDiffusionPanoramaPipeline(**lowercase__) _lowercase = sd_pipe.to(lowercase__) sd_pipe.set_progress_bar_config(disable=lowercase__) _lowercase = self.get_dummy_inputs(lowercase__) _lowercase = sd_pipe(**lowercase__ , view_batch_size=2) _lowercase = output.images _lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def _UpperCAmelCase ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowercase = self.get_dummy_components() _lowercase = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""") _lowercase = StableDiffusionPanoramaPipeline(**lowercase__) _lowercase = sd_pipe.to(lowercase__) sd_pipe.set_progress_bar_config(disable=lowercase__) _lowercase = self.get_dummy_inputs(lowercase__) _lowercase = sd_pipe(**lowercase__).images _lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def _UpperCAmelCase ( self : Dict) ->Optional[Any]: """simple docstring""" _lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowercase = self.get_dummy_components() _lowercase = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=lowercase__) _lowercase = StableDiffusionPanoramaPipeline(**lowercase__) _lowercase = sd_pipe.to(lowercase__) sd_pipe.set_progress_bar_config(disable=lowercase__) _lowercase = self.get_dummy_inputs(lowercase__) _lowercase = sd_pipe(**lowercase__).images _lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __a ( unittest.TestCase ): def _UpperCAmelCase ( self : List[str]) ->Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self : Union[str, Any] , lowercase__ : str=0) ->List[str]: """simple docstring""" _lowercase = torch.manual_seed(lowercase__) _lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _UpperCAmelCase ( self : Any) ->Optional[int]: """simple docstring""" _lowercase = """stabilityai/stable-diffusion-2-base""" _lowercase = DDIMScheduler.from_pretrained(lowercase__ , subfolder="""scheduler""") _lowercase = StableDiffusionPanoramaPipeline.from_pretrained(lowercase__ , scheduler=lowercase__ , safety_checker=lowercase__) pipe.to(lowercase__) pipe.set_progress_bar_config(disable=lowercase__) pipe.enable_attention_slicing() _lowercase = self.get_inputs() _lowercase = pipe(**lowercase__).images _lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) _lowercase = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ]) assert np.abs(expected_slice - image_slice).max() < 1e-2 def _UpperCAmelCase ( self : Union[str, Any]) ->List[Any]: """simple docstring""" _lowercase = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=lowercase__) _lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(lowercase__) pipe.set_progress_bar_config(disable=lowercase__) pipe.enable_attention_slicing() _lowercase = self.get_inputs() _lowercase = pipe(**lowercase__).images _lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) _lowercase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ]) assert np.abs(expected_slice - image_slice).max() < 1e-3 def _UpperCAmelCase ( self : int) ->Any: """simple docstring""" _lowercase = 0 def callback_fn(lowercase__ : int , lowercase__ : int , lowercase__ : torch.FloatTensor) -> None: _lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) _lowercase = latents[0, -3:, -3:, -1] _lowercase = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 2: _lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) _lowercase = latents[0, -3:, -3:, -1] _lowercase = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 _lowercase = False _lowercase = """stabilityai/stable-diffusion-2-base""" _lowercase = DDIMScheduler.from_pretrained(lowercase__ , subfolder="""scheduler""") _lowercase = StableDiffusionPanoramaPipeline.from_pretrained(lowercase__ , scheduler=lowercase__ , safety_checker=lowercase__) _lowercase = pipe.to(lowercase__) pipe.set_progress_bar_config(disable=lowercase__) pipe.enable_attention_slicing() _lowercase = self.get_inputs() pipe(**lowercase__ , callback=lowercase__ , callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 3 def _UpperCAmelCase ( self : str) ->str: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowercase = """stabilityai/stable-diffusion-2-base""" _lowercase = DDIMScheduler.from_pretrained(lowercase__ , subfolder="""scheduler""") _lowercase = StableDiffusionPanoramaPipeline.from_pretrained(lowercase__ , scheduler=lowercase__ , safety_checker=lowercase__) _lowercase = pipe.to(lowercase__) pipe.set_progress_bar_config(disable=lowercase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() _lowercase = self.get_inputs() _lowercase = pipe(**lowercase__) _lowercase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
572
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( snake_case_ ): if n_term == "": return [] _lowercase = [] for temp in range(int(snake_case_ ) ): series.append(F"""1/{temp + 1}""" if series else """1""" ) return series if __name__ == "__main__": _lowerCamelCase = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
572
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
341
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
341
1
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Tuple ): lowercase = 0 if start < end: lowercase = randint(lowercase_ , lowercase_ ) lowercase = a[end] lowercase = a[pivot] lowercase = temp lowercase , lowercase = _in_place_partition(lowercase_ , lowercase_ , lowercase_ ) count += _in_place_quick_sort(lowercase_ , lowercase_ , p - 1 ) count += _in_place_quick_sort(lowercase_ , p + 1 , lowercase_ ) return count def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : int ): lowercase = 0 lowercase = randint(lowercase_ , lowercase_ ) lowercase = a[end] lowercase = a[pivot] lowercase = temp lowercase = start - 1 for index in range(lowercase_ , lowercase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowercase = new_pivot_index + 1 lowercase = a[new_pivot_index] lowercase = a[index] lowercase = temp lowercase = a[new_pivot_index + 1] lowercase = a[end] lowercase = temp return new_pivot_index + 1, count lowercase_ : int = TemporaryFile() lowercase_ : Optional[Any] = 100 # 1000 elements are to be sorted lowercase_ , lowercase_ : Optional[int] = 0, 1 # mean and standard deviation lowercase_ : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array lowercase_ : Any = np.load(outfile) lowercase_ : List[str] = len(M) - 1 lowercase_ : List[Any] = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
653
'''simple docstring''' def SCREAMING_SNAKE_CASE ( ): lowercase = [] lowercase = 1 while len(lowercase_ ) < 1E6: constant.append(str(lowercase_ ) ) i += 1 lowercase = """""".join(lowercase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
653
1
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a : def __init__( self : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int]=13 , __lowerCAmelCase : Dict=10 , __lowerCAmelCase : str=3 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Dict=True , __lowerCAmelCase : List[str]=32 , __lowerCAmelCase : Any=5 , __lowerCAmelCase : Union[str, Any]=4 , __lowerCAmelCase : Optional[Any]=37 , __lowerCAmelCase : List[Any]="gelu" , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Dict=10 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Any=0.9 , __lowerCAmelCase : Union[str, Any]=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = tubelet_size _UpperCAmelCase = num_frames _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = mask_ratio _UpperCAmelCase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _UpperCAmelCase = int(mask_ratio * self.seq_length ) def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : List[str] ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = VideoMAEModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int ): _UpperCAmelCase = VideoMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _UpperCAmelCase = torch.ones((self.num_masks,) ) _UpperCAmelCase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _UpperCAmelCase = mask.expand(self.batch_size , -1 ).bool() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # model only returns predictions for masked patches _UpperCAmelCase = mask.sum().item() _UpperCAmelCase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): _snake_case : List[str] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _snake_case : List[str] = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) _snake_case : Tuple = False _snake_case : Union[str, Any] = False _snake_case : int = False _snake_case : Any = False def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = VideoMAEModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict=False ): _UpperCAmelCase = copy.deepcopy(_SCREAMING_SNAKE_CASE ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _UpperCAmelCase = torch.ones((self.model_tester.num_masks,) ) _UpperCAmelCase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _UpperCAmelCase = mask.expand(self.model_tester.batch_size , -1 ).bool() _UpperCAmelCase = bool_masked_pos.to(_SCREAMING_SNAKE_CASE ) if return_labels: if model_class in [ *get_values(_SCREAMING_SNAKE_CASE ), ]: _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def lowerCAmelCase_ ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def lowerCAmelCase_ ( self : Optional[int] ): pass def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) @slow def lowerCAmelCase_ ( self : Union[str, Any] ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = VideoMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( self : Dict ): if not self.has_attentions: pass else: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: _UpperCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks _UpperCAmelCase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + 1 , len(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowerCAmelCase_ ( self : List[Any] ): def check_hidden_states_output(__lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ): _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks _UpperCAmelCase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase_ ( self : Union[str, Any] ): pass def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" ,filename="""eating_spaghetti.npy""" ,repo_type="""dataset""" ) _UpperCAmelCase = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self : Dict ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_video() _UpperCAmelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # verify the logits _UpperCAmelCase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_video() _UpperCAmelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) # add boolean mask, indicating which patches to mask _UpperCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # verify the logits _UpperCAmelCase = torch.Size([1, 1408, 1536] ) _UpperCAmelCase = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=_SCREAMING_SNAKE_CASE ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _UpperCAmelCase = torch.tensor([0.5_142] , device=_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.loss , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _UpperCAmelCase = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=_SCREAMING_SNAKE_CASE ).to( _SCREAMING_SNAKE_CASE ) with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor(torch.tensor([0.6_469] ) , device=_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.loss , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
277
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image UpperCamelCase_ : int = ['''text''', '''image''', '''audio'''] def __a ( _UpperCamelCase: List[str] ) -> Dict: """simple docstring""" _snake_case = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3_000 ) ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): inputs.append(create_inputs(_UpperCamelCase ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def __a ( _UpperCamelCase: List ) -> Dict: """simple docstring""" _snake_case = [] for output in outputs: if isinstance(_UpperCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(_UpperCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(_UpperCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class _a : def _lowercase ( self ) -> Any: self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) _snake_case = self.tool.inputs for _input in inputs: if isinstance(_input ,_SCREAMING_SNAKE_CASE ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) _snake_case = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _lowercase ( self ) -> Any: _snake_case = create_inputs(self.tool.inputs ) _snake_case = self.tool(*_SCREAMING_SNAKE_CASE ) # There is a single output if len(self.tool.outputs ) == 1: _snake_case = [outputs] self.assertListEqual(output_types(_SCREAMING_SNAKE_CASE ) ,self.tool.outputs ) def _lowercase ( self ) -> str: self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _lowercase ( self ) -> Tuple: _snake_case = create_inputs(self.tool.inputs ) _snake_case = self.tool(*_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): _snake_case = [outputs] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,len(self.tool.outputs ) ) for output, output_type in zip(_SCREAMING_SNAKE_CASE ,self.tool.outputs ): _snake_case = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) def _lowercase ( self ) -> Optional[Any]: _snake_case = create_inputs(self.tool.inputs ) _snake_case = [] for _input, input_type in zip(_SCREAMING_SNAKE_CASE ,self.tool.inputs ): if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error _snake_case = self.tool(*_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): _snake_case = [outputs] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,len(self.tool.outputs ) )
185
0
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def lowerCAmelCase ( self ): __UpperCamelCase : List[Any] = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) __UpperCamelCase : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) __UpperCamelCase : str = bertabert.config.encoder.vocab_size __UpperCamelCase : Optional[Any] = tokenizer.sep_token_id __UpperCamelCase : Any = tokenizer.cls_token_id __UpperCamelCase : Optional[Any] = 1_2_8 __UpperCamelCase : str = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) __UpperCamelCase : Tuple = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) __UpperCamelCase : Dict = train_dataset.select(range(3_2 ) ) __UpperCamelCase : List[Any] = val_dataset.select(range(1_6 ) ) __UpperCamelCase : Optional[int] = 4 def _map_to_encoder_decoder_inputs(_lowerCamelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __UpperCamelCase : Union[str, Any] = tokenizer(batch['article'] , padding='max_length' , truncation=_lowerCamelCase , max_length=5_1_2 ) __UpperCamelCase : Optional[int] = tokenizer(batch['highlights'] , padding='max_length' , truncation=_lowerCamelCase , max_length=1_2_8 ) __UpperCamelCase : Any = inputs.input_ids __UpperCamelCase : Optional[Any] = inputs.attention_mask __UpperCamelCase : Optional[Any] = outputs.input_ids __UpperCamelCase : List[Any] = outputs.input_ids.copy() __UpperCamelCase : Optional[Any] = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] __UpperCamelCase : Union[str, Any] = outputs.attention_mask assert all(len(_lowerCamelCase ) == 5_1_2 for x in inputs.input_ids ) assert all(len(_lowerCamelCase ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(_lowerCamelCase ): __UpperCamelCase : str = pred.label_ids __UpperCamelCase : Dict = pred.predictions # all unnecessary tokens are removed __UpperCamelCase : Tuple = tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) __UpperCamelCase : Optional[Any] = tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) __UpperCamelCase : Dict = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_lowerCamelCase ) )] ) / len(_lowerCamelCase ) return {"accuracy": accuracy} # map train dataset __UpperCamelCase : str = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_lowerCamelCase , batch_size=_lowerCamelCase , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset __UpperCamelCase : Any = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_lowerCamelCase , batch_size=_lowerCamelCase , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = SeqaSeqTrainingArguments( output_dir=_lowerCamelCase , per_device_train_batch_size=_lowerCamelCase , per_device_eval_batch_size=_lowerCamelCase , predict_with_generate=_lowerCamelCase , evaluation_strategy='steps' , do_train=_lowerCamelCase , do_eval=_lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __UpperCamelCase : str = SeqaSeqTrainer( model=_lowerCamelCase , args=_lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , tokenizer=_lowerCamelCase , ) # start training trainer.train()
701
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a= logging.get_logger(__name__) a= '''▁''' a= { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } a= { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } a= { '''facebook/s2t-small-librispeech-asr''': 1_0_2_4, } a= ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] a= {'''mustc''': MUSTC_LANGS} class __lowercase ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = MAX_MODEL_INPUT_SIZES SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE__ = [] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<unk>" , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = None , **_lowerCamelCase , ): __UpperCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , do_upper_case=_lowerCamelCase , do_lower_case=_lowerCamelCase , tgt_lang=_lowerCamelCase , lang_codes=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) __UpperCamelCase : Union[str, Any] = do_upper_case __UpperCamelCase : Dict = do_lower_case __UpperCamelCase : List[str] = load_json(_lowerCamelCase ) __UpperCamelCase : List[Any] = {v: k for k, v in self.encoder.items()} __UpperCamelCase : int = spm_file __UpperCamelCase : List[Any] = load_spm(_lowerCamelCase , self.sp_model_kwargs ) if lang_codes is not None: __UpperCamelCase : Any = lang_codes __UpperCamelCase : Any = LANGUAGES[lang_codes] __UpperCamelCase : str = [f"""<lang:{lang}>""" for lang in self.langs] __UpperCamelCase : List[str] = {lang: self.sp_model.PieceToId(f"""<lang:{lang}>""" ) for lang in self.langs} __UpperCamelCase : str = self.lang_tokens __UpperCamelCase : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __UpperCamelCase : Dict = {} @property def lowerCAmelCase ( self ): return len(self.encoder ) @property def lowerCAmelCase ( self ): return self._tgt_lang @tgt_lang.setter def lowerCAmelCase ( self , _lowerCamelCase ): __UpperCamelCase : Optional[int] = new_tgt_lang self.set_tgt_lang_special_tokens(_lowerCamelCase ) def lowerCAmelCase ( self , _lowerCamelCase ): __UpperCamelCase : int = self.lang_code_to_id[tgt_lang] __UpperCamelCase : List[str] = [lang_code_id] def lowerCAmelCase ( self , _lowerCamelCase ): return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def lowerCAmelCase ( self , _lowerCamelCase ): return self.encoder.get(_lowerCamelCase , self.encoder[self.unk_token] ) def lowerCAmelCase ( self , _lowerCamelCase ): return self.decoder.get(_lowerCamelCase , self.unk_token ) def lowerCAmelCase ( self , _lowerCamelCase ): __UpperCamelCase : Optional[Any] = [] __UpperCamelCase : List[str] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __UpperCamelCase : int = self.sp_model.decode(_lowerCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __UpperCamelCase : int = [] else: current_sub_tokens.append(_lowerCamelCase ) __UpperCamelCase : str = self.sp_model.decode(_lowerCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) __UpperCamelCase : Union[str, Any] = [1] * len(self.prefix_tokens ) __UpperCamelCase : Any = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def lowerCAmelCase ( self ): __UpperCamelCase : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __UpperCamelCase : int = self.__dict__.copy() __UpperCamelCase : Dict = None return state def __setstate__( self , _lowerCamelCase ): __UpperCamelCase : List[str] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase : Optional[int] = {} __UpperCamelCase : Union[str, Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ): __UpperCamelCase : List[str] = Path(_lowerCamelCase ) assert save_dir.is_dir(), f"""{save_directory} should be a directory""" __UpperCamelCase : Optional[int] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __UpperCamelCase : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCamelCase , 'wb' ) as fi: __UpperCamelCase : Dict = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (str(_lowerCamelCase ), str(_lowerCamelCase )) def _UpperCamelCase ( _a : str , _a : Dict[str, Any] ): """simple docstring""" __UpperCamelCase : List[Any] = sentencepiece.SentencePieceProcessor(**_a ) spm.Load(str(_a ) ) return spm def _UpperCamelCase ( _a : str ): """simple docstring""" with open(_a , 'r' ) as f: return json.load(_a ) def _UpperCamelCase ( _a : Any , _a : str ): """simple docstring""" with open(_a , 'w' ) as f: json.dump(_a , _a , indent=2 )
287
0
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase ( __UpperCamelCase ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase ( ): '''simple docstring''' with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" UpperCAmelCase__ : int = [1, 2, 3] with pytest.raises(__UpperCamelCase ): with parallel_backend("""unsupported backend""" ): map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=2 ) with pytest.raises(__UpperCamelCase ): with parallel_backend("""unsupported backend""" ): map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Dict = [1, 2] UpperCAmelCase__ : int = {"""a""": 1, """b""": 2} UpperCAmelCase__ : int = {"""a""": [1, 2], """b""": [3, 4]} UpperCAmelCase__ : Optional[int] = {"""a""": {"""1""": 1}, """b""": 2} UpperCAmelCase__ : Dict = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} UpperCAmelCase__ : Tuple = [2, 3] UpperCAmelCase__ : Tuple = {"""a""": 2, """b""": 3} UpperCAmelCase__ : int = {"""a""": [2, 3], """b""": [4, 5]} UpperCAmelCase__ : Tuple = {"""a""": {"""1""": 2}, """b""": 3} UpperCAmelCase__ : Union[str, Any] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa
65
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A = "allenai" def __UpperCAmelCase ( __A ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = dict((re.sub(R"@@$" , "" , __A ), v) if k.endswith("@@" ) else (re.sub(R"$" , "</w>" , __A ), v) for k, v in d.items() ) UpperCAmelCase__ = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] UpperCAmelCase__ = d[k] # restore return da def __UpperCAmelCase ( __A , __A ) -> Any: '''simple docstring''' assert os.path.exists(__A ) os.makedirs(__A , exist_ok=__A ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models UpperCAmelCase__ = basename(__A ) UpperCAmelCase__ = dirname(__A ) UpperCAmelCase__ = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel UpperCAmelCase__ = cls.hub_models() UpperCAmelCase__ = {"bpe": "fastbpe", "tokenizer": "moses"} UpperCAmelCase__ = "." # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F"""using checkpoint {checkpoint_file}""" ) UpperCAmelCase__ = hub_utils.from_pretrained( __A , __A , __A , archive_map=__A , **__A ) UpperCAmelCase__ = vars(chkpt["args"]["model"] ) UpperCAmelCase__ = args["source_lang"] UpperCAmelCase__ = args["target_lang"] UpperCAmelCase__ = dirname(__A ) UpperCAmelCase__ = basename(__A ) # dicts UpperCAmelCase__ = os.path.join(__A , F"""dict.{src_lang}.txt""" ) UpperCAmelCase__ = os.path.join(__A , F"""dict.{tgt_lang}.txt""" ) UpperCAmelCase__ = Dictionary.load(__A ) UpperCAmelCase__ = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase__ = len(__A ) UpperCAmelCase__ = os.path.join(__A , "vocab-src.json" ) print(F"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab UpperCAmelCase__ = True for k in src_vocab.keys(): if not k.islower(): UpperCAmelCase__ = False break UpperCAmelCase__ = Dictionary.load(__A ) UpperCAmelCase__ = rewrite_dict_keys(tgt_dict.indices ) UpperCAmelCase__ = len(__A ) UpperCAmelCase__ = os.path.join(__A , "vocab-tgt.json" ) print(F"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) ) # merges_file (bpecodes) UpperCAmelCase__ = os.path.join(__A , VOCAB_FILES_NAMES["merges_file"] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" UpperCAmelCase__ = os.path.join(__A , __A ) if os.path.exists(__A ): break with open(__A , encoding="utf-8" ) as fin: UpperCAmelCase__ = fin.read() UpperCAmelCase__ = re.sub(R" \d+$" , "" , __A , 0 , re.M ) # remove frequency number print(F"""Generating {merges_file}""" ) with open(__A , "w" , encoding="utf-8" ) as fout: fout.write(__A ) # model config UpperCAmelCase__ = os.path.join(__A , "config.json" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F"""need to extend tokenizer to support bpe={args["bpe"]}""" assert args["tokenizer"] == "moses", F"""need to extend tokenizer to support bpe={args["tokenizer"]}""" UpperCAmelCase__ = { "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.02, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], "encoder_attention_heads": args["encoder_attention_heads"], "encoder_ffn_dim": args["encoder_ffn_embed_dim"], "encoder_layerdrop": args["encoder_layerdrop"], "encoder_layers": args["encoder_layers"], "decoder_attention_heads": args["decoder_attention_heads"], "decoder_ffn_dim": args["decoder_ffn_embed_dim"], "decoder_layerdrop": args["decoder_layerdrop"], "decoder_layers": args["decoder_layers"], "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } # good hparam defaults to start with UpperCAmelCase__ = 5 UpperCAmelCase__ = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: UpperCAmelCase__ = best_score_hparams[model_dir]["length_penalty"] else: UpperCAmelCase__ = 1.0 print(F"""Generating {fsmt_model_config_file}""" ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) ) # tokenizer config UpperCAmelCase__ = os.path.join(__A , __A ) UpperCAmelCase__ = { "langs": [src_lang, tgt_lang], "model_max_length": 1_0_2_4, "do_lower_case": do_lower_case, } print(F"""Generating {fsmt_tokenizer_config_file}""" ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) ) # model UpperCAmelCase__ = chkpt["models"][0] UpperCAmelCase__ = model.state_dict() # rename keys to start with 'model.' UpperCAmelCase__ = OrderedDict(("model." + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys UpperCAmelCase__ = [ "model.model", "model.encoder.version", "model.decoder.version", "model.encoder_embed_tokens.weight", "model.decoder_embed_tokens.weight", "model.encoder.embed_positions._float_tensor", "model.decoder.embed_positions._float_tensor", ] for k in ignore_keys: model_state_dict.pop(__A , __A ) UpperCAmelCase__ = FSMTConfig.from_pretrained(__A ) UpperCAmelCase__ = FSMTForConditionalGeneration(__A ) # check that it loads ok model_new.load_state_dict(__A , strict=__A ) # save UpperCAmelCase__ = os.path.join(__A , __A ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(__A , __A ) print("Conversion is done!" ) print("\nLast step is to upload the files to s3" ) print(F"""cd {data_root}""" ) print(F"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
475
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase__( _snake_case , unittest.TestCase ): lowerCAmelCase__ : Tuple = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def snake_case__ ( self ,__UpperCAmelCase=0 ) -> Dict: A__ = floats_tensor((1, 3, 1_28, 1_28) ,rng=random.Random(lowerCAmelCase__ ) ) A__ = np.random.RandomState(lowerCAmelCase__ ) A__ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.7_5, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case__ ( self ) -> int: A__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) A__ = self.get_dummy_inputs() A__ = pipe(**lowerCAmelCase__ ).images A__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) A__ = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def snake_case__ ( self ) -> List[str]: A__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A__ = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) A__ = self.get_dummy_inputs() A__ = pipe(**lowerCAmelCase__ ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A__ = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case__ ( self ) -> Dict: A__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) # warmup pass to apply optimizations A__ = pipe(**self.get_dummy_inputs() ) A__ = self.get_dummy_inputs() A__ = pipe(**lowerCAmelCase__ ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A__ = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case__ ( self ) -> Union[str, Any]: A__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) A__ = self.get_dummy_inputs() A__ = pipe(**lowerCAmelCase__ ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A__ = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case__ ( self ) -> Union[str, Any]: A__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) A__ = self.get_dummy_inputs() A__ = pipe(**lowerCAmelCase__ ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A__ = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case__ ( self ) -> Optional[Any]: A__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) A__ = self.get_dummy_inputs() A__ = pipe(**lowerCAmelCase__ ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A__ = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): @property def snake_case__ ( self ) -> str: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self ) -> Tuple: A__ = ort.SessionOptions() A__ = False return options def snake_case__ ( self ) -> Any: A__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A__ = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default A__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=lowerCAmelCase__ ,feature_extractor=lowerCAmelCase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) A__ = 'A fantasy landscape, trending on artstation' A__ = np.random.RandomState(0 ) A__ = pipe( prompt=lowerCAmelCase__ ,image=lowerCAmelCase__ ,strength=0.7_5 ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=lowerCAmelCase__ ,output_type='np' ,) A__ = output.images A__ = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) A__ = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def snake_case__ ( self ) -> List[Any]: A__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A__ = init_image.resize((7_68, 5_12) ) A__ = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx' ) A__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=lowerCAmelCase__ ,safety_checker=lowerCAmelCase__ ,feature_extractor=lowerCAmelCase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) A__ = 'A fantasy landscape, trending on artstation' A__ = np.random.RandomState(0 ) A__ = pipe( prompt=lowerCAmelCase__ ,image=lowerCAmelCase__ ,strength=0.7_5 ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=lowerCAmelCase__ ,output_type='np' ,) A__ = output.images A__ = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) A__ = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
701
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ , A__ = [], [] while len(UpperCamelCase__ ) > 1: A__ , A__ = min(UpperCamelCase__ ), max(UpperCamelCase__ ) start.append(UpperCamelCase__ ) end.append(UpperCamelCase__ ) collection.remove(UpperCamelCase__ ) collection.remove(UpperCamelCase__ ) end.reverse() return start + collection + end if __name__ == "__main__": __lowerCamelCase = input("Enter numbers separated by a comma:\n").strip() __lowerCamelCase = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
536
0
"""simple docstring""" import argparse import json import subprocess def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ): A__ = [] A__ = ( f'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) A__ = subprocess.run(lowerCAmelCase__ ,shell=lowerCAmelCase__ ,stdout=subprocess.PIPE ) A__ = output.stdout.decode('utf-8' ) A__ = json.loads(lowerCAmelCase__ ) A__ = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(lowerCAmelCase__ ) # save the result so we can report them on Slack with open('offline_runners.txt' ,'w' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) > 0: A__ = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(f'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def __lowerCamelCase ( lowerCAmelCase__ ): return values.split(',' ) SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() get_runner_status(args.target_runners, args.token)
260
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) class snake_case_ ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: Optional[Any] = """linear""" SCREAMING_SNAKE_CASE_: Dict = """cosine""" SCREAMING_SNAKE_CASE_: Tuple = """cosine_with_restarts""" SCREAMING_SNAKE_CASE_: Dict = """polynomial""" SCREAMING_SNAKE_CASE_: Optional[int] = """constant""" SCREAMING_SNAKE_CASE_: str = """constant_with_warmup""" SCREAMING_SNAKE_CASE_: Optional[int] = """piecewise_constant""" def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ = -1 ): return LambdaLR(lowerCAmelCase__ ,lambda lowerCAmelCase__ : 1 ,last_epoch=lowerCAmelCase__ ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = -1 ): def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1.0 ,lowerCAmelCase__ ) ) return 1.0 return LambdaLR(lowerCAmelCase__ ,lowerCAmelCase__ ,last_epoch=lowerCAmelCase__ ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = -1 ): A__ = {} A__ = step_rules.split(',' ) for rule_str in rule_list[:-1]: A__ , A__ = rule_str.split(':' ) A__ = int(lowerCAmelCase__ ) A__ = float(lowerCAmelCase__ ) A__ = value A__ = float(rule_list[-1] ) def create_rules_function(lowerCAmelCase__ ,lowerCAmelCase__ ): def rule_func(lowerCAmelCase__ ) -> float: A__ = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowerCAmelCase__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ = create_rules_function(lowerCAmelCase__ ,lowerCAmelCase__ ) return LambdaLR(lowerCAmelCase__ ,lowerCAmelCase__ ,last_epoch=lowerCAmelCase__ ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=-1 ): def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 ,lowerCAmelCase__ ) ) return max( 0.0 ,float(num_training_steps - current_step ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = 0.5 ,lowerCAmelCase__ = -1 ): def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 ,lowerCAmelCase__ ) ) A__ = float(current_step - num_warmup_steps ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) return max(0.0 ,0.5 * (1.0 + math.cos(math.pi * float(lowerCAmelCase__ ) * 2.0 * progress )) ) return LambdaLR(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = 1 ,lowerCAmelCase__ = -1 ): def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 ,lowerCAmelCase__ ) ) A__ = float(current_step - num_warmup_steps ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 ,0.5 * (1.0 + math.cos(math.pi * ((float(lowerCAmelCase__ ) * progress) % 1.0) )) ) return LambdaLR(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=1E-7 ,lowerCAmelCase__=1.0 ,lowerCAmelCase__=-1 ): A__ = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 ,lowerCAmelCase__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ = lr_init - lr_end A__ = num_training_steps - num_warmup_steps A__ = 1 - (current_step - num_warmup_steps) / decay_steps A__ = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = None ,lowerCAmelCase__ = None ,lowerCAmelCase__ = None ,lowerCAmelCase__ = 1 ,lowerCAmelCase__ = 1.0 ,lowerCAmelCase__ = -1 ,): A__ = SchedulerType(lowerCAmelCase__ ) A__ = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowerCAmelCase__ ,last_epoch=lowerCAmelCase__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowerCAmelCase__ ,step_rules=lowerCAmelCase__ ,last_epoch=lowerCAmelCase__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowerCAmelCase__ ,num_warmup_steps=lowerCAmelCase__ ,last_epoch=lowerCAmelCase__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowerCAmelCase__ ,num_warmup_steps=lowerCAmelCase__ ,num_training_steps=lowerCAmelCase__ ,num_cycles=lowerCAmelCase__ ,last_epoch=lowerCAmelCase__ ,) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowerCAmelCase__ ,num_warmup_steps=lowerCAmelCase__ ,num_training_steps=lowerCAmelCase__ ,power=lowerCAmelCase__ ,last_epoch=lowerCAmelCase__ ,) return schedule_func( lowerCAmelCase__ ,num_warmup_steps=lowerCAmelCase__ ,num_training_steps=lowerCAmelCase__ ,last_epoch=lowerCAmelCase__ )
260
1
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : Any , __a : Optional[int] , __a : List[str]=13 , __a : List[str]=7 , __a : Any=True , __a : Dict=True , __a : Dict=True , __a : Tuple=True , __a : Any=99 , __a : str=64 , __a : Tuple=5 , __a : List[str]=4 , __a : Optional[int]=37 , __a : int="gelu" , __a : int=0.1 , __a : Union[str, Any]=0.1 , __a : str=512 , __a : int=16 , __a : Any=2 , __a : int=0.02 , __a : Optional[Any]=3 , __a : str=4 , __a : int=None , ) ->List[Any]: lowerCamelCase_ : Optional[int] = parent lowerCamelCase_ : Dict = batch_size lowerCamelCase_ : int = seq_length lowerCamelCase_ : Dict = is_training lowerCamelCase_ : Optional[int] = use_input_mask lowerCamelCase_ : str = use_token_type_ids lowerCamelCase_ : Tuple = use_labels lowerCamelCase_ : Union[str, Any] = vocab_size lowerCamelCase_ : Optional[Any] = hidden_size lowerCamelCase_ : List[Any] = num_hidden_layers lowerCamelCase_ : str = num_attention_heads lowerCamelCase_ : int = intermediate_size lowerCamelCase_ : List[str] = hidden_act lowerCamelCase_ : Union[str, Any] = hidden_dropout_prob lowerCamelCase_ : List[Any] = attention_probs_dropout_prob lowerCamelCase_ : Optional[Any] = max_position_embeddings lowerCamelCase_ : List[Any] = type_vocab_size lowerCamelCase_ : Union[str, Any] = type_sequence_label_size lowerCamelCase_ : Optional[int] = initializer_range lowerCamelCase_ : List[Any] = num_labels lowerCamelCase_ : Any = num_choices lowerCamelCase_ : Any = scope lowerCamelCase_ : str = vocab_size - 1 def _lowerCAmelCase ( self : Optional[Any] ) ->int: lowerCamelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : str = None if self.use_input_mask: lowerCamelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ : Optional[Any] = None if self.use_labels: lowerCamelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ : Union[str, Any] = self.get_config() return config, input_ids, input_mask, token_labels def _lowerCAmelCase ( self : Union[str, Any] ) ->Any: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _lowerCAmelCase ( self : Optional[Any] ) ->Tuple: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[Any] = self.prepare_config_and_inputs() lowerCamelCase_ : Dict = True return config, input_ids, input_mask, token_labels def _lowerCAmelCase ( self : Tuple , __a : str , __a : str , __a : str ) ->Union[str, Any]: lowerCamelCase_ : Optional[int] = GPTNeoXModel(config=__a ) model.to(__a ) model.eval() lowerCamelCase_ : List[Any] = model(__a , attention_mask=__a ) lowerCamelCase_ : List[str] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Optional[Any] , __a : Dict , __a : int , __a : Dict ) ->Optional[Any]: lowerCamelCase_ : Optional[Any] = True lowerCamelCase_ : str = GPTNeoXModel(__a ) model.to(__a ) model.eval() lowerCamelCase_ : int = model(__a , attention_mask=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Dict , __a : int , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ) ->Dict: lowerCamelCase_ : int = GPTNeoXForCausalLM(config=__a ) model.to(__a ) model.eval() lowerCamelCase_ : Tuple = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int , __a : Any , __a : Optional[Any] ) ->Any: lowerCamelCase_ : Tuple = self.num_labels lowerCamelCase_ : List[str] = GPTNeoXForQuestionAnswering(__a ) model.to(__a ) model.eval() lowerCamelCase_ : str = model(__a , attention_mask=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : List[str] , __a : Dict , __a : Optional[int] , __a : Optional[Any] , __a : List[str] ) ->Any: lowerCamelCase_ : Tuple = self.num_labels lowerCamelCase_ : Any = GPTNeoXForSequenceClassification(__a ) model.to(__a ) model.eval() lowerCamelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : str , __a : str , __a : List[str] , __a : Optional[int] , __a : Optional[int] ) ->int: lowerCamelCase_ : Optional[int] = self.num_labels lowerCamelCase_ : Dict = GPTNeoXForTokenClassification(__a ) model.to(__a ) model.eval() lowerCamelCase_ : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : Any , __a : List[str] , __a : List[str] , __a : str ) ->int: lowerCamelCase_ : List[Any] = True lowerCamelCase_ : List[str] = GPTNeoXForCausalLM(config=__a ) model.to(__a ) model.eval() # first forward pass lowerCamelCase_ : List[Any] = model(__a , attention_mask=__a , use_cache=__a ) lowerCamelCase_ : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase_ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_ : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCamelCase_ : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase_ : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCamelCase_ : int = model(__a , attention_mask=__a , output_hidden_states=__a ) lowerCamelCase_ : int = output_from_no_past["""hidden_states"""][0] lowerCamelCase_ : Any = model( __a , attention_mask=__a , past_key_values=__a , output_hidden_states=__a , )["""hidden_states"""][0] # select random slice lowerCamelCase_ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase_ : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase_ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) ) def _lowerCAmelCase ( self : Optional[int] ) ->int: lowerCamelCase_ : List[Any] = self.prepare_config_and_inputs() lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : List[Any] = config_and_inputs lowerCamelCase_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ (a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' _a = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) _a = (GPTNeoXForCausalLM,) if is_torch_available() else () _a = ( { "feature-extraction": GPTNeoXModel, "question-answering": GPTNeoXForQuestionAnswering, "text-classification": GPTNeoXForSequenceClassification, "text-generation": GPTNeoXForCausalLM, "token-classification": GPTNeoXForTokenClassification, "zero-shot": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def _lowerCAmelCase ( self : Tuple ) ->str: lowerCamelCase_ : int = GPTNeoXModelTester(self ) lowerCamelCase_ : str = ConfigTester(self , config_class=__a , hidden_size=64 , num_attention_heads=8 ) def _lowerCAmelCase ( self : int ) ->str: self.config_tester.run_common_tests() def _lowerCAmelCase ( self : List[str] ) ->List[Any]: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__a , __a , __a ) def _lowerCAmelCase ( self : Any ) ->str: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__a , __a , __a ) def _lowerCAmelCase ( self : str ) ->Dict: # This regression test was failing with PyTorch < 1.3 lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase_ : Optional[int] = None self.model_tester.create_and_check_model_as_decoder(__a , __a , __a ) def _lowerCAmelCase ( self : Any ) ->Dict: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__a , __a , __a ) def _lowerCAmelCase ( self : Any ) ->List[str]: lowerCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__a ) def _lowerCAmelCase ( self : Optional[Any] ) ->str: lowerCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def _lowerCAmelCase ( self : int ) ->List[str]: lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def _lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def _lowerCAmelCase ( self : Dict ) ->str: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowerCAmelCase ( self : Union[str, Any] , __a : int ) ->str: lowerCamelCase_, lowerCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : List[Any] = ids_tensor([1, 10] , config.vocab_size ) lowerCamelCase_ : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase_ : str = GPTNeoXModel(__a ) original_model.to(__a ) original_model.eval() lowerCamelCase_ : List[Any] = original_model(__a ).last_hidden_state lowerCamelCase_ : int = original_model(__a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase_ : Any = {"""type""": scaling_type, """factor""": 10.0} lowerCamelCase_ : Tuple = GPTNeoXModel(__a ) scaled_model.to(__a ) scaled_model.eval() lowerCamelCase_ : List[str] = scaled_model(__a ).last_hidden_state lowerCamelCase_ : List[str] = scaled_model(__a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__a , __a , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__a , __a , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__a , __a , atol=1e-5 ) ) @require_torch class SCREAMING_SNAKE_CASE_ (unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self : str ) ->Optional[Any]: lowerCamelCase_ : str = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: lowerCamelCase_ : str = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(__a ) lowerCamelCase_ : Union[str, Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__a ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCamelCase_ : List[Any] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" lowerCamelCase_ : List[str] = model.generate(**__a , do_sample=__a , max_new_tokens=20 ) lowerCamelCase_ : Tuple = tokenizer.batch_decode(__a )[0] self.assertEqual(__a , __a )
171
import fire from utils import calculate_rouge, save_json def __lowerCamelCase ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : Dict=None , **A__ : Dict ) -> str: lowerCamelCase_ : Union[str, Any] = [x.strip() for x in open(A__ ).readlines()] lowerCamelCase_ : Union[str, Any] = [x.strip() for x in open(A__ ).readlines()][: len(A__ )] lowerCamelCase_ : int = calculate_rouge(A__ , A__ , **A__ ) if save_path is not None: save_json(A__ , A__ , indent=A__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
171
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A : Dict = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ['OwlViTFeatureExtractor'] __A : str = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ : List[str] = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Union[str, Any] = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowerCAmelCase_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
489
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = tempfile.mkdtemp() _lowercase : Optional[int] = BlipImageProcessor() _lowercase : str = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model') _lowercase : int = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert') _lowercase : Tuple = InstructBlipProcessor(lowerCamelCase, lowerCamelCase, lowerCamelCase) processor.save_pretrained(self.tmpdirname) def UpperCamelCase ( self, **lowerCamelCase) -> Any: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase).tokenizer def UpperCamelCase ( self, **lowerCamelCase) -> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase).image_processor def UpperCamelCase ( self, **lowerCamelCase) -> Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase).qformer_tokenizer def UpperCamelCase ( self) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : List[str] = [np.random.randint(2_55, size=(3, 30, 4_00), dtype=np.uinta)] _lowercase : Any = [Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1)) for x in image_inputs] return image_inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = InstructBlipProcessor( tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor(), qformer_tokenizer=self.get_qformer_tokenizer(), ) processor.save_pretrained(self.tmpdirname) _lowercase : List[Any] = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)') _lowercase : Optional[int] = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0) _lowercase : Dict = InstructBlipProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCamelCase, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, lowerCamelCase) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, lowerCamelCase) self.assertIsInstance(processor.qformer_tokenizer, lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Union[str, Any] = self.get_image_processor() _lowercase : Optional[int] = self.get_tokenizer() _lowercase : List[str] = self.get_qformer_tokenizer() _lowercase : Union[str, Any] = InstructBlipProcessor( tokenizer=lowerCamelCase, image_processor=lowerCamelCase, qformer_tokenizer=lowerCamelCase) _lowercase : str = self.prepare_image_inputs() _lowercase : Dict = image_processor(lowerCamelCase, return_tensors='np') _lowercase : Tuple = processor(images=lowerCamelCase, return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Dict = self.get_image_processor() _lowercase : List[str] = self.get_tokenizer() _lowercase : List[Any] = self.get_qformer_tokenizer() _lowercase : Optional[Any] = InstructBlipProcessor( tokenizer=lowerCamelCase, image_processor=lowerCamelCase, qformer_tokenizer=lowerCamelCase) _lowercase : List[str] = 'lower newer' _lowercase : int = processor(text=lowerCamelCase) _lowercase : Tuple = tokenizer(lowerCamelCase, return_token_type_ids=lowerCamelCase) _lowercase : Any = qformer_tokenizer(lowerCamelCase, return_token_type_ids=lowerCamelCase) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key], encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key], encoded_processor['qformer_' + key]) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = self.get_image_processor() _lowercase : int = self.get_tokenizer() _lowercase : int = self.get_qformer_tokenizer() _lowercase : Tuple = InstructBlipProcessor( tokenizer=lowerCamelCase, image_processor=lowerCamelCase, qformer_tokenizer=lowerCamelCase) _lowercase : str = 'lower newer' _lowercase : int = self.prepare_image_inputs() _lowercase : Union[str, Any] = processor(text=lowerCamelCase, images=lowerCamelCase) self.assertListEqual( list(inputs.keys()), ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'], ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase): processor() def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Optional[int] = self.get_image_processor() _lowercase : Tuple = self.get_tokenizer() _lowercase : Dict = self.get_qformer_tokenizer() _lowercase : List[str] = InstructBlipProcessor( tokenizer=lowerCamelCase, image_processor=lowerCamelCase, qformer_tokenizer=lowerCamelCase) _lowercase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : Dict = processor.batch_decode(lowerCamelCase) _lowercase : Tuple = tokenizer.batch_decode(lowerCamelCase) self.assertListEqual(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Tuple = self.get_image_processor() _lowercase : str = self.get_tokenizer() _lowercase : Dict = self.get_qformer_tokenizer() _lowercase : Union[str, Any] = InstructBlipProcessor( tokenizer=lowerCamelCase, image_processor=lowerCamelCase, qformer_tokenizer=lowerCamelCase) _lowercase : Union[str, Any] = 'lower newer' _lowercase : Optional[Any] = self.prepare_image_inputs() _lowercase : Tuple = processor(text=lowerCamelCase, images=lowerCamelCase) self.assertListEqual( list(inputs.keys()), ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'], )
710
import pytest SCREAMING_SNAKE_CASE : Optional[Any] = "__dummy_dataset1__" SCREAMING_SNAKE_CASE : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def UpperCamelCase_( ) -> Dict: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase_( ) -> List[Any]: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: _lowercase : List[str] = dataset_loading_script_name _lowercase : Union[str, Any] = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=lowerCamelCase_ ) _lowercase : Optional[int] = script_dir / F'''{script_name}.py''' with open(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ )
354
0
def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if any(not isinstance(a_ , a_ ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(a_ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(a_ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
55
from __future__ import annotations def _lowercase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) UpperCamelCase = number_of_bytes // partitions UpperCamelCase = [] for i in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase = i * bytes_per_partition + 1 UpperCamelCase = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
386
0
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def lowerCAmelCase__(self ): '''simple docstring''' __a : List[Any] = 0 def lowerCAmelCase__(self ): '''simple docstring''' __a : List[str] = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(_lowercase , _lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __a : int = Path(_lowercase ) / """preprocessor_config.json""" __a : Dict = Path(_lowercase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_lowercase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_lowercase , """w""" ) ) __a : Optional[int] = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __a : Optional[int] = Path(_lowercase ) / """preprocessor_config.json""" __a : int = Path(_lowercase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_lowercase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_lowercase , """w""" ) ) __a : Union[str, Any] = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __a : str = CLIPConfig() # Create a dummy config file with image_proceesor_type __a : Dict = Path(_lowercase ) / """preprocessor_config.json""" __a : Optional[Any] = Path(_lowercase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_lowercase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_lowercase , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __a : Union[str, Any] = AutoImageProcessor.from_pretrained(_lowercase ).to_dict() config_dict.pop("""image_processor_type""" ) __a : Union[str, Any] = CLIPImageProcessor(**_lowercase ) # save in new folder model_config.save_pretrained(_lowercase ) config.save_pretrained(_lowercase ) __a : int = AutoImageProcessor.from_pretrained(_lowercase ) # make sure private variable is not incorrectly saved __a : Any = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(_lowercase , _lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __a : Dict = Path(_lowercase ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_lowercase , """w""" ) , ) __a : Optional[int] = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' with self.assertRaisesRegex( _lowercase , """clip-base is not a local folder and is not a valid model identifier""" ): __a : Optional[Any] = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCAmelCase__(self ): '''simple docstring''' with self.assertRaisesRegex( _lowercase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __a : Dict = AutoImageProcessor.from_pretrained(_lowercase , revision="""aaaaaa""" ) def lowerCAmelCase__(self ): '''simple docstring''' with self.assertRaisesRegex( _lowercase , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __a : Optional[int] = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase__(self ): '''simple docstring''' with self.assertRaises(_lowercase ): __a : List[Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowercase ): __a : List[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowercase ) __a : Optional[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowercase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowercase ) __a : Optional[Any] = AutoImageProcessor.from_pretrained(_lowercase , trust_remote_code=_lowercase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowerCAmelCase__(self ): '''simple docstring''' try: AutoConfig.register("""custom""" , _lowercase ) AutoImageProcessor.register(_lowercase , _lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase ): AutoImageProcessor.register(_lowercase , _lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: __a : Dict = Path(_lowercase ) / """preprocessor_config.json""" __a : List[str] = Path(_lowercase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_lowercase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_lowercase , """w""" ) ) __a : Optional[Any] = CustomImageProcessor.from_pretrained(_lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowercase ) __a : Optional[Any] = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase__(self ): '''simple docstring''' class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = True try: AutoConfig.register("""custom""" , _lowercase ) AutoImageProcessor.register(_lowercase , _lowercase ) # If remote code is not set, the default is to use local __a : List[Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __a : Union[str, Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowercase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __a : Tuple = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_lowercase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(_lowercase , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
63
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__(self , _lowercase , _lowercase = 13 , _lowercase = 64 , _lowercase = 2 , _lowercase = 3 , _lowercase = 3 , _lowercase = True , _lowercase = True , _lowercase = 128 , _lowercase=[16, 32, 64, 128] , _lowercase = 7 , _lowercase = 4 , _lowercase = 37 , _lowercase = "gelu" , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 10 , _lowercase = 0.02 , _lowercase = 2 , _lowercase = 1 , _lowercase = 128 , _lowercase = [2, 2, 2, 2] , _lowercase = 2 , _lowercase = 2 , ): '''simple docstring''' __a : str = parent __a : List[Any] = batch_size __a : int = image_size __a : Tuple = patch_size __a : str = num_channels __a : Union[str, Any] = is_training __a : List[Any] = use_labels __a : int = hidden_size __a : Optional[Any] = num_hidden_layers __a : List[Any] = num_attention_heads __a : Dict = intermediate_size __a : str = hidden_act __a : Dict = hidden_dropout_prob __a : str = attention_probs_dropout_prob __a : Optional[int] = type_sequence_label_size __a : Dict = initializer_range __a : Dict = encoder_stride __a : int = num_attention_outputs __a : List[Any] = embed_dim __a : Optional[Any] = embed_dim + 1 __a : Optional[Any] = resolution __a : Optional[Any] = depths __a : Union[str, Any] = hidden_sizes __a : List[str] = dim __a : Any = mlp_expansion_ratio def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : str = None if self.use_labels: __a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : List[str] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__(self ): '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : Optional[Any] = TFEfficientFormerModel(config=_lowercase ) __a : List[Any] = model(_lowercase , training=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : Optional[Any] = self.type_sequence_label_size __a : Any = TFEfficientFormerForImageClassification(_lowercase ) __a : Union[str, Any] = model(_lowercase , labels=_lowercase , training=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __a : Optional[Any] = 1 __a : int = TFEfficientFormerForImageClassification(_lowercase ) __a : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a : str = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Any = self.prepare_config_and_inputs() __a , __a , __a : Tuple = config_and_inputs __a : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( __snake_case , __snake_case , unittest.TestCase ): _lowerCAmelCase = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _lowerCAmelCase = ( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = TFEfficientFormerModelTester(self ) __a : Any = ConfigTester( self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def lowerCAmelCase__(self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def lowerCAmelCase__(self ): '''simple docstring''' pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def lowerCAmelCase__(self ): '''simple docstring''' pass def lowerCAmelCase__(self ): '''simple docstring''' __a , __a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Dict = model_class(_lowercase ) __a : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Optional[Any] = [*signature.parameters.keys()] __a : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): __a : Tuple = model_class(_lowercase ) __a : int = model(**self._prepare_for_class(_lowercase , _lowercase ) , training=_lowercase ) __a : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __a : str = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __a : Any = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __a : int = seq_length * self.model_tester.chunk_length else: __a : Any = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __a : Optional[int] = outputs.decoder_hidden_states self.asseretIsInstance(_lowercase , (list, tuple) ) self.assertEqual(len(_lowercase ) , _lowercase ) __a : Any = getattr(self.model_tester , """seq_length""" , _lowercase ) __a : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , _lowercase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __a , __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Dict = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a : int = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase=False ): '''simple docstring''' __a : Any = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @slow def lowerCAmelCase__(self ): '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Union[str, Any] = TFEfficientFormerModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a , __a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __a : int = True __a : Optional[int] = getattr(self.model_tester , """seq_length""" , _lowercase ) __a : Dict = getattr(self.model_tester , """encoder_seq_length""" , _lowercase ) __a : Dict = getattr(self.model_tester , """key_length""" , _lowercase ) __a : int = getattr(self.model_tester , """chunk_length""" , _lowercase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __a : List[str] = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __a : List[Any] = True __a : Tuple = False __a : List[Any] = True __a : int = model_class(_lowercase ) __a : List[Any] = model(**self._prepare_for_class(_lowercase , _lowercase ) , training=_lowercase ) __a : Dict = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __a : Optional[Any] = True __a : List[str] = model_class(_lowercase ) __a : Dict = model(**self._prepare_for_class(_lowercase , _lowercase ) , training=_lowercase ) __a : int = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCAmelCase__(self ): '''simple docstring''' __a , __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __a : Dict = model_class(_lowercase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __a : Optional[Any] = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowercase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __a : Optional[Any] = model(_lowercase ) self.assertTrue(outputs_dict is not None ) def __magic_name__ ( ): __a : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def lowerCAmelCase__(self ): '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def lowerCAmelCase__(self ): '''simple docstring''' __a : str = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __a : Optional[Any] = self.default_image_processor __a : List[str] = prepare_img() __a : int = image_processor(images=_lowercase , return_tensors="""tf""" ) # forward pass __a : Optional[Any] = model(**_lowercase , training=_lowercase ) # verify the logits __a : str = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowercase ) __a : Dict = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 ) ) @slow def lowerCAmelCase__(self ): '''simple docstring''' __a : Any = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __a : Any = self.default_image_processor __a : str = prepare_img() __a : str = image_processor(images=_lowercase , return_tensors="""tf""" ) # forward pass __a : List[Any] = model(**_lowercase , training=_lowercase ) # verify the logits __a : int = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowercase ) __a : List[str] = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 ) )
63
1
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[str] = WavaVecaForSequenceClassification.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) snake_case_ : int = downstream_dict["""projector.weight"""] snake_case_ : Optional[int] = downstream_dict["""projector.bias"""] snake_case_ : List[Any] = downstream_dict["""model.post_net.linear.weight"""] snake_case_ : Union[str, Any] = downstream_dict["""model.post_net.linear.bias"""] return model def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = WavaVecaForAudioFrameClassification.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) snake_case_ : Any = downstream_dict["""model.linear.weight"""] snake_case_ : int = downstream_dict["""model.linear.bias"""] return model def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[int] = WavaVecaForXVector.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) snake_case_ : Any = downstream_dict["""connector.weight"""] snake_case_ : str = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): snake_case_ : Dict = downstream_dict[ F'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] snake_case_ : int = downstream_dict[F'model.framelevel_feature_extractor.module.{i}.kernel.bias'] snake_case_ : str = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] snake_case_ : int = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] snake_case_ : Any = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] snake_case_ : int = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] snake_case_ : List[str] = downstream_dict["""objective.W"""] return model @torch.no_grad() def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Any = torch.load(__UpperCamelCase , map_location="""cpu""" ) snake_case_ : Any = checkpoint["""Downstream"""] snake_case_ : Optional[Any] = WavaVecaConfig.from_pretrained(__UpperCamelCase ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( __UpperCamelCase , return_attention_mask=__UpperCamelCase , do_normalize=__UpperCamelCase ) snake_case_ : Optional[Any] = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): snake_case_ : Tuple = convert_classification(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif arch.endswith("""ForAudioFrameClassification""" ): snake_case_ : Union[str, Any] = convert_diarization(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif arch.endswith("""ForXVector""" ): snake_case_ : List[str] = convert_xvector(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: raise NotImplementedError(F'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: snake_case_ : List[Any] = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(__UpperCamelCase ) hf_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') __lowerCAmelCase : Dict = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
58
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING A__ : Dict = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class lowercase__ ( snake_case__ ): def __init__( self : List[Any] , *snake_case__ : Dict , **snake_case__ : List[str] ): super().__init__(*snake_case__ , **snake_case__ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Tuple=None , snake_case__ : Tuple=None , snake_case__ : Any=None ): lowerCamelCase_ : List[str] ={} lowerCamelCase_ : List[Any] ={} if prompt is not None: lowerCamelCase_ : Union[str, Any] =prompt if generate_kwargs is not None: lowerCamelCase_ : List[str] =generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowerCamelCase_ : Optional[int] ={} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) lowerCamelCase_ : Dict =max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Any , snake_case__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **snake_case__ : Optional[Any] ): return super().__call__(snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : str , snake_case__ : Dict=None ): lowerCamelCase_ : Any =load_image(snake_case__ ) if prompt is not None: if not isinstance(snake_case__ , snake_case__ ): raise ValueError( F"""Received an invalid text input, got - {type(snake_case__ )} - but expected a single string. """ "Note also that one single text can be provided for conditional image to text generation." ) lowerCamelCase_ : Optional[int] =self.model.config.model_type if model_type == "git": lowerCamelCase_ : Optional[int] =self.image_processor(images=snake_case__ , return_tensors=self.framework ) lowerCamelCase_ : Union[str, Any] =self.tokenizer(text=snake_case__ , add_special_tokens=snake_case__ ).input_ids lowerCamelCase_ : str =[self.tokenizer.cls_token_id] + input_ids lowerCamelCase_ : Optional[Any] =torch.tensor(snake_case__ ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": lowerCamelCase_ : Union[str, Any] =self.image_processor(images=snake_case__ , header_text=snake_case__ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowerCamelCase_ : Union[str, Any] =self.image_processor(images=snake_case__ , return_tensors=self.framework ) lowerCamelCase_ : Dict =self.tokenizer(snake_case__ , return_tensors=self.framework ) model_inputs.update(snake_case__ ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: lowerCamelCase_ : Optional[int] =self.image_processor(images=snake_case__ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowerCamelCase_ : Union[str, Any] =None return model_inputs def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Any , snake_case__ : Dict=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , snake_case__ ) and all(x is None for x in model_inputs["input_ids"] ) ): lowerCamelCase_ : Tuple =None if generate_kwargs is None: lowerCamelCase_ : List[Any] ={} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowerCamelCase_ : str =model_inputs.pop(self.model.main_input_name ) lowerCamelCase_ : List[Any] =self.model.generate(snake_case__ , **snake_case__ , **snake_case__ ) return model_outputs def UpperCAmelCase__ ( self : str , snake_case__ : Any ): lowerCamelCase_ : Optional[Any] =[] for output_ids in model_outputs: lowerCamelCase_ : Tuple ={ "generated_text": self.tokenizer.decode( snake_case__ , skip_special_tokens=snake_case__ , ) } records.append(snake_case__ ) return records
153
0
def _A ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" return 1 if input_a == input_a else 0 def _A ( ): """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
711
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})' def _A ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str]=True ): """simple docstring""" model.train() lowerCAmelCase__ = model(lowerCAmelCase_ ) lowerCAmelCase__ = F.mse_loss(lowerCAmelCase_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCAmelCase_ ) def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple=False ): """simple docstring""" set_seed(42 ) lowerCAmelCase__ = RegressionModel() lowerCAmelCase__ = deepcopy(lowerCAmelCase_ ) lowerCAmelCase__ = RegressionDataset(length=80 ) lowerCAmelCase__ = DataLoader(lowerCAmelCase_ , batch_size=16 ) model.to(accelerator.device ) if sched: lowerCAmelCase__ = AdamW(params=model.parameters() , lr=1E-3 ) lowerCAmelCase__ = AdamW(params=ddp_model.parameters() , lr=1E-3 ) lowerCAmelCase__ = LambdaLR(lowerCAmelCase_ , lr_lambda=lambda lowerCAmelCase_ : epoch**0.65 ) lowerCAmelCase__ = LambdaLR(lowerCAmelCase_ , lr_lambda=lambda lowerCAmelCase_ : epoch**0.65 ) # Make a copy of `model` if sched: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _A ( lowerCAmelCase_ : str ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = get_training_setup(lowerCAmelCase_ ) # Use a single batch lowerCAmelCase__ , lowerCAmelCase__ = next(iter(lowerCAmelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase__ , lowerCAmelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: # Sync grads step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowerCAmelCase__ = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] def _A ( lowerCAmelCase_ : str ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = get_training_setup(lowerCAmelCase_ ) # Use a single batch lowerCAmelCase__ , lowerCAmelCase__ = next(iter(lowerCAmelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase__ , lowerCAmelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: # Sync grads step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowerCAmelCase__ = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] def _A ( lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Optional[int]=False ): """simple docstring""" lowerCAmelCase__ = Accelerator( split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = get_training_setup(lowerCAmelCase_ ) for iteration, batch in enumerate(lowerCAmelCase_ ): lowerCAmelCase__ , lowerCAmelCase__ = batch.values() # Gather the distributed inputs and targs for the base model lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase__ , lowerCAmelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCAmelCase_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowerCAmelCase__ = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] GradientState._reset_state() def _A ( lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Dict=False ): """simple docstring""" lowerCAmelCase__ = Accelerator( split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = get_training_setup(lowerCAmelCase_ , lowerCAmelCase_ ) for iteration, batch in enumerate(lowerCAmelCase_ ): lowerCAmelCase__ , lowerCAmelCase__ = batch.values() # Gather the distributed inputs and targs for the base model lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase__ , lowerCAmelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCAmelCase_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' lowerCAmelCase__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCAmelCase_ )) if accelerator.num_processes > 1: check_model_parameters(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def _A ( ): """simple docstring""" lowerCAmelCase__ = Accelerator() lowerCAmelCase__ = RegressionDataset(length=80 ) lowerCAmelCase__ = DataLoader(lowerCAmelCase_ , batch_size=16 ) lowerCAmelCase__ = RegressionDataset(length=96 ) lowerCAmelCase__ = DataLoader(lowerCAmelCase_ , batch_size=16 ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCAmelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase_ ) if iteration < len(lowerCAmelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCAmelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase_ ) if batch_num < len(lowerCAmelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _A ( ): """simple docstring""" lowerCAmelCase__ = Accelerator() lowerCAmelCase__ = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(lowerCAmelCase_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(lowerCAmelCase_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation(lowerCAmelCase_ , lowerCAmelCase_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation_with_opt_and_scheduler(lowerCAmelCase_ , lowerCAmelCase_ ) def _A ( lowerCAmelCase_ : str ): """simple docstring""" main() if __name__ == "__main__": main()
125
0
def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int ) -> str: """simple docstring""" return number | (1 << position) def _a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str ) -> Optional[int]: """simple docstring""" return number & ~(1 << position) def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : str ) -> Optional[int]: """simple docstring""" return number ^ (1 << position) def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] ) -> str: """simple docstring""" return ((number >> position) & 1) == 1 def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
339
def a__ ( A__, A__ ): def get_matched_characters(A__, A__ ) -> str: SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : Any = min(len(_stra ), len(_stra ) ) // 2 for i, l in enumerate(_stra ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(max(0, i - limit ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(min(i + limit + 1, len(_stra ) ) ) if l in _stra[left:right]: matched.append(A__ ) SCREAMING_SNAKE_CASE_ : List[str] = F'''{_stra[0:_stra.index(A__ )]} {_stra[_stra.index(A__ ) + 1:]}''' return "".join(A__ ) # matching characters SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_matched_characters(A__, A__ ) SCREAMING_SNAKE_CASE_ : int = get_matched_characters(A__, A__ ) SCREAMING_SNAKE_CASE_ : Any = len(A__ ) # transposition SCREAMING_SNAKE_CASE_ : Optional[int] = ( len([(ca, ca) for ca, ca in zip(A__, A__ ) if ca != ca] ) // 2 ) if not match_count: SCREAMING_SNAKE_CASE_ : Dict = 0.0 else: SCREAMING_SNAKE_CASE_ : Optional[Any] = ( 1 / 3 * ( match_count / len(A__ ) + match_count / len(A__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters SCREAMING_SNAKE_CASE_ : List[Any] = 0 for ca, ca in zip(stra[:4], stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
101
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Any = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" __magic_name__ = 'swin2sr' __magic_name__ = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , UpperCAmelCase__=6_4 , UpperCAmelCase__=1 , UpperCAmelCase__=3 , UpperCAmelCase__=1_8_0 , UpperCAmelCase__=[6, 6, 6, 6, 6, 6] , UpperCAmelCase__=[6, 6, 6, 6, 6, 6] , UpperCAmelCase__=8 , UpperCAmelCase__=2.0 , UpperCAmelCase__=True , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.1 , UpperCAmelCase__="gelu" , UpperCAmelCase__=False , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-5 , UpperCAmelCase__=2 , UpperCAmelCase__=1.0 , UpperCAmelCase__="1conv" , UpperCAmelCase__="pixelshuffle" , **UpperCAmelCase__ , ) -> str: super().__init__(**UpperCamelCase_ ) _A : Optional[int] = image_size _A : Tuple = patch_size _A : Dict = num_channels _A : List[Any] = embed_dim _A : List[Any] = depths _A : Optional[int] = len(UpperCamelCase_ ) _A : Optional[Any] = num_heads _A : Any = window_size _A : List[Any] = mlp_ratio _A : str = qkv_bias _A : List[str] = hidden_dropout_prob _A : List[Any] = attention_probs_dropout_prob _A : Optional[int] = drop_path_rate _A : Tuple = hidden_act _A : Optional[Any] = use_absolute_embeddings _A : List[str] = layer_norm_eps _A : Optional[int] = initializer_range _A : List[str] = upscale _A : Optional[Any] = img_range _A : int = resi_connection _A : Optional[Any] = upsampler
714
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCamelCase : Optional[Any] = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __UpperCamelCase : Tuple = { '''RUCAIBox/mvp''': 1024, } class lowerCamelCase__ ( snake_case_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["""input_ids""", """attention_mask"""] __magic_name__ = MvpTokenizer def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="replace" , UpperCAmelCase__="<s>" , UpperCAmelCase__="</s>" , UpperCAmelCase__="</s>" , UpperCAmelCase__="<s>" , UpperCAmelCase__="<unk>" , UpperCAmelCase__="<pad>" , UpperCAmelCase__="<mask>" , UpperCAmelCase__=False , UpperCAmelCase__=True , **UpperCAmelCase__ , ) -> List[Any]: super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) _A : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase__ ) != add_prefix_space: _A : Dict = getattr(UpperCAmelCase__ , pre_tok_state.pop('''type''' ) ) _A : List[Any] = add_prefix_space _A : Tuple = pre_tok_class(**UpperCAmelCase__ ) _A : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _A : Any = '''post_processor''' _A : Union[str, Any] = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) if tokenizer_component_instance: _A : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _A : int = tuple(state['''sep'''] ) if "cls" in state: _A : Union[str, Any] = tuple(state['''cls'''] ) _A : int = False if state.get('''add_prefix_space''' , UpperCAmelCase__ ) != add_prefix_space: _A : Optional[int] = add_prefix_space _A : Union[str, Any] = True if state.get('''trim_offsets''' , UpperCAmelCase__ ) != trim_offsets: _A : List[str] = trim_offsets _A : int = True if changes_to_apply: _A : Optional[int] = getattr(UpperCAmelCase__ , state.pop('''type''' ) ) _A : str = component_class(**UpperCAmelCase__ ) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) @property def _lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self , UpperCAmelCase__ ) -> Tuple: _A : Any = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value _A : Any = value def _lowerCamelCase ( self , *UpperCAmelCase__ , **UpperCAmelCase__ ) -> BatchEncoding: _A : Optional[int] = kwargs.get('''is_split_into_words''' , UpperCAmelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCamelCase ( self , *UpperCAmelCase__ , **UpperCAmelCase__ ) -> BatchEncoding: _A : int = kwargs.get('''is_split_into_words''' , UpperCAmelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> Tuple[str]: _A : List[Any] = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Tuple: _A : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> List[int]: _A : str = [self.sep_token_id] _A : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
417
0
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _a ( a :Dict ) -> Any: # vision encoder if "img_encoder.pos_embed" in name: a = name.replace('''img_encoder.pos_embed''' , '''vision_model.embeddings.position_embeddings''' ) if "img_encoder.patch_embed.proj" in name: a = name.replace('''img_encoder.patch_embed.proj''' , '''vision_model.embeddings.patch_embeddings.projection''' ) if "img_encoder.patch_embed.norm" in name: a = name.replace('''img_encoder.patch_embed.norm''' , '''vision_model.embeddings.layernorm''' ) if "img_encoder.layers" in name: a = name.replace('''img_encoder.layers''' , '''vision_model.encoder.stages''' ) if "blocks" in name and "res" not in name: a = name.replace('''blocks''' , '''layers''' ) if "attn" in name and "pre_assign" not in name: a = name.replace('''attn''' , '''self_attn''' ) if "proj" in name and "self_attn" in name and "text" not in name: a = name.replace('''proj''' , '''out_proj''' ) if "pre_assign_attn.attn.proj" in name: a = name.replace('''pre_assign_attn.attn.proj''' , '''pre_assign_attn.attn.out_proj''' ) if "norm1" in name: a = name.replace('''norm1''' , '''layer_norm1''' ) if "norm2" in name and "pre_assign" not in name: a = name.replace('''norm2''' , '''layer_norm2''' ) if "img_encoder.norm" in name: a = name.replace('''img_encoder.norm''' , '''vision_model.layernorm''' ) # text encoder if "text_encoder.token_embedding" in name: a = name.replace('''text_encoder.token_embedding''' , '''text_model.embeddings.token_embedding''' ) if "text_encoder.positional_embedding" in name: a = name.replace('''text_encoder.positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "text_encoder.transformer.resblocks." in name: a = name.replace('''text_encoder.transformer.resblocks.''' , '''text_model.encoder.layers.''' ) if "ln_1" in name: a = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: a = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: a = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: a = name.replace('''c_proj''' , '''fc2''' ) if "text_encoder" in name: a = name.replace('''text_encoder''' , '''text_model''' ) if "ln_final" in name: a = name.replace('''ln_final''' , '''final_layer_norm''' ) # projection layers if "img_projector.linear_hidden." in name: a = name.replace('''img_projector.linear_hidden.''' , '''visual_projection.''' ) if "img_projector.linear_out." in name: a = name.replace('''img_projector.linear_out.''' , '''visual_projection.3.''' ) if "text_projector.linear_hidden" in name: a = name.replace('''text_projector.linear_hidden''' , '''text_projection''' ) if "text_projector.linear_out" in name: a = name.replace('''text_projector.linear_out''' , '''text_projection.3''' ) return name def _a ( a :Optional[Any] , a :Any ) -> Any: for key in orig_state_dict.copy().keys(): a = orig_state_dict.pop(a ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors a = key.split('''.''' ) a , a = int(key_split[2] ), int(key_split[4] ) a = config.vision_config.hidden_size if "weight" in key: a = val[:dim, :] a = val[dim : dim * 2, :] a = val[-dim:, :] else: a = val[:dim] a = val[dim : dim * 2] a = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors a = key.split('''.''' ) a = int(key_split[3] ) a = config.text_config.hidden_size if "weight" in key: a = val[:dim, :] a = val[ dim : dim * 2, : ] a = val[-dim:, :] else: a = val[:dim] a = val[dim : dim * 2] a = val[-dim:] else: a = rename_key(a ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): a = val.squeeze_() else: a = val return orig_state_dict def _a ( ) -> Optional[int]: a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a = Image.open(requests.get(a , stream=a ).raw ) return im @torch.no_grad() def _a ( a :Optional[int] , a :int , a :Optional[Any]="groupvit-gcc-yfcc" , a :List[Any]=False ) -> Optional[int]: a = GroupViTConfig() a = GroupViTModel(a ).eval() a = torch.load(a , map_location='''cpu''' )['''model'''] a = convert_state_dict(a , a ) a , a = model.load_state_dict(a , strict=a ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(a ) == 0) # verify result a = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) a = prepare_img() a = processor(text=['''a photo of a cat''', '''a photo of a dog'''] , images=a , padding=a , return_tensors='''pt''' ) with torch.no_grad(): a = model(**a ) if model_name == "groupvit-gcc-yfcc": a = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": a = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(F"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , a , atol=1e-3 ) processor.save_pretrained(a ) model.save_pretrained(a ) print('''Successfully saved processor and model to''' , a ) if push_to_hub: print('''Pushing to the hub...''' ) processor.push_to_hub(a , organization='''nielsr''' ) model.push_to_hub(a , organization='''nielsr''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) UpperCAmelCase__ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
117
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
117
1
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker A: Any = "CompVis/stable-diffusion-v1-1" A: int = "CompVis/stable-diffusion-v1-2" A: Any = "CompVis/stable-diffusion-v1-3" A: Union[str, Any] = "CompVis/stable-diffusion-v1-4" class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , ) -> Optional[int]: '''simple docstring''' super()._init_() UpperCAmelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = StableDiffusionPipeline( vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , requires_safety_checker=_SCREAMING_SNAKE_CASE , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def SCREAMING_SNAKE_CASE ( self ) -> Dict[str, Any]: '''simple docstring''' return {k: getattr(self , _SCREAMING_SNAKE_CASE ) for k in self.config.keys() if not k.startswith("""_""" )} def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE = "auto" ) -> List[str]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> str: '''simple docstring''' return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Tuple: '''simple docstring''' return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Any: '''simple docstring''' return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Tuple: '''simple docstring''' UpperCAmelCase : int = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(_SCREAMING_SNAKE_CASE ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCAmelCase : Optional[int] = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCAmelCase : Any = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCAmelCase : Optional[Any] = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCAmelCase : Union[str, Any] = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
713
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer A: List[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Optional[int] = 'AutoTokenizer' __lowerCAmelCase : str = ['tokenizer'] __lowerCAmelCase : Any = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int: '''simple docstring''' super().__init__(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = speaker_embeddings @classmethod def SCREAMING_SNAKE_CASE ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , **_SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' if speaker_embeddings_dict_path is not None: UpperCAmelCase : Any = get_file_from_repo( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , subfolder=kwargs.pop("""subfolder""" , _SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop("""cache_dir""" , _SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop("""force_download""" , _SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop("""proxies""" , _SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop("""resume_download""" , _SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop("""local_files_only""" , _SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop("""use_auth_token""" , _SCREAMING_SNAKE_CASE ) , revision=kwargs.pop("""revision""" , _SCREAMING_SNAKE_CASE ) , ) if speaker_embeddings_path is None: logger.warning( F"`{os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) UpperCAmelCase : Optional[int] = None else: with open(_SCREAMING_SNAKE_CASE ) as speaker_embeddings_json: UpperCAmelCase : List[str] = json.load(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : List[str] = None UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return cls(tokenizer=_SCREAMING_SNAKE_CASE , speaker_embeddings=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , _SCREAMING_SNAKE_CASE="speaker_embeddings" , _SCREAMING_SNAKE_CASE = False , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """v2""" ) , exist_ok=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = {} UpperCAmelCase : Union[str, Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": UpperCAmelCase : Optional[Any] = self._load_voice_preset(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , _SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}.npy" ) UpperCAmelCase : Tuple = tmp_dict with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , """w""" ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) super().save_pretrained(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : Optional[int] = self.speaker_embeddings[voice_preset] UpperCAmelCase : List[Any] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) UpperCAmelCase : List[str] = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , _SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop("""cache_dir""" , _SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop("""force_download""" , _SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop("""proxies""" , _SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop("""resume_download""" , _SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop("""local_files_only""" , _SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop("""use_auth_token""" , _SCREAMING_SNAKE_CASE ) , revision=kwargs.pop("""revision""" , _SCREAMING_SNAKE_CASE ) , ) if path is None: raise ValueError( F"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) UpperCAmelCase : List[str] = np.load(_SCREAMING_SNAKE_CASE ) return voice_preset_dict def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE = None ) -> List[str]: '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="pt" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: '''simple docstring''' if voice_preset is not None and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): UpperCAmelCase : Dict = self._load_voice_preset(_SCREAMING_SNAKE_CASE ) else: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not voice_preset.endswith(""".npz""" ): UpperCAmelCase : Tuple = voice_preset + """.npz""" UpperCAmelCase : Union[str, Any] = np.load(_SCREAMING_SNAKE_CASE ) if voice_preset is not None: self._validate_voice_preset_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = self.tokenizer( _SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) if voice_preset is not None: UpperCAmelCase : List[Any] = voice_preset return encoded_text
359
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __magic_name__ ( _a): _UpperCAmelCase : Optional[Any] = 'data2vec-audio' def __init__( self : Tuple ,__SCREAMING_SNAKE_CASE : List[str]=3_2 ,__SCREAMING_SNAKE_CASE : List[str]=7_6_8 ,__SCREAMING_SNAKE_CASE : Optional[int]=1_2 ,__SCREAMING_SNAKE_CASE : List[Any]=1_2 ,__SCREAMING_SNAKE_CASE : str=3_0_7_2 ,__SCREAMING_SNAKE_CASE : List[str]="gelu" ,__SCREAMING_SNAKE_CASE : Optional[int]=0.1 ,__SCREAMING_SNAKE_CASE : Optional[Any]=0.1 ,__SCREAMING_SNAKE_CASE : int=0.1 ,__SCREAMING_SNAKE_CASE : Optional[int]=0.0 ,__SCREAMING_SNAKE_CASE : List[str]=0.1 ,__SCREAMING_SNAKE_CASE : List[Any]=0.1 ,__SCREAMING_SNAKE_CASE : int=0.02 ,__SCREAMING_SNAKE_CASE : List[str]=1e-5 ,__SCREAMING_SNAKE_CASE : List[Any]="gelu" ,__SCREAMING_SNAKE_CASE : List[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) ,__SCREAMING_SNAKE_CASE : Tuple=(5, 2, 2, 2, 2, 2, 2) ,__SCREAMING_SNAKE_CASE : str=(1_0, 3, 3, 3, 3, 2, 2) ,__SCREAMING_SNAKE_CASE : Optional[int]=False ,__SCREAMING_SNAKE_CASE : Union[str, Any]=1_6 ,__SCREAMING_SNAKE_CASE : List[str]=1_9 ,__SCREAMING_SNAKE_CASE : Optional[Any]=5 ,__SCREAMING_SNAKE_CASE : Tuple=0.05 ,__SCREAMING_SNAKE_CASE : str=1_0 ,__SCREAMING_SNAKE_CASE : List[Any]=2 ,__SCREAMING_SNAKE_CASE : Tuple=0.0 ,__SCREAMING_SNAKE_CASE : Optional[Any]=1_0 ,__SCREAMING_SNAKE_CASE : List[str]=0 ,__SCREAMING_SNAKE_CASE : Optional[Any]="sum" ,__SCREAMING_SNAKE_CASE : List[Any]=False ,__SCREAMING_SNAKE_CASE : Any=False ,__SCREAMING_SNAKE_CASE : str=2_5_6 ,__SCREAMING_SNAKE_CASE : Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) ,__SCREAMING_SNAKE_CASE : int=(5, 3, 3, 1, 1) ,__SCREAMING_SNAKE_CASE : Tuple=(1, 2, 3, 1, 1) ,__SCREAMING_SNAKE_CASE : int=5_1_2 ,__SCREAMING_SNAKE_CASE : List[str]=0 ,__SCREAMING_SNAKE_CASE : Optional[int]=1 ,__SCREAMING_SNAKE_CASE : str=2 ,__SCREAMING_SNAKE_CASE : Optional[Any]=False ,__SCREAMING_SNAKE_CASE : str=3 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=2 ,__SCREAMING_SNAKE_CASE : List[str]=3 ,__SCREAMING_SNAKE_CASE : Any=None ,**__SCREAMING_SNAKE_CASE : int ,): super().__init__(**_SCREAMING_SNAKE_CASE ,pad_token_id=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ) UpperCAmelCase = hidden_size UpperCAmelCase = feat_extract_activation UpperCAmelCase = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase = conv_bias UpperCAmelCase = num_conv_pos_embeddings UpperCAmelCase = num_conv_pos_embedding_groups UpperCAmelCase = conv_pos_kernel_size UpperCAmelCase = len(self.conv_dim ) UpperCAmelCase = num_hidden_layers UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = feat_proj_dropout UpperCAmelCase = final_dropout UpperCAmelCase = layerdrop UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = vocab_size UpperCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks # ctc loss UpperCAmelCase = ctc_loss_reduction UpperCAmelCase = ctc_zero_infinity # adapter UpperCAmelCase = add_adapter UpperCAmelCase = adapter_kernel_size UpperCAmelCase = adapter_stride UpperCAmelCase = num_adapter_layers UpperCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase = xvector_output_dim @property def _UpperCAmelCase ( self : Optional[int] ): return math.prod(self.conv_stride )
333
'''simple docstring''' import math import sys def lowercase__ ( __UpperCamelCase )-> int: if number != int(__UpperCamelCase ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 UpperCamelCase = [-1] * (number + 1) UpperCamelCase = 0 for i in range(1 , number + 1 ): UpperCamelCase = sys.maxsize UpperCamelCase = int(math.sqrt(__UpperCamelCase ) ) for j in range(1 , root + 1 ): UpperCamelCase = 1 + answers[i - (j**2)] UpperCamelCase = min(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
301
0
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( a ) -> list[int]: if len(a ) == 0: return array __A , __A : Optional[int] = min(a ), max(a ) # Compute the variables __A : Optional[Any] = _max - _min + 1 __A , __A : Any = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: __A : Union[str, Any] = i - _min __A : Optional[int] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. __A : Optional[Any] = 0 for i in range(a ): while holes_repeat[i] > 0: __A : str = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : Any = input('''Enter numbers separated by comma:\n''') UpperCAmelCase : Tuple = [int(x) for x in user_input.split(''',''')] print(pigeon_sort(unsorted))
77
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase : Tuple = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } UpperCAmelCase : int = logging.get_logger(__name__) class _A( snake_case__ ): """simple docstring""" UpperCamelCase : Union[str, Any] = '''mask2former''' UpperCamelCase : Any = ['''swin'''] UpperCamelCase : Union[str, Any] = {'''hidden_size''': '''hidden_dim'''} def __init__( self , _A = None , _A = 256 , _A = 256 , _A = 256 , _A = 1024 , _A = "relu" , _A = 6 , _A = 10 , _A = 8 , _A = 0.0 , _A = 2048 , _A = False , _A = False , _A = 4 , _A = 255 , _A = 100 , _A = 0.1 , _A = 2.0 , _A = 5.0 , _A = 5.0 , _A = 12544 , _A = 3.0 , _A = 0.7_5 , _A = 0.0_2 , _A = 1.0 , _A = True , _A = [4, 8, 16, 32] , _A = None , **_A , ): if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __A : Optional[int] = CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_A , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_A , _A ): __A : Dict = backbone_config.pop('model_type' ) __A : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] __A : List[str] = config_class.from_dict(_A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ F"""Supported model types: {",".join(self.backbones_supported )}""" ) __A : Optional[int] = backbone_config __A : Optional[Any] = feature_size __A : Any = mask_feature_size __A : Optional[Any] = hidden_dim __A : Union[str, Any] = encoder_feedforward_dim __A : Optional[Any] = activation_function __A : List[Any] = encoder_layers __A : Union[str, Any] = decoder_layers __A : Dict = num_attention_heads __A : Tuple = dropout __A : Dict = dim_feedforward __A : Tuple = pre_norm __A : Dict = enforce_input_projection __A : Optional[int] = common_stride __A : Optional[Any] = ignore_value __A : str = num_queries __A : List[Any] = no_object_weight __A : List[str] = class_weight __A : List[Any] = mask_weight __A : List[Any] = dice_weight __A : Tuple = train_num_points __A : Optional[Any] = oversample_ratio __A : Union[str, Any] = importance_sample_ratio __A : Union[str, Any] = init_std __A : int = init_xavier_std __A : Union[str, Any] = use_auxiliary_loss __A : Union[str, Any] = feature_strides __A : List[Any] = output_auxiliary_logits __A : Optional[Any] = decoder_layers super().__init__(**_A ) @classmethod def UpperCAmelCase_ ( cls , _A , **_A ): return cls( backbone_config=_A , **_A , ) def UpperCAmelCase_ ( self ): __A : Union[str, Any] = copy.deepcopy(self.__dict__ ) __A : List[Any] = self.backbone_config.to_dict() __A : Union[str, Any] = self.__class__.model_type return output
77
1
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =TransfoXLTokenizer a_ =False a_ =False def UpperCAmelCase ( self )-> int: '''simple docstring''' super().setUp() lowerCAmelCase__ = [ "<unk>", "[CLS]", "[SEP]", "want", "unwanted", "wa", "un", "running", ",", "low", "l", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = "<unk> UNwanted , running" lowerCAmelCase__ = "<unk> unwanted, running" return input_text, output_text def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__UpperCAmelCase ) lowerCAmelCase__ = tokenizer.tokenize("<unk> UNwanted , running" ) self.assertListEqual(__UpperCAmelCase , ["<unk>", "unwanted", ",", "running"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [0, 4, 8, 7] ) def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = TransfoXLTokenizer(lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) , ["hello", "!", "how", "are", "you", "?"] ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = TransfoXLTokenizer(lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = TransfoXLTokenizer(lower_case=__UpperCAmelCase ) lowerCAmelCase__ = "Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?" lowerCAmelCase__ = [ "Hello", "(", "bracket", ")", "and", "side", "@-@", "scrolled", "[", "and", "]", "Henry", "'s", "$", "5", "@,@", "000", "with", "3", "@.@", "34", "m", ".", "What", "'s", "up", "!", "?", ] self.assertListEqual(tokenizer.tokenize(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(__UpperCAmelCase ) , __UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = len(__UpperCAmelCase ) tokenizer.add_tokens(["new1", "new2"] ) tokenizer.move_added_token("new1" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__UpperCAmelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("new1" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , "new1" )
339
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =FunnelTokenizer a_ =FunnelTokenizerFast a_ =True a_ =True def UpperCAmelCase ( self )-> str: '''simple docstring''' super().setUp() lowerCAmelCase__ = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Any: '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = "UNwant\u00E9d,running" lowerCAmelCase__ = "unwanted, running" return input_text, output_text def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizers(do_lower_case=__UpperCAmelCase ) for tokenizer in tokenizers: lowerCAmelCase__ = tokenizer("UNwant\u00E9d,running" ) lowerCAmelCase__ = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) lowerCAmelCase__ = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
339
1
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline lowerCAmelCase__ =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=False , ) -> Optional[Any]: output_path.parent.mkdir(parents=UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCAmelCase__ , UpperCAmelCase__ , f=output_path.as_posix() , input_names=UpperCAmelCase__ , output_names=UpperCAmelCase__ , dynamic_axes=UpperCAmelCase__ , do_constant_folding=UpperCAmelCase__ , use_external_data_format=UpperCAmelCase__ , enable_onnx_checker=UpperCAmelCase__ , opset_version=UpperCAmelCase__ , ) else: export( UpperCAmelCase__ , UpperCAmelCase__ , f=output_path.as_posix() , input_names=UpperCAmelCase__ , output_names=UpperCAmelCase__ , dynamic_axes=UpperCAmelCase__ , do_constant_folding=UpperCAmelCase__ , opset_version=UpperCAmelCase__ , ) @torch.no_grad() def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False ) -> str: __SCREAMING_SNAKE_CASE = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __SCREAMING_SNAKE_CASE = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: __SCREAMING_SNAKE_CASE = '''cpu''' __SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ , torch_dtype=UpperCAmelCase__ ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = Path(UpperCAmelCase__ ) # TEXT ENCODER __SCREAMING_SNAKE_CASE = pipeline.text_encoder.config.max_position_embeddings __SCREAMING_SNAKE_CASE = pipeline.text_encoder.config.hidden_size __SCREAMING_SNAKE_CASE = pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCAmelCase__ , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCAmelCase__ , dtype=torch.intaa )) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=UpperCAmelCase__ , ) del pipeline.text_encoder # UNET __SCREAMING_SNAKE_CASE = pipeline.unet.config.in_channels __SCREAMING_SNAKE_CASE = pipeline.unet.config.sample_size __SCREAMING_SNAKE_CASE = output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), torch.randn(2 ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), torch.randn(2 , UpperCAmelCase__ , UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), False, ) , output_path=UpperCAmelCase__ , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=UpperCAmelCase__ , use_external_data_format=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = str(unet_path.absolute().as_posix() ) __SCREAMING_SNAKE_CASE = os.path.dirname(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = onnx.load(UpperCAmelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCAmelCase__ ) os.mkdir(UpperCAmelCase__ ) # collate external tensor files into one onnx.save_model( UpperCAmelCase__ , UpperCAmelCase__ , save_as_external_data=UpperCAmelCase__ , all_tensors_to_one_file=UpperCAmelCase__ , location='''weights.pb''' , convert_attribute=UpperCAmelCase__ , ) del pipeline.unet # VAE ENCODER __SCREAMING_SNAKE_CASE = pipeline.vae __SCREAMING_SNAKE_CASE = vae_encoder.config.in_channels __SCREAMING_SNAKE_CASE = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder __SCREAMING_SNAKE_CASE = lambda UpperCAmelCase__ , UpperCAmelCase__ : vae_encoder.encode(UpperCAmelCase__ , UpperCAmelCase__ )[0].sample() onnx_export( UpperCAmelCase__ , model_args=( torch.randn(1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=UpperCAmelCase__ , ) # VAE DECODER __SCREAMING_SNAKE_CASE = pipeline.vae __SCREAMING_SNAKE_CASE = vae_decoder.config.latent_channels __SCREAMING_SNAKE_CASE = vae_decoder.config.out_channels # forward only through the decoder part __SCREAMING_SNAKE_CASE = vae_encoder.decode onnx_export( UpperCAmelCase__ , model_args=( torch.randn(1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=UpperCAmelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: __SCREAMING_SNAKE_CASE = pipeline.safety_checker __SCREAMING_SNAKE_CASE = safety_checker.config.vision_config.num_channels __SCREAMING_SNAKE_CASE = safety_checker.config.vision_config.image_size __SCREAMING_SNAKE_CASE = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), torch.randn(1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=UpperCAmelCase__ , ) del pipeline.safety_checker __SCREAMING_SNAKE_CASE = OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' ) __SCREAMING_SNAKE_CASE = pipeline.feature_extractor else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ) , scheduler=pipeline.scheduler , safety_checker=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCAmelCase__ ) print('''ONNX pipeline saved to''' , UpperCAmelCase__ ) del pipeline del onnx_pipeline __SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(UpperCAmelCase__ , provider='''CPUExecutionProvider''' ) print('''ONNX pipeline is loadable''' ) if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowerCAmelCase__ =parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
690
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase__ ={"UserAgent": UserAgent().random} def _a ( UpperCAmelCase__ ) -> dict: __SCREAMING_SNAKE_CASE = script.contents[0] __SCREAMING_SNAKE_CASE = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A__: def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = f"""https://www.instagram.com/{username}/""" __SCREAMING_SNAKE_CASE = self.get_json() def _a ( self : List[Any] ) -> dict: """simple docstring""" __SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__SCREAMING_SNAKE_CASE ).text __SCREAMING_SNAKE_CASE = BeautifulSoup(__SCREAMING_SNAKE_CASE , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Tuple ) -> str: """simple docstring""" return f"""{self.__class__.__name__}('{self.username}')""" def __str__( self : Optional[int] ) -> str: """simple docstring""" return f"""{self.fullname} ({self.username}) is {self.biography}""" @property def _a ( self : Tuple ) -> str: """simple docstring""" return self.user_data["username"] @property def _a ( self : List[Any] ) -> str: """simple docstring""" return self.user_data["full_name"] @property def _a ( self : Optional[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def _a ( self : List[str] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def _a ( self : Any ) -> str: """simple docstring""" return self.user_data["external_url"] @property def _a ( self : Any ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def _a ( self : Dict ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def _a ( self : str ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _a ( self : Union[str, Any] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def _a ( self : Tuple ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def _a ( self : Union[str, Any] ) -> bool: """simple docstring""" return self.user_data["is_private"] def _a ( UpperCAmelCase__ = "github" ) -> None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions __SCREAMING_SNAKE_CASE = InstagramUser(UpperCAmelCase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCAmelCase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ =InstagramUser("github") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
690
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) _snake_case = TFAutoModel.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) _snake_case = AutoModel.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) _snake_case = TFAutoModelForPreTraining.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) _snake_case = AutoModelForPreTraining.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) _snake_case = TFAutoModelForCausalLM.from_pretrained(snake_case_ , from_pt=snake_case_ ) _snake_case , _snake_case = TFAutoModelForCausalLM.from_pretrained( snake_case_ , output_loading_info=snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) _snake_case = AutoModelForCausalLM.from_pretrained(snake_case_ , from_tf=snake_case_ ) _snake_case , _snake_case = AutoModelForCausalLM.from_pretrained( snake_case_ , output_loading_info=snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) _snake_case = TFAutoModelWithLMHead.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) _snake_case = AutoModelWithLMHead.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) _snake_case = TFAutoModelForMaskedLM.from_pretrained(snake_case_ , from_pt=snake_case_ ) _snake_case , _snake_case = TFAutoModelForMaskedLM.from_pretrained( snake_case_ , output_loading_info=snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) _snake_case = AutoModelForMaskedLM.from_pretrained(snake_case_ , from_tf=snake_case_ ) _snake_case , _snake_case = AutoModelForMaskedLM.from_pretrained( snake_case_ , output_loading_info=snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) _snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(snake_case_ , from_pt=snake_case_ ) _snake_case , _snake_case = TFAutoModelForSeqaSeqLM.from_pretrained( snake_case_ , output_loading_info=snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) _snake_case = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ , from_tf=snake_case_ ) _snake_case , _snake_case = AutoModelForSeqaSeqLM.from_pretrained( snake_case_ , output_loading_info=snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) _snake_case = TFAutoModelForSequenceClassification.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) _snake_case = AutoModelForSequenceClassification.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case = AutoConfig.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) _snake_case = TFAutoModelForQuestionAnswering.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) _snake_case = AutoModelForQuestionAnswering.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = TFAutoModelWithLMHead.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=snake_case_ ) , 1_44_10 ) _snake_case = AutoModelWithLMHead.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=snake_case_ ) , 1_44_10 ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = TFAutoModelWithLMHead.from_pretrained(snake_case_ , from_pt=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=snake_case_ ) , 1_44_10 ) _snake_case = AutoModelWithLMHead.from_pretrained(snake_case_ , from_tf=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=snake_case_ ) , 1_44_10 )
495
'''simple docstring''' # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class A ( a ): __UpperCAmelCase : torch.FloatTensor __UpperCAmelCase : Optional[torch.FloatTensor] = None def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : str=0.9_99, lowerCamelCase__ : List[Any]="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ : Union[str, Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ : List[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _a = [] for i in range(lowerCamelCase__ ): _a = i / num_diffusion_timesteps _a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ), lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__, dtype=torch.floataa ) class A ( a , a ): __UpperCAmelCase : Union[str, Any] = 1 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = 0.0_001 , snake_case_ = 0.02 , snake_case_ = "linear" , snake_case_ = None , snake_case_ = True , snake_case_ = True , snake_case_ = 0 , snake_case_ = "epsilon" , snake_case_ = 1.0 , **snake_case_ , ) -> Optional[Any]: if kwargs.get("set_alpha_to_one" , snake_case_ ) is not None: _a = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , snake_case_ , standard_warn=snake_case_ ) _a = kwargs["set_alpha_to_one"] if trained_betas is not None: _a = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": _a = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a = betas_for_alpha_bar(snake_case_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _a = 1.0 - self.betas _a = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _a = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _a = 1.0 # setable values _a = None _a = torch.from_numpy(np.arange(0 , snake_case_ ).copy().astype(np.intaa ) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> torch.FloatTensor: return sample def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Optional[Any]: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) _a = num_inference_steps _a = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(0 , snake_case_ ) * step_ratio).round().copy().astype(np.intaa ) _a = torch.from_numpy(snake_case_ ).to(snake_case_ ) self.timesteps += self.config.steps_offset def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = 0.0 , snake_case_ = False , snake_case_ = None , snake_case_ = True , ) -> Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _a = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _a = self.alphas_cumprod[timestep] _a = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _a = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _a = model_output elif self.config.prediction_type == "sample": _a = model_output _a = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _a = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _a = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _a = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=snake_case_ , pred_original_sample=snake_case_ ) def __len__( self ) -> str: return self.config.num_train_timesteps
131
0
def _lowerCAmelCase ( UpperCamelCase__: list ) -> bool: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(UpperCamelCase__ ) == 0: raise ValueError("""Input list must be a non empty list""" ) if len(UpperCamelCase__ ) == 1: return True A = series[1] - series[0] for index in range(len(UpperCamelCase__ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _lowerCAmelCase ( UpperCamelCase__: list ) -> float: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(UpperCamelCase__ ) == 0: raise ValueError("""Input list must be a non empty list""" ) A = 0 for val in series: answer += val return answer / len(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
546
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _lowercase : int = logging.get_logger(__name__) class _UpperCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase = 'upernet' def __init__( self , a__=None , a__=512 , a__=0.02 , a__=[1, 2, 3, 6] , a__=True , a__=0.4 , a__=384 , a__=256 , a__=1 , a__=False , a__=255 , **a__ , ) -> Tuple: super().__init__(**a__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(a__ , a__ ): A = backbone_config.get("""model_type""" ) A = CONFIG_MAPPING[backbone_model_type] A = config_class.from_dict(a__ ) A = backbone_config A = hidden_size A = initializer_range A = pool_scales A = use_auxiliary_head A = auxiliary_loss_weight A = auxiliary_in_channels A = auxiliary_channels A = auxiliary_num_convs A = auxiliary_concat_input A = loss_ignore_index def _UpperCAmelCase ( self ) -> Dict: A = copy.deepcopy(self.__dict__ ) A = self.backbone_config.to_dict() A = self.__class__.model_type return output
546
1
from __future__ import annotations def __a ( A__ : list[int | str] ): create_state_space_tree(A__ , [] , 0 , [0 for i in range(len(A__ ) )] ) def __a ( A__ : list[int | str] , A__ : list[int | str] , A__ : int , A__ : list[int] , ): if index == len(A__ ): print(A__ ) return for i in range(len(A__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) SCREAMING_SNAKE_CASE = True create_state_space_tree(A__ , A__ , index + 1 , A__ ) current_sequence.pop() SCREAMING_SNAKE_CASE = False __A : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __A : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
from collections import Counter from timeit import timeit def snake_case__ ( UpperCAmelCase : str = "" , ): return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def snake_case__ ( UpperCAmelCase : str = "" ): if len(UpperCAmelCase ) == 0: return True lowerCAmelCase__ :List[str] = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowerCAmelCase__ :dict[str, int] = {} for character in lower_case_input_str: lowerCAmelCase__ :Tuple = character_freq_dict.get(UpperCAmelCase , 0 ) + 1 lowerCAmelCase__ :Dict = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def snake_case__ ( UpperCAmelCase : str = "" ): print("\nFor string = " , UpperCAmelCase , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(UpperCAmelCase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(UpperCAmelCase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": _a : Any = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Tuple = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
145
0
import datasets from .evaluate import evaluate lowerCamelCase : Union[str, Any] = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' lowerCamelCase : Optional[int] = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' lowerCamelCase : Dict = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase (datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , ) def UpperCAmelCase ( self , A , A ) -> Any: snake_case : Union[str, Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} snake_case : int = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] snake_case : int = evaluate(dataset=A , predictions=A ) return score
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
1
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets _lowerCAmelCase = datasets.logging.get_logger(__name__) _lowerCAmelCase = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' _lowerCAmelCase = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' _lowerCAmelCase = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=True , UpperCamelCase=False , UpperCamelCase="dummy_doc" ): """simple docstring""" lowerCAmelCase__ : Dict = {doc: key_lines} lowerCAmelCase__ : List[Any] = {doc: sys_lines} lowerCAmelCase__ : Dict = {} lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Dict = 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = reader.get_doc_mentions(UpperCamelCase , key_doc_lines[doc] , UpperCamelCase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCAmelCase__ : str = reader.set_annotated_parse_trees(UpperCamelCase , key_doc_lines[doc] , UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = reader.get_doc_mentions(UpperCamelCase , sys_doc_lines[doc] , UpperCamelCase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCAmelCase__ : List[Any] = reader.set_annotated_parse_trees(UpperCamelCase , key_doc_lines[doc] , UpperCamelCase , UpperCamelCase ) if remove_nested: lowerCAmelCase__ , lowerCAmelCase__ : Any = reader.remove_nested_coref_mentions(UpperCamelCase , UpperCamelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCAmelCase__ , lowerCAmelCase__ : Tuple = reader.remove_nested_coref_mentions(UpperCamelCase , UpperCamelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCAmelCase__ : Optional[int] = reader.get_mention_assignments(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Dict = reader.get_mention_assignments(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( """Number of resulting singleton clusters in the key """ f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ """files, respectively""" ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = get_coref_infos(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[int] = {} lowerCAmelCase__ : Dict = 0 lowerCAmelCase__ : Dict = 0 for name, metric in metrics: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = evaluator.evaluate_documents(UpperCamelCase , UpperCamelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 100:.2f}""" , f""" Precision: {precision * 100:.2f}""" , f""" F1: {fa * 100:.2f}""" , ) if conll_subparts_num == 3: lowerCAmelCase__ : Optional[int] = (conll / 3) * 100 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({"""conll_score""": conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: lowerCAmelCase__ : List[Any] = line.split()[5] if not parse_col == "-": lowerCAmelCase__ : Optional[int] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) ,codebase_urls=["""https://github.com/ns-moosavi/coval"""] ,reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=False ) -> Dict: lowerCAmelCase__ : str = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: lowerCAmelCase__ : Optional[int] = util.check_gold_parse_annotation(__UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCAmelCase__ : Optional[Any] = evaluate( key_lines=__UpperCAmelCase ,sys_lines=__UpperCAmelCase ,metrics=__UpperCAmelCase ,NP_only=__UpperCAmelCase ,remove_nested=__UpperCAmelCase ,keep_singletons=__UpperCAmelCase ,min_span=__UpperCAmelCase ,) return score
565
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase = logging.getLogger(__name__) _lowerCAmelCase = '''Hello world! cécé herlolip''' _lowerCAmelCase = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[Any] = BertAbsConfig( temp_dir=""".""" , finetune_bert=UpperCamelCase , large=UpperCamelCase , share_emb=UpperCamelCase , use_bert_emb=UpperCamelCase , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) lowerCAmelCase__ : int = torch.load(UpperCamelCase , lambda UpperCamelCase , UpperCamelCase : storage ) lowerCAmelCase__ : List[str] = AbsSummarizer(UpperCamelCase , torch.device("""cpu""" ) , UpperCamelCase ) original.eval() lowerCAmelCase__ : Optional[Any] = BertAbsSummarizer(UpperCamelCase , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) lowerCAmelCase__ : Tuple = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs lowerCAmelCase__ : Optional[int] = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(UpperCamelCase )) ) lowerCAmelCase__ : List[Any] = torch.tensor(UpperCamelCase ).unsqueeze(0 ) lowerCAmelCase__ : str = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(UpperCamelCase )) ) lowerCAmelCase__ : List[str] = torch.tensor(UpperCamelCase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass lowerCAmelCase__ : Dict = encoder_input_ids lowerCAmelCase__ : Tuple = decoder_input_ids lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : List[Any] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical lowerCAmelCase__ : Optional[Any] = original(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )[0] lowerCAmelCase__ : Optional[Any] = original.generator(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = new_model( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )[0] lowerCAmelCase__ : int = new_model.generator(UpperCamelCase ) lowerCAmelCase__ : str = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(UpperCamelCase ) ) lowerCAmelCase__ : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(UpperCamelCase ) ) lowerCAmelCase__ : Dict = torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) _lowerCAmelCase = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
565
1
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=1024): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], [] SCREAMING_SNAKE_CASE = list(zip(_UpperCAmelCase , _UpperCAmelCase)) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sorted_examples[0] def is_too_big(_UpperCAmelCase): return tok(_UpperCAmelCase , return_tensors='pt').input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:]): SCREAMING_SNAKE_CASE = new_src + ' ' + src SCREAMING_SNAKE_CASE = new_tgt + ' ' + tgt if is_too_big(_UpperCAmelCase) or is_too_big(_UpperCAmelCase): # cant fit, finalize example finished_src.append(_UpperCAmelCase) finished_tgt.append(_UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = src, tgt else: # can fit, keep adding SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_UpperCAmelCase) finished_tgt.append(_UpperCAmelCase) return finished_src, finished_tgt def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = Path(_UpperCAmelCase) save_path.mkdir(exist_ok=_UpperCAmelCase) for split in ["train"]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' SCREAMING_SNAKE_CASE = [x.rstrip() for x in Path(_UpperCAmelCase).open().readlines()] SCREAMING_SNAKE_CASE = [x.rstrip() for x in Path(_UpperCAmelCase).open().readlines()] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pack_examples(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) print(F'''packed {split} split from {len(_UpperCAmelCase)} examples -> {len(_UpperCAmelCase)}.''') Path(save_path / F'''{split}.source''').open('w').write('\n'.join(_UpperCAmelCase)) Path(save_path / F'''{split}.target''').open('w').write('\n'.join(_UpperCAmelCase)) for split in ["val", "test"]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(_UpperCAmelCase , save_path / F'''{split}.source''') shutil.copyfile(_UpperCAmelCase , save_path / F'''{split}.target''') def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--tok_name' , type=_UpperCAmelCase , help='like facebook/bart-large-cnn,t5-base, etc.') parser.add_argument('--max_seq_len' , type=_UpperCAmelCase , default=128) parser.add_argument('--data_dir' , type=_UpperCAmelCase) parser.add_argument('--save_path' , type=_UpperCAmelCase) SCREAMING_SNAKE_CASE = parser.parse_args() SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.tok_name) return pack_data_dir(_UpperCAmelCase , Path(args.data_dir) , args.max_seq_len , args.save_path) if __name__ == "__main__": packer_cli()
704
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) a_ : int = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys a_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
444
0
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class a__ ( _lowercase ): __magic_name__ : Union[str, Any] = ComputeEnvironment.AMAZON_SAGEMAKER __magic_name__ : Optional[int] = True __magic_name__ : Any = "ml.p3.2xlarge" __magic_name__ : str = "accelerate_sagemaker_execution_role" __magic_name__ : Any = "hf-sm" __magic_name__ : List[Any] = "us-east-1" __magic_name__ : Union[str, Any] = 1 __magic_name__ : Optional[int] = "accelerate-sagemaker-1" __magic_name__ : Optional[Any] = "1.6" __magic_name__ : Union[str, Any] = "4.4" __magic_name__ : Union[str, Any] = "train.py" __magic_name__ : Union[str, Any] = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] __magic_name__ : Dict = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class a__ ( unittest.TestCase ): def lowercase__ (self : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''], __UpperCAmelCase ) assert isinstance(converted_args['''do_train'''], __UpperCAmelCase ) assert isinstance(converted_args['''epochs'''], __UpperCAmelCase ) assert isinstance(converted_args['''learning_rate'''], __UpperCAmelCase ) assert isinstance(converted_args['''max_steps'''], __UpperCAmelCase ) with pytest.raises(__UpperCAmelCase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
507
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: list ) -> list: '''simple docstring''' if len(SCREAMING_SNAKE_CASE_ ) <= 1: return [tuple(SCREAMING_SNAKE_CASE_ )] A__ = [] def generate(SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , SCREAMING_SNAKE_CASE_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A__ , A__ = arr[k - 1], arr[i] else: # k is odd A__ , A__ = arr[k - 1], arr[0] generate(k - 1 , SCREAMING_SNAKE_CASE_ ) generate(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return res if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
514
0
import sys import turtle def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(UpperCamelCase__ , get_mid(UpperCamelCase__ , UpperCamelCase__ ) , get_mid(UpperCamelCase__ , UpperCamelCase__ ) , depth - 1 ) triangle(UpperCamelCase__ , get_mid(UpperCamelCase__ , UpperCamelCase__ ) , get_mid(UpperCamelCase__ , UpperCamelCase__ ) , depth - 1 ) triangle(UpperCamelCase__ , get_mid(UpperCamelCase__ , UpperCamelCase__ ) , get_mid(UpperCamelCase__ , UpperCamelCase__ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) lowerCamelCase =turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") lowerCamelCase =[(-1_7_5, -1_2_5), (0, 1_7_5), (1_7_5, -1_2_5)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
462
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase ={ "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
462
1
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__=-1 ) -> Optional[int]: # in NER datasets, the last column is usually reserved for NER label A__ = label_idx def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[InputExample]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = mode.value A__ = os.path.join(SCREAMING_SNAKE_CASE__ , f"""{mode}.txt""" ) A__ = 1 A__ = [] with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as f: A__ = [] A__ = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) ) guid_index += 1 A__ = [] A__ = [] else: A__ = line.split(" " ) words.append(splits[0] ) if len(SCREAMING_SNAKE_CASE__ ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) ) return examples def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: A__ = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(SCREAMING_SNAKE_CASE__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: A__ = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(SCREAMING_SNAKE_CASE__ ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> List[str]: if path: with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: A__ = f.read().splitlines() if "O" not in labels: A__ = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self ) -> Tuple: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> List[str]: if path: with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: A__ = f.read().splitlines() if "O" not in labels: A__ = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[InputExample]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = mode.value A__ = os.path.join(SCREAMING_SNAKE_CASE__ , f"""{mode}.txt""" ) A__ = 1 A__ = [] with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as f: for sentence in parse_incr(SCREAMING_SNAKE_CASE__ ): A__ = [] A__ = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) ) guid_index += 1 return examples def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: A__ = 0 for sentence in parse_incr(SCREAMING_SNAKE_CASE__ ): A__ = preds_list[example_id] A__ = "" for token in sentence: out += f"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """ out += "\n" writer.write(SCREAMING_SNAKE_CASE__ ) example_id += 1 def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> List[str]: if path: with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
104
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Optional[Any] = "openai/whisper-base" _UpperCamelCase : List[Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) _UpperCamelCase : Union[str, Any] = "transcriber" _UpperCamelCase : Tuple = WhisperProcessor _UpperCamelCase : Optional[Any] = WhisperForConditionalGeneration _UpperCamelCase : Union[str, Any] = ["audio"] _UpperCamelCase : Any = ["text"] def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase_ , return_tensors='pt' ).input_features def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Any ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : Tuple ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ )[0]
304
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=13 ,_lowerCamelCase=7 ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=99 ,_lowerCamelCase=32 ,_lowerCamelCase=2 ,_lowerCamelCase=4 ,_lowerCamelCase=37 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=512 ,_lowerCamelCase=16 ,_lowerCamelCase=2 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=3 ,_lowerCamelCase=4 ,_lowerCamelCase=None ,_lowerCamelCase=0 ,) -> Union[str, Any]: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = projection_dim def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = BertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase__ ,initializer_range=self.initializer_range ,) __lowercase = DPRConfig(projection_dim=self.projection_dim ,**config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = TFDPRContextEncoder(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = TFDPRQuestionEncoder(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = TFDPRReader(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape ,(self.batch_size,) ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() ( __lowercase ) = config_and_inputs __lowercase = {"input_ids": input_ids} return config, inputs_dict @require_tf class __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Optional[int] = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) a : List[str] = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} a : int = False a : Optional[Any] = False a : Union[str, Any] = False a : Tuple = False a : int = False def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = TFDPRModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowerCamelCase__ ,hidden_size=37 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*lowerCamelCase__ ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*lowerCamelCase__ ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*lowerCamelCase__ ) @slow def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFDPRContextEncoder.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFDPRContextEncoder.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFDPRQuestionEncoder.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFDPRReader.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) __lowercase = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] __lowercase = model(lowerCamelCase__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. __lowercase = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
718
'''simple docstring''' # flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _lowercase = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''pixel_values'''] def __init__( self , _lowercase = True , _lowercase = None , _lowercase = PILImageResampling.BICUBIC , _lowercase = True , _lowercase = None , _lowercase = True , _lowercase = 1 / 255 , _lowercase = True , _lowercase = None , _lowercase = None , _lowercase = True , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase ) _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 224} _lowerCAmelCase = get_size_dict(_lowercase , default_to_square=_lowercase ) _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCAmelCase = get_size_dict(_lowercase , default_to_square=_lowercase , param_name="""crop_size""" ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowerCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD _lowerCAmelCase = do_convert_rgb def _lowercase ( self , _lowercase , _lowercase , _lowercase = PILImageResampling.BICUBIC , _lowercase = None , **_lowercase , ): """simple docstring""" _lowerCAmelCase = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _lowerCAmelCase = get_resize_output_image_size(_lowercase , size=size["""shortest_edge"""] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ): """simple docstring""" _lowerCAmelCase = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowercase , size=(size["""height"""], size["""width"""]) , data_format=_lowercase , **_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ): """simple docstring""" return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase = None , **_lowercase , ): """simple docstring""" return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def _lowercase ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ): """simple docstring""" _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_lowercase , param_name="""size""" , default_to_square=_lowercase ) _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_lowercase , param_name="""crop_size""" , default_to_square=_lowercase ) _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCAmelCase = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCAmelCase = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_lowercase ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] _lowerCAmelCase = {"""pixel_values""": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
5
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 384 if "tiny" in model_name: _lowerCAmelCase = [3, 3, 9, 3] _lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [128, 256, 512, 1024] _lowerCAmelCase = 512 if "large" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [192, 384, 768, 1536] _lowerCAmelCase = 768 if "xlarge" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [256, 512, 1024, 2048] _lowerCAmelCase = 1024 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ConvNextConfig( depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _lowerCAmelCase = UperNetConfig( backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): _lowerCAmelCase = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""] _lowerCAmelCase = get_upernet_config(__lowerCamelCase ) _lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) if "bn" in key: _lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify on image _lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(__lowerCamelCase ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
5
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ : Dict = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: snake_case__ : Tuple = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: snake_case__ : List[str] = 4 snake_case__ : Tuple = 48 snake_case__ : Optional[int] = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: snake_case__ : Optional[int] = [6, 6, 6, 6] snake_case__ : Optional[Any] = 60 snake_case__ : Tuple = [6, 6, 6, 6] snake_case__ : List[Any] = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: snake_case__ : str = 4 snake_case__ : Optional[Any] = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: snake_case__ : Any = 1 snake_case__ : Any = 1 snake_case__ : int = 126 snake_case__ : Any = 7 snake_case__ : Union[str, Any] = 255.0 snake_case__ : Any = """""" return config def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: if "patch_embed.proj" in name and "layers" not in name: snake_case__ : List[str] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: snake_case__ : int = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: snake_case__ : int = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: snake_case__ : Union[str, Any] = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: snake_case__ : str = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: snake_case__ : Optional[Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: snake_case__ : Union[str, Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case__ : List[str] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case__ : int = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case__ : Any = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: snake_case__ : List[str] = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: snake_case__ : int = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: snake_case__ : Optional[int] = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: snake_case__ : Tuple = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: snake_case__ : Optional[int] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": snake_case__ : List[Any] = """layernorm.weight""" if name == "norm.bias": snake_case__ : Any = """layernorm.bias""" if "conv_first" in name: snake_case__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: snake_case__ : Optional[int] = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: snake_case__ : List[Any] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: snake_case__ : Optional[Any] = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: snake_case__ : List[str] = name.replace("""upsample.2""" , """upsample.convolution_1""" ) snake_case__ : Tuple = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": snake_case__ : Dict = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) snake_case__ : List[Any] = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: snake_case__ : Optional[int] = """swin2sr.""" + name return name def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: for key in orig_state_dict.copy().keys(): snake_case__ : str = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: snake_case__ : List[str] = key.split(""".""" ) snake_case__ : Union[str, Any] = int(key_split[1] ) snake_case__ : int = int(key_split[4] ) snake_case__ : int = config.embed_dim if "weight" in key: snake_case__ : Union[str, Any] = val[:dim, :] snake_case__ : Dict = val[dim : dim * 2, :] snake_case__ : int = val[-dim:, :] else: snake_case__ : List[Any] = val[:dim] snake_case__ : int = val[dim : dim * 2] snake_case__ : List[str] = val[-dim:] pass else: snake_case__ : Union[str, Any] = val return orig_state_dict def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: snake_case__ : Optional[int] = get_config(_lowerCAmelCase ) snake_case__ : List[str] = SwinaSRForImageSuperResolution(_lowerCAmelCase ) model.eval() snake_case__ : Any = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="""cpu""" ) snake_case__ : int = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ , snake_case__ : int = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: raise ValueError("""Missing keys when converting: {}""".format(_lowerCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values snake_case__ : Tuple = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" snake_case__ : List[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ).convert("""RGB""" ) snake_case__ : Dict = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values snake_case__ : Union[str, Any] = 126 if """Jpeg""" in checkpoint_url else 256 snake_case__ : Union[str, Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) snake_case__ : List[Any] = transforms(_lowerCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: snake_case__ : int = pixel_values[:, 0, :, :].unsqueeze(1 ) snake_case__ : Optional[Any] = model(_lowerCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: snake_case__ : Dict = torch.Size([1, 3, 512, 512] ) snake_case__ : int = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: snake_case__ : Tuple = torch.Size([1, 3, 1_024, 1_024] ) snake_case__ : List[Any] = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here snake_case__ : Dict = torch.Size([1, 3, 1_024, 1_024] ) snake_case__ : Dict = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: snake_case__ : Union[str, Any] = torch.Size([1, 3, 512, 512] ) snake_case__ : Tuple = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: snake_case__ : List[Any] = torch.Size([1, 3, 1_024, 1_024] ) snake_case__ : int = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _lowerCAmelCase , atol=1e-3 ) print("""Looks ok!""" ) snake_case__ : List[Any] = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } snake_case__ : Optional[int] = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") __a = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
301
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , snake_case_ : Optional[int] , snake_case_ : List[str]=7 , snake_case_ : Optional[Any]=3 , snake_case_ : Optional[Any]=18 , snake_case_ : Optional[Any]=30 , snake_case_ : Dict=400 , snake_case_ : List[Any]=True , snake_case_ : List[Any]=None , snake_case_ : Union[str, Any]=True , ): snake_case__ : Any = size if size is not None else {"""height""": 18, """width""": 18} snake_case__ : Dict = parent snake_case__ : str = batch_size snake_case__ : Optional[Any] = num_channels snake_case__ : str = image_size snake_case__ : Tuple = min_resolution snake_case__ : Any = max_resolution snake_case__ : Optional[int] = do_resize snake_case__ : List[str] = size snake_case__ : int = apply_ocr def lowerCamelCase ( self : Tuple ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCamelCase ( self : List[str] ): snake_case__ : Optional[int] = LayoutLMvaImageProcessingTester(self ) @property def lowerCamelCase ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """apply_ocr""" ) ) def lowerCamelCase ( self : str ): snake_case__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCamelCase ( self : Any ): pass def lowerCamelCase ( self : List[Any] ): # Initialize image_processing snake_case__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , snake_case_ ) self.assertIsInstance(encoding.boxes , snake_case_ ) # Test batched snake_case__ : List[str] = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCamelCase ( self : int ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : Union[str, Any] = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCamelCase ( self : str ): # Initialize image_processing snake_case__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : List[Any] = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCamelCase ( self : Optional[Any] ): # with apply_OCR = True snake_case__ : Any = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case__ : Optional[int] = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) snake_case__ : List[str] = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case__ : str = image_processing(snake_case_ , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case__ : Union[str, Any] = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case__ : Any = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , snake_case_ ) self.assertListEqual(encoding.boxes , snake_case_ ) # with apply_OCR = False snake_case__ : Union[str, Any] = LayoutLMvaImageProcessor(apply_ocr=snake_case_ ) snake_case__ : List[Any] = image_processing(snake_case_ , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
301
1
def __lowercase ( __lowerCAmelCase : str = "The quick brown fox jumps over the lazy dog" , ): a__ = set() # Replace all the whitespace in our sentence a__ = input_str.replace(' ' , '' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__lowerCAmelCase ) == 2_6 def __lowercase ( __lowerCAmelCase : str = "The quick brown fox jumps over the lazy dog" , ): a__ = [False] * 2_6 for char in input_str: if char.islower(): a__ = True elif char.isupper(): a__ = True return all(__lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : str = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowercase ( ): from timeit import timeit a__ = 'from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest' print(timeit('is_pangram()' , setup=__lowerCAmelCase ) ) print(timeit('is_pangram_faster()' , setup=__lowerCAmelCase ) ) print(timeit('is_pangram_fastest()' , setup=__lowerCAmelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
335
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case : Dict = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : str = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[Any] = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys snake_case : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a : Dict = logging.get_logger(__name__) __a : Union[str, Any] = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _UpperCamelCase ( UpperCAmelCase__ ): """simple docstring""" __a : List[str] = "unispeech" def __init__( self , lowerCAmelCase__=32 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__="group" , lowerCAmelCase__="gelu" , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__=False , lowerCAmelCase__=1_28 , lowerCAmelCase__=16 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.05 , lowerCAmelCase__=10 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=10 , lowerCAmelCase__=0 , lowerCAmelCase__=3_20 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_00 , lowerCAmelCase__=2_56 , lowerCAmelCase__=2_56 , lowerCAmelCase__=0.1 , lowerCAmelCase__="mean" , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=2_56 , lowerCAmelCase__=80 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=0.5 , **lowerCAmelCase__ , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowercase = hidden_size __lowercase = feat_extract_norm __lowercase = feat_extract_activation __lowercase = list(lowerCamelCase__ ) __lowercase = list(lowerCamelCase__ ) __lowercase = list(lowerCamelCase__ ) __lowercase = conv_bias __lowercase = num_conv_pos_embeddings __lowercase = num_conv_pos_embedding_groups __lowercase = len(self.conv_dim ) __lowercase = num_hidden_layers __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_attention_heads __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = feat_proj_dropout __lowercase = final_dropout __lowercase = layerdrop __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = num_ctc_classes __lowercase = vocab_size __lowercase = do_stable_layer_norm __lowercase = use_weighted_layer_sum __lowercase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase = apply_spec_augment __lowercase = mask_time_prob __lowercase = mask_time_length __lowercase = mask_time_min_masks __lowercase = mask_feature_prob __lowercase = mask_feature_length __lowercase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __lowercase = num_codevectors_per_group __lowercase = num_codevector_groups __lowercase = contrastive_logits_temperature __lowercase = feat_quantizer_dropout __lowercase = num_negatives __lowercase = codevector_dim __lowercase = proj_codevector_dim __lowercase = diversity_loss_weight # ctc loss __lowercase = ctc_loss_reduction __lowercase = ctc_zero_infinity # pretraining loss __lowercase = replace_prob @property def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
718
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Tuple = ['''image_processor''', '''tokenizer'''] __a : Dict = '''AutoImageProcessor''' __a : List[Any] = '''AutoTokenizer''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = self.image_processor def __call__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __lowercase = self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if images is not None: __lowercase = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
522
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> int: _a : Dict = '''ZinengTang/tvlt-base''' _a : List[str] = tempfile.mkdtemp() def __lowercase ( self , **_a ) -> int: return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self , **_a ) -> List[Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Optional[int] = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Optional[Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : Union[str, Any] = np.ones([1_2_0_0_0] ) _a : Dict = feature_extractor(_a , return_tensors='''np''' ) _a : Tuple = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> int: _a : Optional[Any] = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Optional[Any] = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[Any] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = image_processor(_a , return_tensors='''np''' ) _a : Optional[int] = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> Union[str, Any]: _a : int = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Any = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[str] = np.ones([1_2_0_0_0] ) _a : Optional[int] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self ) -> Union[str, Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
14
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase_ = logging.getLogger(__name__) def _lowerCAmelCase ( __magic_name__ : List[Any] , __magic_name__ : str ) -> Union[str, Any]: return (preds == labels).mean() @dataclass class __SCREAMING_SNAKE_CASE : lowerCamelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCamelCase_ = field( default=lowercase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase_ = field( default=lowercase__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCamelCase_ = field( default=lowercase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __SCREAMING_SNAKE_CASE : lowerCamelCase_ = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) lowerCamelCase_ = field(metadata={'help': 'Should contain the data files for the task.'} ) lowerCamelCase_ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCamelCase_ = field( default=lowercase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _lowerCAmelCase ( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase : Dict =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase , lowercase , lowercase : List[Any] =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __magic_name__ ) # Set seed set_seed(training_args.seed ) try: lowercase : Any =processors[data_args.task_name]() lowercase : Optional[int] =processor.get_labels() lowercase : str =len(__magic_name__ ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase : List[str] =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__magic_name__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowercase : int =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase : Any =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__magic_name__ , cache_dir=model_args.cache_dir , ) # Get datasets lowercase : int =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__magic_name__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase : Union[str, Any] =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__magic_name__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__magic_name__ : EvalPrediction ) -> Dict: lowercase : Dict =np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__magic_name__ , p.label_ids )} # Data collator lowercase : List[str] =DataCollatorWithPadding(__magic_name__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase : Dict =Trainer( model=__magic_name__ , args=__magic_name__ , train_dataset=__magic_name__ , eval_dataset=__magic_name__ , compute_metrics=__magic_name__ , data_collator=__magic_name__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase : Optional[Any] ={} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase : List[Any] =trainer.evaluate() lowercase : Any =os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__magic_name__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __magic_name__ , __magic_name__ ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__magic_name__ ) return results def _lowerCAmelCase ( __magic_name__ : Any ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
92
0
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase = input("""Enter image url: """).strip() print(F"Downloading image from {url} ...") lowerCamelCase = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] lowerCamelCase = requests.get(image_url).content lowerCamelCase = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg" with open(file_name, """wb""") as fp: fp.write(image_data) print(F"Done. Image saved to disk as {file_name}.")
704
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""PerceiverFeatureExtractor"""] lowerCamelCase = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
247
"""simple docstring""" from manim import * class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE = Rectangle(height=0.25 , width=0.25 ) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = Text('CPU' , font_size=24 ) SCREAMING_SNAKE_CASE = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = Text('GPU' , font_size=24 ) SCREAMING_SNAKE_CASE = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = Text('Model' , font_size=24 ) SCREAMING_SNAKE_CASE = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(lowerCAmelCase__ ): rect.set_stroke(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCAmelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCAmelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=lowerCAmelCase__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=lowerCAmelCase__ , buff=0.0 ) self.add(lowerCAmelCase__ ) model_cpu_arr.append(lowerCAmelCase__ ) self.add(*lowerCAmelCase__ , *lowerCAmelCase__ , *lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = Text('Loaded Checkpoint' , font_size=24 ) SCREAMING_SNAKE_CASE = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = fill.copy().set_fill(lowerCAmelCase__ , opacity=0.7 ) target.move_to(lowerCAmelCase__ ) ckpt_arr.append(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(lowerCAmelCase__ ) self.add(*lowerCAmelCase__ , *lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowerCAmelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = MarkupText( F'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) SCREAMING_SNAKE_CASE = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = Text('Disk' , font_size=24 ) SCREAMING_SNAKE_CASE = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(lowerCAmelCase__ , run_time=3 ) , Write(lowerCAmelCase__ , run_time=1 ) , Create(lowerCAmelCase__ , run_time=1 ) ) SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(lowerCAmelCase__ , run_time=1.5 ) ) self.play(*lowerCAmelCase__ ) self.play(FadeOut(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = MarkupText(F'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase__ , run_time=3 ) ) self.play( FadeOut(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , *lowerCAmelCase__ ) , ) self.wait()
247
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''SpeechT5FeatureExtractor''' lowerCamelCase = '''SpeechT5Tokenizer''' def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> Tuple: super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Union[str, Any]: A_ : Optional[Any] = kwargs.pop("""audio""" , _lowerCamelCase ) A_ : Union[str, Any] = kwargs.pop("""text""" , _lowerCamelCase ) A_ : Dict = kwargs.pop("""text_target""" , _lowerCamelCase ) A_ : int = kwargs.pop("""audio_target""" , _lowerCamelCase ) A_ : str = kwargs.pop("""sampling_rate""" , _lowerCamelCase ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: A_ : Union[str, Any] = self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) elif text is not None: A_ : Optional[Any] = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) else: A_ : Optional[Any] = None if audio_target is not None: A_ : int = self.feature_extractor(audio_target=_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) A_ : List[Any] = targets["""input_values"""] elif text_target is not None: A_ : List[Any] = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) A_ : List[Any] = targets["""input_ids"""] else: A_ : List[Any] = None if inputs is None: return targets if targets is not None: A_ : Dict = labels A_ : Optional[int] = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: A_ : Any = decoder_attention_mask return inputs def UpperCAmelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: A_ : Union[str, Any] = kwargs.pop("""input_values""" , _lowerCamelCase ) A_ : Optional[Any] = kwargs.pop("""input_ids""" , _lowerCamelCase ) A_ : Tuple = kwargs.pop("""labels""" , _lowerCamelCase ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: A_ : Optional[int] = self.feature_extractor.pad(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) elif input_ids is not None: A_ : Dict = self.tokenizer.pad(_lowerCamelCase , **_lowerCamelCase ) else: A_ : Any = None if labels is not None: if "input_ids" in labels or (isinstance(_lowerCamelCase , _lowerCamelCase ) and "input_ids" in labels[0]): A_ : Any = self.tokenizer.pad(_lowerCamelCase , **_lowerCamelCase ) A_ : Union[str, Any] = targets["""input_ids"""] else: A_ : Optional[int] = self.feature_extractor.feature_size A_ : int = self.feature_extractor.num_mel_bins A_ : Optional[Any] = self.feature_extractor.pad(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) A_ : List[str] = feature_size_hack A_ : Optional[Any] = targets["""input_values"""] else: A_ : Any = None if inputs is None: return targets if targets is not None: A_ : Any = labels A_ : str = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: A_ : Union[str, Any] = decoder_attention_mask return inputs def UpperCAmelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ) -> Any: return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ) -> List[Any]: return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase )
712
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. UpperCamelCase__ : Union[str, Any] = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" lowerCamelCase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: A_ : Any = ZeroShotClassificationPipeline( model=_lowerCamelCase , tokenizer=_lowerCamelCase , candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : Dict = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics""" ) self.assertEqual(_lowerCamelCase , {"""sequence""": ANY(_lowerCamelCase ), """labels""": [ANY(_lowerCamelCase )], """scores""": [ANY(_lowerCamelCase )]} ) # No kwarg A_ : Optional[Any] = classifier("""Who are you voting for in 2020?""" , ["""politics"""] ) self.assertEqual(_lowerCamelCase , {"""sequence""": ANY(_lowerCamelCase ), """labels""": [ANY(_lowerCamelCase )], """scores""": [ANY(_lowerCamelCase )]} ) A_ : Optional[int] = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics"""] ) self.assertEqual(_lowerCamelCase , {"""sequence""": ANY(_lowerCamelCase ), """labels""": [ANY(_lowerCamelCase )], """scores""": [ANY(_lowerCamelCase )]} ) A_ : Dict = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics, public health""" ) self.assertEqual( _lowerCamelCase , {"""sequence""": ANY(_lowerCamelCase ), """labels""": [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], """scores""": [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) A_ : str = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health"""] ) self.assertEqual( _lowerCamelCase , {"""sequence""": ANY(_lowerCamelCase ), """labels""": [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], """scores""": [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) A_ : List[str] = classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""This text is about {}""" ) self.assertEqual(_lowerCamelCase , {"""sequence""": ANY(_lowerCamelCase ), """labels""": [ANY(_lowerCamelCase )], """scores""": [ANY(_lowerCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 A_ : List[str] = classifier(["""I am happy"""] , ["""positive""", """negative"""] ) self.assertEqual( _lowerCamelCase , [ {"""sequence""": ANY(_lowerCamelCase ), """labels""": [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], """scores""": [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} for i in range(1 ) ] , ) A_ : Dict = classifier(["""I am happy""", """I am sad"""] , ["""positive""", """negative"""] ) self.assertEqual( _lowerCamelCase , [ {"""sequence""": ANY(_lowerCamelCase ), """labels""": [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], """scores""": [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(_lowerCamelCase ): classifier("""""" , candidate_labels="""politics""" ) with self.assertRaises(_lowerCamelCase ): classifier(_lowerCamelCase , candidate_labels="""politics""" ) with self.assertRaises(_lowerCamelCase ): classifier("""Who are you voting for in 2020?""" , candidate_labels="""""" ) with self.assertRaises(_lowerCamelCase ): classifier("""Who are you voting for in 2020?""" , candidate_labels=_lowerCamelCase ) with self.assertRaises(_lowerCamelCase ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""Not formatting template""" , ) with self.assertRaises(_lowerCamelCase ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template=_lowerCamelCase , ) self.run_entailment_id(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: A_ : Optional[int] = zero_shot_classifier.model.config A_ : List[str] = config.labelaid A_ : Optional[int] = zero_shot_classifier.entailment_id A_ : List[Any] = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) A_ : List[str] = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A_ : List[Any] = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A_ : Any = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) A_ : Optional[Any] = original_labelaid self.assertEqual(_lowerCamelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : List[Any] = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 100 , candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : Tuple = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) A_ : Optional[int] = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @require_tf def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Dict = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""tf""" , ) A_ : int = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @slow @require_torch def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : int = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""pt""" ) A_ : Any = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) A_ : Any = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=_lowerCamelCase , ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""tf""" ) A_ : Union[str, Any] = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) A_ : int = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=_lowerCamelCase , ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , )
385
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowercase : List[str] = logging.getLogger() def UpperCAmelCase_ ( ): lowerCamelCase_: Optional[int] = argparse.ArgumentParser() parser.add_argument("""-f""" ) lowerCamelCase_: List[Any] = parser.parse_args() return args.f class a__ ( __SCREAMING_SNAKE_CASE ): def lowerCAmelCase ( self : Optional[int] ) -> None: """simple docstring""" lowerCamelCase_: Optional[int] = logging.StreamHandler(sys.stdout ) logger.addHandler(A_ ) def lowerCAmelCase ( self : List[str] , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_: Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(A_ , """argv""" , A_ ): lowerCamelCase_: Optional[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(A_ , 0.666 ) @slow @require_torch_non_multi_gpu def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_: List[str] = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(A_ ) lowerCamelCase_: List[str] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(A_ ) lowerCamelCase_: Optional[Any] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(A_ )
423
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class a__ ( unittest.TestCase ): _A = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _A = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def lowerCAmelCase ( self : Tuple , A_ : Optional[Any] , A_ : Optional[Any] , A_ : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_: Union[str, Any] = AudioClassificationPipeline(model=A_ , feature_extractor=A_ ) # test with a raw waveform lowerCamelCase_: Optional[int] = np.zeros((3_40_00,) ) lowerCamelCase_: Tuple = np.zeros((1_40_00,) ) return audio_classifier, [audioa, audio] def lowerCAmelCase ( self : Tuple , A_ : Optional[Any] , A_ : str ) -> int: """simple docstring""" lowerCamelCase_ , lowerCamelCase_: List[Any] = examples lowerCamelCase_: List[str] = audio_classifier(A_ ) # by default a model is initialized with num_labels=2 self.assertEqual( A_ , [ {"""score""": ANY(A_ ), """label""": ANY(A_ )}, {"""score""": ANY(A_ ), """label""": ANY(A_ )}, ] , ) lowerCamelCase_: Dict = audio_classifier(A_ , top_k=1 ) self.assertEqual( A_ , [ {"""score""": ANY(A_ ), """label""": ANY(A_ )}, ] , ) self.run_torchaudio(A_ ) @require_torchaudio def lowerCAmelCase ( self : Optional[int] , A_ : str ) -> List[Any]: """simple docstring""" import datasets # test with a local file lowerCamelCase_: Dict = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) lowerCamelCase_: List[Any] = dataset[0]["""audio"""]["""array"""] lowerCamelCase_: Dict = audio_classifier(A_ ) self.assertEqual( A_ , [ {"""score""": ANY(A_ ), """label""": ANY(A_ )}, {"""score""": ANY(A_ ), """label""": ANY(A_ )}, ] , ) @require_torch def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_: List[str] = """anton-l/wav2vec2-random-tiny-classifier""" lowerCamelCase_: Tuple = pipeline("""audio-classification""" , model=A_ ) lowerCamelCase_: Optional[int] = np.ones((80_00,) ) lowerCamelCase_: List[str] = audio_classifier(A_ , top_k=4 ) lowerCamelCase_: Union[str, Any] = [ {"""score""": 0.0842, """label""": """no"""}, {"""score""": 0.0838, """label""": """up"""}, {"""score""": 0.0837, """label""": """go"""}, {"""score""": 0.0834, """label""": """right"""}, ] lowerCamelCase_: Optional[int] = [ {"""score""": 0.0845, """label""": """stop"""}, {"""score""": 0.0844, """label""": """on"""}, {"""score""": 0.0841, """label""": """right"""}, {"""score""": 0.0834, """label""": """left"""}, ] self.assertIn(nested_simplify(A_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) lowerCamelCase_: Optional[Any] = {"""array""": np.ones((80_00,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} lowerCamelCase_: Dict = audio_classifier(A_ , top_k=4 ) self.assertIn(nested_simplify(A_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" import datasets lowerCamelCase_: Tuple = """superb/wav2vec2-base-superb-ks""" lowerCamelCase_: Tuple = pipeline("""audio-classification""" , model=A_ ) lowerCamelCase_: Dict = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) lowerCamelCase_: List[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) lowerCamelCase_: Optional[Any] = audio_classifier(A_ , top_k=4 ) self.assertEqual( nested_simplify(A_ , decimals=3 ) , [ {"""score""": 0.981, """label""": """go"""}, {"""score""": 0.007, """label""": """up"""}, {"""score""": 0.006, """label""": """_unknown_"""}, {"""score""": 0.001, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" pass
423
1
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker SCREAMING_SNAKE_CASE__:int = """CompVis/stable-diffusion-v1-1""" SCREAMING_SNAKE_CASE__:Tuple = """CompVis/stable-diffusion-v1-2""" SCREAMING_SNAKE_CASE__:int = """CompVis/stable-diffusion-v1-3""" SCREAMING_SNAKE_CASE__:str = """CompVis/stable-diffusion-v1-4""" class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , ): super()._init_() __a = StableDiffusionPipeline.from_pretrained(lowerCamelCase ) __a = StableDiffusionPipeline.from_pretrained(lowerCamelCase ) __a = StableDiffusionPipeline.from_pretrained(lowerCamelCase ) __a = StableDiffusionPipeline( vae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , safety_checker=lowerCamelCase , feature_extractor=lowerCamelCase , requires_safety_checker=lowerCamelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def a__ ( self ): return {k: getattr(self , lowerCamelCase ) for k in self.config.keys() if not k.startswith("_" )} def a__ ( self , lowerCamelCase = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def a__ ( self ): self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def a__ ( self , lowerCamelCase , lowerCamelCase = 512 , lowerCamelCase = 512 , lowerCamelCase = 50 , lowerCamelCase = 7.5 , lowerCamelCase = None , lowerCamelCase = 1 , lowerCamelCase = 0.0 , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = "pil" , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = 1 , **lowerCamelCase , ): return self.pipea( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) @torch.no_grad() def a__ ( self , lowerCamelCase , lowerCamelCase = 512 , lowerCamelCase = 512 , lowerCamelCase = 50 , lowerCamelCase = 7.5 , lowerCamelCase = None , lowerCamelCase = 1 , lowerCamelCase = 0.0 , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = "pil" , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = 1 , **lowerCamelCase , ): return self.pipea( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) @torch.no_grad() def a__ ( self , lowerCamelCase , lowerCamelCase = 512 , lowerCamelCase = 512 , lowerCamelCase = 50 , lowerCamelCase = 7.5 , lowerCamelCase = None , lowerCamelCase = 1 , lowerCamelCase = 0.0 , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = "pil" , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = 1 , **lowerCamelCase , ): return self.pipea( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) @torch.no_grad() def a__ ( self , lowerCamelCase , lowerCamelCase = 512 , lowerCamelCase = 512 , lowerCamelCase = 50 , lowerCamelCase = 7.5 , lowerCamelCase = None , lowerCamelCase = 1 , lowerCamelCase = 0.0 , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = "pil" , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = 1 , **lowerCamelCase , ): return self.pipea( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) @torch.no_grad() def a__ ( self , lowerCamelCase , lowerCamelCase = 512 , lowerCamelCase = 512 , lowerCamelCase = 50 , lowerCamelCase = 7.5 , lowerCamelCase = None , lowerCamelCase = 1 , lowerCamelCase = 0.0 , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = "pil" , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = 1 , **lowerCamelCase , ): __a = "cuda" if torch.cuda.is_available() else "cpu" self.to(lowerCamelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 __a = self.textaimg_sda_a( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 __a = self.textaimg_sda_a( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 __a = self.textaimg_sda_a( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 __a = self.textaimg_sda_a( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
67
"""simple docstring""" def _lowerCamelCase( a ): return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def _lowerCamelCase( a ): __a = 0 __a = number while duplicate > 0: __a , __a = divmod(a , 1_0 ) fact_sum += factorial(a ) return fact_sum == number if __name__ == "__main__": print("""Program to check whether a number is a Krisnamurthy Number or not.""") SCREAMING_SNAKE_CASE__:Optional[Any] = int(input("""Enter number: """).strip()) print( F'''{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.''' )
67
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging UpperCamelCase = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( ): # Get the sagemaker specific mp parameters from smp_options variable. A_ : List[str] = os.getenv('''SM_HP_MP_PARAMETERS''' , '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. A_ : Any = json.loads(SCREAMING_SNAKE_CASE ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. A_ : Optional[Any] = os.getenv('''SM_FRAMEWORK_PARAMS''' , '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". A_ : List[Any] = json.loads(SCREAMING_SNAKE_CASE ) if not mpi_options.get('''sagemaker_mpi_enabled''' , SCREAMING_SNAKE_CASE ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def _snake_case ( self )->Optional[int]: '''simple docstring''' super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' , _SCREAMING_SNAKE_CASE , ) @cached_property def _snake_case ( self )->"torch.device": '''simple docstring''' logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: A_ : Dict = torch.device('''cpu''' ) A_ : int = 0 elif is_sagemaker_model_parallel_available(): A_ : str = smp.local_rank() A_ : int = torch.device('''cuda''' , _SCREAMING_SNAKE_CASE ) A_ : Any = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta ) A_ : int = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) A_ : str = torch.device('''cuda''' , self.local_rank ) A_ : int = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 A_ : Tuple = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. A_ : Optional[Any] = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta ) A_ : Tuple = torch.device('''cuda''' , self.local_rank ) A_ : Optional[int] = 1 if device.type == "cuda": torch.cuda.set_device(_SCREAMING_SNAKE_CASE ) return device @property def _snake_case ( self )->List[Any]: '''simple docstring''' if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def _snake_case ( self )->Optional[Any]: '''simple docstring''' return not is_sagemaker_model_parallel_available() @property def _snake_case ( self )->Optional[Any]: '''simple docstring''' return False
590
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _lowerCamelCase ( UpperCamelCase , UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 768 , )->Union[str, Any]: '''simple docstring''' super().__init__() A_ : Union[str, Any] = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) A_ : Any = nn.Parameter(torch.ones(1 , _SCREAMING_SNAKE_CASE ) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , )->Tuple: '''simple docstring''' A_ : Optional[Any] = nn.Parameter(self.mean.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) A_ : str = nn.Parameter(self.std.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) return self def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' A_ : Tuple = (embeds - self.mean) * 1.0 / self.std return embeds def _snake_case ( self , _SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' A_ : List[str] = (embeds * self.std) + self.mean return embeds
590
1
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union lowerCamelCase__ = re.compile(r"""^(?P<major>\d+)""" r"""\.(?P<minor>\d+)""" r"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class A__ : lowercase = 42 lowercase = None lowercase = None lowercase = None lowercase = None def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = _str_to_version_tuple(self.version_str ) def __repr__( self : Tuple ): '''simple docstring''' return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return self.major, self.minor, self.patch def _lowerCamelCase ( self : int , a : str ): '''simple docstring''' if isinstance(a , a ): return Version(a ) elif isinstance(a , a ): return other raise TypeError(f'''{other} (type {type(a )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] , a : Tuple ): '''simple docstring''' try: lowerCAmelCase__ : Optional[Any] = self._validate_operand(a ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Optional[int] , a : Dict ): '''simple docstring''' lowerCAmelCase__ : str = self._validate_operand(a ) return self.tuple < other.tuple def __hash__( self : List[Any] ): '''simple docstring''' return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _lowerCamelCase ( cls : Optional[int] , a : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _lowerCamelCase ( self : int ): '''simple docstring''' return self.version_str def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: lowerCAmelCase__ : Optional[int] = _VERSION_REG.match(SCREAMING_SNAKE_CASE_ ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(SCREAMING_SNAKE_CASE_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: return ".".join(str(SCREAMING_SNAKE_CASE_ ) for v in version_tuple )
69
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( __magic_name__ , unittest.TestCase ): lowercase = XLMTokenizer lowercase = False def _lowerCamelCase ( self : int ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase__ : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] lowerCAmelCase__ : Any = dict(zip(a , range(len(a ) ) ) ) lowerCAmelCase__ : Optional[int] = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] lowerCAmelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(a ) ) def _lowerCamelCase ( self : List[str] , a : Dict ): '''simple docstring''' lowerCAmelCase__ : List[Any] = 'lower newer' lowerCAmelCase__ : Any = 'lower newer' return input_text, output_text def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = XLMTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase__ : Optional[int] = 'lower' lowerCAmelCase__ : Optional[Any] = ['low', 'er</w>'] lowerCAmelCase__ : Dict = tokenizer.tokenize(a ) self.assertListEqual(a , a ) lowerCAmelCase__ : Tuple = tokens + ['<unk>'] lowerCAmelCase__ : Optional[int] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) @slow def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : List[Any] = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) lowerCAmelCase__ : Any = tokenizer.encode('sequence builders' , add_special_tokens=a ) lowerCAmelCase__ : Union[str, Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=a ) lowerCAmelCase__ : List[Any] = tokenizer.build_inputs_with_special_tokens(a ) lowerCAmelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
69
1
import logging import os from .state import PartialState class __lowerCAmelCase ( logging.LoggerAdapter ): """simple docstring""" @staticmethod def snake_case_ ( _snake_case : int ): __lowercase : Optional[int] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def snake_case_ ( self : Dict , _snake_case : Tuple , _snake_case : List[str] , *_snake_case : Any , **_snake_case : Any ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) __lowercase : int = kwargs.pop('''main_process_only''' , _snake_case ) __lowercase : Tuple = kwargs.pop('''in_order''' , _snake_case ) if self.isEnabledFor(_snake_case ): if self._should_log(_snake_case ): __lowercase , __lowercase : int = self.process(_snake_case , _snake_case ) self.logger.log(_snake_case , _snake_case , *_snake_case , **_snake_case ) elif in_order: __lowercase : int = PartialState() for i in range(state.num_processes ): if i == state.process_index: __lowercase , __lowercase : int = self.process(_snake_case , _snake_case ) self.logger.log(_snake_case , _snake_case , *_snake_case , **_snake_case ) state.wait_for_everyone() def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = None ) -> Optional[Any]: if log_level is None: __lowercase : Tuple = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __lowerCAmelCase ) __lowercase : Any = logging.getLogger(__lowerCAmelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__lowerCAmelCase , {} )
509
from torch import nn class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , _snake_case : List[Any] , _snake_case : Tuple ): super().__init__() __lowercase : Any = class_size __lowercase : List[Any] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase : Dict = nn.Linear(_snake_case , _snake_case ) def snake_case_ ( self : Any , _snake_case : str ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) __lowercase : Any = self.mlp(_snake_case ) return logits
509
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=64 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ) -> List[str]: A_ : Tuple = parent A_ : List[Any] = batch_size A_ : int = seq_length A_ : int = is_training A_ : Union[str, Any] = use_input_mask A_ : Union[str, Any] = use_token_type_ids A_ : Optional[Any] = use_labels A_ : Dict = vocab_size A_ : Dict = hidden_size A_ : Union[str, Any] = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Optional[int] = intermediate_size A_ : int = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : str = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : Dict = type_sequence_label_size A_ : Optional[int] = initializer_range A_ : Dict = num_labels A_ : int = num_choices A_ : Optional[Any] = scope A_ : List[Any] = vocab_size - 1 def UpperCAmelCase_ ( self ) -> int: A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Tuple = None if self.use_input_mask: A_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) A_ : str = None if self.use_labels: A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : str = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self ) -> int: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def UpperCAmelCase_ ( self ) -> int: A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ : str = True return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: A_ : Optional[Any] = GPTNeoXModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) A_ : str = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : Dict = True A_ : Tuple = GPTNeoXModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : Union[str, Any] = GPTNeoXForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : List[Any] = self.num_labels A_ : Any = GPTNeoXForQuestionAnswering(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : List[Any] = self.num_labels A_ : Tuple = GPTNeoXForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: A_ : int = self.num_labels A_ : Tuple = GPTNeoXForTokenClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[str] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Optional[int] = True A_ : Union[str, Any] = GPTNeoXForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() # first forward pass A_ : List[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) A_ : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A_ : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) A_ : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ : Dict = torch.cat([input_mask, next_mask] , dim=-1 ) A_ : int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , output_hidden_states=_lowerCamelCase ) A_ : List[Any] = output_from_no_past["""hidden_states"""][0] A_ : str = model( _lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , output_hidden_states=_lowerCamelCase , )["""hidden_states"""][0] # select random slice A_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() A_ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : int = self.prepare_config_and_inputs() A_ : Optional[int] = config_and_inputs A_ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( __A, __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Any: A_ : Union[str, Any] = GPTNeoXModelTester(self ) A_ : Tuple = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=64 , num_attention_heads=8 ) def UpperCAmelCase_ ( self ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: # This regression test was failing with PyTorch < 1.3 A_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() A_ : Optional[int] = None self.model_tester.create_and_check_model_as_decoder(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def UpperCAmelCase_ ( self ) -> List[str]: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = ids_tensor([1, 10] , config.vocab_size ) A_ : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A_ : Dict = GPTNeoXModel(_lowerCamelCase ) original_model.to(_lowerCamelCase ) original_model.eval() A_ : Tuple = original_model(_lowerCamelCase ).last_hidden_state A_ : List[str] = original_model(_lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A_ : Any = {"""type""": scaling_type, """factor""": 10.0} A_ : List[Any] = GPTNeoXModel(_lowerCamelCase ) scaled_model.to(_lowerCamelCase ) scaled_model.eval() A_ : Dict = scaled_model(_lowerCamelCase ).last_hidden_state A_ : List[str] = scaled_model(_lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5 ) ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : List[str] = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: A_ : int = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_lowerCamelCase ) A_ : List[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(_lowerCamelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 A_ : List[str] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" A_ : Any = model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=20 ) A_ : Optional[int] = tokenizer.batch_decode(_lowerCamelCase )[0] self.assertEqual(_lowerCamelCase , _lowerCamelCase )
702
'''simple docstring''' import numpy as np import qiskit def UpperCAmelCase ( a_ = 8 , a_ = None ) -> str: """simple docstring""" A_ : List[Any] = np.random.default_rng(seed=a_ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. A_ : Union[str, Any] = 6 * key_len # Measurement basis for Alice's qubits. A_ : Dict = rng.integers(2 , size=a_ ) # The set of states Alice will prepare. A_ : Optional[int] = rng.integers(2 , size=a_ ) # Measurement basis for Bob's qubits. A_ : List[Any] = rng.integers(2 , size=a_ ) # Quantum Circuit to simulate BB84 A_ : Optional[Any] = qiskit.QuantumCircuit(a_ , name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(a_ ): if alice_state[index] == 1: bbaa_circ.x(a_ ) if alice_basis[index] == 1: bbaa_circ.h(a_ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(a_ ): if bob_basis[index] == 1: bbaa_circ.h(a_ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. A_ : List[Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. A_ : int = qiskit.execute(a_ , a_ , shots=1 , seed_simulator=a_ ) # Returns the result of measurement. A_ : Any = job.result().get_counts(a_ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. A_ : Optional[Any] = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( a_ , a_ , a_ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. A_ : Optional[int] = gen_key[:key_len] if len(a_ ) >= key_len else gen_key.ljust(a_ , """0""" ) return key if __name__ == "__main__": print(f'The generated key is : {bbaa(8, seed=0)}') from doctest import testmod testmod()
385
0
"""simple docstring""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: """simple docstring""" # Construct model if openai_config_file == "": __UpperCAmelCase : List[str] = OpenAIGPTConfig() else: __UpperCAmelCase : Dict = OpenAIGPTConfig.from_json_file(UpperCamelCase ) __UpperCAmelCase : Tuple = OpenAIGPTModel(UpperCamelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Save pytorch-model __UpperCAmelCase : Union[str, Any] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME __UpperCAmelCase : Dict = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , UpperCamelCase ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--openai_checkpoint_folder_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--openai_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) A = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
77
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" __UpperCAmelCase : Dict = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __UpperCAmelCase : Union[str, Any] = n - k # Calculate C(n,k) for i in range(UpperCamelCase ): result *= n - i result //= i + 1 return result def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" return binomial_coefficient(2 * node_count , UpperCamelCase ) // (node_count + 1) def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" if n < 0: raise ValueError("factorial() not defined for negative values" ) __UpperCAmelCase : Optional[Any] = 1 for i in range(1 , n + 1 ): result *= i return result def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" return catalan_number(UpperCamelCase ) * factorial(UpperCamelCase ) if __name__ == "__main__": A = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
77
1
import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __a = open # noqa: we just need to have a builtin inside this module to test it properly
704
def _SCREAMING_SNAKE_CASE ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" __A = set() # Replace all the whitespace in our sentence __A = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__lowercase ) == 2_6 def _SCREAMING_SNAKE_CASE ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" __A = [False] * 2_6 for char in input_str: if char.islower(): __A = True elif char.isupper(): __A = True return all(__lowercase ) def _SCREAMING_SNAKE_CASE ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def _SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" from timeit import timeit __A = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=__lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=__lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=__lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
199
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _a ( UpperCamelCase__): """simple docstring""" def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , "tf_padding" ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , "depth_multiplier" ) ) class _a : """simple docstring""" def __init__( self: Optional[Any] , __lowerCamelCase: Dict , __lowerCamelCase: Optional[int]=13 , __lowerCamelCase: Tuple=3 , __lowerCamelCase: Tuple=32 , __lowerCamelCase: Dict=0.25 , __lowerCamelCase: List[Any]=8 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Any=32 , __lowerCamelCase: List[str]=True , __lowerCamelCase: str=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: int="relu6" , __lowerCamelCase: Dict=1280 , __lowerCamelCase: int=0.1 , __lowerCamelCase: str=0.02 , __lowerCamelCase: List[str]=True , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: Optional[int]=10 , __lowerCamelCase: Dict=None , ): '''simple docstring''' UpperCamelCase__: Optional[Any] = parent UpperCamelCase__: Optional[Any] = batch_size UpperCamelCase__: str = num_channels UpperCamelCase__: Optional[Any] = image_size UpperCamelCase__: Optional[int] = depth_multiplier UpperCamelCase__: Optional[int] = depth_divisible_by UpperCamelCase__: Any = min_depth UpperCamelCase__: Any = expand_ratio UpperCamelCase__: List[str] = tf_padding UpperCamelCase__: Dict = output_stride UpperCamelCase__: Optional[int] = first_layer_is_expansion UpperCamelCase__: List[str] = finegrained_output UpperCamelCase__: Optional[int] = hidden_act UpperCamelCase__: List[str] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCamelCase__: Optional[int] = classifier_dropout_prob UpperCamelCase__: List[str] = use_labels UpperCamelCase__: List[str] = is_training UpperCamelCase__: Optional[int] = num_labels UpperCamelCase__: List[Any] = initializer_range UpperCamelCase__: int = scope def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' UpperCamelCase__: List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__: Tuple = None UpperCamelCase__: Optional[int] = None if self.use_labels: UpperCamelCase__: Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase__: int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase__: Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict ): '''simple docstring''' UpperCamelCase__: Any = MobileNetVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase__: Optional[Any] = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def UpperCAmelCase_ ( self: Tuple , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: str ): '''simple docstring''' UpperCamelCase__: Tuple = self.num_labels UpperCamelCase__: int = MobileNetVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase__: str = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self: Any , __lowerCamelCase: str , __lowerCamelCase: Any , __lowerCamelCase: Any , __lowerCamelCase: Tuple ): '''simple docstring''' UpperCamelCase__: List[str] = self.num_labels UpperCamelCase__: int = MobileNetVaForSemanticSegmentation(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase__: Tuple = model(__lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCamelCase__: str = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__: Optional[Any] = config_and_inputs UpperCamelCase__: str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCAmelCase_ ( self: Any ): '''simple docstring''' UpperCamelCase__: Tuple = MobileNetVaModelTester(self ) UpperCamelCase__: Tuple = MobileNetVaConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV2 does not use inputs_embeds" ) def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="MobileNetV2 does not support input and output embeddings" ) def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' pass @unittest.skip(reason="MobileNetV2 does not output attentions" ) def UpperCAmelCase_ ( self: str ): '''simple docstring''' pass def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__: List[Any] = model_class(__lowerCamelCase ) UpperCamelCase__: Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__: Union[str, Any] = [*signature.parameters.keys()] UpperCamelCase__: List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] ): UpperCamelCase__: Dict = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase__: int = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) UpperCamelCase__: Optional[Any] = outputs.hidden_states UpperCamelCase__: List[Any] = 16 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__: Dict = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__: Optional[int] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCamelCase ) @slow def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__: List[str] = MobileNetVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def lowerCAmelCase_ ( ): UpperCamelCase__: List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class _a ( unittest.TestCase): """simple docstring""" @cached_property def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224" ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: Optional[Any] = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224" ).to(__lowerCamelCase ) UpperCamelCase__: Tuple = self.default_image_processor UpperCamelCase__: str = prepare_img() UpperCamelCase__: Dict = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase__: Tuple = model(**__lowerCamelCase ) # verify the logits UpperCamelCase__: Dict = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) UpperCamelCase__: List[str] = torch.tensor([0.2_445, -1.1_993, 0.1_905] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: Tuple = MobileNetVaForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) UpperCamelCase__: Optional[int] = model.to(__lowerCamelCase ) UpperCamelCase__: int = MobileNetVaImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) UpperCamelCase__: Optional[int] = prepare_img() UpperCamelCase__: Optional[int] = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase__: Tuple = model(**__lowerCamelCase ) UpperCamelCase__: Dict = outputs.logits # verify the logits UpperCamelCase__: Any = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __lowerCamelCase ) UpperCamelCase__: Optional[int] = torch.tensor( [ [[17.5_790, 17.7_581, 18.3_355], [18.3_257, 18.4_230, 18.8_973], [18.6_169, 18.8_650, 19.2_187]], [[-2.1_595, -2.0_977, -2.3_741], [-2.4_226, -2.3_028, -2.6_835], [-2.7_819, -2.5_991, -2.7_706]], [[4.2_058, 4.8_317, 4.7_638], [4.4_136, 5.0_361, 4.9_383], [4.5_028, 4.9_644, 4.8_734]], ] , device=__lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowerCamelCase , atol=1e-4 ) )
380
from __future__ import annotations from collections import namedtuple def lowerCAmelCase_ ( A_ ,A_ ,A_): UpperCamelCase__: List[str] = namedtuple("result" ,"name value") if (voltage, current, power).count(0) != 1: raise ValueError("Only one argument must be 0") elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system") elif voltage == 0: return result("voltage" ,power / current) elif current == 0: return result("current" ,power / voltage) elif power == 0: return result("power" ,float(round(abs(voltage * current) ,2))) else: raise ValueError("Exactly one argument must be 0") if __name__ == "__main__": import doctest doctest.testmod()
380
1
import random def A ( a_ ,a_ ,a_ = False ) -> dict: __UpperCamelCase : dict ={i: [] for i in range(a_ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(a_ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(a_ ): for j in range(i + 1 ,a_ ): if random.random() < probability: graph[i].append(a_ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(a_ ) return graph def A ( a_ ) -> dict: return { i: [j for j in range(a_ ) if i != j] for i in range(a_ ) } if __name__ == "__main__": import doctest doctest.testmod()
154
from __future__ import annotations A_ :Union[str, Any] = '''#''' class __A : """simple docstring""" def __init__( self ): """simple docstring""" __UpperCamelCase : dict ={} def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[int] =self._trie for char in text: if char not in trie: __UpperCamelCase : Optional[Any] ={} __UpperCamelCase : List[Any] =trie[char] __UpperCamelCase : List[str] =True def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self._trie for char in prefix: if char in trie: __UpperCamelCase : Any =trie[char] else: return [] return self._elements(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[int] =[] for c, v in d.items(): __UpperCamelCase : List[Any] =[' '] if c == END else [(c + s) for s in self._elements(lowerCamelCase__ )] result.extend(lowerCamelCase__ ) return tuple(lowerCamelCase__ ) A_ :Tuple = Trie() A_ :Tuple = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def A ( a_ ) -> tuple: __UpperCamelCase : str =trie.find_word(a_ ) return tuple(string + word for word in suffixes ) def A ( ) -> None: print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
154
1
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__="cls" , lowerCAmelCase__=False , lowerCAmelCase__=True , **lowerCAmelCase__ , ): """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = project_dim SCREAMING_SNAKE_CASE_ : List[str] = pooler_fn SCREAMING_SNAKE_CASE_ : List[Any] = learn_encoder SCREAMING_SNAKE_CASE_ : Optional[Any] = use_attention_mask class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = [r"""pooler""", r"""logit_scale"""] _UpperCAmelCase = [r"""position_ids""", r"""predictions.decoder.bias"""] _UpperCAmelCase = """roberta""" _UpperCAmelCase = RobertaSeriesConfig def __init__( self , lowerCAmelCase__ ): """simple docstring""" super().__init__(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = XLMRobertaModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = nn.Linear(config.hidden_size , config.project_dim ) SCREAMING_SNAKE_CASE_ : str = getattr(lowerCAmelCase__ , 'has_pre_transformation' , lowerCAmelCase__ ) if self.has_pre_transformation: SCREAMING_SNAKE_CASE_ : List[Any] = nn.Linear(config.hidden_size , config.project_dim ) SCREAMING_SNAKE_CASE_ : List[str] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def UpperCamelCase__ ( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ : List[Any] = self.base_model( input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=lowerCAmelCase__ , ) if self.has_pre_transformation: SCREAMING_SNAKE_CASE_ : List[str] = outputs['hidden_states'][-2] SCREAMING_SNAKE_CASE_ : List[str] = self.pre_LN(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.transformation_pre(lowerCAmelCase__ ) return TransformationModelOutput( projection_state=lowerCAmelCase__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: SCREAMING_SNAKE_CASE_ : int = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=lowerCAmelCase__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
101
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
0
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() snake_case = logging.get_logger(__name__) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = UniSpeechSatForSequenceClassification.from_pretrained(lowercase , config=lowercase ) SCREAMING_SNAKE_CASE : Tuple = downstream_dict["projector.weight"] SCREAMING_SNAKE_CASE : int = downstream_dict["projector.bias"] SCREAMING_SNAKE_CASE : str = downstream_dict["model.post_net.linear.weight"] SCREAMING_SNAKE_CASE : Tuple = downstream_dict["model.post_net.linear.bias"] return model def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = UniSpeechSatForAudioFrameClassification.from_pretrained(lowercase , config=lowercase ) SCREAMING_SNAKE_CASE : Tuple = downstream_dict["model.linear.weight"] SCREAMING_SNAKE_CASE : List[str] = downstream_dict["model.linear.bias"] return model def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = UniSpeechSatForXVector.from_pretrained(lowercase , config=lowercase ) SCREAMING_SNAKE_CASE : Any = downstream_dict["connector.weight"] SCREAMING_SNAKE_CASE : Union[str, Any] = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): SCREAMING_SNAKE_CASE : Optional[int] = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] SCREAMING_SNAKE_CASE : int = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] SCREAMING_SNAKE_CASE : Tuple = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] SCREAMING_SNAKE_CASE : str = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] SCREAMING_SNAKE_CASE : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] SCREAMING_SNAKE_CASE : Optional[int] = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] SCREAMING_SNAKE_CASE : int = downstream_dict["objective.W"] return model @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = torch.load(lowercase , map_location="cpu" ) SCREAMING_SNAKE_CASE : Dict = checkpoint["Downstream"] SCREAMING_SNAKE_CASE : Any = UniSpeechSatConfig.from_pretrained(lowercase ) SCREAMING_SNAKE_CASE : List[str] = WavaVecaFeatureExtractor.from_pretrained( lowercase , return_attention_mask=lowercase , do_normalize=lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): SCREAMING_SNAKE_CASE : List[Any] = convert_classification(lowercase , lowercase , lowercase ) elif arch.endswith("ForAudioFrameClassification" ): SCREAMING_SNAKE_CASE : Dict = convert_diarization(lowercase , lowercase , lowercase ) elif arch.endswith("ForXVector" ): SCREAMING_SNAKE_CASE : str = convert_xvector(lowercase , lowercase , lowercase ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: SCREAMING_SNAKE_CASE : Tuple = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") snake_case = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
720
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = ['''keras_nlp'''] def __init__( self : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Dict ): requires_backends(self , ["keras_nlp"] )
488
0
import colorsys from PIL import Image # type: ignore def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = x UpperCAmelCase_ : List[str] = y for step in range(_lowercase ): # noqa: B007 UpperCAmelCase_ : Union[str, Any] = a * a - b * b + x UpperCAmelCase_ : List[Any] = 2 * a * b + y UpperCAmelCase_ : List[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(_lowercase , 1 , 1 ) ) def lowerCamelCase__ ( _lowercase = 800 , _lowercase = 600 , _lowercase = -0.6 , _lowercase = 0 , _lowercase = 3.2 , _lowercase = 50 , _lowercase = True , ): '''simple docstring''' UpperCAmelCase_ : int = Image.new('''RGB''' , (image_width, image_height) ) UpperCAmelCase_ : List[str] = img.load() # loop through the image-coordinates for image_x in range(_lowercase ): for image_y in range(_lowercase ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase_ : str = figure_width / image_width * image_height UpperCAmelCase_ : Dict = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase_ : Any = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase_ : int = get_distance(_lowercase , _lowercase , _lowercase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase_ : Dict = get_color_coded_rgb(_lowercase ) else: UpperCAmelCase_ : int = get_black_and_white_rgb(_lowercase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __a = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
30
from __future__ import annotations import math __a = '2020.9.26' __a = 'xcodz-dot, cclaus, dhruvmanila' def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if not all(isinstance(_lowercase , (float, int) ) for val in locals().values() ): UpperCAmelCase_ : Optional[int] = f'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(_lowercase ) UpperCAmelCase_ : Tuple = ((x * distance) / (z + distance)) * scale UpperCAmelCase_ : str = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError('''Axis must be a str''' ) UpperCAmelCase_ : Optional[Any] = locals() del input_variables["axis"] if not all(isinstance(_lowercase , (float, int) ) for val in input_variables.values() ): UpperCAmelCase_ : List[Any] = ( '''Input values except axis must either be float or int: ''' f'''{list(input_variables.values() )}''' ) raise TypeError(_lowercase ) UpperCAmelCase_ : Dict = (angle % 360) / 450 * 180 / math.pi if axis == "z": UpperCAmelCase_ : Optional[int] = x * math.cos(_lowercase ) - y * math.sin(_lowercase ) UpperCAmelCase_ : List[Any] = y * math.cos(_lowercase ) + x * math.sin(_lowercase ) UpperCAmelCase_ : Optional[int] = z elif axis == "x": UpperCAmelCase_ : Any = y * math.cos(_lowercase ) - z * math.sin(_lowercase ) UpperCAmelCase_ : int = z * math.cos(_lowercase ) + y * math.sin(_lowercase ) UpperCAmelCase_ : Dict = x elif axis == "y": UpperCAmelCase_ : Union[str, Any] = x * math.cos(_lowercase ) - z * math.sin(_lowercase ) UpperCAmelCase_ : Optional[int] = z * math.cos(_lowercase ) + x * math.sin(_lowercase ) UpperCAmelCase_ : Optional[int] = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
30
1
'''simple docstring''' import argparse snake_case_ : Dict = 'docs/source/_static/js/custom.js' def __snake_case ( _UpperCAmelCase : List[Any]): with open(_UpperCAmelCase, encoding='''utf-8''', newline='''\n''') as f: UpperCamelCase = f.readlines() UpperCamelCase = 0 # First let's put the right version while not lines[index].startswith('''const stableVersion ='''): index += 1 UpperCamelCase = f'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('''const versionMapping = {'''): index += 1 # We go until the end while not lines[index].startswith('''}'''): index += 1 # We add the new version at the end lines[index - 1] += f' "v{version}": "v{version}",\n' with open(_UpperCAmelCase, '''w''', encoding='''utf-8''', newline='''\n''') as f: f.writelines(_UpperCAmelCase) if __name__ == "__main__": snake_case_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') snake_case_ : Union[str, Any] = parser.parse_args() update_custom_js(args.version)
714
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : Union[str, Any] = {'vocab_file': 'spiece.model'} snake_case_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } snake_case_ : Dict = { 'AI-Sweden/gpt-sw3-126m': 2_048, 'AI-Sweden/gpt-sw3-350m': 2_048, 'AI-Sweden/gpt-sw3-1.6b': 2_048, 'AI-Sweden/gpt-sw3-6.7b': 2_048, 'AI-Sweden/gpt-sw3-20b': 2_048, } class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__ , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__ = None , **lowerCamelCase__ , ): '''simple docstring''' UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) UpperCamelCase = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing UpperCamelCase = '''<|endoftext|>''' if eos_token is None else eos_token UpperCamelCase = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: UpperCamelCase = unk_token if pad_token is None else pad_token UpperCamelCase = eos_token if bos_token is None else bos_token else: UpperCamelCase = '''<pad>''' if pad_token is None else pad_token UpperCamelCase = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase__ ) # Used for whitespace normalization in input texts # fmt : off UpperCamelCase = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing UpperCamelCase = re.compile( f'[{"".join(map(lowerCamelCase__ , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self ): '''simple docstring''' UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCAmelCase ( self ): '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = self.non_printing_characters_re.sub('''''' , lowerCamelCase__ ) # Normalize whitespaces UpperCamelCase = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization UpperCamelCase = unicodedata.normalize('''NFC''' , lowerCamelCase__ ) return text def UpperCAmelCase ( self , lowerCamelCase__ , **lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = self.preprocess_text(lowerCamelCase__ ) return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return self.sp_model.PieceToId(lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return self.sp_model.IdToPiece(lowerCamelCase__ ) @staticmethod def UpperCAmelCase ( lowerCamelCase__ ): '''simple docstring''' return out_string def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = [] UpperCamelCase = '''''' UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase__ ) + token UpperCamelCase = True UpperCamelCase = [] else: current_sub_tokens.append(lowerCamelCase__ ) UpperCamelCase = False out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , '''wb''' ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = False ): '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase = self.preprocess_text(lowerCamelCase__ ) UpperCamelCase = self.sp_model.encode(lowerCamelCase__ ) else: UpperCamelCase = [self.preprocess_text(lowerCamelCase__ ) for t in text] UpperCamelCase = self.sp_model.encode(lowerCamelCase__ ) if return_tensors is True or return_tensors == "pt": UpperCamelCase = torch.tensor(lowerCamelCase__ ) return token_ids def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return self.sp_model.decode(lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] UpperCamelCase = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(lowerCamelCase__ ) + f'{self.bos_token}Bot:' ) return self.encode(text=lowerCamelCase__ )
350
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _lowerCAmelCase ( )->Any: '''simple docstring''' snake_case_ = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=lowerCAmelCase_ , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=lowerCAmelCase_ , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=lowerCAmelCase_ ) return parser.parse_args() def _lowerCAmelCase ( )->int: '''simple docstring''' snake_case_ = parse_args() # Import training_script as a module. snake_case_ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case_ = script_fpath.stem snake_case_ = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv snake_case_ = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
283
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return 1 if input_a == input_a else 0 def lowerCamelCase__ ( ): """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
62
0
def A__ ( lowerCamelCase ) -> float: return 10 - x * x def A__ ( lowerCamelCase , lowerCamelCase ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(lowerCamelCase ) * equation(lowerCamelCase ) >= 0: raise ValueError("""Wrong space!""" ) UpperCamelCase_: List[Any] = a while (b - a) >= 0.01: # Find middle point UpperCamelCase_: Tuple = (a + b) / 2 # Check if middle point is root if equation(lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(lowerCamelCase ) * equation(lowerCamelCase ) < 0: UpperCamelCase_: Union[str, Any] = c else: UpperCamelCase_: List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
670
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = "x" , lowerCamelCase = 10**-10 , lowerCamelCase = 1 , ) -> complex: UpperCamelCase_: Optional[Any] = symbols(lowerCamelCase ) UpperCamelCase_: int = lambdify(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[Any] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_: Tuple = starting_point while True: if diff_function(lowerCamelCase ) != 0: UpperCamelCase_: List[Any] = prev_guess - multiplicity * func(lowerCamelCase ) / diff_function( lowerCamelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase_: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
670
1
"""simple docstring""" def __magic_name__ ( _lowerCamelCase : list , _lowerCamelCase : list , _lowerCamelCase : int ): if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __a : Any = [p / w for p, w in zip(_lowerCamelCase , _lowerCamelCase )] # Creating a copy of the list and sorting profit/weight in ascending order __a : Optional[int] = sorted(_lowerCamelCase ) # declaring useful variables __a : List[Any] = len(_lowerCamelCase ) __a : List[Any] = 0 __a : List[Any] = 0 __a : Dict = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __a : Optional[Any] = sorted_profit_by_weight[length - i - 1] __a : int = profit_by_weight.index(_lowerCamelCase ) __a : int = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( "Input profits, weights, and then max_weight (all positive ints) separated by " "spaces." ) lowercase__ = [int(x) for x in input("Input profits separated by spaces: ").split()] lowercase__ = [int(x) for x in input("Input weights separated by spaces: ").split()] lowercase__ = int(input("Max weight allowed: ")) # Function Call calc_profit(profit, weight, max_weight)
581
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowercase__ = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowercase__ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowercase__ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowercase__ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def lowerCAmelCase__(self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] , reference_urls=[ """https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""", """https://en.wikipedia.org/wiki/METEOR""", ] , ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' import nltk nltk.download("""wordnet""" ) if NLTK_VERSION >= version.Version("""3.6.5""" ): nltk.download("""punkt""" ) if NLTK_VERSION >= version.Version("""3.6.6""" ): nltk.download("""omw-1.4""" ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase=0.9 , _lowercase=3 , _lowercase=0.5 ): '''simple docstring''' if NLTK_VERSION >= version.Version("""3.6.5""" ): __a : Dict = [ meteor_score.single_meteor_score( word_tokenize(_lowercase ) , word_tokenize(_lowercase ) , alpha=_lowercase , beta=_lowercase , gamma=_lowercase ) for ref, pred in zip(_lowercase , _lowercase ) ] else: __a : Optional[int] = [ meteor_score.single_meteor_score(_lowercase , _lowercase , alpha=_lowercase , beta=_lowercase , gamma=_lowercase ) for ref, pred in zip(_lowercase , _lowercase ) ] return {"meteor": np.mean(_lowercase )}
581
1
"""simple docstring""" from collections.abc import Sequence def UpperCamelCase ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): return sum(c * (x**i) for i, c in enumerate(UpperCamelCase__ ) ) def UpperCamelCase ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ): __a = 0.0 for coeff in reversed(UpperCamelCase__ ): __a = result * x + coeff return result if __name__ == "__main__": __A = (0.0, 0.0, 5.0, 9.3, 7.0) __A = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
720
"""simple docstring""" import random from typing import Any def UpperCamelCase ( _lowerCAmelCase : list ): for _ in range(len(_lowerCAmelCase ) ): __a = random.randint(0 , len(_lowerCAmelCase ) - 1 ) __a = random.randint(0 , len(_lowerCAmelCase ) - 1 ) __a , __a = data[b], data[a] return data if __name__ == "__main__": __A = [0, 1, 2, 3, 4, 5, 6, 7] __A = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
173
0
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCamelCase__ ( __A :str ,__A :float | Decimal ,__A :float = 1_0**-1_0 ): """simple docstring""" __snake_case = a while True: __snake_case = Decimal(__A ) - ( Decimal(eval(__A ) ) / Decimal(eval(str(diff(__A ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__A ) ) < precision: # noqa: S307 return float(__A ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(F'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(F'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(F'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
268
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCamelCase__ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCamelCase__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCamelCase__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowerCamelCase__ ( __A :str ,__A :str ): """simple docstring""" __snake_case = len([g for position, g in enumerate(__A ) if g == main_target[position]] ) return (item, float(__A )) def lowerCamelCase__ ( __A :str ,__A :str ): """simple docstring""" __snake_case = random.randint(0 ,len(__A ) - 1 ) __snake_case = parent_a[:random_slice] + parent_a[random_slice:] __snake_case = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowerCamelCase__ ( __A :str ,__A :list[str] ): """simple docstring""" __snake_case = list(__A ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: __snake_case = random.choice(__A ) return "".join(__A ) def lowerCamelCase__ ( __A :tuple[str, float] ,__A :list[tuple[str, float]] ,__A :list[str] ,): """simple docstring""" __snake_case = [] # Generate more children proportionally to the fitness score. __snake_case = int(parent_a[1] * 1_0_0 ) + 1 __snake_case = 1_0 if child_n >= 1_0 else child_n for _ in range(__A ): __snake_case = population_score[random.randint(0 ,__A )][0] __snake_case , __snake_case = crossover(parent_a[0] ,__A ) # Append new string to the population list. pop.append(mutate(__A ,__A ) ) pop.append(mutate(__A ,__A ) ) return pop def lowerCamelCase__ ( __A :str ,__A :list[str] ,__A :bool = True ): """simple docstring""" if N_POPULATION < N_SELECTED: __snake_case = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(__A ) # Verify that the target contains no genes besides the ones inside genes variable. __snake_case = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __snake_case = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(__A ) # Generate random starting population. __snake_case = [] for _ in range(__A ): population.append("""""".join([random.choice(__A ) for i in range(len(__A ) )] ) ) # Just some logs to know what the algorithms is doing. __snake_case , __snake_case = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__A ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __snake_case = [evaluate(__A ,__A ) for item in population] # Check if there is a matching evolution. __snake_case = sorted(__A ,key=lambda __A : x[1] ,reverse=__A ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __snake_case = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__A ) # Normalize population score to be between 0 and 1. __snake_case = [ (item, score / len(__A )) for item, score in population_score ] # This is selection for i in range(__A ): population.extend(select(population_score[int(__A )] ,__A ,__A ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__A ) > N_POPULATION: break if __name__ == "__main__": UpperCamelCase__ = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) UpperCamelCase__ = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ = basic(target_str, genes_list) print( F'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
268
1
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowercase_ = logging.get_logger(__name__) lowercase_ = 'T5Config' class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = """mt5""" __snake_case = MTaConfig class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = """mt5""" __snake_case = MTaConfig class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = """mt5""" __snake_case = MTaConfig
718
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = """naver-clova-ix/donut-base-finetuned-docvqa""" __snake_case = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) __snake_case = """document_qa""" __snake_case = AutoProcessor __snake_case = VisionEncoderDecoderModel __snake_case = ["""image""", """text"""] __snake_case = ["""text"""] def __init__( self: Dict , *a: List[Any] , **a: List[Any] ): if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*a , **a ) def _snake_case ( self: str , a: "Image" , a: str ): __lowerCamelCase : str = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' __lowerCamelCase : Dict = task_prompt.replace('{user_input}' , a ) __lowerCamelCase : Optional[Any] = self.pre_processor.tokenizer( a , add_special_tokens=a , return_tensors='pt' ).input_ids __lowerCamelCase : Union[str, Any] = self.pre_processor(a , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case ( self: Optional[Any] , a: Tuple ): return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=a , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=a , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=a , ).sequences def _snake_case ( self: Optional[Any] , a: Any ): __lowerCamelCase : Union[str, Any] = self.pre_processor.batch_decode(a )[0] __lowerCamelCase : List[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) __lowerCamelCase : Optional[int] = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) __lowerCamelCase : Optional[int] = re.sub(R'<.*?>' , '' , a , count=1 ).strip() # remove first task start token __lowerCamelCase : int = self.pre_processor.tokenajson(a ) return sequence["answer"]
230
0