code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class _SCREAMING_SNAKE_CASE : # setable values lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None # sigma(t_i) @classmethod def SCREAMING_SNAKE_CASE_( cls ) -> int: return cls() @dataclass class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): @property def SCREAMING_SNAKE_CASE_( self ) -> Tuple: return True @register_to_config def __init__( self , lowercase = 0.0_2 , lowercase = 100 , lowercase = 1.0_0_7 , lowercase = 80 , lowercase = 0.0_5 , lowercase = 50 , ) -> List[str]: pass def SCREAMING_SNAKE_CASE_( self ) -> str: return KarrasVeSchedulerState.create() def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase = () ) -> KarrasVeSchedulerState: lowerCamelCase_ = jnp.arange(0 , lowercase )[::-1].copy() lowerCamelCase_ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowercase , schedule=jnp.array(lowercase , dtype=jnp.floataa ) , timesteps=lowercase , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , ) -> Tuple[jnp.ndarray, float]: if self.config.s_min <= sigma <= self.config.s_max: lowerCamelCase_ = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: lowerCamelCase_ = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCamelCase_ = random.split(lowercase , num=1 ) lowerCamelCase_ = self.config.s_noise * random.normal(key=lowercase , shape=sample.shape ) lowerCamelCase_ = sigma + gamma * sigma lowerCamelCase_ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: lowerCamelCase_ = sample_hat + sigma_hat * model_output lowerCamelCase_ = (sample_hat - pred_original_sample) / sigma_hat lowerCamelCase_ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowercase , derivative=lowercase , state=lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: lowerCamelCase_ = sample_prev + sigma_prev * model_output lowerCamelCase_ = (sample_prev - pred_original_sample) / sigma_prev lowerCamelCase_ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowercase , derivative=lowercase , state=lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase ) -> int: raise NotImplementedError()
463
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=13 , lowercase=32 , lowercase=3 , lowercase=4 , lowercase=[10, 20, 30, 40] , lowercase=[2, 2, 3, 2] , lowercase=True , lowercase=True , lowercase=37 , lowercase="gelu" , lowercase=10 , lowercase=0.0_2 , lowercase=["stage2", "stage3", "stage4"] , lowercase=[2, 3, 4] , lowercase=None , ) -> Any: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = num_stages lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = num_labels lowerCamelCase_ = initializer_range lowerCamelCase_ = out_features lowerCamelCase_ = out_indices lowerCamelCase_ = scope def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_( self ) -> Dict: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowercase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> Tuple: lowerCamelCase_ = ConvNextModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> str: lowerCamelCase_ = ConvNextForImageClassification(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> str: lowerCamelCase_ = ConvNextBackbone(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = ConvNextBackbone(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = ConvNextModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: pass def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(lowercase ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: def check_hidden_states_output(lowercase , lowercase , lowercase ): lowerCamelCase_ = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(lowercase , lowercase ) ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = self.model_tester.num_stages self.assertEqual(len(lowercase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(lowercase , lowercase , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Dict: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = ConvNextModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def lowerCamelCase_ ( ): lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(lowercase ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=lowercase , return_tensors="pt" ).to(lowercase ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**lowercase ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase ) lowerCamelCase_ = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 ) ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase , snake_case_ ): lowerCAmelCase__ = (ConvNextBackbone,) if is_torch_available() else () lowerCAmelCase__ = ConvNextConfig lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = ConvNextModelTester(self )
463
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __lowerCamelCase ( __a : List[Any] , __a : Dict , __a : Optional[Any]=None , __a : List[Any]=None ) -> str: if attention_mask is None: _lowercase =tf.cast(tf.math.not_equal(__a , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _a : """simple docstring""" __SCREAMING_SNAKE_CASE = OPTConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 'gelu' def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=99 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=4 , lowerCAmelCase_=4 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=20 , lowerCAmelCase_=2 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=16 , lowerCAmelCase_=16 , ): _lowercase =parent _lowercase =batch_size _lowercase =seq_length _lowercase =is_training _lowercase =use_labels _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =eos_token_id _lowercase =pad_token_id _lowercase =bos_token_id _lowercase =embed_dim _lowercase =word_embed_proj_dim _lowercase =False def __lowerCAmelCase ( self ): _lowercase =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowercase =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowercase =tf.concat([input_ids, eos_tensor] , axis=1 ) _lowercase =self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCAmelCase_ , **self.config_updates , ) _lowercase =prepare_opt_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase =TFOPTModel(config=lowerCAmelCase_ ) _lowercase =inputs_dict["input_ids"] _lowercase =input_ids[:1, :] _lowercase =inputs_dict["attention_mask"][:1, :] _lowercase =1 # first forward pass _lowercase =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _lowercase , _lowercase =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowercase =ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowercase =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowercase =tf.concat([input_ids, next_tokens] , axis=-1 ) _lowercase =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowercase =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] _lowercase =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowercase =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowercase =output_from_no_past[:, -3:, random_slice_idx] _lowercase =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-3 ) @require_tf class _a ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __SCREAMING_SNAKE_CASE = (TFOPTForCausalLM,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = 10 def __lowerCAmelCase ( self ): _lowercase =TFOPTModelTester(self ) _lowercase =ConfigTester(self , config_class=lowerCAmelCase_ ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowercase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) def __lowerCAmelCase ( self ): _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCAmelCase_ , lowerCAmelCase_ ): if hasattr(lowerCAmelCase_ , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCAmelCase_ , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowercase =model_class(config=lowerCAmelCase_ ) _lowercase =_get_word_embedding_weight(lowerCAmelCase_ , model.get_input_embeddings() ) _lowercase =_get_word_embedding_weight(lowerCAmelCase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCAmelCase_ ) _lowercase =_get_word_embedding_weight(lowerCAmelCase_ , model.get_input_embeddings() ) _lowercase =_get_word_embedding_weight(lowerCAmelCase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowercase =size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCAmelCase_ ) # check that weights remain the same after resizing _lowercase =True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowercase =False self.assertTrue(lowerCAmelCase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCAmelCase_ ) _lowercase =True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowercase =False self.assertTrue(lowerCAmelCase_ ) def __lowerCamelCase ( __a : Tuple ) -> Dict: return tf.constant(__a , dtype=tf.intaa ) @require_tf class _a ( unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = 99 def __lowerCAmelCase ( self ): _lowercase =tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowercase =tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowercase =input_ids.shape[0] _lowercase =OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self ): _lowercase =TFOPTModel.from_pretrained("facebook/opt-350m" ) _lowercase =_long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowercase =tf.not_equal(lowerCAmelCase_ , model.config.pad_token_id ) with tf.GradientTape(): _lowercase =model(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ).last_hidden_state _lowercase =(1, 11, 512) self.assertEqual(output.shape , lowerCAmelCase_ ) _lowercase =tf.constant( [[-0.2_8_7_3, -1.9_2_1_8, -0.3_0_3_3], [-1.2_7_1_0, -0.1_3_3_8, -0.1_9_0_2], [0.4_0_9_5, 0.1_2_1_4, -1.3_1_2_1]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=4e-3 ) ) _lowercase =tf.function(lowerCAmelCase_ , jit_compile=lowerCAmelCase_ ) _lowercase =xla_generate(lowerCAmelCase_ , lowerCAmelCase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=4e-2 ) ) @require_tf @slow class _a ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): super().setUp() _lowercase ="facebook/opt-350m" def __lowerCAmelCase ( self ): _lowercase =TFOPTForCausalLM.from_pretrained(self.path_model ) _lowercase =GPTaTokenizer.from_pretrained(self.path_model ) _lowercase =[ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowercase =tokenizer(lowerCAmelCase_ , return_tensors="tf" , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _lowercase =tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowercase =tf.constant( [ [1.3_8_5_1, -1_3.8_9_2_3, -1_0.5_2_2_9, -1_0.7_5_3_3, -0.2_3_0_9, -1_0.2_3_8_4, -0.5_3_6_5, -9.0_9_4_7, -5.1_6_7_0], [-4.7_0_7_3, -1_0.6_2_7_6, -3.9_4_1_5, -2_1.5_2_4_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2], [0.6_2_4_7, -3.4_2_2_9, -8.9_1_7_9, -1.4_2_9_7, -1_4.1_6_5_0, 1.4_1_4_6, -9.0_2_1_8, -0.2_7_0_3, -0.2_7_0_3], [6.4_7_8_3, -1.9_9_1_3, -1_0.7_9_2_6, -2.3_3_3_6, 1.5_0_9_2, -0.9_9_7_4, -6.8_2_1_3, 1.3_4_7_7, 1.3_4_7_7], ] ) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4 ) ) _lowercase =tf.function(lowerCAmelCase_ , jit_compile=lowerCAmelCase_ ) _lowercase =tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4 ) ) @require_tf @slow class _a ( unittest.TestCase ): """simple docstring""" @property def __lowerCAmelCase ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __lowerCAmelCase ( self ): _lowercase ="facebook/opt-125m" _lowercase =[ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] _lowercase =[] _lowercase =GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) _lowercase =TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) for prompt in self.prompts: _lowercase =tokenizer(lowerCAmelCase_ , return_tensors="tf" ).input_ids _lowercase =model.generate(lowerCAmelCase_ , max_length=10 ) _lowercase =tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self ): _lowercase ="facebook/opt-350m" _lowercase =GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) _lowercase =TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) _lowercase ="left" # use different length sentences to test batching _lowercase =[ "Hello, my dog is a little", "Today, I", ] _lowercase =tokenizer(lowerCAmelCase_ , return_tensors="tf" , padding=lowerCAmelCase_ ) _lowercase =inputs["input_ids"] _lowercase =model.generate(input_ids=lowerCAmelCase_ , attention_mask=inputs["attention_mask"] ) _lowercase =tokenizer(sentences[0] , return_tensors="tf" ).input_ids _lowercase =model.generate(input_ids=lowerCAmelCase_ ) _lowercase =inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) _lowercase =tokenizer(sentences[1] , return_tensors="tf" ).input_ids _lowercase =model.generate(input_ids=lowerCAmelCase_ , max_length=model.config.max_length - num_paddings ) _lowercase =tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) _lowercase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase_ ) _lowercase =tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase_ ) _lowercase =[ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , [non_padded_sentence, padded_sentence] ) def __lowerCAmelCase ( self ): _lowercase ="facebook/opt-350m" _lowercase =[ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] _lowercase =[] _lowercase =GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) _lowercase =TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) for prompt in self.prompts: _lowercase =tokenizer(lowerCAmelCase_ , return_tensors="tf" ).input_ids _lowercase =model.generate(lowerCAmelCase_ , max_length=10 ) _lowercase =tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
594
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class _a ( lowerCamelCase_ ): """simple docstring""" def __lowerCAmelCase ( self , lowerCAmelCase_ ): return 0.0 def __lowerCamelCase ( __a : np.ndarray , __a : int ) -> tuple[int | float, int | float]: _lowercase =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowercase =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __lowerCamelCase ( __a : FilterType , __a : int ) -> None: _lowercase =512 _lowercase =[1] + [0] * (size - 1) _lowercase =[filter_type.process(__a ) for item in inputs] _lowercase =[0] * (samplerate - size) # zero-padding outputs += filler _lowercase =np.abs(np.fft.fft(__a ) ) _lowercase =20 * np.logaa(__a ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds _lowercase =get_bounds(__a , __a ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__a ) plt.show() def __lowerCamelCase ( __a : FilterType , __a : int ) -> None: _lowercase =512 _lowercase =[1] + [0] * (size - 1) _lowercase =[filter_type.process(__a ) for item in inputs] _lowercase =[0] * (samplerate - size) # zero-padding outputs += filler _lowercase =np.angle(np.fft.fft(__a ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__a , -2 * pi ) ) plt.show()
594
1
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
84
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class UpperCamelCase_ ( UpperCamelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCamelCase_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCamelCase_ = Features({"text": Value("string" )} ) lowerCamelCase_ = Features({"labels": ClassLabel} ) lowerCamelCase_ = "text" lowerCamelCase_ = "labels" def _snake_case ( self :Any , __A :Dict ) -> Optional[Any]: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) SCREAMING_SNAKE_CASE__ = copy.deepcopy(self ) SCREAMING_SNAKE_CASE__ = self.label_schema.copy() SCREAMING_SNAKE_CASE__ = features[self.label_column] SCREAMING_SNAKE_CASE__ = label_schema return task_template @property def _snake_case ( self :str ) -> Dict[str, str]: """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
6
0
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def _lowerCAmelCase ( lowercase : List[str] , lowercase : str=1_0_0_0 ) ->Tuple: """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowercase__ = n - 1 lowercase__ = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowercase__ = 0 while count < prec: lowercase__ = random.randint(2 , n - 1 ) lowercase__ = bin_exp_mod(lowercase , lowercase , lowercase ) if b != 1: lowercase__ = True for _ in range(lowercase ): if b == n - 1: lowercase__ = False break lowercase__ = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _lowerCAmelCase = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
318
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _lowerCAmelCase = logging.get_logger(__name__) class __A ( a ): """simple docstring""" def __init__( self , *_lowerCamelCase , **_lowerCamelCase )-> None: warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
318
1
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def a__ ( UpperCamelCase_ : int, UpperCamelCase_ : Tuple, UpperCamelCase_ : Tuple, UpperCamelCase_ : Union[str, Any] ): UpperCAmelCase__ :Optional[int] = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCAmelCase__ :int = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } UpperCAmelCase__ :Union[str, Any] = F'''{src_lang}-{tgt_lang}''' UpperCAmelCase__ :str = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=_UpperCAmelCase, exist_ok=_UpperCAmelCase ) UpperCAmelCase__ :str = os.path.join(_UpperCAmelCase, '''README.md''' ) print(F'''Generating {path}''' ) with open(_UpperCAmelCase, '''w''', encoding='''utf-8''' ) as f: f.write(_UpperCAmelCase ) # make sure we are under the root of the project __lowerCamelCase = Path(__file__).resolve().parent.parent.parent __lowerCamelCase = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __lowerCamelCase = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
467
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
562
0
import pprint import requests snake_case_ : Union[str, Any] = "https://zenquotes.io/api" def __a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + "/today" ).json() def __a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": snake_case_ : int = random_quotes() pprint.pprint(response)
253
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : List[str] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } snake_case_ : List[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __a ( __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" for attribute in key.split("." ): lowerCamelCase_ : Optional[Any] = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: lowerCamelCase_ : List[str] = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: lowerCamelCase_ : str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": lowerCamelCase_ : Tuple = value elif weight_type == "weight_g": lowerCamelCase_ : Optional[int] = value elif weight_type == "weight_v": lowerCamelCase_ : Tuple = value elif weight_type == "bias": lowerCamelCase_ : str = value elif weight_type == "running_mean": lowerCamelCase_ : List[str] = value elif weight_type == "running_var": lowerCamelCase_ : Union[str, Any] = value elif weight_type == "num_batches_tracked": lowerCamelCase_ : Tuple = value elif weight_type == "inv_freq": lowerCamelCase_ : Union[str, Any] = value else: lowerCamelCase_ : Any = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __a ( __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : str ) -> str: """simple docstring""" lowerCamelCase_ : Any = [] lowerCamelCase_ : int = fairseq_model.state_dict() lowerCamelCase_ : Union[str, Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase_ : Any = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase_ : List[str] = True else: for key, mapped_key in MAPPING.items(): lowerCamelCase_ : int = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase_ : Dict = True if "*" in mapped_key: lowerCamelCase_ : Union[str, Any] = name.split(__UpperCAmelCase )[0].split("." )[-2] lowerCamelCase_ : Any = mapped_key.replace("*" , __UpperCAmelCase ) if "pos_bias_u" in name: lowerCamelCase_ : str = None elif "pos_bias_v" in name: lowerCamelCase_ : Optional[int] = None elif "weight_g" in name: lowerCamelCase_ : str = "weight_g" elif "weight_v" in name: lowerCamelCase_ : Any = "weight_v" elif "bias" in name: lowerCamelCase_ : Optional[int] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase_ : List[Any] = "weight" elif "running_mean" in name: lowerCamelCase_ : Union[str, Any] = "running_mean" elif "inv_freq" in name: lowerCamelCase_ : Optional[Any] = "inv_freq" elif "running_var" in name: lowerCamelCase_ : int = "running_var" elif "num_batches_tracked" in name: lowerCamelCase_ : Union[str, Any] = "num_batches_tracked" else: lowerCamelCase_ : List[Any] = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def __a ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ : Dict = full_name.split("conv_layers." )[-1] lowerCamelCase_ : Union[str, Any] = name.split("." ) lowerCamelCase_ : Optional[int] = int(items[0] ) lowerCamelCase_ : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) lowerCamelCase_ : Optional[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) lowerCamelCase_ : Tuple = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) lowerCamelCase_ : Optional[int] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) lowerCamelCase_ : Dict = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __a ( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : int=True ) -> List[Any]: """simple docstring""" if config_path is not None: lowerCamelCase_ : Any = WavaVecaConformerConfig.from_pretrained(__UpperCAmelCase , hidden_act="swish" ) else: lowerCamelCase_ : List[str] = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowerCamelCase_ : str = "rotary" if is_finetuned: if dict_path: lowerCamelCase_ : int = Dictionary.load(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase_ : List[Any] = target_dict.pad_index lowerCamelCase_ : List[str] = target_dict.bos_index lowerCamelCase_ : Any = target_dict.eos_index lowerCamelCase_ : Any = len(target_dict.symbols ) lowerCamelCase_ : Union[str, Any] = os.path.join(__UpperCAmelCase , "vocab.json" ) if not os.path.isdir(__UpperCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) lowerCamelCase_ : Dict = target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase_ : Union[str, Any] = 0 lowerCamelCase_ : List[Any] = 1 with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : List[Any] = WavaVecaCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__UpperCAmelCase , ) lowerCamelCase_ : Dict = True if config.feat_extract_norm == "layer" else False lowerCamelCase_ : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) lowerCamelCase_ : Dict = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) lowerCamelCase_ : Dict = WavaVecaConformerForCTC(__UpperCAmelCase ) else: lowerCamelCase_ : int = WavaVecaConformerForPreTraining(__UpperCAmelCase ) if is_finetuned: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowerCamelCase_ : Optional[int] = argparse.Namespace(task="audio_pretraining" ) lowerCamelCase_ : List[Any] = fairseq.tasks.setup_task(__UpperCAmelCase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__UpperCAmelCase ) lowerCamelCase_ : List[str] = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) snake_case_ : Optional[Any] = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
253
1
def snake_case ( lowerCamelCase ): '''simple docstring''' for i in range(len(lowerCamelCase ) - 1 , 0 , -1 ): __lowercase = False for j in range(lowerCamelCase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __lowercase , __lowercase = unsorted[j - 1], unsorted[j] __lowercase = True for j in range(lowerCamelCase ): if unsorted[j] > unsorted[j + 1]: __lowercase , __lowercase = unsorted[j + 1], unsorted[j] __lowercase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : List[Any] = input("""Enter numbers separated by a comma:\n""").strip() __UpperCamelCase : int = [int(item) for item in user_input.split(""",""")] print(F'''{cocktail_shaker_sort(unsorted) = }''')
80
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
498
0
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCAmelCase__( UpperCamelCase_ ): '''simple docstring''' def __get__( self : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str]=None) -> int: """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute') lowercase__ = '__cached_' + self.fget.__name__ lowercase__ = getattr(__a , __a , __a) if cached is None: lowercase__ = self.fget(__a) setattr(__a , __a , __a) return cached def _lowerCAmelCase ( A__ ): lowercase__ = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'''invalid truth value {val!r}''' ) def _lowerCAmelCase ( A__ ): if is_torch_fx_proxy(A__ ): return True if is_torch_available(): import torch if isinstance(A__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(A__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(A__ , (jnp.ndarray, Tracer) ): return True return isinstance(A__ , np.ndarray ) def _lowerCAmelCase ( A__ ): return isinstance(A__ , np.ndarray ) def _lowerCAmelCase ( A__ ): return _is_numpy(A__ ) def _lowerCAmelCase ( A__ ): import torch return isinstance(A__ , torch.Tensor ) def _lowerCAmelCase ( A__ ): return False if not is_torch_available() else _is_torch(A__ ) def _lowerCAmelCase ( A__ ): import torch return isinstance(A__ , torch.device ) def _lowerCAmelCase ( A__ ): return False if not is_torch_available() else _is_torch_device(A__ ) def _lowerCAmelCase ( A__ ): import torch if isinstance(A__ , A__ ): if hasattr(A__ , A__ ): lowercase__ = getattr(A__ , A__ ) else: return False return isinstance(A__ , torch.dtype ) def _lowerCAmelCase ( A__ ): return False if not is_torch_available() else _is_torch_dtype(A__ ) def _lowerCAmelCase ( A__ ): import tensorflow as tf return isinstance(A__ , tf.Tensor ) def _lowerCAmelCase ( A__ ): return False if not is_tf_available() else _is_tensorflow(A__ ) def _lowerCAmelCase ( A__ ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(A__ , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(A__ ) return type(A__ ) == tf.Tensor def _lowerCAmelCase ( A__ ): return False if not is_tf_available() else _is_tf_symbolic_tensor(A__ ) def _lowerCAmelCase ( A__ ): import jax.numpy as jnp # noqa: F811 return isinstance(A__ , jnp.ndarray ) def _lowerCAmelCase ( A__ ): return False if not is_flax_available() else _is_jax(A__ ) def _lowerCAmelCase ( A__ ): if isinstance(A__ , (dict, UserDict) ): return {k: to_py_obj(A__ ) for k, v in obj.items()} elif isinstance(A__ , (list, tuple) ): return [to_py_obj(A__ ) for o in obj] elif is_tf_tensor(A__ ): return obj.numpy().tolist() elif is_torch_tensor(A__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(A__ ): return np.asarray(A__ ).tolist() elif isinstance(A__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def _lowerCAmelCase ( A__ ): if isinstance(A__ , (dict, UserDict) ): return {k: to_numpy(A__ ) for k, v in obj.items()} elif isinstance(A__ , (list, tuple) ): return np.array(A__ ) elif is_tf_tensor(A__ ): return obj.numpy() elif is_torch_tensor(A__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(A__ ): return np.asarray(A__ ) else: return obj class UpperCAmelCase__( UpperCamelCase_ ): '''simple docstring''' def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" lowercase__ = fields(self) # Safety and consistency checks if not len(__a): raise ValueError(f'''{self.__class__.__name__} has no fields.''') if not all(field.default is None for field in class_fields[1:]): raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''') lowercase__ = getattr(self , class_fields[0].name) lowercase__ = all(getattr(self , field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(__a): if isinstance(__a , __a): lowercase__ = first_field.items() lowercase__ = True else: try: lowercase__ = iter(__a) lowercase__ = True except TypeError: lowercase__ = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__a): if ( not isinstance(__a , (list, tuple)) or not len(__a) == 2 or not isinstance(element[0] , __a) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowercase__ = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''') break setattr(self , element[0] , element[1]) if element[1] is not None: lowercase__ = element[1] elif first_field is not None: lowercase__ = first_field else: for field in class_fields: lowercase__ = getattr(self , field.name) if v is not None: lowercase__ = v def __delitem__( self : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''') def UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''') def UpperCAmelCase ( self : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> List[str]: """simple docstring""" raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''') def UpperCAmelCase ( self : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''') def __getitem__( self : int , lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" if isinstance(__a , __a): lowercase__ = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__a , __a) super().__setattr__(__a , __a) def __setitem__( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" super().__setitem__(__a , __a) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__a , __a) def UpperCAmelCase ( self : Dict) -> Tuple[Any]: """simple docstring""" return tuple(self[k] for k in self.keys()) class UpperCAmelCase__( UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' @classmethod def UpperCAmelCase ( cls : Tuple , lowerCAmelCase : Any) -> List[str]: """simple docstring""" raise ValueError( f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys())}''') class UpperCAmelCase__( UpperCamelCase_ ): '''simple docstring''' A : List[str] = "longest" A : List[str] = "max_length" A : Tuple = "do_not_pad" class UpperCAmelCase__( UpperCamelCase_ ): '''simple docstring''' A : Optional[int] = "pt" A : Any = "tf" A : Any = "np" A : Dict = "jax" class UpperCAmelCase__: '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" lowercase__ = context_managers lowercase__ = ExitStack() def __enter__( self : Optional[Any]) -> Any: """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(__a) def __exit__( self : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" self.stack.__exit__(*__a , **__a) def _lowerCAmelCase ( A__ ): lowercase__ = infer_framework(A__ ) if framework == "tf": lowercase__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowercase__ = inspect.signature(model_class.forward ) # PyTorch models else: lowercase__ = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def _lowerCAmelCase ( A__ ): lowercase__ = model_class.__name__ lowercase__ = infer_framework(A__ ) if framework == "tf": lowercase__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowercase__ = inspect.signature(model_class.forward ) # PyTorch models else: lowercase__ = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def _lowerCAmelCase ( A__ , A__ = "" , A__ = "." ): def _flatten_dict(A__ , A__="" , A__="." ): for k, v in d.items(): lowercase__ = str(A__ ) + delimiter + str(A__ ) if parent_key else k if v and isinstance(A__ , A__ ): yield from flatten_dict(A__ , A__ , delimiter=A__ ).items() else: yield key, v return dict(_flatten_dict(A__ , A__ , A__ ) ) @contextmanager def _lowerCAmelCase ( A__ , A__ = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def _lowerCAmelCase ( A__ , A__=None ): if is_numpy_array(A__ ): return np.transpose(A__ , axes=A__ ) elif is_torch_tensor(A__ ): return array.T if axes is None else array.permute(*A__ ) elif is_tf_tensor(A__ ): import tensorflow as tf return tf.transpose(A__ , perm=A__ ) elif is_jax_tensor(A__ ): return jnp.transpose(A__ , axes=A__ ) else: raise ValueError(F'''Type not supported for transpose: {type(A__ )}.''' ) def _lowerCAmelCase ( A__ , A__ ): if is_numpy_array(A__ ): return np.reshape(A__ , A__ ) elif is_torch_tensor(A__ ): return array.reshape(*A__ ) elif is_tf_tensor(A__ ): import tensorflow as tf return tf.reshape(A__ , A__ ) elif is_jax_tensor(A__ ): return jnp.reshape(A__ , A__ ) else: raise ValueError(F'''Type not supported for reshape: {type(A__ )}.''' ) def _lowerCAmelCase ( A__ , A__=None ): if is_numpy_array(A__ ): return np.squeeze(A__ , axis=A__ ) elif is_torch_tensor(A__ ): return array.squeeze() if axis is None else array.squeeze(dim=A__ ) elif is_tf_tensor(A__ ): import tensorflow as tf return tf.squeeze(A__ , axis=A__ ) elif is_jax_tensor(A__ ): return jnp.squeeze(A__ , axis=A__ ) else: raise ValueError(F'''Type not supported for squeeze: {type(A__ )}.''' ) def _lowerCAmelCase ( A__ , A__ ): if is_numpy_array(A__ ): return np.expand_dims(A__ , A__ ) elif is_torch_tensor(A__ ): return array.unsqueeze(dim=A__ ) elif is_tf_tensor(A__ ): import tensorflow as tf return tf.expand_dims(A__ , axis=A__ ) elif is_jax_tensor(A__ ): return jnp.expand_dims(A__ , axis=A__ ) else: raise ValueError(F'''Type not supported for expand_dims: {type(A__ )}.''' ) def _lowerCAmelCase ( A__ ): if is_numpy_array(A__ ): return np.size(A__ ) elif is_torch_tensor(A__ ): return array.numel() elif is_tf_tensor(A__ ): import tensorflow as tf return tf.size(A__ ) elif is_jax_tensor(A__ ): return array.size else: raise ValueError(F'''Type not supported for expand_dims: {type(A__ )}.''' ) def _lowerCAmelCase ( A__ , A__ ): for key, value in auto_map.items(): if isinstance(A__ , (tuple, list) ): lowercase__ = [F'''{repo_id}--{v}''' if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: lowercase__ = F'''{repo_id}--{value}''' return auto_map def _lowerCAmelCase ( A__ ): for base_class in inspect.getmro(A__ ): lowercase__ = base_class.__module__ lowercase__ = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'''Could not infer framework from class {model_class}.''' )
717
import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" lowercase__ = data lowercase__ = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0] @staticmethod def UpperCAmelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]) -> str: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = B'\x80' + B'\x00' * (63 - (len(self.data) + 8) % 64) lowercase__ = self.data + padding + struct.pack('>Q' , 8 * len(self.data)) return padded_data def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64) ] def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> List[Any]: """simple docstring""" lowercase__ = list(struct.unpack('>16L' , lowerCAmelCase)) + [0] * 64 for i in range(16 , 80): lowercase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1) return w def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.padding() lowercase__ = self.split_blocks() for block in self.blocks: lowercase__ = self.expand_block(lowerCAmelCase) lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.h for i in range(0 , 80): if 0 <= i < 20: lowercase__ = (b & c) | ((~b) & d) lowercase__ = 0X5_A_8_2_7_9_9_9 elif 20 <= i < 40: lowercase__ = b ^ c ^ d lowercase__ = 0X6_E_D_9_E_B_A_1 elif 40 <= i < 60: lowercase__ = (b & c) | (b & d) | (c & d) lowercase__ = 0X8_F_1_B_B_C_D_C elif 60 <= i < 80: lowercase__ = b ^ c ^ d lowercase__ = 0XC_A_6_2_C_1_D_6 lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = ( self.rotate(lowerCAmelCase , 5) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F, a, self.rotate(lowerCAmelCase , 30), c, d, ) lowercase__ = ( self.h[0] + a & 0XF_F_F_F_F_F_F_F, self.h[1] + b & 0XF_F_F_F_F_F_F_F, self.h[2] + c & 0XF_F_F_F_F_F_F_F, self.h[3] + d & 0XF_F_F_F_F_F_F_F, self.h[4] + e & 0XF_F_F_F_F_F_F_F, ) return ("{:08x}" * 5).format(*self.h) def _lowerCAmelCase ( ): lowercase__ = B'Test String' assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324 def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) lowercase__ = parser.parse_args() lowercase__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowercase__ = f.read() else: lowercase__ = bytes(A__ , 'utf-8' ) print(SHAaHash(A__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
642
0
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } lowerCAmelCase_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def A__ ( A : Any , A : Optional[int] , A : Dict , A : Tuple , A : Any): '''simple docstring''' for attribute in key.split("."): UpperCamelCase : Tuple = getattr(A , A) if weight_type is not None: UpperCamelCase : Optional[int] = getattr(A , A).shape else: UpperCamelCase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''') if weight_type == "weight": UpperCamelCase : int = value elif weight_type == "weight_g": UpperCamelCase : Optional[Any] = value elif weight_type == "weight_v": UpperCamelCase : Any = value elif weight_type == "bias": UpperCamelCase : str = value else: UpperCamelCase : Optional[int] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''') def A__ ( A : Optional[int] , A : Union[str, Any]): '''simple docstring''' UpperCamelCase : Tuple = [] UpperCamelCase : List[Any] = fairseq_model.state_dict() UpperCamelCase : List[Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase : int = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == "group" , ) UpperCamelCase : List[str] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase : Optional[Any] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if "layer_norm_for_extract" in name and (".".join(name.split(".")[:-1]) != key): # special case since naming is very similar continue UpperCamelCase : Tuple = True if "*" in mapped_key: UpperCamelCase : List[str] = name.split(A)[0].split(".")[-2] UpperCamelCase : Any = mapped_key.replace("*" , A) if "weight_g" in name: UpperCamelCase : Tuple = "weight_g" elif "weight_v" in name: UpperCamelCase : Union[str, Any] = "weight_v" elif "bias" in name: UpperCamelCase : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase : List[Any] = "weight" else: UpperCamelCase : int = None set_recursively(A , A , A , A , A) continue if not is_used: unused_weights.append(A) logger.warning(F'''Unused weights: {unused_weights}''') def A__ ( A : str , A : int , A : List[Any] , A : List[str] , A : str): '''simple docstring''' UpperCamelCase : List[Any] = full_name.split("conv_layers.")[-1] UpperCamelCase : Optional[int] = name.split(".") UpperCamelCase : Optional[int] = int(items[0]) UpperCamelCase : Union[str, Any] = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''') UpperCamelCase : Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''') UpperCamelCase : Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''') UpperCamelCase : Any = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''') UpperCamelCase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(A) @torch.no_grad() def A__ ( A : Any , A : Tuple , A : Optional[int]=None , A : Tuple=None , A : Union[str, Any]=True): '''simple docstring''' if config_path is not None: UpperCamelCase : Optional[Any] = UniSpeechSatConfig.from_pretrained(A) else: UpperCamelCase : Optional[int] = UniSpeechSatConfig() UpperCamelCase : Optional[int] = "" if is_finetuned: UpperCamelCase : Optional[Any] = UniSpeechSatForCTC(A) else: UpperCamelCase : List[Any] = UniSpeechSatForPreTraining(A) UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/")[:-1])}) UpperCamelCase : Tuple = model[0].eval() recursively_load_weights(A , A) hf_wavavec.save_pretrained(A) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase_ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
173
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore lowerCAmelCase_ = '\nHuman: <<task>>\n\nAssistant: ' lowerCAmelCase_ = 'huggingface-tools/default-prompts' lowerCAmelCase_ = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def A__ ( A : Dict , A : List[str] , A : List[str]="run"): '''simple docstring''' if prompt_or_repo_id is None: UpperCamelCase : Optional[Any] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , A) is not None: return prompt_or_repo_id UpperCamelCase : int = cached_file( A , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name}) with open(A , "r" , encoding="utf-8") as f: return f.read()
173
1
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> Dict: '''simple docstring''' return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> Union[str, Any]: '''simple docstring''' lowercase = 0 lowercase = number while duplicate > 0: lowercase = divmod(_lowerCamelCase , 1_0 ) fact_sum += factorial(_lowerCamelCase ) return fact_sum == number if __name__ == "__main__": print("""Program to check whether a number is a Krisnamurthy Number or not.""") __lowerCAmelCase : str =int(input("""Enter number: """).strip()) print( F"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.""" )
704
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase="None" , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): """simple docstring""" lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = relative_attention lowercase = position_biased_input lowercase = pos_att_type lowercase = scope def A__ ( self ): """simple docstring""" lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_input_mask: lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = ids_tensor([self.batch_size] , self.num_choices ) lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def A__ ( self ): """simple docstring""" lowercase = self.get_config() lowercase = 300 return config def A__ ( self , __lowerCAmelCase ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = DebertaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase )[0] lowercase = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase )[0] lowercase = model(__lowerCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = DebertaForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.num_labels lowercase = DebertaForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.num_labels lowercase = DebertaForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = DebertaForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self ): """simple docstring""" lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): snake_case__ : Any = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) snake_case__ : int = ( { 'feature-extraction': DebertaModel, 'fill-mask': DebertaForMaskedLM, 'question-answering': DebertaForQuestionAnswering, 'text-classification': DebertaForSequenceClassification, 'token-classification': DebertaForTokenClassification, 'zero-shot': DebertaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : Optional[Any] = True snake_case__ : Optional[Any] = False snake_case__ : Optional[int] = False snake_case__ : Any = False snake_case__ : List[Any] = False def A__ ( self ): """simple docstring""" lowercase = DebertaModelTester(self ) lowercase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def A__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = DebertaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def A__ ( self ): """simple docstring""" pass @slow def A__ ( self ): """simple docstring""" lowercase = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) lowercase = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0] # compare the actual values for a slice. lowercase = torch.tensor( [[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCAmelCase , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
197
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = """marian""" lowerCamelCase = ["""past_key_values"""] lowerCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Any , UpperCamelCase__ : Dict=5_8101 , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=1024 , UpperCamelCase__ : List[Any]=12 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : str=12 , UpperCamelCase__ : Tuple=4096 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[Any]="gelu" , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : Tuple=5_8100 , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : str=5_8100 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : int=0 , UpperCamelCase__ : Dict=True , **UpperCamelCase__ : int , ) -> int: """simple docstring""" snake_case : List[Any] = vocab_size snake_case : Optional[int] = decoder_vocab_size or vocab_size snake_case : int = max_position_embeddings snake_case : Tuple = d_model snake_case : int = encoder_ffn_dim snake_case : Optional[int] = encoder_layers snake_case : Union[str, Any] = encoder_attention_heads snake_case : List[str] = decoder_ffn_dim snake_case : List[str] = decoder_layers snake_case : List[str] = decoder_attention_heads snake_case : Any = dropout snake_case : Optional[Any] = attention_dropout snake_case : Tuple = activation_dropout snake_case : Union[str, Any] = activation_function snake_case : int = init_std snake_case : Dict = encoder_layerdrop snake_case : Dict = decoder_layerdrop snake_case : List[Any] = use_cache snake_case : int = encoder_layers snake_case : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True snake_case : str = share_encoder_decoder_embeddings super().__init__( pad_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCAmelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: snake_case : Any = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: snake_case : List[Any] = {0: '''batch'''} snake_case : Optional[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: snake_case : List[Any] = {0: '''batch''', 1: '''decoder_sequence'''} snake_case : Any = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case : Any = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: snake_case ,snake_case : Union[str, Any] = self.num_layers for i in range(UpperCamelCase__ ): snake_case : Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} snake_case : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: snake_case : Dict = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: snake_case : Any = super().outputs else: snake_case : int = super(UpperCamelCase__ , self ).outputs if self.use_past: snake_case ,snake_case : Optional[Any] = self.num_layers for i in range(UpperCamelCase__ ): snake_case : Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} snake_case : Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" snake_case : Optional[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Generate decoder inputs snake_case : Optional[int] = seq_length if not self.use_past else 1 snake_case : Optional[int] = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case : Dict = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} snake_case : Any = dict(**UpperCamelCase__ , **UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case ,snake_case : Dict = common_inputs['''input_ids'''].shape snake_case : Any = common_inputs['''decoder_input_ids'''].shape[1] snake_case ,snake_case : Tuple = self.num_attention_heads snake_case : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case : Union[str, Any] = decoder_seq_length + 3 snake_case : Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case : Optional[int] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 ) snake_case : Dict = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case ,snake_case : str = self.num_layers snake_case : Union[str, Any] = min(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Union[str, Any] = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers snake_case : str = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(UpperCamelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), ) ) # TODO: test this. snake_case : Optional[int] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(UpperCamelCase__ , UpperCamelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) ) return common_inputs def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" snake_case : str = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case ,snake_case : Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values snake_case : int = seqlen + 2 snake_case ,snake_case : int = self.num_layers snake_case ,snake_case : List[Any] = self.num_attention_heads snake_case : Optional[int] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case : Tuple = common_inputs['''attention_mask'''].dtype snake_case : Optional[int] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) snake_case : str = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ ) ] return common_inputs def lowerCAmelCase ( self : List[Any] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" snake_case : Tuple = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case : List[str] = tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) snake_case : str = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence snake_case : str = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case : Union[str, Any] = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return common_inputs def lowerCAmelCase ( self : List[Any] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: snake_case : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) else: snake_case : Tuple = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) return common_inputs def lowerCAmelCase ( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: snake_case : List[Any] = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: snake_case : Optional[int] = super(UpperCamelCase__ , self )._flatten_past_key_values_( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @property def lowerCAmelCase ( self : Optional[Any] ) -> float: """simple docstring""" return 1e-4
638
'''simple docstring''' import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger lowercase__ = get_logger(__name__) class snake_case__ ( enum.Enum ): """simple docstring""" lowerCamelCase = """all_checks""" lowerCamelCase = """basic_checks""" lowerCamelCase = """no_checks""" class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> str: '''simple docstring''' if expected_checksums is None: logger.info('''Unable to verify checksums.''' ) return if len(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) ) if len(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) ) snake_case : Any = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] snake_case : Union[str, Any] = ''' for ''' + verification_name if verification_name is not None else '''''' if len(SCREAMING_SNAKE_CASE__ ) > 0: raise NonMatchingChecksumError( F'Checksums didn\'t match{for_verification_name}:\n' F'{bad_urls}\n' '''Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error''' ) logger.info('''All the checksums matched successfully''' + for_verification_name ) class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: '''simple docstring''' if expected_splits is None: logger.info('''Unable to verify splits sizes.''' ) return if len(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) > 0: raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) ) if len(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) > 0: raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) ) ) snake_case : Dict = [ {'''expected''': expected_splits[name], '''recorded''': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(SCREAMING_SNAKE_CASE__ ) > 0: raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE__ ) ) logger.info('''All the splits matched successfully.''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = True ) -> dict: '''simple docstring''' if record_checksum: snake_case : Any = shaaaa() with open(SCREAMING_SNAKE_CASE__ , '''rb''' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B'''''' ): m.update(SCREAMING_SNAKE_CASE__ ) snake_case : Any = m.hexdigest() else: snake_case : Tuple = None return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE__ ), "checksum": checksum} def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> Dict: '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
638
1
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase="pt" ) -> List[str]: '''simple docstring''' lowercase_ = {"""add_prefix_space""": True} if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and not line.startswith(""" """ ) else {} lowercase_ = padding_side return tokenizer( [line] , max_length=__lowerCAmelCase , padding="""max_length""" if pad_to_max_length else None , truncation=__lowerCAmelCase , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' lowercase_ = input_ids.ne(__lowerCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict="train" , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[str]="" , ): """simple docstring""" super().__init__() lowercase_ = Path(lowerCAmelCase_).joinpath(type_path + """.source""") lowercase_ = Path(lowerCAmelCase_).joinpath(type_path + """.target""") lowercase_ = self.get_char_lens(self.src_file) lowercase_ = max_source_length lowercase_ = max_target_length assert min(self.src_lens) > 0, F'''found empty line in {self.src_file}''' lowercase_ = tokenizer lowercase_ = prefix if n_obs is not None: lowercase_ = self.src_lens[:n_obs] lowercase_ = src_lang lowercase_ = tgt_lang def __len__( self : str): """simple docstring""" return len(self.src_lens) def __getitem__( self : Optional[int] , lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ = index + 1 # linecache starts at 1 lowercase_ = self.prefix + linecache.getline(str(self.src_file) , lowerCAmelCase_).rstrip("""\n""") lowercase_ = linecache.getline(str(self.tgt_file) , lowerCAmelCase_).rstrip("""\n""") assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCAmelCase_): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowercase_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCAmelCase_) else self.tokenizer ) lowercase_ = self.tokenizer.generator if isinstance(self.tokenizer , lowerCAmelCase_) else self.tokenizer lowercase_ = encode_line(lowerCAmelCase_ , lowerCAmelCase_ , self.max_source_length , """right""") lowercase_ = encode_line(lowerCAmelCase_ , lowerCAmelCase_ , self.max_target_length , """right""") lowercase_ = source_inputs["""input_ids"""].squeeze() lowercase_ = target_inputs["""input_ids"""].squeeze() lowercase_ = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : List[Any]): """simple docstring""" return [len(lowerCAmelCase_) for x in Path(lowerCAmelCase_).open().readlines()] def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = torch.stack([x["""input_ids"""] for x in batch]) lowercase_ = torch.stack([x["""attention_mask"""] for x in batch]) lowercase_ = torch.stack([x["""decoder_input_ids"""] for x in batch]) lowercase_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase_) else self.tokenizer.pad_token_id ) lowercase_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase_) else self.tokenizer.pad_token_id ) lowercase_ = trim_batch(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ , lowercase_ = trim_batch(lowerCAmelCase_ , lowerCAmelCase_ , attention_mask=lowerCAmelCase_) lowercase_ = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch UpperCAmelCase : Any = getLogger(__name__) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' return list(itertools.chain.from_iterable(__lowerCAmelCase ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> None: '''simple docstring''' lowercase_ = get_git_info() save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , """git_log.json""" ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=4 , **__lowerCAmelCase ) -> Any: '''simple docstring''' with open(__lowerCAmelCase , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase , indent=__lowerCAmelCase , **__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' with open(__lowerCAmelCase ) as f: return json.load(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE () -> Optional[int]: '''simple docstring''' lowercase_ = git.Repo(search_parent_directories=__lowerCAmelCase ) lowercase_ = { """repo_id""": str(__lowerCAmelCase ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List: '''simple docstring''' return list(map(__lowerCAmelCase , __lowerCAmelCase ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' with open(__lowerCAmelCase , """wb""" ) as f: return pickle.dump(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' def remove_articles(__lowerCAmelCase ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase ): lowercase_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = normalize_answer(__lowerCAmelCase ).split() lowercase_ = normalize_answer(__lowerCAmelCase ).split() lowercase_ = Counter(__lowerCAmelCase ) & Counter(__lowerCAmelCase ) lowercase_ = sum(common.values() ) if num_same == 0: return 0 lowercase_ = 1.0 * num_same / len(__lowerCAmelCase ) lowercase_ = 1.0 * num_same / len(__lowerCAmelCase ) lowercase_ = (2 * precision * recall) / (precision + recall) return fa def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' return normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = 0 for hypo, pred in zip(__lowerCAmelCase , __lowerCAmelCase ): em += exact_match_score(__lowerCAmelCase , __lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: em /= len(__lowerCAmelCase ) return {"em": em} def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return model_prefix.startswith("""rag""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowercase_ = """dropout_rate""" for p in extra_params: if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if not hasattr(__lowerCAmelCase , __lowerCAmelCase ) and not hasattr(__lowerCAmelCase , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(__lowerCAmelCase ) ) delattr(__lowerCAmelCase , __lowerCAmelCase ) continue lowercase_ = p if hasattr(__lowerCAmelCase , __lowerCAmelCase ) else equivalent_param[p] setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) delattr(__lowerCAmelCase , __lowerCAmelCase ) return hparams, config
712
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Any = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
100
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase_ ( A , A , unittest.TestCase ): '''simple docstring''' lowercase_ : Optional[Any] = IFInpaintingSuperResolutionPipeline lowercase_ : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase_ : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase_ : Dict = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCamelCase ( self : Dict ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCamelCase ( self : List[Any] , snake_case__ : List[str] , snake_case__ : List[str]=0 ): '''simple docstring''' if str(snake_case__ ).startswith("mps" ): UpperCAmelCase__ : Dict = torch.manual_seed(snake_case__ ) else: UpperCAmelCase__ : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase__ : int = floats_tensor((1, 3, 16, 16) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase__ : Any = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase ( self : List[str] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def UpperCamelCase ( self : List[str] ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def UpperCamelCase ( self : List[str] ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def UpperCamelCase ( self : Any ): '''simple docstring''' self._test_save_load_local() def UpperCamelCase ( self : int ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
199
'''simple docstring''' import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class UpperCAmelCase_ ( A , unittest.TestCase ): '''simple docstring''' lowercase_ : Tuple = PriorTransformer lowercase_ : Dict = "hidden_states" @property def UpperCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = 4 UpperCAmelCase__ : List[Any] = 8 UpperCAmelCase__ : Union[str, Any] = 7 UpperCAmelCase__ : Tuple = floats_tensor((batch_size, embedding_dim) ).to(snake_case__ ) UpperCAmelCase__ : List[Any] = floats_tensor((batch_size, embedding_dim) ).to(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(snake_case__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCamelCase ( self : int , snake_case__ : List[str]=0 ): '''simple docstring''' torch.manual_seed(snake_case__ ) UpperCAmelCase__ : str = 4 UpperCAmelCase__ : int = 8 UpperCAmelCase__ : Optional[int] = 7 UpperCAmelCase__ : Any = torch.randn((batch_size, embedding_dim) ).to(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = torch.randn((batch_size, embedding_dim) ).to(snake_case__ ) UpperCAmelCase__ : List[str] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(snake_case__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def UpperCamelCase ( self : Tuple ): '''simple docstring''' return (4, 8) @property def UpperCamelCase ( self : Optional[int] ): '''simple docstring''' return (4, 8) def UpperCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } UpperCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[str] = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy" , output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(snake_case__ ) UpperCAmelCase__ : List[Any] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def UpperCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase__ : Tuple = self.model_class(**snake_case__ ) UpperCAmelCase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : int = [*signature.parameters.keys()] UpperCAmelCase__ : Optional[Any] = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2] , snake_case__ ) def UpperCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) UpperCAmelCase__ : List[Any] = model.to(snake_case__ ) if hasattr(snake_case__ , "set_default_attn_processor" ): model.set_default_attn_processor() UpperCAmelCase__ : int = self.get_dummy_seed_input() with torch.no_grad(): UpperCAmelCase__ : Tuple = model(**snake_case__ )[0] UpperCAmelCase__ : Any = output[0, :5].flatten().cpu() print(snake_case__ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. UpperCAmelCase__ : Optional[int] = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(snake_case__ , snake_case__ , rtol=1e-2 ) ) @slow class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[int]=1 , snake_case__ : Any=7_68 , snake_case__ : List[Any]=77 , snake_case__ : Tuple=0 ): '''simple docstring''' torch.manual_seed(snake_case__ ) UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : Any = embedding_dim UpperCAmelCase__ : Any = num_embeddings UpperCAmelCase__ : str = torch.randn((batch_size, embedding_dim) ).to(snake_case__ ) UpperCAmelCase__ : Optional[Any] = torch.randn((batch_size, embedding_dim) ).to(snake_case__ ) UpperCAmelCase__ : Any = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(snake_case__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCamelCase ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior" , subfolder="prior" ) model.to(snake_case__ ) UpperCAmelCase__ : List[Any] = self.get_dummy_seed_input(seed=snake_case__ ) with torch.no_grad(): UpperCAmelCase__ : Any = model(**snake_case__ )[0] assert list(sample.shape ) == [1, 7_68] UpperCAmelCase__ : List[str] = sample[0, :8].flatten().cpu() print(snake_case__ ) UpperCAmelCase__ : Tuple = torch.tensor(snake_case__ ) assert torch_all_close(snake_case__ , snake_case__ , atol=1e-3 )
199
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : torch.FloatTensor class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" @register_to_config def __init__( self ,UpperCAmelCase_ = 3 ,UpperCAmelCase_ = 3 ,UpperCAmelCase_ = ("DownEncoderBlock2D",) ,UpperCAmelCase_ = ("UpDecoderBlock2D",) ,UpperCAmelCase_ = (64,) ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = "silu" ,UpperCAmelCase_ = 3 ,UpperCAmelCase_ = 32 ,UpperCAmelCase_ = 2_56 ,UpperCAmelCase_ = 32 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 0.18215 ,UpperCAmelCase_ = "group" ,): super().__init__() # pass init params to Encoder _lowercase : List[Any] = Encoder( in_channels=UpperCAmelCase_ ,out_channels=UpperCAmelCase_ ,down_block_types=UpperCAmelCase_ ,block_out_channels=UpperCAmelCase_ ,layers_per_block=UpperCAmelCase_ ,act_fn=UpperCAmelCase_ ,norm_num_groups=UpperCAmelCase_ ,double_z=UpperCAmelCase_ ,) _lowercase : Tuple = vq_embed_dim if vq_embed_dim is not None else latent_channels _lowercase : int = nn.Convad(UpperCAmelCase_ ,UpperCAmelCase_ ,1 ) _lowercase : Union[str, Any] = VectorQuantizer(UpperCAmelCase_ ,UpperCAmelCase_ ,beta=0.25 ,remap=UpperCAmelCase_ ,sane_index_shape=UpperCAmelCase_ ) _lowercase : Union[str, Any] = nn.Convad(UpperCAmelCase_ ,UpperCAmelCase_ ,1 ) # pass init params to Decoder _lowercase : Union[str, Any] = Decoder( in_channels=UpperCAmelCase_ ,out_channels=UpperCAmelCase_ ,up_block_types=UpperCAmelCase_ ,block_out_channels=UpperCAmelCase_ ,layers_per_block=UpperCAmelCase_ ,act_fn=UpperCAmelCase_ ,norm_num_groups=UpperCAmelCase_ ,norm_type=UpperCAmelCase_ ,) @apply_forward_hook def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = True ): _lowercase : Any = self.encoder(UpperCAmelCase_ ) _lowercase : List[Any] = self.quant_conv(UpperCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCAmelCase_ ) @apply_forward_hook def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = False ,UpperCAmelCase_ = True ): # also go through quantization layer if not force_not_quantize: _lowercase : Union[str, Any] = self.quantize(UpperCAmelCase_ ) else: _lowercase : int = h _lowercase : Union[str, Any] = self.post_quant_conv(UpperCAmelCase_ ) _lowercase : List[Any] = self.decoder(UpperCAmelCase_ ,quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = True ): _lowercase : List[Any] = sample _lowercase : Optional[Any] = self.encode(UpperCAmelCase_ ).latents _lowercase : int = self.decode(UpperCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase_ )
711
"""simple docstring""" from ...processing_utils import ProcessorMixin class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["image_processor", "feature_extractor"] SCREAMING_SNAKE_CASE_ : Dict = "TvltImageProcessor" SCREAMING_SNAKE_CASE_ : List[Any] = "TvltFeatureExtractor" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): super().__init__(image_processor=UpperCAmelCase_ ,feature_extractor=UpperCAmelCase_ ) _lowercase : Any = image_processor _lowercase : Any = feature_extractor def __call__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=False ,UpperCAmelCase_=False ,*UpperCAmelCase_ ,**UpperCAmelCase_ ,): if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) _lowercase : int = None if images is not None: _lowercase : Optional[Any] = self.image_processor(UpperCAmelCase_ ,mask_pixel=UpperCAmelCase_ ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) if images_mixed is not None: _lowercase : Optional[int] = self.image_processor(UpperCAmelCase_ ,is_mixed=UpperCAmelCase_ ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) if audio is not None: _lowercase : Tuple = self.feature_extractor( UpperCAmelCase_ ,*UpperCAmelCase_ ,sampling_rate=UpperCAmelCase_ ,mask_audio=UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Dict = {} if audio is not None: output_dict.update(UpperCAmelCase_ ) if images is not None: output_dict.update(UpperCAmelCase_ ) if images_mixed_dict is not None: output_dict.update(UpperCAmelCase_ ) return output_dict @property def lowerCamelCase__ ( self ): _lowercase : List[str] = self.image_processor.model_input_names _lowercase : int = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
600
0
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline A_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class _a (__magic_name__ ): '''simple docstring''' def __init__( self , **A__ ): super().__init__(**A__ ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self , A__ , **A__ ): return super().__call__(A__ , **A__ ) def __A ( self , **A__ ): A__ : int = {} if "candidate_labels" in kwargs: A__ : Any = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: A__ : List[str] = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def __A ( self , A__ , A__=None , A__="This is a sound of {}." ): if isinstance(A__ , A__ ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png A__ : Union[str, Any] = requests.get(A__ ).content else: with open(A__ , """rb""" ) as f: A__ : str = f.read() if isinstance(A__ , A__ ): A__ : Optional[int] = ffmpeg_read(A__ , self.feature_extractor.sampling_rate ) if not isinstance(A__ , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) A__ : List[Any] = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) A__ : Optional[Any] = candidate_labels A__ : int = [hypothesis_template.format(A__ ) for x in candidate_labels] A__ : Dict = self.tokenizer(A__ , return_tensors=self.framework , padding=A__ ) A__ : Tuple = [text_inputs] return inputs def __A ( self , A__ ): A__ : Any = model_inputs.pop("""candidate_labels""" ) A__ : Optional[Any] = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , A__ ): A__ : Tuple = text_inputs[0] else: # Batching case. A__ : int = text_inputs[0][0] A__ : Optional[int] = self.model(**A__ , **A__ ) A__ : Dict = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def __A ( self , A__ ): A__ : Optional[Any] = model_outputs.pop("""candidate_labels""" ) A__ : Optional[Any] = model_outputs["""logits"""][0] if self.framework == "pt": A__ : str = logits.softmax(dim=0 ) A__ : List[str] = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) A__ : int = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(A__ , A__ ) , key=lambda A__ : -x[0] ) ] return result
456
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : Tuple = logging.get_logger(__name__) A_ : Tuple = {'vocab_file': 'spiece.model'} A_ : Optional[Any] = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } A_ : Tuple = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__: str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__: List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__: str = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__: List[int] = [] def __init__( self , A__ , A__="<unk>" , A__="<s>" , A__="</s>" , A__="<pad>" , A__="[SEP]" , A__="[MASK]" , A__="[CLS]" , A__ = None , **A__ , ): A__ : Tuple = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else bos_token A__ : int = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else eos_token A__ : Tuple = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else unk_token A__ : str = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else pad_token A__ : Dict = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else cls_token A__ : Any = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it A__ : Optional[Any] = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else mask_token A__ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A__ , eos_token=A__ , unk_token=A__ , pad_token=A__ , sep_token=A__ , mask_token=A__ , cls_token=A__ , sp_model_kwargs=self.sp_model_kwargs , **A__ , ) A__ : Any = vocab_file A__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A__ ) @property def __A ( self ): return self.sp_model.get_piece_size() def __A ( self ): A__ : List[str] = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): A__ : Optional[Any] = self.__dict__.copy() A__ : Optional[Any] = None return state def __setstate__( self , A__ ): A__ : Dict = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ : str = {} A__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self , A__ ): return self.sp_model.encode(A__ , out_type=A__ ) def __A ( self , A__ ): return self.sp_model.piece_to_id(A__ ) def __A ( self , A__ ): A__ : Dict = self.sp_model.IdToPiece(A__ ) return token def __A ( self , A__ ): A__ : str = [] A__ : Optional[int] = """""" A__ : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A__ ) + token A__ : Union[str, Any] = True A__ : Union[str, Any] = [] else: current_sub_tokens.append(A__ ) A__ : Any = False out_string += self.sp_model.decode(A__ ) return out_string.strip() def __A ( self , A__ , A__ = False , A__ = None , A__ = True , **A__ , ): A__ : List[str] = kwargs.pop("""use_source_tokenizer""" , A__ ) A__ : Union[str, Any] = self.convert_ids_to_tokens(A__ , skip_special_tokens=A__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A__ : Dict = [] A__ : List[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A__ ) ) A__ : Optional[Any] = [] sub_texts.append(A__ ) else: current_sub_text.append(A__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: A__ : List[Any] = re.sub(r""" (\[(MASK|SEP)\])""" , r"""\1""" , """ """.join(A__ ) ) else: A__ : Optional[Any] = """""".join(A__ ) A__ : Union[str, Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A__ : Union[str, Any] = self.clean_up_tokenization(A__ ) return clean_text else: return text def __A ( self , A__ , A__ = None ): if not os.path.isdir(A__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ : str = os.path.join( A__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , """wb""" ) as fi: A__ : Dict = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,) def __A ( self , A__ , A__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : List[Any] = [self.cls_token_id] A__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , A__ , A__ = None , A__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) if token_ids_a is None: return [1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1] + ([0] * len(A__ )) + [1] def __A ( self , A__ , A__ = None ): A__ : Any = [self.sep_token_id] A__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
456
1
from math import isqrt def __a ( __UpperCAmelCase ): return all(number % divisor != 0 for divisor in range(2 , isqrt(lowerCamelCase__ ) + 1 ) ) def __a ( __UpperCAmelCase = 10**6 ): a__ = 0 a__ = 1 a__ = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCamelCase__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'{solution() = }')
715
import argparse from collections import defaultdict import yaml a_ : Tuple = 'docs/source/en/_toctree.yml' def __a ( __UpperCAmelCase ): a__ = defaultdict(__UpperCAmelCase ) a__ = [] a__ = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(__UpperCAmelCase ) a__ = new_doc_list a__ = [key for key, value in counts.items() if value > 1] a__ = [] for duplicate_key in duplicates: a__ = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(__UpperCAmelCase ) > 1: raise ValueError( f"{duplicate_key} is present several times in the documentation table of content at " '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) a__ = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__UpperCAmelCase ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(__UpperCAmelCase ) # Sort return overview_doc def __a ( __UpperCAmelCase=False ): with open(__UpperCAmelCase , encoding='''utf-8''' ) as f: a__ = yaml.safe_load(f.read() ) # Get to the API doc a__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 a__ = content[api_idx]['''sections'''] # Then to the model doc a__ = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 a__ = api_doc[scheduler_idx]['''sections'''] a__ = clean_doc_toc(__UpperCAmelCase ) a__ = False if new_scheduler_doc != scheduler_doc: a__ = True if overwrite: a__ = new_scheduler_doc if diff: if overwrite: a__ = api_doc with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(__UpperCAmelCase , allow_unicode=__UpperCAmelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def __a ( __UpperCAmelCase=False ): with open(__UpperCAmelCase , encoding='''utf-8''' ) as f: a__ = yaml.safe_load(f.read() ) # Get to the API doc a__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 a__ = content[api_idx]['''sections'''] # Then to the model doc a__ = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 a__ = False a__ = api_doc[pipeline_idx]['''sections'''] a__ = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: a__ = pipeline_doc['''section'''] a__ = clean_doc_toc(__UpperCAmelCase ) if overwrite: a__ = new_sub_pipeline_doc new_pipeline_docs.append(__UpperCAmelCase ) # sort overall pipeline doc a__ = clean_doc_toc(__UpperCAmelCase ) if new_pipeline_docs != pipeline_docs: a__ = True if overwrite: a__ = new_pipeline_docs if diff: if overwrite: a__ = api_doc with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(__UpperCAmelCase , allow_unicode=__UpperCAmelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": a_ : List[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a_ : Tuple = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
148
0
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _UpperCamelCase = '''CompVis/stable-diffusion-v1-1''' _UpperCamelCase = '''CompVis/stable-diffusion-v1-2''' _UpperCamelCase = '''CompVis/stable-diffusion-v1-3''' _UpperCamelCase = '''CompVis/stable-diffusion-v1-4''' class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a , __a , __a , __a , __a , __a , __a , __a = True , ) -> Tuple: """simple docstring""" super()._init_() UpperCAmelCase__ = StableDiffusionPipeline.from_pretrained(__a ) UpperCAmelCase__ = StableDiffusionPipeline.from_pretrained(__a ) UpperCAmelCase__ = StableDiffusionPipeline.from_pretrained(__a ) UpperCAmelCase__ = StableDiffusionPipeline( vae=__a , text_encoder=__a , tokenizer=__a , unet=__a , scheduler=__a , safety_checker=__a , feature_extractor=__a , requires_safety_checker=__a , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def UpperCamelCase__ (self ) -> Dict[str, Any]: """simple docstring""" return {k: getattr(self , __a ) for k in self.config.keys() if not k.startswith('_' )} def UpperCamelCase__ (self , __a = "auto" ) -> Optional[int]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" self.enable_attention_slicing(__a ) @torch.no_grad() def UpperCamelCase__ (self , __a , __a = 512 , __a = 512 , __a = 50 , __a = 7.5 , __a = None , __a = 1 , __a = 0.0 , __a = None , __a = None , __a = "pil" , __a = True , __a = None , __a = 1 , **__a , ) -> Any: """simple docstring""" return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def UpperCamelCase__ (self , __a , __a = 512 , __a = 512 , __a = 50 , __a = 7.5 , __a = None , __a = 1 , __a = 0.0 , __a = None , __a = None , __a = "pil" , __a = True , __a = None , __a = 1 , **__a , ) -> Tuple: """simple docstring""" return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def UpperCamelCase__ (self , __a , __a = 512 , __a = 512 , __a = 50 , __a = 7.5 , __a = None , __a = 1 , __a = 0.0 , __a = None , __a = None , __a = "pil" , __a = True , __a = None , __a = 1 , **__a , ) -> int: """simple docstring""" return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def UpperCamelCase__ (self , __a , __a = 512 , __a = 512 , __a = 50 , __a = 7.5 , __a = None , __a = 1 , __a = 0.0 , __a = None , __a = None , __a = "pil" , __a = True , __a = None , __a = 1 , **__a , ) -> Any: """simple docstring""" return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def UpperCamelCase__ (self , __a , __a = 512 , __a = 512 , __a = 50 , __a = 7.5 , __a = None , __a = 1 , __a = 0.0 , __a = None , __a = None , __a = "pil" , __a = True , __a = None , __a = 1 , **__a , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' self.to(__a ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCAmelCase__ = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCAmelCase__ = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCAmelCase__ = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCAmelCase__ = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
146
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets _UpperCamelCase = '''\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } ''' _UpperCamelCase = '''\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy. ''' _UpperCamelCase = R''' Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting "1/2" to "\\frac{1}{2}") Examples: >>> metric = datasets.load_metric("competition_math") >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"]) >>> print(results) {\'accuracy\': 1.0} ''' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/hendrycks/math' , codebase_urls=['https://github.com/hendrycks/math'] , ) def UpperCamelCase__ (self , __a , __a ) -> int: """simple docstring""" UpperCAmelCase__ = 0.0 for i, j in zip(__a , __a ): n_correct += 1.0 if math_equivalence.is_equiv(__a , __a ) else 0.0 UpperCAmelCase__ = n_correct / len(__a ) return { "accuracy": accuracy, }
146
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__ = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
391
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( A__: Optional[int] , A__: List[Any] , A__: str ): '''simple docstring''' UpperCAmelCase = LxmertConfig.from_json_file(A__ ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase = LxmertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(A__ , A__ , A__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
391
1
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->int: '''simple docstring''' warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
590
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : Tuple = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } __snake_case : Dict = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , x.transpose() ) ) __snake_case : Dict = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowercase_ ( self ): __snake_case : str = np.random.randn(3 , 4 ) __snake_case : str = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , transpose(_UpperCAmelCase ).numpy() ) ) __snake_case : Optional[Any] = np.random.randn(3 , 4 , 5 ) __snake_case : List[str] = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , transpose(_UpperCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowercase_ ( self ): __snake_case : Any = np.random.randn(3 , 4 ) __snake_case : Dict = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , transpose(_UpperCAmelCase ).numpy() ) ) __snake_case : Optional[int] = np.random.randn(3 , 4 , 5 ) __snake_case : int = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , transpose(_UpperCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowercase_ ( self ): __snake_case : str = np.random.randn(3 , 4 ) __snake_case : Optional[Any] = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , np.asarray(transpose(_UpperCAmelCase ) ) ) ) __snake_case : List[Any] = np.random.randn(3 , 4 , 5 ) __snake_case : Any = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , np.asarray(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) ) ) ) def lowercase_ ( self ): __snake_case : List[str] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , np.reshape(_UpperCAmelCase , (4, 3) ) ) ) __snake_case : Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , np.reshape(_UpperCAmelCase , (12, 5) ) ) ) @require_torch def lowercase_ ( self ): __snake_case : Optional[int] = np.random.randn(3 , 4 ) __snake_case : Optional[int] = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , reshape(_UpperCAmelCase , (4, 3) ).numpy() ) ) __snake_case : int = np.random.randn(3 , 4 , 5 ) __snake_case : int = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , reshape(_UpperCAmelCase , (12, 5) ).numpy() ) ) @require_tf def lowercase_ ( self ): __snake_case : str = np.random.randn(3 , 4 ) __snake_case : Optional[int] = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , reshape(_UpperCAmelCase , (4, 3) ).numpy() ) ) __snake_case : Dict = np.random.randn(3 , 4 , 5 ) __snake_case : List[str] = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , reshape(_UpperCAmelCase , (12, 5) ).numpy() ) ) @require_flax def lowercase_ ( self ): __snake_case : int = np.random.randn(3 , 4 ) __snake_case : Any = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , np.asarray(reshape(_UpperCAmelCase , (4, 3) ) ) ) ) __snake_case : Optional[Any] = np.random.randn(3 , 4 , 5 ) __snake_case : Any = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , np.asarray(reshape(_UpperCAmelCase , (12, 5) ) ) ) ) def lowercase_ ( self ): __snake_case : Any = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , np.squeeze(_UpperCAmelCase ) ) ) __snake_case : List[str] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , np.squeeze(_UpperCAmelCase , axis=2 ) ) ) @require_torch def lowercase_ ( self ): __snake_case : Tuple = np.random.randn(1 , 3 , 4 ) __snake_case : int = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , squeeze(_UpperCAmelCase ).numpy() ) ) __snake_case : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) __snake_case : Tuple = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , squeeze(_UpperCAmelCase , axis=2 ).numpy() ) ) @require_tf def lowercase_ ( self ): __snake_case : List[Any] = np.random.randn(1 , 3 , 4 ) __snake_case : Optional[Any] = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , squeeze(_UpperCAmelCase ).numpy() ) ) __snake_case : Dict = np.random.randn(1 , 4 , 1 , 5 ) __snake_case : Dict = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , squeeze(_UpperCAmelCase , axis=2 ).numpy() ) ) @require_flax def lowercase_ ( self ): __snake_case : List[str] = np.random.randn(1 , 3 , 4 ) __snake_case : Optional[Any] = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , np.asarray(squeeze(_UpperCAmelCase ) ) ) ) __snake_case : List[str] = np.random.randn(1 , 4 , 1 , 5 ) __snake_case : Dict = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , np.asarray(squeeze(_UpperCAmelCase , axis=2 ) ) ) ) def lowercase_ ( self ): __snake_case : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , np.expand_dims(_UpperCAmelCase , axis=1 ) ) ) @require_torch def lowercase_ ( self ): __snake_case : Dict = np.random.randn(3 , 4 ) __snake_case : List[str] = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , expand_dims(_UpperCAmelCase , axis=1 ).numpy() ) ) @require_tf def lowercase_ ( self ): __snake_case : int = np.random.randn(3 , 4 ) __snake_case : Optional[Any] = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , expand_dims(_UpperCAmelCase , axis=1 ).numpy() ) ) @require_flax def lowercase_ ( self ): __snake_case : Union[str, Any] = np.random.randn(3 , 4 ) __snake_case : Any = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , np.asarray(expand_dims(_UpperCAmelCase , axis=1 ) ) ) )
576
0
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _lowerCAmelCase() -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(a ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def _lowerCAmelCase() -> Tuple: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def _lowerCAmelCase() -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(a ): http_head('''https://huggingface.co''' )
705
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __UpperCAmelCase : '''simple docstring''' def __init__( self , _A , _A=1_3 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=9_9 , _A=3_2 , _A=2 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=1_6 , _A=2 , _A=0.02 , _A=3 , _A=4 , _A=None , _A=1_0_0_0 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =seq_length _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_input_mask _SCREAMING_SNAKE_CASE =use_token_type_ids _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =type_vocab_size _SCREAMING_SNAKE_CASE =type_sequence_label_size _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =num_labels _SCREAMING_SNAKE_CASE =num_choices _SCREAMING_SNAKE_CASE =scope _SCREAMING_SNAKE_CASE =range_bbox def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _SCREAMING_SNAKE_CASE =bbox[i, j, 3] _SCREAMING_SNAKE_CASE =bbox[i, j, 1] _SCREAMING_SNAKE_CASE =t if bbox[i, j, 2] < bbox[i, j, 0]: _SCREAMING_SNAKE_CASE =bbox[i, j, 2] _SCREAMING_SNAKE_CASE =bbox[i, j, 0] _SCREAMING_SNAKE_CASE =t _SCREAMING_SNAKE_CASE =tf.convert_to_tensor(_A ) _SCREAMING_SNAKE_CASE =None if self.use_input_mask: _SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE =None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE =LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =TFLayoutLMModel(config=_A ) _SCREAMING_SNAKE_CASE =model(_A , _A , attention_mask=_A , token_type_ids=_A ) _SCREAMING_SNAKE_CASE =model(_A , _A , token_type_ids=_A ) _SCREAMING_SNAKE_CASE =model(_A , _A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =TFLayoutLMForMaskedLM(config=_A ) _SCREAMING_SNAKE_CASE =model(_A , _A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =TFLayoutLMForSequenceClassification(config=_A ) _SCREAMING_SNAKE_CASE =model(_A , _A , attention_mask=_A , token_type_ids=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =TFLayoutLMForTokenClassification(config=_A ) _SCREAMING_SNAKE_CASE =model(_A , _A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =TFLayoutLMForQuestionAnswering(config=_A ) _SCREAMING_SNAKE_CASE =model(_A , _A , attention_mask=_A , token_type_ids=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) =config_and_inputs _SCREAMING_SNAKE_CASE ={ '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class __UpperCAmelCase ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): '''simple docstring''' lowercase : List[Any] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) lowercase : str = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) lowercase : Any = False lowercase : List[str] = True lowercase : Optional[int] = 10 def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =TFLayoutLMModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_A , hidden_size=3_7 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE =TFLayoutLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip('''Onnx compliancy broke with TF 2.10''' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def _lowerCAmelCase() -> str: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _SCREAMING_SNAKE_CASE =tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 _SCREAMING_SNAKE_CASE =tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _SCREAMING_SNAKE_CASE =tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 _SCREAMING_SNAKE_CASE =tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _SCREAMING_SNAKE_CASE =tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =TFLayoutLMModel.from_pretrained('''microsoft/layoutlm-base-uncased''' ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =prepare_layoutlm_batch_inputs() # forward pass _SCREAMING_SNAKE_CASE =model(input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A ) # test the sequence output on [0, :3, :3] _SCREAMING_SNAKE_CASE =tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _A , atol=1E-3 ) ) # test the pooled output on [1, :3] _SCREAMING_SNAKE_CASE =tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _A , atol=1E-3 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =TFLayoutLMForSequenceClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=2 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =prepare_layoutlm_batch_inputs() # forward pass _SCREAMING_SNAKE_CASE =model( input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _SCREAMING_SNAKE_CASE =outputs.loss _SCREAMING_SNAKE_CASE =(2,) self.assertEqual(loss.shape , _A ) # test the shape of the logits _SCREAMING_SNAKE_CASE =outputs.logits _SCREAMING_SNAKE_CASE =(2, 2) self.assertEqual(logits.shape , _A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =TFLayoutLMForTokenClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=1_3 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =prepare_layoutlm_batch_inputs() # forward pass _SCREAMING_SNAKE_CASE =model( input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A , labels=_A ) # test the shape of the logits _SCREAMING_SNAKE_CASE =outputs.logits _SCREAMING_SNAKE_CASE =tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =TFLayoutLMForQuestionAnswering.from_pretrained('''microsoft/layoutlm-base-uncased''' ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =prepare_layoutlm_batch_inputs() # forward pass _SCREAMING_SNAKE_CASE =model(input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A ) # test the shape of the logits _SCREAMING_SNAKE_CASE =tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _A ) self.assertEqual(outputs.end_logits.shape , _A )
165
0
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __A : Union[str, Any] = logging.get_logger(__name__) # General docstring __A : Optional[int] = '''MobileNetV1Config''' # Base docstring __A : str = '''google/mobilenet_v1_1.0_224''' __A : List[str] = [1, 1024, 7, 7] # Image classification docstring __A : Tuple = '''google/mobilenet_v1_1.0_224''' __A : str = '''tabby, tabby cat''' __A : Union[str, Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None ) -> Dict: '''simple docstring''' lowerCAmelCase : List[str] = {} if isinstance(_UpperCAmelCase, _UpperCAmelCase ): lowerCAmelCase : Tuple = model.mobilenet_va else: lowerCAmelCase : Dict = model lowerCAmelCase : List[str] = 'MobilenetV1/Conv2d_0/' lowerCAmelCase : Dict = backbone.conv_stem.convolution.weight lowerCAmelCase : Union[str, Any] = backbone.conv_stem.normalization.bias lowerCAmelCase : Any = backbone.conv_stem.normalization.weight lowerCAmelCase : str = backbone.conv_stem.normalization.running_mean lowerCAmelCase : Optional[Any] = backbone.conv_stem.normalization.running_var for i in range(13 ): lowerCAmelCase : int = i + 1 lowerCAmelCase : Tuple = i * 2 lowerCAmelCase : int = backbone.layer[pt_index] lowerCAmelCase : Optional[Any] = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" lowerCAmelCase : int = pointer.convolution.weight lowerCAmelCase : Union[str, Any] = pointer.normalization.bias lowerCAmelCase : List[str] = pointer.normalization.weight lowerCAmelCase : int = pointer.normalization.running_mean lowerCAmelCase : Tuple = pointer.normalization.running_var lowerCAmelCase : List[Any] = backbone.layer[pt_index + 1] lowerCAmelCase : Any = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" lowerCAmelCase : Union[str, Any] = pointer.convolution.weight lowerCAmelCase : str = pointer.normalization.bias lowerCAmelCase : Tuple = pointer.normalization.weight lowerCAmelCase : List[str] = pointer.normalization.running_mean lowerCAmelCase : List[Any] = pointer.normalization.running_var if isinstance(_UpperCAmelCase, _UpperCAmelCase ): lowerCAmelCase : List[str] = 'MobilenetV1/Logits/Conv2d_1c_1x1/' lowerCAmelCase : List[str] = model.classifier.weight lowerCAmelCase : Union[str, Any] = model.classifier.bias return tf_to_pt_map def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[Any]: '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model lowerCAmelCase : List[Any] = tf.train.list_variables(_UpperCAmelCase ) lowerCAmelCase : Tuple = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) lowerCAmelCase : int = tf.train.load_variable(_UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase : Any = array # Build TF to PyTorch weights loading map lowerCAmelCase : Any = _build_tf_to_pytorch_map(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue lowerCAmelCase : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) lowerCAmelCase : str = np.transpose(_UpperCAmelCase, (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer lowerCAmelCase : Tuple = array.squeeze().transpose() else: lowerCAmelCase : Dict = np.transpose(_UpperCAmelCase, (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) lowerCAmelCase : Tuple = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase, _UpperCAmelCase ) tf_weights.pop(name + '/RMSProp', _UpperCAmelCase ) tf_weights.pop(name + '/RMSProp_1', _UpperCAmelCase ) tf_weights.pop(name + '/ExponentialMovingAverage', _UpperCAmelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' lowerCAmelCase , lowerCAmelCase : Optional[int] = features.shape[-2:] lowerCAmelCase , lowerCAmelCase : List[Any] = conv_layer.stride lowerCAmelCase , lowerCAmelCase : Tuple = conv_layer.kernel_size if in_height % stride_height == 0: lowerCAmelCase : int = max(kernel_height - stride_height, 0 ) else: lowerCAmelCase : Tuple = max(kernel_height - (in_height % stride_height), 0 ) if in_width % stride_width == 0: lowerCAmelCase : Union[str, Any] = max(kernel_width - stride_width, 0 ) else: lowerCAmelCase : Optional[int] = max(kernel_width - (in_width % stride_width), 0 ) lowerCAmelCase : str = pad_along_width // 2 lowerCAmelCase : List[str] = pad_along_width - pad_left lowerCAmelCase : List[str] = pad_along_height // 2 lowerCAmelCase : Optional[int] = pad_along_height - pad_top lowerCAmelCase : Optional[int] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase, _UpperCAmelCase, 'constant', 0.0 ) class __A ( nn.Module ): def __init__( self : Tuple , UpperCAmelCase_ : MobileNetVaConfig , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[bool] = True , UpperCAmelCase_ : Optional[bool or str] = True , ): super().__init__() lowerCAmelCase : str = config if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups." ) if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups." ) lowerCAmelCase : Union[str, Any] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowerCAmelCase : Any = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode='zeros' , ) if use_normalization: lowerCAmelCase : str = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: lowerCAmelCase : Optional[Any] = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : Tuple = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): lowerCAmelCase : Dict = ACTaFN[config.hidden_act] else: lowerCAmelCase : Any = config.hidden_act else: lowerCAmelCase : List[Any] = None def lowercase__ ( self : Any , UpperCAmelCase_ : torch.Tensor ): if self.config.tf_padding: lowerCAmelCase : int = apply_tf_padding(UpperCAmelCase_ , self.convolution ) lowerCAmelCase : Dict = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: lowerCAmelCase : Optional[Any] = self.normalization(UpperCAmelCase_ ) if self.activation is not None: lowerCAmelCase : int = self.activation(UpperCAmelCase_ ) return features class __A ( lowerCAmelCase ): lowerCAmelCase_ : Optional[int] = MobileNetVaConfig lowerCAmelCase_ : Tuple = load_tf_weights_in_mobilenet_va lowerCAmelCase_ : str = "mobilenet_v1" lowerCAmelCase_ : str = "pixel_values" lowerCAmelCase_ : Optional[int] = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[nn.Linear, nn.Convad] ): if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __A : List[str] = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __A : List[Any] = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Any , UpperCAmelCase_ : MobileNetVaConfig , UpperCAmelCase_ : bool = True ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = config lowerCAmelCase : Tuple = 32 lowerCAmelCase : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) lowerCAmelCase : Optional[Any] = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) lowerCAmelCase : Dict = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowerCAmelCase : Union[str, Any] = nn.ModuleList() for i in range(13 ): lowerCAmelCase : str = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowerCAmelCase : List[str] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) lowerCAmelCase : Union[str, Any] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Dict ): raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , ): lowerCAmelCase : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) lowerCAmelCase : Dict = self.conv_stem(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowerCAmelCase : Union[str, Any] = layer_module(UpperCAmelCase_ ) if output_hidden_states: lowerCAmelCase : Union[str, Any] = all_hidden_states + (hidden_states,) lowerCAmelCase : Dict = hidden_states if self.pooler is not None: lowerCAmelCase : Any = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: lowerCAmelCase : Union[str, Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : MobileNetVaConfig ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = config.num_labels lowerCAmelCase : Optional[int] = MobileNetVaModel(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowerCAmelCase : Optional[Any] = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) lowerCAmelCase : str = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase__ ( self : Any , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , ): lowerCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase : Tuple = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase : Optional[int] = self.classifier(self.dropout(UpperCAmelCase_ ) ) lowerCAmelCase : Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase : Union[str, Any] = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase : Union[str, Any] = 'single_label_classification' else: lowerCAmelCase : Any = 'multi_label_classification' if self.config.problem_type == "regression": lowerCAmelCase : int = MSELoss() if self.num_labels == 1: lowerCAmelCase : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCAmelCase : int = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase : int = CrossEntropyLoss() lowerCAmelCase : List[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase : Optional[Any] = BCEWithLogitsLoss() lowerCAmelCase : Tuple = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: lowerCAmelCase : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
343
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : str = logging.get_logger(__name__) __A : str = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class __A ( lowerCAmelCase ): lowerCAmelCase_ : List[Any] = "glpn" def __init__( self : List[Any] , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[Any]=[8, 4, 2, 1] , UpperCAmelCase_ : Optional[int]=[32, 64, 160, 256] , UpperCAmelCase_ : Union[str, Any]=[7, 3, 3, 3] , UpperCAmelCase_ : Dict=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Any=[4, 4, 4, 4] , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Optional[Any]=1E-6 , UpperCAmelCase_ : Tuple=64 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=-1 , **UpperCAmelCase_ : List[str] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : List[str] = num_channels lowerCAmelCase : int = num_encoder_blocks lowerCAmelCase : Union[str, Any] = depths lowerCAmelCase : List[str] = sr_ratios lowerCAmelCase : str = hidden_sizes lowerCAmelCase : List[str] = patch_sizes lowerCAmelCase : Any = strides lowerCAmelCase : List[str] = mlp_ratios lowerCAmelCase : int = num_attention_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : List[Any] = hidden_dropout_prob lowerCAmelCase : List[Any] = attention_probs_dropout_prob lowerCAmelCase : str = initializer_range lowerCAmelCase : Tuple = drop_path_rate lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = decoder_hidden_size lowerCAmelCase : List[Any] = max_depth lowerCAmelCase : str = head_in_index
343
1
"""simple docstring""" def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> float: _validate_point(__UpperCamelCase ) _validate_point(__UpperCamelCase ) if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(a - b ) for a, b in zip(__UpperCamelCase , __UpperCamelCase ) ) ) def lowercase ( __UpperCamelCase ) -> None: if point: if isinstance(__UpperCamelCase , __UpperCamelCase ): for item in point: if not isinstance(__UpperCamelCase , (int, float) ): __magic_name__ = ( '''Expected a list of numbers as input, found ''' f'''{type(__UpperCamelCase ).__name__}''' ) raise TypeError(__UpperCamelCase ) else: __magic_name__ = f'''Expected a list of numbers as input, found {type(__UpperCamelCase ).__name__}''' raise TypeError(__UpperCamelCase ) else: raise ValueError('''Missing an input''' ) def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> float: _validate_point(__UpperCamelCase ) _validate_point(__UpperCamelCase ) if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(x - y ) for x, y in zip(__UpperCamelCase , __UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
190
"""simple docstring""" class _lowercase : def __init__( self , UpperCamelCase_ ): __magic_name__ = size __magic_name__ = [0] * size __magic_name__ = [0] * size @staticmethod def lowerCAmelCase__ ( UpperCamelCase_ ): return index | (index + 1) @staticmethod def lowerCAmelCase__ ( UpperCamelCase_ ): return (index & (index + 1)) - 1 def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): __magic_name__ = value while index < self.size: __magic_name__ = self.get_prev(UpperCamelCase_ ) + 1 if current_left_border == index: __magic_name__ = value else: __magic_name__ = max(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = self.get_next(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): right -= 1 # Because of right is exclusive __magic_name__ = 0 while left <= right: __magic_name__ = self.get_prev(UpperCamelCase_ ) if left <= current_left: __magic_name__ = max(UpperCamelCase_ , self.tree[right] ) __magic_name__ = current_left else: __magic_name__ = max(UpperCamelCase_ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
190
1
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = SamImageProcessor() _lowerCAmelCase = SamProcessor(lowercase__ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **lowercase__ : List[str] ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase__ ).image_processor def SCREAMING_SNAKE_CASE__ ( self : str ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_image_processor(do_normalize=lowercase__ , padding_value=1.0 ) _lowerCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowercase__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = SamProcessor(image_processor=lowercase__ ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(lowercase__ , return_tensors='np' ) _lowerCAmelCase = processor(images=lowercase__ , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = SamProcessor(image_processor=lowercase__ ) _lowerCAmelCase = [torch.ones((1, 3, 5, 5) )] _lowerCAmelCase = [[17_64, 26_46]] _lowerCAmelCase = [[6_83, 10_24]] _lowerCAmelCase = processor.post_process_masks(lowercase__ , lowercase__ , lowercase__ ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) _lowerCAmelCase = processor.post_process_masks( lowercase__ , torch.tensor(lowercase__ ) , torch.tensor(lowercase__ ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np _lowerCAmelCase = [np.ones((1, 3, 5, 5) )] _lowerCAmelCase = processor.post_process_masks(lowercase__ , np.array(lowercase__ ) , np.array(lowercase__ ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) _lowerCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(lowercase__ ): _lowerCAmelCase = processor.post_process_masks(lowercase__ , np.array(lowercase__ ) , np.array(lowercase__ ) ) @require_vision @require_tf class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = SamImageProcessor() _lowerCAmelCase = SamProcessor(lowercase__ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Any , **lowercase__ : int ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase__ ).image_processor def SCREAMING_SNAKE_CASE__ ( self : str ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_image_processor(do_normalize=lowercase__ , padding_value=1.0 ) _lowerCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowercase__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = SamProcessor(image_processor=lowercase__ ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(lowercase__ , return_tensors='np' ) _lowerCAmelCase = processor(images=lowercase__ , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = SamProcessor(image_processor=lowercase__ ) _lowerCAmelCase = [tf.ones((1, 3, 5, 5) )] _lowerCAmelCase = [[17_64, 26_46]] _lowerCAmelCase = [[6_83, 10_24]] _lowerCAmelCase = processor.post_process_masks(lowercase__ , lowercase__ , lowercase__ , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) _lowerCAmelCase = processor.post_process_masks( lowercase__ , tf.convert_to_tensor(lowercase__ ) , tf.convert_to_tensor(lowercase__ ) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np _lowerCAmelCase = [np.ones((1, 3, 5, 5) )] _lowerCAmelCase = processor.post_process_masks( lowercase__ , np.array(lowercase__ ) , np.array(lowercase__ ) , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) _lowerCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): _lowerCAmelCase = processor.post_process_masks( lowercase__ , np.array(lowercase__ ) , np.array(lowercase__ ) , return_tensors='tf' ) @require_vision @require_torchvision class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = SamImageProcessor() _lowerCAmelCase = SamProcessor(lowercase__ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , **lowercase__ : Tuple ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase__ ).image_processor def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = SamProcessor(image_processor=lowercase__ ) _lowerCAmelCase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) _lowerCAmelCase = [tf.convert_to_tensor(lowercase__ )] _lowerCAmelCase = [torch.tensor(lowercase__ )] _lowerCAmelCase = [[17_64, 26_46]] _lowerCAmelCase = [[6_83, 10_24]] _lowerCAmelCase = processor.post_process_masks( lowercase__ , lowercase__ , lowercase__ , return_tensors='tf' ) _lowerCAmelCase = processor.post_process_masks( lowercase__ , lowercase__ , lowercase__ , return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def SCREAMING_SNAKE_CASE__ ( self : List[str] ): _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = SamProcessor(image_processor=lowercase__ ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(lowercase__ , return_tensors='pt' )['pixel_values'].numpy() _lowerCAmelCase = processor(images=lowercase__ , return_tensors='pt' )['pixel_values'].numpy() _lowerCAmelCase = image_processor(lowercase__ , return_tensors='tf' )['pixel_values'].numpy() _lowerCAmelCase = processor(images=lowercase__ , return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(lowercase__ , lowercase__ ) ) self.assertTrue(np.allclose(lowercase__ , lowercase__ ) ) self.assertTrue(np.allclose(lowercase__ , lowercase__ ) )
192
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase: Any = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: str = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: str = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys _lowercase: Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
192
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : Optional[Any] = logging.get_logger(__name__) _UpperCamelCase : Dict = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case ( lowercase_ ): __magic_name__ = '''unispeech''' def __init__( self : Optional[Any] , A : int=3_2 , A : List[Any]=7_6_8 , A : Any=1_2 , A : Union[str, Any]=1_2 , A : Optional[int]=3_0_7_2 , A : List[Any]="gelu" , A : Union[str, Any]=0.1 , A : Any=0.1 , A : List[Any]=0.1 , A : Any=0.0 , A : Optional[Any]=0.0 , A : List[Any]=0.1 , A : Optional[Any]=0.1 , A : Optional[Any]=0.02 , A : List[Any]=1E-5 , A : List[Any]="group" , A : Optional[Any]="gelu" , A : List[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , A : Tuple=(5, 2, 2, 2, 2, 2, 2) , A : List[str]=(1_0, 3, 3, 3, 3, 2, 2) , A : Optional[int]=False , A : str=1_2_8 , A : int=1_6 , A : str=False , A : Tuple=True , A : Optional[int]=0.05 , A : Dict=1_0 , A : Tuple=2 , A : Union[str, Any]=0.0 , A : Dict=1_0 , A : Optional[Any]=0 , A : Union[str, Any]=3_2_0 , A : Dict=2 , A : List[str]=0.1 , A : str=1_0_0 , A : List[Any]=2_5_6 , A : Tuple=2_5_6 , A : Dict=0.1 , A : Any="mean" , A : Optional[int]=False , A : Any=False , A : List[str]=2_5_6 , A : Optional[Any]=8_0 , A : int=0 , A : Optional[Any]=1 , A : str=2 , A : Dict=0.5 , **A : str , ): '''simple docstring''' super().__init__(**lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) a : Optional[Any] = hidden_size a : List[str] = feat_extract_norm a : int = feat_extract_activation a : List[str] = list(lowerCamelCase_ ) a : str = list(lowerCamelCase_ ) a : Tuple = list(lowerCamelCase_ ) a : int = conv_bias a : Tuple = num_conv_pos_embeddings a : Dict = num_conv_pos_embedding_groups a : List[str] = len(self.conv_dim ) a : str = num_hidden_layers a : List[str] = intermediate_size a : int = hidden_act a : int = num_attention_heads a : List[Any] = hidden_dropout a : Dict = attention_dropout a : Any = activation_dropout a : Union[str, Any] = feat_proj_dropout a : Optional[Any] = final_dropout a : List[Any] = layerdrop a : Tuple = layer_norm_eps a : Union[str, Any] = initializer_range a : Optional[int] = num_ctc_classes a : List[Any] = vocab_size a : Optional[int] = do_stable_layer_norm a : Any = use_weighted_layer_sum a : Union[str, Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a : Optional[int] = apply_spec_augment a : Any = mask_time_prob a : Any = mask_time_length a : Dict = mask_time_min_masks a : Tuple = mask_feature_prob a : str = mask_feature_length a : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations a : str = num_codevectors_per_group a : Dict = num_codevector_groups a : Union[str, Any] = contrastive_logits_temperature a : int = feat_quantizer_dropout a : List[str] = num_negatives a : Dict = codevector_dim a : Optional[int] = proj_codevector_dim a : int = diversity_loss_weight # ctc loss a : Dict = ctc_loss_reduction a : Optional[int] = ctc_zero_infinity # pretraining loss a : Tuple = replace_prob @property def lowerCamelCase__ ( self : Any ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
713
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def snake_case (A_ :int = 1_0_0_0_0_0_0 , A_ :int = 1_0 ): '''simple docstring''' a : defaultdict = defaultdict(A_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: a : Optional[Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: a : Union[str, Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(A_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(f'''{solution() = }''')
118
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase_ (lowercase__ ): snake_case =['image_processor', 'tokenizer'] snake_case ='ViltImageProcessor' snake_case =('BertTokenizer', 'BertTokenizerFast') def __init__( self , lowercase_=None , lowercase_=None , **lowercase_) -> Optional[Any]: a__ =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase_ , ) a__ =kwargs.pop('feature_extractor') a__ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(lowercase_ , lowercase_) a__ =self.image_processor def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = True , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = True , lowercase_ = None , **lowercase_ , ) -> BatchEncoding: a__ =self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel_values + pixel_mask a__ =self.image_processor(lowercase_ , return_tensors=lowercase_) encoding.update(lowercase_) return encoding def __UpperCamelCase ( self , *lowercase_ , **lowercase_) -> int: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def __UpperCamelCase ( self , *lowercase_ , **lowercase_) -> Tuple: return self.tokenizer.decode(*lowercase_ , **lowercase_) @property def __UpperCamelCase ( self) -> Optional[Any]: a__ =self.tokenizer.model_input_names a__ =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def __UpperCamelCase ( self) -> List[str]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase_ , ) return self.image_processor_class @property def __UpperCamelCase ( self) -> Union[str, Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase_ , ) return self.image_processor
20
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def lowercase__ ( lowerCamelCase : Tuple , lowerCamelCase : Dict=False , lowerCamelCase : Any=False ) -> Union[str, Any]: lowerCAmelCase__ : str = "backbone." if is_semantic else "" lowerCAmelCase__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", "beit.embeddings.cls_token"), (F"{prefix}patch_embed.proj.weight", "beit.embeddings.patch_embeddings.projection.weight"), (F"{prefix}patch_embed.proj.bias", "beit.embeddings.patch_embeddings.projection.bias"), (F"{prefix}pos_embed", "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowercase__ ( lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : int=False , lowerCamelCase : Union[str, Any]=False ) -> List[str]: for i in range(config.num_hidden_layers ): lowerCAmelCase__ : Optional[int] = "backbone." if is_semantic else "" # queries, keys and values lowerCAmelCase__ : Any = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ : List[Any] = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) lowerCAmelCase__ : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) lowerCAmelCase__ : Tuple = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ : Optional[Any] = q_bias lowerCAmelCase__ : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : List[Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowerCAmelCase__ : Optional[Any] = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) lowerCAmelCase__ : Optional[Any] = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) lowerCAmelCase__ : Union[str, Any] = gamma_a lowerCAmelCase__ : Optional[Any] = gamma_a def lowercase__ ( lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple ) -> List[Any]: lowerCAmelCase__ : Dict = dct.pop(lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = val def lowercase__ ( ) -> Any: lowerCAmelCase__ : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ : Tuple = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def lowercase__ ( lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : List[str]=False ) -> int: lowerCAmelCase__ : Optional[int] = False if "rvlcdip" in checkpoint_url else True lowerCAmelCase__ : Any = BeitConfig(use_absolute_position_embeddings=lowerCamelCase , use_mask_token=lowerCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowerCAmelCase__ : Optional[Any] = 1_0_2_4 lowerCAmelCase__ : Any = 4_0_9_6 lowerCAmelCase__ : int = 2_4 lowerCAmelCase__ : Tuple = 1_6 # labels if "rvlcdip" in checkpoint_url: lowerCAmelCase__ : Optional[Any] = 1_6 lowerCAmelCase__ : str = "huggingface/label-files" lowerCAmelCase__ : List[str] = "rvlcdip-id2label.json" lowerCAmelCase__ : Tuple = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="dataset" ) , "r" ) ) lowerCAmelCase__ : Tuple = {int(lowerCamelCase ): v for k, v in idalabel.items()} lowerCAmelCase__ : Optional[Any] = idalabel lowerCAmelCase__ : Any = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowerCAmelCase__ : int = torch.hub.load_state_dict_from_url(lowerCamelCase , map_location="cpu" )["model"] lowerCAmelCase__ : Union[str, Any] = create_rename_keys(lowerCamelCase , has_lm_head=lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_q_k_v(lowerCamelCase , lowerCamelCase , has_lm_head=lowerCamelCase ) # load HuggingFace model lowerCAmelCase__ : Union[str, Any] = BeitForMaskedImageModeling(lowerCamelCase ) if has_lm_head else BeitForImageClassification(lowerCamelCase ) model.eval() model.load_state_dict(lowerCamelCase ) # Check outputs on an image lowerCAmelCase__ : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCamelCase ) lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : List[str] = image_processor(images=lowerCamelCase , return_tensors="pt" ) lowerCAmelCase__ : Any = encoding["pixel_values"] lowerCAmelCase__ : Optional[Any] = model(lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = outputs.logits # verify logits lowerCAmelCase__ : str = [1, 1_6] if "rvlcdip" in checkpoint_url else [1, 1_9_6, 8_1_9_2] assert logits.shape == torch.Size(lowerCamelCase ), "Shape of logits not as expected" Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: if has_lm_head: lowerCAmelCase__ : List[Any] = "dit-base" if "base" in checkpoint_url else "dit-large" else: lowerCAmelCase__ : Tuple = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=lowerCamelCase , ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=lowerCamelCase , ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) __UpperCAmelCase = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
308
0
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME _lowerCamelCase : Optional[Any] = ["""small""", """medium""", """large"""] _lowerCamelCase : Optional[Any] = """lm_head.decoder.weight""" _lowerCamelCase : Dict = """lm_head.weight""" def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[str]: """simple docstring""" A__ = torch.load(__SCREAMING_SNAKE_CASE ) A__ = d.pop(__SCREAMING_SNAKE_CASE ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) torch.save(__SCREAMING_SNAKE_CASE , os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) _lowerCamelCase : int = parser.parse_args() for MODEL in DIALOGPT_MODELS: _lowerCamelCase : Dict = os.path.join(args.dialogpt_path, F'''{MODEL}_ft.pkl''') _lowerCamelCase : List[Any] = F'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
704
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCamelCase_ : '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : Union[str, Any]=10 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : Optional[int]=32 * 4 , UpperCAmelCase__ : int=32 * 6 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : Dict=32 , ) ->Optional[int]: '''simple docstring''' A__ = parent A__ = batch_size A__ = is_training A__ = use_auxiliary_loss A__ = num_queries A__ = num_channels A__ = min_size A__ = max_size A__ = num_labels A__ = mask_feature_size def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( UpperCAmelCase__) A__ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase__) A__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase__) > 0.5 ).float() A__ = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase__) > 0.5).long() A__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]: '''simple docstring''' A__ , A__ , A__ , A__ , A__ = self.prepare_config_and_inputs() A__ = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any]) ->int: '''simple docstring''' A__ = output.encoder_hidden_states A__ = output.pixel_decoder_hidden_states A__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase__) , len(config.backbone_config.depths)) self.parent.assertTrue(len(UpperCAmelCase__) , len(config.backbone_config.depths)) self.parent.assertTrue(len(UpperCAmelCase__) , config.decoder_config.decoder_layers) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any]=False) ->Optional[int]: '''simple docstring''' with torch.no_grad(): A__ = MaskFormerModel(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(pixel_values=UpperCAmelCase__ , pixel_mask=UpperCAmelCase__) A__ = model(UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : int) ->List[Any]: '''simple docstring''' A__ = MaskFormerForInstanceSegmentation(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() def comm_check_on_output(UpperCAmelCase__ : str): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): A__ = model(pixel_values=UpperCAmelCase__ , pixel_mask=UpperCAmelCase__) A__ = model(UpperCAmelCase__) comm_check_on_output(UpperCAmelCase__) A__ = model( pixel_values=UpperCAmelCase__ , pixel_mask=UpperCAmelCase__ , mask_labels=UpperCAmelCase__ , class_labels=UpperCAmelCase__) comm_check_on_output(UpperCAmelCase__) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCAmelCase__ = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]: '''simple docstring''' A__ = MaskFormerModelTester(self) A__ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase__ , **UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase__) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple: '''simple docstring''' pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''') def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''MaskFormer is not a generative model''') def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''MaskFormer does not use token embeddings''') def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' for model_name in ["facebook/maskformer-swin-small-coco"]: A__ = MaskFormerModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]: '''simple docstring''' A__ = (self.model_tester.min_size,) * 2 A__ = { '''pixel_values''': torch.randn((2, 3, *size) , device=UpperCAmelCase__), '''mask_labels''': torch.randn((2, 10, *size) , device=UpperCAmelCase__), '''class_labels''': torch.zeros(2 , 10 , device=UpperCAmelCase__).long(), } A__ = MaskFormerForInstanceSegmentation(MaskFormerConfig()).to(UpperCAmelCase__) A__ = model(**UpperCAmelCase__) self.assertTrue(outputs.loss is not None) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase__ , **UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__).to(UpperCAmelCase__) A__ = model(**UpperCAmelCase__ , output_attentions=UpperCAmelCase__) self.assertTrue(outputs.attentions is not None) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: '''simple docstring''' if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss A__ = self.all_model_classes[1] A__ , A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() A__ = model_class(UpperCAmelCase__) model.to(UpperCAmelCase__) model.train() A__ = model(UpperCAmelCase__ , mask_labels=UpperCAmelCase__ , class_labels=UpperCAmelCase__).loss loss.backward() def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' A__ = self.all_model_classes[1] A__ , A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() A__ = True A__ = True A__ = model_class(UpperCAmelCase__) model.to(UpperCAmelCase__) model.train() A__ = model(UpperCAmelCase__ , mask_labels=UpperCAmelCase__ , class_labels=UpperCAmelCase__) A__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't A__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase__) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) _lowerCamelCase : Tuple = 1E-4 def SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[str]: '''simple docstring''' return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''') if is_vision_available() else None ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]: '''simple docstring''' A__ = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''').to(UpperCAmelCase__) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(UpperCAmelCase__ , return_tensors='''pt''').to(UpperCAmelCase__) A__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(UpperCAmelCase__ , (1, 3, 800, 1_088)) with torch.no_grad(): A__ = model(**UpperCAmelCase__) A__ = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]]).to(UpperCAmelCase__) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__)) A__ = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]]).to(UpperCAmelCase__) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__)) A__ = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]]).to(UpperCAmelCase__) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__)) def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''') .to(UpperCAmelCase__) .eval() ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(UpperCAmelCase__ , return_tensors='''pt''').to(UpperCAmelCase__) A__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(UpperCAmelCase__ , (1, 3, 800, 1_088)) with torch.no_grad(): A__ = model(**UpperCAmelCase__) # masks_queries_logits A__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) A__ = [ [-1.3737124, -1.7724937, -1.9364233], [-1.5977281, -1.9867939, -2.1523695], [-1.5795398, -1.9269832, -2.093942], ] A__ = torch.tensor(UpperCAmelCase__).to(UpperCAmelCase__) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__)) # class_queries_logits A__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) A__ = torch.tensor( [ [1.65_12e00, -5.25_72e00, -3.35_19e00], [3.61_69e-02, -5.90_25e00, -2.93_13e00], [1.07_66e-04, -7.76_30e00, -5.12_63e00], ]).to(UpperCAmelCase__) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__)) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''') .to(UpperCAmelCase__) .eval() ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(UpperCAmelCase__ , return_tensors='''pt''').to(UpperCAmelCase__) A__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(UpperCAmelCase__ , (1, 3, 800, 1_088)) with torch.no_grad(): A__ = model(**UpperCAmelCase__) # masks_queries_logits A__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) A__ = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] A__ = torch.tensor(UpperCAmelCase__).to(UpperCAmelCase__) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__)) # class_queries_logits A__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) A__ = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]]).to(UpperCAmelCase__) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__)) def SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: '''simple docstring''' A__ = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''') .to(UpperCAmelCase__) .eval() ) A__ = self.default_image_processor A__ = image_processor( [np.zeros((3, 800, 1_333)), np.zeros((3, 800, 1_333))] , segmentation_maps=[np.zeros((384, 384)).astype(np.floataa), np.zeros((384, 384)).astype(np.floataa)] , return_tensors='''pt''' , ) A__ = inputs['''pixel_values'''].to(UpperCAmelCase__) A__ = [el.to(UpperCAmelCase__) for el in inputs['''mask_labels''']] A__ = [el.to(UpperCAmelCase__) for el in inputs['''class_labels''']] with torch.no_grad(): A__ = model(**UpperCAmelCase__) self.assertTrue(outputs.loss is not None)
177
0
import argparse import math import traceback import dateutil.parser as date_parser import requests def _A( UpperCamelCase__ : int ) -> str: '''simple docstring''' __lowercase = {} __lowercase = job['''started_at'''] __lowercase = job['''completed_at'''] __lowercase = date_parser.parse(UpperCamelCase__ ) __lowercase = date_parser.parse(UpperCamelCase__ ) __lowercase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) __lowercase = start __lowercase = end __lowercase = duration_in_min return job_info def _A( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any=None ) -> Optional[int]: '''simple docstring''' __lowercase = None if token is not None: __lowercase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'Bearer {token}'} __lowercase = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' __lowercase = requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).json() __lowercase = {} try: job_time.update({job['''name''']: extract_time_from_single_job(UpperCamelCase__ ) for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(UpperCamelCase__ ): __lowercase = requests.get(url + F'&page={i + 2}' , headers=UpperCamelCase__ ).json() job_time.update({job['''name''']: extract_time_from_single_job(UpperCamelCase__ ) for job in result['''jobs''']} ) return job_time except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = get_job_time(args.workflow_run_id) UpperCAmelCase__ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F"""{k}: {v["duration"]}""")
332
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : List[Any]=13 , lowerCamelCase__ : Any=32 , lowerCamelCase__ : List[str]=3 , lowerCamelCase__ : str=4 , lowerCamelCase__ : Tuple=[10, 20, 30, 40] , lowerCamelCase__ : Any=[2, 2, 3, 2] , lowerCamelCase__ : Dict=True , lowerCamelCase__ : int=True , lowerCamelCase__ : int=37 , lowerCamelCase__ : Optional[int]="gelu" , lowerCamelCase__ : str=10 , lowerCamelCase__ : Dict=0.0_2 , lowerCamelCase__ : Optional[int]=["stage2", "stage3", "stage4"] , lowerCamelCase__ : Dict=[2, 3, 4] , lowerCamelCase__ : Any=None , ) -> int: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = num_stages __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_labels __lowercase = initializer_range __lowercase = out_features __lowercase = out_indices __lowercase = scope def UpperCAmelCase_ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : int ) -> Dict: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : Any ) -> Tuple: """simple docstring""" __lowercase = ConvNextModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self : Dict , lowerCamelCase__ : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = ConvNextForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase = ConvNextBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowercase = None __lowercase = ConvNextBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) UpperCamelCase_ : int = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : Any = True UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : int = False UpperCamelCase_ : Union[str, Any] = False def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ConvNextModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self : List[str] ) -> Any: """simple docstring""" return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def UpperCAmelCase_ ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def UpperCAmelCase_ ( self : int ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase_ ( self : Optional[int] ) -> str: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> str: """simple docstring""" def check_hidden_states_output(lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ): __lowercase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = ConvNextModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _A( ) -> Tuple: '''simple docstring''' __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : Any ) -> str: """simple docstring""" __lowercase = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(lowerCamelCase__ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCamelCase__ ) # verify the logits __lowercase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __lowercase = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) ) @require_torch class a ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : Optional[Any] = (ConvNextBackbone,) if is_torch_available() else () UpperCamelCase_ : str = ConvNextConfig UpperCamelCase_ : Optional[int] = False def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase = ConvNextModelTester(self )
332
1
from math import pow, sqrt def SCREAMING_SNAKE_CASE__ ( *lowerCAmelCase_ : float ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple =len(_lowerCamelCase ) > 0 and all(value > 0.0 for value in values ) return result def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : float ,lowerCAmelCase_ : float ) -> float | ValueError: """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(_lowerCamelCase ,_lowerCamelCase ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : float ,lowerCAmelCase_ : float ,lowerCAmelCase_ : float ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : float ,lowerCAmelCase_ : float ,lowerCAmelCase_ : float ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : float ,lowerCAmelCase_ : float ,lowerCAmelCase_ : float ) -> float | ValueError: """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a ,2 ) ,6 ) if validate(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : float ,lowerCAmelCase_ : float ,lowerCAmelCase_ : float ) -> float | ValueError: """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a ,2 ) / molar_mass ,6 ) if validate(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
706
__SCREAMING_SNAKE_CASE = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __SCREAMING_SNAKE_CASE = [{'type': 'code', 'content': INSTALL_CONTENT}] __SCREAMING_SNAKE_CASE = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
153
0
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand UpperCamelCase_ = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) UpperCamelCase_ = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) UpperCamelCase_ = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) UpperCamelCase_ = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) UpperCamelCase_ = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) UpperCamelCase_ = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) UpperCamelCase_ = ( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def _lowerCAmelCase ( ) -> List[Any]: lowercase , lowercase : Dict =randrange(len(__magic_name__ ) ), randrange(len(__magic_name__ ) ) lowercase : Optional[int] =['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowercase , lowercase : List[str] =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _lowerCAmelCase ( __magic_name__ : int = 100 ) -> Optional[int]: return (generate_random_hand() for _ in range(__magic_name__ )) @pytest.mark.parametrize('''hand, expected''' , __magic_name__ ) def _lowerCAmelCase ( __magic_name__ : List[str] , __magic_name__ : Any ) -> List[str]: assert PokerHand(__magic_name__ )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , __magic_name__ ) def _lowerCAmelCase ( __magic_name__ : Any , __magic_name__ : List[Any] ) -> Any: assert PokerHand(__magic_name__ )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , __magic_name__ ) def _lowerCAmelCase ( __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> Any: lowercase : Tuple =PokerHand(__magic_name__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , __magic_name__ ) def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : Dict ) -> Any: assert PokerHand(__magic_name__ )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , __magic_name__ ) def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : Tuple ) -> Tuple: assert PokerHand(__magic_name__ )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , __magic_name__ ) def _lowerCAmelCase ( __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : Optional[Any] ) -> List[Any]: assert PokerHand(__magic_name__ ).compare_with(PokerHand(__magic_name__ ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def _lowerCAmelCase ( __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> int: assert PokerHand(__magic_name__ ).compare_with(PokerHand(__magic_name__ ) ) == expected def _lowerCAmelCase ( ) -> int: lowercase : Dict =[PokerHand(__magic_name__ ) for hand in SORTED_HANDS] lowercase : Tuple =poker_hands.copy() shuffle(__magic_name__ ) lowercase : Union[str, Any] =chain(sorted(__magic_name__ ) ) for index, hand in enumerate(__magic_name__ ): assert hand == poker_hands[index] def _lowerCAmelCase ( ) -> Optional[int]: # Test that five high straights are compared correctly. lowercase : Optional[int] =[PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=__magic_name__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _lowerCAmelCase ( ) -> List[str]: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. lowercase : List[str] =PokerHand('''2C 4S AS 3D 5C''' ) lowercase : Optional[Any] =True lowercase : Optional[Any] =[5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _lowerCAmelCase ( ) -> int: # Problem number 54 from Project Euler # Testing from poker_hands.txt file lowercase : Optional[Any] =0 lowercase : int =os.path.abspath(os.path.dirname(__magic_name__ ) ) lowercase : int =os.path.join(__magic_name__ , '''poker_hands.txt''' ) with open(__magic_name__ ) as file_hand: for line in file_hand: lowercase : Tuple =line[:14].strip() lowercase : List[Any] =line[15:].strip() lowercase , lowercase : Tuple =PokerHand(__magic_name__ ), PokerHand(__magic_name__ ) lowercase : Optional[Any] =player.compare_with(__magic_name__ ) if output == "Win": answer += 1 assert answer == 376
92
"""simple docstring""" import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) UpperCAmelCase__ = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') UpperCAmelCase__ = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) UpperCAmelCase__ = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) UpperCAmelCase__ = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) UpperCAmelCase__ = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions UpperCAmelCase__ = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) UpperCAmelCase__ = tf.keras.preprocessing.image.img_to_array(test_image) UpperCAmelCase__ = np.expand_dims(test_image, axis=0) UpperCAmelCase__ = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: UpperCAmelCase__ = 'Normal' if result[0][0] == 1: UpperCAmelCase__ = 'Abnormality detected'
224
0
'''simple docstring''' def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :str ): if b == 0: return 1 if (b % 2) == 0: return actual_power(__lowerCamelCase , int(b / 2 ) ) * actual_power(__lowerCamelCase , int(b / 2 ) ) else: return a * actual_power(__lowerCamelCase , int(b / 2 ) ) * actual_power(__lowerCamelCase , int(b / 2 ) ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Union[str, Any] ): if b < 0: return 1 / actual_power(__lowerCamelCase , __lowerCamelCase ) return actual_power(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": print(power(-2, -3))
714
'''simple docstring''' def A (__lowerCamelCase :int = 100 ): _lowerCAmelCase = n * (n + 1) * (2 * n + 1) / 6 _lowerCAmelCase = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
162
0
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : str ): return " ".join( "".join(word[::-1] ) if len(_lowerCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
172
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def UpperCAmelCase_ (_lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path __UpperCamelCase : int = quote(_lowerCAmelCase ) return hfh.hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" , revision=_lowerCAmelCase )
327
0
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" torch.manual_seed(0) _UpperCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" _UpperCamelCase = self.dummy_uncond_unet _UpperCamelCase = ScoreSdeVeScheduler() _UpperCamelCase = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_) sde_ve.to(lowercase_) sde_ve.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = torch.manual_seed(0) _UpperCamelCase = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=lowercase_).images _UpperCamelCase = torch.manual_seed(0) _UpperCamelCase = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=lowercase_ , return_dict=lowercase_)[ 0 ] _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" _UpperCamelCase = "google/ncsnpp-church-256" _UpperCamelCase = UNetaDModel.from_pretrained(lowercase_) _UpperCamelCase = ScoreSdeVeScheduler.from_pretrained(lowercase_) _UpperCamelCase = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_) sde_ve.to(lowercase_) sde_ve.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = torch.manual_seed(0) _UpperCamelCase = sde_ve(num_inference_steps=10 , output_type="numpy" , generator=lowercase_).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _UpperCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
82
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase ( enum.Enum ): '''simple docstring''' __A = 0 __A = 1 @add_end_docstrings(lowerCAmelCase ) class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = '''generated''' def __init__( self : Any , *lowercase_ : Dict , **lowercase_ : Tuple) -> List[Any]: """simple docstring""" super().__init__(*lowercase_ , **lowercase_) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING) def __UpperCAmelCase ( self : Optional[int] , lowercase_ : Union[str, Any]=None , lowercase_ : Optional[Any]=None , lowercase_ : Optional[int]=None , lowercase_ : Optional[Any]=None , lowercase_ : Any=None , lowercase_ : Union[str, Any]=None , **lowercase_ : Optional[Any] , ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = {} if truncation is not None: _UpperCamelCase = truncation _UpperCamelCase = generate_kwargs _UpperCamelCase = {} if return_tensors is not None and return_type is None: _UpperCamelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: _UpperCamelCase = return_type if clean_up_tokenization_spaces is not None: _UpperCamelCase = clean_up_tokenization_spaces if stop_sequence is not None: _UpperCamelCase = self.tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) if len(lowercase_) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim.") _UpperCamelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __UpperCAmelCase ( self : int , lowercase_ : int , lowercase_ : int , lowercase_ : int) -> Any: """simple docstring""" return True def __UpperCAmelCase ( self : Dict , *lowercase_ : List[str] , lowercase_ : List[Any]) -> Tuple: """simple docstring""" _UpperCamelCase = self.model.config.prefix if self.model.config.prefix is not None else "" if isinstance(args[0] , lowercase_): if self.tokenizer.pad_token_id is None: raise ValueError("Please make sure that the tokenizer has a pad_token_id when using a batch input") _UpperCamelCase = ([prefix + arg for arg in args[0]],) _UpperCamelCase = True elif isinstance(args[0] , lowercase_): _UpperCamelCase = (prefix + args[0],) _UpperCamelCase = False else: raise ValueError( f' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`') _UpperCamelCase = self.tokenizer(*lowercase_ , padding=lowercase_ , truncation=lowercase_ , return_tensors=self.framework) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : List[Any] , *lowercase_ : Any , **lowercase_ : int) -> Dict: """simple docstring""" _UpperCamelCase = super().__call__(*lowercase_ , **lowercase_) if ( isinstance(args[0] , lowercase_) and all(isinstance(lowercase_ , lowercase_) for el in args[0]) and all(len(lowercase_) == 1 for res in result) ): return [res[0] for res in result] return result def __UpperCAmelCase ( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : str=TruncationStrategy.DO_NOT_TRUNCATE , **lowercase_ : Dict) -> Optional[int]: """simple docstring""" _UpperCamelCase = self._parse_and_tokenize(lowercase_ , truncation=lowercase_ , **lowercase_) return inputs def __UpperCAmelCase ( self : str , lowercase_ : str , **lowercase_ : str) -> str: """simple docstring""" if self.framework == "pt": _UpperCamelCase , _UpperCamelCase = model_inputs["input_ids"].shape elif self.framework == "tf": _UpperCamelCase , _UpperCamelCase = tf.shape(model_inputs["input_ids"]).numpy() _UpperCamelCase = generate_kwargs.get("min_length" , self.model.config.min_length) _UpperCamelCase = generate_kwargs.get("max_length" , self.model.config.max_length) self.check_inputs(lowercase_ , generate_kwargs["min_length"] , generate_kwargs["max_length"]) _UpperCamelCase = self.model.generate(**lowercase_ , **lowercase_) _UpperCamelCase = output_ids.shape[0] if self.framework == "pt": _UpperCamelCase = output_ids.reshape(lowercase_ , out_b // in_b , *output_ids.shape[1:]) elif self.framework == "tf": _UpperCamelCase = tf.reshape(lowercase_ , (in_b, out_b // in_b, *output_ids.shape[1:])) return {"output_ids": output_ids} def __UpperCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : int=ReturnType.TEXT , lowercase_ : int=False) -> Tuple: """simple docstring""" _UpperCamelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: _UpperCamelCase = {f'{self.return_name}_token_ids': output_ids} elif return_type == ReturnType.TEXT: _UpperCamelCase = { f'{self.return_name}_text': self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ , ) } records.append(lowercase_) return records @add_end_docstrings(lowerCAmelCase ) class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = '''summary''' def __call__( self : Optional[Any] , *lowercase_ : int , **lowercase_ : Dict) -> Optional[int]: """simple docstring""" return super().__call__(*lowercase_ , **lowercase_) def __UpperCAmelCase ( self : List[str] , lowercase_ : int , lowercase_ : int , lowercase_ : int) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f'Your min_length={min_length} must be inferior than your max_length={max_length}.') if input_length < max_length: logger.warning( f'Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ' "a summarization task, where outputs shorter than the input are typically wanted, you might " f'consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})') @add_end_docstrings(lowerCAmelCase ) class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = '''translation''' def __UpperCAmelCase ( self : Dict , lowercase_ : int , lowercase_ : int , lowercase_ : int) -> int: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f'Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ' "increasing your max_length manually, e.g. translator('...', max_length=400)") return True def __UpperCAmelCase ( self : Tuple , *lowercase_ : Any , lowercase_ : List[Any]=TruncationStrategy.DO_NOT_TRUNCATE , lowercase_ : Any=None , lowercase_ : Optional[Any]=None) -> List[str]: """simple docstring""" if getattr(self.tokenizer , "_build_translation_inputs" , lowercase_): return self.tokenizer._build_translation_inputs( *lowercase_ , return_tensors=self.framework , truncation=lowercase_ , src_lang=lowercase_ , tgt_lang=lowercase_) else: return super()._parse_and_tokenize(*lowercase_ , truncation=lowercase_) def __UpperCAmelCase ( self : List[str] , lowercase_ : Dict=None , lowercase_ : str=None , **lowercase_ : List[Any]) -> List[Any]: """simple docstring""" _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = super()._sanitize_parameters(**lowercase_) if src_lang is not None: _UpperCamelCase = src_lang if tgt_lang is not None: _UpperCamelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. _UpperCamelCase = kwargs.get("task" , self.task) _UpperCamelCase = task.split("_") if task and len(lowercase_) == 4: # translation, XX, to YY _UpperCamelCase = items[1] _UpperCamelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : List[str] , *lowercase_ : List[str] , **lowercase_ : str) -> Union[str, Any]: """simple docstring""" return super().__call__(*lowercase_ , **lowercase_)
82
1
def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase )-> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
604
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def __UpperCAmelCase ( )-> List[Any]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(UpperCAmelCase ): requests.request('''GET''', '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''', '''https://huggingface.co''', timeout=1.0 ) @pytest.mark.integration def __UpperCAmelCase ( )-> Union[str, Any]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''', '''https://huggingface.co''' ) def __UpperCAmelCase ( )-> Tuple: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(UpperCAmelCase ): http_head('''https://huggingface.co''' )
604
1
from math import sqrt def _snake_case (__lowercase): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowercase) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _snake_case (__lowercase = 10001): UpperCamelCase_ = 0 UpperCamelCase_ = 1 while count != nth and number < 3: number += 1 if is_prime(__lowercase): count += 1 while count != nth: number += 2 if is_prime(__lowercase): count += 1 return number if __name__ == "__main__": print(f'{solution() = }')
618
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class _a ( unittest.TestCase ): """simple docstring""" A_ = inspect.getfile(accelerate.test_utils ) A_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] ) A_ = ["""accelerate""", """launch"""] A_ = Path.home() / """.cache/huggingface/accelerate""" A_ = """default_config.yaml""" A_ = config_folder / config_file A_ = config_folder / """_default_config.yaml""" A_ = Path("""tests/test_configs""" ) @classmethod def _UpperCAmelCase ( cls ) -> Union[str, Any]: if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def _UpperCAmelCase ( cls ) -> List[str]: if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def _UpperCAmelCase ( self ) -> Optional[int]: for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=_UpperCAmelCase ): execute_subprocess_async( self.base_cmd + ['--config_file', str(_UpperCAmelCase ), self.test_file_path] , env=os.environ.copy() ) def _UpperCAmelCase ( self ) -> Tuple: execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class _a ( unittest.TestCase ): """simple docstring""" A_ = """test-tpu""" A_ = """us-central1-a""" A_ = """ls""" A_ = ["""accelerate""", """tpu-config"""] A_ = """cd /usr/share""" A_ = """tests/test_samples/test_command_file.sh""" A_ = """Running gcloud compute tpus tpu-vm ssh""" def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=_UpperCAmelCase ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , )
618
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): __snake_case : Optional[int] = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): __snake_case : str = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __snake_case : List[Any] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] __snake_case : List[Any] = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(_lowerCamelCase )-1}''' ) if "norm" in key: __snake_case : Union[str, Any] = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __snake_case : int = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] __snake_case : List[Any] = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(_lowerCamelCase )-1}''' ) if "layer_norm1" in key: __snake_case : Optional[Any] = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: __snake_case : Any = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 __snake_case : Optional[int] = key[key.find("""block""" ) + len("""block""" )] __snake_case : Optional[Any] = key.replace(F'''block{idx}''' , F'''block.{int(_lowerCamelCase )-1}''' ) if "attn.q" in key: __snake_case : List[str] = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: __snake_case : Union[str, Any] = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: __snake_case : List[Any] = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: __snake_case : str = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: __snake_case : Union[str, Any] = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: __snake_case : List[str] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: __snake_case : Any = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) __snake_case : Any = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __snake_case : str = key[key.find("""linear_c""" ) + len("""linear_c""" )] __snake_case : List[Any] = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(_lowerCamelCase )-1}''' ) if "bot_conv" in key: __snake_case : Dict = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: __snake_case : List[str] = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: __snake_case : Optional[int] = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: __snake_case : Union[str, Any] = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: __snake_case : List[Any] = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: __snake_case : List[Any] = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: __snake_case : Dict = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): __snake_case : Union[str, Any] = key.replace("""module.last_layer_depth""" , """head.head""" ) __snake_case : int = value return new_state_dict def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __snake_case : Optional[int] = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) __snake_case : int = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict __snake_case : str = kv_weight[ : config.hidden_sizes[i], : ] __snake_case : Dict = kv_bias[: config.hidden_sizes[i]] __snake_case : List[Any] = kv_weight[ config.hidden_sizes[i] :, : ] __snake_case : List[str] = kv_bias[config.hidden_sizes[i] :] def _a ( ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : str = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=None ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) __snake_case : List[Any] = GLPNImageProcessor() # prepare image __snake_case : str = prepare_img() __snake_case : str = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict __snake_case : Union[str, Any] = torch.load(_lowerCamelCase , map_location=torch.device("""cpu""" ) ) # rename keys __snake_case : Any = rename_keys(_lowerCamelCase ) # key and value matrices need special treatment read_in_k_v(_lowerCamelCase , _lowerCamelCase ) # create HuggingFace model and load state dict __snake_case : Any = GLPNForDepthEstimation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # forward pass __snake_case : Optional[Any] = model(_lowerCamelCase ) __snake_case : Any = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: __snake_case : Any = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: __snake_case : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(F'''Unknown model name: {model_name}''' ) __snake_case : List[Any] = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _lowerCamelCase , atol=1E-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) parser.add_argument( "--model_name", default="glpn-kitti", type=str, help="Name of the model in case you're pushing to the hub.", ) __UpperCamelCase = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
26
def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> float: if density <= 0: raise ValueError("Impossible fluid density") if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus") return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
515
0
'''simple docstring''' from __future__ import annotations def a_ ( _UpperCAmelCase : int | float | str ,_UpperCAmelCase : int | float | str ) -> list[str]: if nth_term == "": return [""] __snake_case : Dict = int(_UpperCAmelCase ) __snake_case : Tuple = int(_UpperCAmelCase ) __snake_case : list[str] = [] for temp in range(int(_UpperCAmelCase ) ): series.append(f'''1 / {pow(temp + 1 ,int(_UpperCAmelCase ) )}''' if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() A__ : Optional[int] = int(input('''Enter the last number (nth term) of the P-Series''')) A__ : List[Any] = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
706
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A__ : Union[str, Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = XLMProphetNetTokenizer A__ = False A__ = True def A_ ( self : Dict ) -> List[str]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __snake_case : Optional[int] = XLMProphetNetTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : str ) -> int: '''simple docstring''' __snake_case : Tuple = '[PAD]' __snake_case : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def A_ ( self : Optional[Any] ) -> Any: '''simple docstring''' __snake_case : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '[PAD]' ) self.assertEqual(vocab_keys[1] , '[CLS]' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(__a ) , 1012 ) def A_ ( self : Tuple ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def A_ ( self : int ) -> Optional[Any]: '''simple docstring''' __snake_case : str = XLMProphetNetTokenizer(__a , keep_accents=__a ) __snake_case : List[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(__a , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __snake_case : Optional[int] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __snake_case : List[str] = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) __snake_case : Optional[int] = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ] , ) @cached_property def A_ ( self : Any ) -> Optional[Any]: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' ) @slow def A_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' __snake_case : int = 'Hello World!' __snake_case : Tuple = [35389, 6672, 49, 2] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def A_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' # fmt: off __snake_case : Union[str, Any] = {'input_ids': [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
124
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "sentencepiece.bpe.model"} lowercase_ = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } lowercase_ = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } lowercase_ = "▁" class UpperCAmelCase_ (lowerCamelCase__ ): """simple docstring""" UpperCamelCase_ : int = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , a_ : List[str] , a_ : int="<s>" , a_ : int="</s>" , a_ : int="</s>" , a_ : List[Any]="<s>" , a_ : Optional[Any]="<unk>" , a_ : Optional[int]="<pad>" , a_ : str="<mask>" , a_ : Optional[Dict[str, Any]] = None , **a_ : List[Any] , )-> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token UpperCAmelCase_ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase_ : Optional[int] = vocab_file UpperCAmelCase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_ : Dict = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} UpperCAmelCase_ : Optional[int] = len(self.sp_model ) - 1 UpperCAmelCase_ : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def a ( self : Dict , a_ : List[int] , a_ : Optional[List[int]] = None )-> Optional[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : List[Any] = [self.cls_token_id] UpperCAmelCase_ : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a ( self : Optional[int] , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False )-> int: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def a ( self : Any , a_ : List[int] , a_ : Optional[List[int]] = None )-> Tuple: """simple docstring""" UpperCAmelCase_ : Optional[int] = [self.sep_token_id] UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a ( self : Optional[int] )-> Any: """simple docstring""" return len(self.sp_model ) def a ( self : Dict )-> List[Any]: """simple docstring""" UpperCAmelCase_ : Dict = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a ( self : Union[str, Any] , a_ : str )-> Tuple: """simple docstring""" return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] , a_ : List[Any] )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ : Optional[int] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) return spm_id if spm_id else self.unk_token_id def a ( self : Dict , a_ : Tuple )-> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple , a_ : Tuple )-> int: """simple docstring""" UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Any = """""" UpperCAmelCase_ : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Dict = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ : str = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def __getstate__( self : List[str] )-> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = self.__dict__.copy() UpperCAmelCase_ : Union[str, Any] = None return state def __setstate__( self : Optional[Any] , a_ : int )-> Tuple: """simple docstring""" UpperCAmelCase_ : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a ( self : Optional[Any] , a_ : str , a_ : Optional[str] = None )-> Tuple: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , """wb""" ) as fi: UpperCAmelCase_ : str = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
470
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowercase_ = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') lowercase_ = subprocess.check_output(f"""git diff --name-only {fork_point_sha}""".split()).decode('utf-8').split() lowercase_ = '|'.join(sys.argv[1:]) lowercase_ = re.compile(rf"""^({joined_dirs}).*?\.py$""") lowercase_ = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
562
0
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } lowerCAmelCase_ = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } lowerCAmelCase_ = '''</w>''' lowerCAmelCase_ = '''@@ ''' def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = set() _UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase = char return pairs # Speech2Text2 has no max input length lowerCAmelCase_ = {'''facebook/s2t-wav2vec2-large-en-de''': 1_024} class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self , a__ , a__="<s>" , a__="<pad>" , a__="</s>" , a__="<unk>" , a__=False , a__=None , **a__ , ): super().__init__( unk_token=a__ , bos_token=a__ , eos_token=a__ , pad_token=a__ , do_lower_case=a__ , **a__ , ) _UpperCAmelCase = do_lower_case with open(a__ , encoding='utf-8' ) as vocab_handle: _UpperCAmelCase = json.load(a__ ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _UpperCAmelCase = None _UpperCAmelCase = None else: with open(a__ , encoding='utf-8' ) as merges_handle: _UpperCAmelCase = merges_handle.read().split('\n' )[:-1] _UpperCAmelCase = [tuple(merge.split()[:2] ) for merge in merges] _UpperCAmelCase = dict(zip(a__ , range(len(a__ ) ) ) ) _UpperCAmelCase = {} @property def __A ( self ): return len(self.decoder ) def __A ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , a__ ): _UpperCAmelCase = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _UpperCAmelCase = get_pairs(a__ ) if not pairs: return token while True: _UpperCAmelCase = min(a__ , key=lambda a__ : self.bpe_ranks.get(a__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase , _UpperCAmelCase = bigram _UpperCAmelCase = [] _UpperCAmelCase = 0 while i < len(a__ ): try: _UpperCAmelCase = word.index(a__ , a__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCAmelCase = j if word[i] == first and i < len(a__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase = tuple(a__ ) _UpperCAmelCase = new_word if len(a__ ) == 1: break else: _UpperCAmelCase = get_pairs(a__ ) _UpperCAmelCase = ' '.join(a__ ) if word == "\n " + BPE_TOKEN_MERGES: _UpperCAmelCase = '\n' + BPE_TOKEN_MERGES if word.endswith(a__ ): _UpperCAmelCase = word.replace(a__ , '' ) _UpperCAmelCase = word.replace(' ' , a__ ) _UpperCAmelCase = word return word def __A ( self , a__ ): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _UpperCAmelCase = text.lower() _UpperCAmelCase = text.split() _UpperCAmelCase = [] for token in text: if token: split_tokens.extend(list(self.bpe(a__ ).split(' ' ) ) ) return split_tokens def __A ( self , a__ ): return self.encoder.get(a__ , self.encoder.get(self.unk_token ) ) def __A ( self , a__ ): _UpperCAmelCase = self.decoder.get(a__ , self.unk_token ) return result def __A ( self , a__ ): _UpperCAmelCase = ' '.join(a__ ) # make sure @@ tokens are concatenated _UpperCAmelCase = ''.join(string.split(a__ ) ) return string def __A ( self , a__ , a__ = None ): if not os.path.isdir(a__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase = os.path.join( a__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _UpperCAmelCase = os.path.join( a__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(a__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a__ , ensure_ascii=a__ ) + '\n' ) _UpperCAmelCase = 0 if self.bpe_ranks is None: return (vocab_file,) with open(a__ , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _UpperCAmelCase = token_index writer.write(' '.join(a__ ) + '\n' ) index += 1 return (vocab_file, merges_file)
494
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '''▁''' lowerCAmelCase_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} lowerCAmelCase_ = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } lowerCAmelCase_ = {'''vinai/bartpho-syllable''': 1_024} class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self , a__ , a__ , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__ = None , **a__ , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = monolingual_vocab_file _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a__ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _UpperCAmelCase = {} _UpperCAmelCase = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(a__ ) not in self.fairseq_tokens_to_ids: _UpperCAmelCase = cnt cnt += 1 with open(a__ , 'r' , encoding='utf-8' ) as f: for line in f.readlines(): _UpperCAmelCase = line.strip().split()[0] _UpperCAmelCase = len(self.fairseq_tokens_to_ids ) if str(a__ ) not in self.fairseq_tokens_to_ids: _UpperCAmelCase = len(self.fairseq_tokens_to_ids ) _UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None _UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , a__ ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __A ( self , a__ , a__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] def __A ( self , a__ , a__ = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __A ( self ): return len(self.fairseq_ids_to_tokens ) def __A ( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __A ( self , a__ ): return self.sp_model.encode(a__ , out_type=a__ ) def __A ( self , a__ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __A ( self , a__ ): return self.fairseq_ids_to_tokens[index] def __A ( self , a__ ): _UpperCAmelCase = ''.join(a__ ).replace(a__ , ' ' ).strip() return out_string def __A ( self , a__ , a__ = None ): if not os.path.isdir(a__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase = os.path.join( a__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _UpperCAmelCase = os.path.join( a__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , 'wb' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(a__ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( a__ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , a__ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(a__ , 'w' , encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"""{str(a__ )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
494
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase = SwinvaConfig() _lowerCAmelCase = swinva_name.split("_" ) _lowerCAmelCase = name_split[1] if "to" in name_split[3]: _lowerCAmelCase = int(name_split[3][-3:] ) else: _lowerCAmelCase = int(name_split[3] ) if "to" in name_split[2]: _lowerCAmelCase = int(name_split[2][-2:] ) else: _lowerCAmelCase = int(name_split[2][6:] ) if model_size == "tiny": _lowerCAmelCase = 96 _lowerCAmelCase = (2, 2, 6, 2) _lowerCAmelCase = (3, 6, 12, 24) elif model_size == "small": _lowerCAmelCase = 96 _lowerCAmelCase = (2, 2, 18, 2) _lowerCAmelCase = (3, 6, 12, 24) elif model_size == "base": _lowerCAmelCase = 128 _lowerCAmelCase = (2, 2, 18, 2) _lowerCAmelCase = (4, 8, 16, 32) else: _lowerCAmelCase = 192 _lowerCAmelCase = (2, 2, 18, 2) _lowerCAmelCase = (6, 12, 24, 48) if "to" in swinva_name: _lowerCAmelCase = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): _lowerCAmelCase = 21841 _lowerCAmelCase = "huggingface/label-files" _lowerCAmelCase = "imagenet-22k-id2label.json" _lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} else: _lowerCAmelCase = 1000 _lowerCAmelCase = "huggingface/label-files" _lowerCAmelCase = "imagenet-1k-id2label.json" _lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = img_size _lowerCAmelCase = num_classes _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = num_heads _lowerCAmelCase = window_size return config def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if "patch_embed.proj" in name: _lowerCAmelCase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _lowerCAmelCase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: _lowerCAmelCase = "encoder." + name if "attn.proj" in name: _lowerCAmelCase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _lowerCAmelCase = name.replace("attn" , "attention.self" ) if "norm1" in name: _lowerCAmelCase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _lowerCAmelCase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _lowerCAmelCase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _lowerCAmelCase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: _lowerCAmelCase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: _lowerCAmelCase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: _lowerCAmelCase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: _lowerCAmelCase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": _lowerCAmelCase = "layernorm.weight" if name == "norm.bias": _lowerCAmelCase = "layernorm.bias" if "head" in name: _lowerCAmelCase = name.replace("head" , "classifier" ) else: _lowerCAmelCase = "swinv2." + name return name def __a(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "mask" in key: continue elif "qkv" in key: _lowerCAmelCase = key.split("." ) _lowerCAmelCase = int(key_split[1] ) _lowerCAmelCase = int(key_split[3] ) _lowerCAmelCase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCAmelCase = val[:dim, :] _lowerCAmelCase = val[dim : dim * 2, :] _lowerCAmelCase = val[-dim:, :] else: _lowerCAmelCase = val[:dim] _lowerCAmelCase = val[ dim : dim * 2 ] _lowerCAmelCase = val[-dim:] else: _lowerCAmelCase = val return orig_state_dict def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = timm.create_model(SCREAMING_SNAKE_CASE_ , pretrained=SCREAMING_SNAKE_CASE_ ) timm_model.eval() _lowerCAmelCase = get_swinva_config(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = SwinvaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.eval() _lowerCAmelCase = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) _lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) _lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) _lowerCAmelCase = timm_model(inputs["pixel_values"] ) _lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) print(F'''Saving model {swinva_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swinv2_name", default="swinv2_tiny_patch4_window8_256", type=str, help="Name of the Swinv2 timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
18
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] )
18
1
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _a : Optional[Any] = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' _a : str = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' _a : List[Any] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def lowerCAmelCase( self : Any ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def lowerCAmelCase( self : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[str]="auto" , UpperCAmelCase__ : Tuple=-1 , UpperCAmelCase__ : Optional[int]=0.9 , UpperCAmelCase__ : List[Any]=5 , UpperCAmelCase__ : List[Any]=500 , UpperCAmelCase__ : Union[str, Any]="gpt2-large" , UpperCAmelCase__ : Optional[Any]=-1 , UpperCAmelCase__ : int=1_024 , UpperCAmelCase__ : List[Any]=25 , UpperCAmelCase__ : Union[str, Any]=5 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : List[Any]=25 , ): """simple docstring""" snake_case : List[str] = compute_mauve( p_text=UpperCAmelCase__ , q_text=UpperCAmelCase__ , p_features=UpperCAmelCase__ , q_features=UpperCAmelCase__ , p_tokens=UpperCAmelCase__ , q_tokens=UpperCAmelCase__ , num_buckets=UpperCAmelCase__ , pca_max_data=UpperCAmelCase__ , kmeans_explained_var=UpperCAmelCase__ , kmeans_num_redo=UpperCAmelCase__ , kmeans_max_iter=UpperCAmelCase__ , featurize_model_name=UpperCAmelCase__ , device_id=UpperCAmelCase__ , max_text_length=UpperCAmelCase__ , divergence_curve_discretization_size=UpperCAmelCase__ , mauve_scaling_factor=UpperCAmelCase__ , verbose=UpperCAmelCase__ , seed=UpperCAmelCase__ , ) return out
84
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class a_ : def __init__( self : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any]=99 , UpperCAmelCase__ : Dict=13 , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Any=9 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : Tuple=32 , UpperCAmelCase__ : Dict=5 , UpperCAmelCase__ : Optional[int]=4 , UpperCAmelCase__ : List[Any]=37 , UpperCAmelCase__ : Union[str, Any]=8 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : str=0.002 , UpperCAmelCase__ : str=1 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[Any]=None , ): """simple docstring""" snake_case : Union[str, Any] = parent snake_case : Union[str, Any] = batch_size snake_case : Any = encoder_seq_length snake_case : str = decoder_seq_length # For common tests snake_case : Optional[int] = self.decoder_seq_length snake_case : Optional[Any] = is_training snake_case : List[Any] = use_attention_mask snake_case : Union[str, Any] = use_labels snake_case : Any = vocab_size snake_case : Optional[int] = hidden_size snake_case : List[str] = num_hidden_layers snake_case : Union[str, Any] = num_attention_heads snake_case : Any = d_ff snake_case : Any = relative_attention_num_buckets snake_case : Optional[Any] = dropout_rate snake_case : int = initializer_factor snake_case : Optional[Any] = eos_token_id snake_case : Dict = pad_token_id snake_case : Optional[Any] = decoder_start_token_id snake_case : Union[str, Any] = None snake_case : List[str] = decoder_layers def lowerCAmelCase( self : Union[str, Any] ): """simple docstring""" return TaConfig.from_pretrained('''google/umt5-base''' ) def lowerCAmelCase( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : List[Any]=None , ): """simple docstring""" if attention_mask is None: snake_case : Union[str, Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case : Any = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case : List[Any] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase__ ) if decoder_head_mask is None: snake_case : Tuple = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase__ ) if cross_attn_head_mask is None: snake_case : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def lowerCAmelCase( self : int ): """simple docstring""" snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case : List[str] = input_ids.clamp(self.pad_token_id + 1 ) snake_case : List[str] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case : str = self.get_config() snake_case : Tuple = config.num_attention_heads snake_case : List[Any] = self.prepare_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return config, input_dict def lowerCAmelCase( self : Dict ): """simple docstring""" snake_case , snake_case : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase( self : Dict ): """simple docstring""" return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCAmelCase( self : Tuple ): """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCAmelCase( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple , ): """simple docstring""" snake_case : str = UMTaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() snake_case : str = model( input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , ) snake_case : int = model(input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ ) snake_case : int = result.last_hidden_state snake_case : Dict = result.past_key_values snake_case : Dict = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def lowerCAmelCase( self : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , ): """simple docstring""" snake_case : int = UMTaModel(config=UpperCAmelCase__ ).get_decoder().to(UpperCAmelCase__ ).eval() # first forward pass snake_case : List[Any] = model(UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) snake_case : List[Any] = model(UpperCAmelCase__ ) snake_case : Any = model(UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) self.parent.assertTrue(len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) ) self.parent.assertTrue(len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) + 1 ) snake_case , snake_case : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : Any = model(UpperCAmelCase__ )['''last_hidden_state'''] snake_case : Optional[Any] = model(UpperCAmelCase__ , past_key_values=UpperCAmelCase__ )['''last_hidden_state'''] # select random slice snake_case : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach() snake_case : Tuple = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) ) def lowerCAmelCase( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int , ): """simple docstring""" snake_case : int = UMTaModel(config=UpperCAmelCase__ ).to(UpperCAmelCase__ ).half().eval() snake_case : str = model(**UpperCAmelCase__ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(UpperCAmelCase__ ).any().item() ) @require_torch class a_ ( a , a , a , unittest.TestCase ): A__ : str = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) A__ : str = (UMTaForConditionalGeneration,) if is_torch_available() else () A__ : Any = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) A__ : Dict = True A__ : List[str] = False A__ : Optional[int] = False A__ : Optional[int] = True A__ : List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests A__ : int = [0.8, 0.9] def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" snake_case : Union[str, Any] = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def lowerCAmelCase( self : Optional[int] ): """simple docstring""" snake_case : Tuple = self.model_tester.prepare_config_and_inputs() snake_case : Optional[Any] = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"{tmpdirname}/t5_test.onnx" , export_params=UpperCAmelCase__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def lowerCAmelCase( self : List[Any] ): """simple docstring""" snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase__ ) def lowerCAmelCase( self : Tuple ): """simple docstring""" snake_case : Optional[int] = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() snake_case : int = config_and_inputs[0] snake_case : Union[str, Any] = UMTaForConditionalGeneration(UpperCAmelCase__ ).eval() model.to(UpperCAmelCase__ ) snake_case : str = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase__ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase__ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase__ ), } for attn_name, (name, mask) in zip(UpperCAmelCase__ , head_masking.items() ): snake_case : int = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": snake_case : List[str] = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCAmelCase__ ) snake_case : Union[str, Any] = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase__ , return_dict_in_generate=UpperCAmelCase__ , **UpperCAmelCase__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step snake_case : List[str] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def lowerCAmelCase( self : Any ): """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def lowerCAmelCase( self : int ): """simple docstring""" snake_case : Optional[Any] = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=UpperCAmelCase__ ).to(UpperCAmelCase__ ) snake_case : int = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=UpperCAmelCase__ , legacy=UpperCAmelCase__ ) snake_case : List[str] = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] snake_case : Dict = tokenizer(UpperCAmelCase__ , return_tensors='''pt''' , padding=UpperCAmelCase__ ).input_ids # fmt: off snake_case : Optional[Any] = torch.tensor( [ [ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCAmelCase__ , UpperCAmelCase__ ) snake_case : List[Any] = model.generate(input_ids.to(UpperCAmelCase__ ) ) snake_case : int = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] snake_case : Tuple = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
84
1
"""simple docstring""" _snake_case = 8.3_14_45_98 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if temperature < 0: raise Exception("""Temperature cannot be less than 0 K""" ) if molar_mass <= 0: raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(F'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
389
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
389
1
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__:int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:Union[str, Any] = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } SCREAMING_SNAKE_CASE__:Optional[Any] = { """b0""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def _lowerCamelCase( a ): __a = EfficientNetConfig() __a = CONFIG_MAP[model_name]["hidden_dim"] __a = CONFIG_MAP[model_name]["width_coef"] __a = CONFIG_MAP[model_name]["depth_coef"] __a = CONFIG_MAP[model_name]["image_size"] __a = CONFIG_MAP[model_name]["dropout_rate"] __a = CONFIG_MAP[model_name]["dw_padding"] __a = "huggingface/label-files" __a = "imagenet-1k-id2label.json" __a = 1_0_0_0 __a = json.load(open(hf_hub_download(a , a , repo_type="dataset" ) , "r" ) ) __a = {int(a ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} return config def _lowerCamelCase( ): __a = "http://images.cocodataset.org/val2017/000000039769.jpg" __a = Image.open(requests.get(a , stream=a ).raw ) return im def _lowerCamelCase( a ): __a = CONFIG_MAP[model_name]["image_size"] __a = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=a , ) return preprocessor def _lowerCamelCase( a ): __a = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] __a = sorted(set(a ) ) __a = len(a ) __a = {b: str(a ) for b, i in zip(a , range(a ) )} __a = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: __a = block_name_mapping[b] rename_keys.append((F"block{b}_expand_conv/kernel:0", F"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((F"block{b}_expand_bn/gamma:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((F"block{b}_expand_bn/beta:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (F"block{b}_expand_bn/moving_mean:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (F"block{b}_expand_bn/moving_variance:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (F"block{b}_dwconv/depthwise_kernel:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((F"block{b}_bn/gamma:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((F"block{b}_bn/beta:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (F"block{b}_bn/moving_mean:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (F"block{b}_bn/moving_variance:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((F"block{b}_se_reduce/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((F"block{b}_se_reduce/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((F"block{b}_se_expand/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((F"block{b}_se_expand/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (F"block{b}_project_conv/kernel:0", F"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((F"block{b}_project_bn/gamma:0", F"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((F"block{b}_project_bn/beta:0", F"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (F"block{b}_project_bn/moving_mean:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (F"block{b}_project_bn/moving_variance:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) __a = {} for item in rename_keys: if item[0] in original_param_names: __a = "efficientnet." + item[1] __a = "classifier.weight" __a = "classifier.bias" return key_mapping def _lowerCamelCase( a , a , a ): for key, value in tf_params.items(): if "normalization" in key: continue __a = key_mapping[key] if "_conv" in key and "kernel" in key: __a = torch.from_numpy(a ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __a = torch.from_numpy(a ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __a = torch.from_numpy(np.transpose(a ) ) else: __a = torch.from_numpy(a ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(a ) @torch.no_grad() def _lowerCamelCase( a , a , a , a ): __a = model_classes[model_name]( include_top=a , weights="imagenet" , input_tensor=a , input_shape=a , pooling=a , classes=1_0_0_0 , classifier_activation="softmax" , ) __a = original_model.trainable_variables __a = original_model.non_trainable_variables __a = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __a = param.numpy() __a = list(tf_params.keys() ) # Load HuggingFace model __a = get_efficientnet_config(a ) __a = EfficientNetForImageClassification(a ).eval() __a = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) __a = rename_keys(a ) replace_params(a , a , a ) # Initialize preprocessor and preprocess input image __a = convert_image_processor(a ) __a = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): __a = hf_model(**a ) __a = outputs.logits.detach().numpy() # Original model inference __a = False __a = CONFIG_MAP[model_name]["image_size"] __a = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __a = image.img_to_array(a ) __a = np.expand_dims(a , axis=0 ) __a = original_model.predict(a ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(a , a , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(a ): os.mkdir(a ) # Save converted model and image processor hf_model.save_pretrained(a ) preprocessor.save_pretrained(a ) if push_to_hub: # Push model and image processor to hub print(F"Pushing converted {model_name} to the hub..." ) __a = F"efficientnet-{model_name}" preprocessor.push_to_hub(a ) hf_model.push_to_hub(a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") SCREAMING_SNAKE_CASE__:int = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
67
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__:List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__:Optional[Any] = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__:Union[str, Any] = { """gpt2""": 1024, """gpt2-medium""": 1024, """gpt2-large""": 1024, """gpt2-xl""": 1024, """distilgpt2""": 1024, } class snake_case__ ( snake_case_ ): _snake_case : Tuple = VOCAB_FILES_NAMES _snake_case : str = PRETRAINED_VOCAB_FILES_MAP _snake_case : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : List[str] = ["""input_ids""", """attention_mask"""] _snake_case : Dict = GPTaTokenizer def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<|endoftext|>" , lowerCamelCase="<|endoftext|>" , lowerCamelCase="<|endoftext|>" , lowerCamelCase=False , **lowerCamelCase , ): super().__init__( lowerCamelCase , lowerCamelCase , tokenizer_file=lowerCamelCase , unk_token=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) __a = kwargs.pop("add_bos_token" , lowerCamelCase ) __a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase ) != add_prefix_space: __a = getattr(lowerCamelCase , pre_tok_state.pop("type" ) ) __a = add_prefix_space __a = pre_tok_class(**lowerCamelCase ) __a = add_prefix_space def a__ ( self , *lowerCamelCase , **lowerCamelCase ): __a = kwargs.get("is_split_into_words" , lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase , **lowerCamelCase ) def a__ ( self , *lowerCamelCase , **lowerCamelCase ): __a = kwargs.get("is_split_into_words" , lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase = None ): __a = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase ) def a__ ( self , lowerCamelCase ): __a = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) + [self.eos_token_id] ) if len(lowerCamelCase ) > self.model_max_length: __a = input_ids[-self.model_max_length :] return input_ids
67
1
'''simple docstring''' import math def lowerCamelCase__ ( __lowercase ): if not isinstance(__lowercase , __lowercase ): snake_case : Union[str, Any] = F'''Input value of [number={number}] must be an integer''' raise TypeError(__lowercase ) if number < 1: snake_case : List[Any] = F'''Input value of [number={number}] must be > 0''' raise ValueError(__lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: snake_case : List[str] = int(math.log(number // 3 , 2 ) ) + 2 snake_case : int = [3, 5] snake_case : List[str] = 2 snake_case : List[Any] = 3 for block in range(1 , __lowercase ): for _ in range(__lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): lowercase : Optional[int] = 0 try: lowercase : List[str] = proth(number) except ValueError: print(F"""ValueError: there is no {number}th Proth number""") continue print(F"""The {number}th Proth number: {value}""")
116
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _a (a__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Dict = DanceDiffusionPipeline lowerCAmelCase_ : int = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowerCAmelCase_ : Optional[int] = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } lowerCAmelCase_ : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Tuple = False def snake_case_ ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case : List[str] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=16_000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=__a ,use_timestep_embedding=__a ,time_embedding_type="""fourier""" ,mid_block_type="""UNetMidBlock1D""" ,down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") ,up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") ,) snake_case : Dict = IPNDMScheduler() snake_case : int = { """unet""": unet, """scheduler""": scheduler, } return components def snake_case_ ( self ,__a ,__a=0 ) -> Tuple: if str(__a ).startswith("""mps""" ): snake_case : Optional[Any] = torch.manual_seed(__a ) else: snake_case : Union[str, Any] = torch.Generator(device=__a ).manual_seed(__a ) snake_case : str = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def snake_case_ ( self ) -> Any: snake_case : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : str = self.get_dummy_components() snake_case : List[str] = DanceDiffusionPipeline(**__a ) snake_case : Dict = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) snake_case : Union[str, Any] = self.get_dummy_inputs(__a ) snake_case : str = pipe(**__a ) snake_case : Union[str, Any] = output.audios snake_case : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) snake_case : Optional[Any] = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def snake_case_ ( self ) -> List[str]: return super().test_save_load_local() @skip_mps def snake_case_ ( self ) -> Union[str, Any]: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def snake_case_ ( self ) -> Dict: return super().test_save_load_optional_components() @skip_mps def snake_case_ ( self ) -> Any: return super().test_attention_slicing_forward_pass() def snake_case_ ( self ) -> str: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _a (unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> List[Any]: snake_case : str = torch_device snake_case : List[str] = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) snake_case : Any = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) snake_case : int = torch.manual_seed(0 ) snake_case : int = pipe(generator=__a ,num_inference_steps=100 ,audio_length_in_s=4.096 ) snake_case : Dict = output.audios snake_case : Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) snake_case : Tuple = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self ) -> str: snake_case : str = torch_device snake_case : List[Any] = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ,torch_dtype=torch.floataa ) snake_case : str = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) snake_case : str = torch.manual_seed(0 ) snake_case : List[str] = pipe(generator=__a ,num_inference_steps=100 ,audio_length_in_s=4.096 ) snake_case : Optional[int] = output.audios snake_case : Any = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) snake_case : Optional[int] = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
116
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase ( __a ): a__ :List[Any] = (PNDMScheduler,) a__ :Any = (("num_inference_steps", 50),) def A_ (self , **__UpperCamelCase ) -> List[str]: UpperCamelCase_ : Any = { """num_train_timesteps""": 1_000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**lowerCAmelCase_ ) return config def A_ (self , __UpperCamelCase=0 , **__UpperCamelCase ) -> int: UpperCamelCase_ : Any = dict(self.forward_default_kwargs ) UpperCamelCase_ : int = kwargs.pop("""num_inference_steps""" , lowerCAmelCase_ ) UpperCamelCase_ : str = self.dummy_sample UpperCamelCase_ : str = 0.1 * sample UpperCamelCase_ : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase_ : Union[str, Any] = self.get_scheduler_config(**lowerCAmelCase_ ) UpperCamelCase_ : int = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(lowerCAmelCase_ ) # copy over dummy past residuals UpperCamelCase_ : Tuple = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase_ ) UpperCamelCase_ : Optional[Any] = scheduler_class.from_pretrained(lowerCAmelCase_ ) new_scheduler.set_timesteps(lowerCAmelCase_ ) # copy over dummy past residuals UpperCamelCase_ : int = dummy_past_residuals[:] UpperCamelCase_ : str = scheduler.step_prk(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample UpperCamelCase_ : List[str] = new_scheduler.step_prk(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCamelCase_ : List[Any] = scheduler.step_plms(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample UpperCamelCase_ : Tuple = new_scheduler.step_plms(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A_ (self ) -> Dict: pass def A_ (self , __UpperCamelCase=0 , **__UpperCamelCase ) -> Dict: UpperCamelCase_ : Union[str, Any] = dict(self.forward_default_kwargs ) UpperCamelCase_ : Dict = kwargs.pop("""num_inference_steps""" , lowerCAmelCase_ ) UpperCamelCase_ : str = self.dummy_sample UpperCamelCase_ : Optional[Any] = 0.1 * sample UpperCamelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase_ : Dict = self.get_scheduler_config() UpperCamelCase_ : Any = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(lowerCAmelCase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase_ : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase_ ) UpperCamelCase_ : Dict = scheduler_class.from_pretrained(lowerCAmelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase_ : Tuple = dummy_past_residuals[:] UpperCamelCase_ : List[str] = scheduler.step_prk(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample UpperCamelCase_ : Tuple = new_scheduler.step_prk(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCamelCase_ : List[str] = scheduler.step_plms(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample UpperCamelCase_ : int = new_scheduler.step_plms(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A_ (self , **__UpperCamelCase ) -> Optional[Any]: UpperCamelCase_ : List[Any] = self.scheduler_classes[0] UpperCamelCase_ : Optional[Any] = self.get_scheduler_config(**lowerCAmelCase_ ) UpperCamelCase_ : List[Any] = scheduler_class(**lowerCAmelCase_ ) UpperCamelCase_ : str = 10 UpperCamelCase_ : Any = self.dummy_model() UpperCamelCase_ : Any = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCamelCase_ : Union[str, Any] = model(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCamelCase_ : List[str] = scheduler.step_prk(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCamelCase_ : str = model(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCamelCase_ : Optional[Any] = scheduler.step_plms(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample return sample def A_ (self ) -> Union[str, Any]: UpperCamelCase_ : List[str] = dict(self.forward_default_kwargs ) UpperCamelCase_ : List[Any] = kwargs.pop("""num_inference_steps""" , lowerCAmelCase_ ) for scheduler_class in self.scheduler_classes: UpperCamelCase_ : Optional[Any] = self.get_scheduler_config() UpperCamelCase_ : Optional[int] = scheduler_class(**lowerCAmelCase_ ) UpperCamelCase_ : str = self.dummy_sample UpperCamelCase_ : Dict = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCAmelCase_ , """set_timesteps""" ): scheduler.set_timesteps(lowerCAmelCase_ ) elif num_inference_steps is not None and not hasattr(lowerCAmelCase_ , """set_timesteps""" ): UpperCamelCase_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCamelCase_ : Union[str, Any] = dummy_past_residuals[:] UpperCamelCase_ : List[Any] = scheduler.step_prk(lowerCAmelCase_ , 0 , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample UpperCamelCase_ : List[str] = scheduler.step_prk(lowerCAmelCase_ , 1 , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCamelCase_ : str = scheduler.step_plms(lowerCAmelCase_ , 0 , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample UpperCamelCase_ : Union[str, Any] = scheduler.step_plms(lowerCAmelCase_ , 1 , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A_ (self ) -> Tuple: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def A_ (self ) -> Dict: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase_ ) UpperCamelCase_ : Tuple = self.scheduler_classes[0] UpperCamelCase_ : Any = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase_ : Optional[int] = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def A_ (self ) -> List[str]: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def A_ (self ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def A_ (self ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def A_ (self ) -> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=lowerCAmelCase_ ) def A_ (self ) -> str: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowerCAmelCase_ ) def A_ (self ) -> Any: UpperCamelCase_ : Optional[Any] = 27 for scheduler_class in self.scheduler_classes: UpperCamelCase_ : int = self.dummy_sample UpperCamelCase_ : Union[str, Any] = 0.1 * sample UpperCamelCase_ : Optional[Any] = self.get_scheduler_config() UpperCamelCase_ : str = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(lowerCAmelCase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCamelCase_ : Optional[Any] = scheduler.step_prk(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample def A_ (self ) -> Any: with self.assertRaises(lowerCAmelCase_ ): UpperCamelCase_ : List[str] = self.scheduler_classes[0] UpperCamelCase_ : List[Any] = self.get_scheduler_config() UpperCamelCase_ : Tuple = scheduler_class(**lowerCAmelCase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def A_ (self ) -> List[Any]: UpperCamelCase_ : Union[str, Any] = self.full_loop() UpperCamelCase_ : List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) UpperCamelCase_ : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 198.1_318 ) < 1E-2 assert abs(result_mean.item() - 0.2_580 ) < 1E-3 def A_ (self ) -> Union[str, Any]: UpperCamelCase_ : Dict = self.full_loop(prediction_type="""v_prediction""" ) UpperCamelCase_ : Union[str, Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) UpperCamelCase_ : List[Any] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 67.3_986 ) < 1E-2 assert abs(result_mean.item() - 0.0_878 ) < 1E-3 def A_ (self ) -> Union[str, Any]: UpperCamelCase_ : Optional[Any] = self.full_loop(set_alpha_to_one=lowerCAmelCase_ , beta_start=0.01 ) UpperCamelCase_ : Any = torch.sum(torch.abs(lowerCAmelCase_ ) ) UpperCamelCase_ : Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 230.0_399 ) < 1E-2 assert abs(result_mean.item() - 0.2_995 ) < 1E-3 def A_ (self ) -> Union[str, Any]: UpperCamelCase_ : Optional[int] = self.full_loop(set_alpha_to_one=lowerCAmelCase_ , beta_start=0.01 ) UpperCamelCase_ : str = torch.sum(torch.abs(lowerCAmelCase_ ) ) UpperCamelCase_ : List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 186.9_482 ) < 1E-2 assert abs(result_mean.item() - 0.2_434 ) < 1E-3
719
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase ( __a ): def __init__(self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> Optional[int]: super().__init__() self.register_modules( vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , ) def A_ (self , __UpperCamelCase = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase_ : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCamelCase ) def A_ (self ) -> Union[str, Any]: self.enable_attention_slicing(__UpperCamelCase ) @torch.no_grad() def __call__(self , __UpperCamelCase , __UpperCamelCase = 512 , __UpperCamelCase = 512 , __UpperCamelCase = 50 , __UpperCamelCase = 7.5 , __UpperCamelCase = None , __UpperCamelCase = 1 , __UpperCamelCase = 0.0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = "pil" , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = 1 , __UpperCamelCase = None , **__UpperCamelCase , ) -> List[Any]: if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ : Tuple = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ : Optional[int] = len(__UpperCamelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__UpperCamelCase )}.''' ) # get prompt text embeddings UpperCamelCase_ : Tuple = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCamelCase_ : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase_ : Dict = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase_ : Optional[Any] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: UpperCamelCase_ : Tuple = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase_,UpperCamelCase_,UpperCamelCase_ : int = text_embeddings.shape UpperCamelCase_ : Union[str, Any] = text_embeddings.repeat(1 , __UpperCamelCase , 1 ) UpperCamelCase_ : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , __UpperCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase_ : Optional[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase_ : List[str] if negative_prompt is None: UpperCamelCase_ : Union[str, Any] = [""""""] elif type(__UpperCamelCase ) is not type(__UpperCamelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCamelCase )} !=''' f''' {type(__UpperCamelCase )}.''' ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ : List[Any] = [negative_prompt] elif batch_size != len(__UpperCamelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__UpperCamelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: UpperCamelCase_ : Dict = negative_prompt UpperCamelCase_ : Optional[Any] = text_input_ids.shape[-1] UpperCamelCase_ : List[str] = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""pt""" , ) UpperCamelCase_ : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase_ : int = uncond_embeddings.shape[1] UpperCamelCase_ : List[str] = uncond_embeddings.repeat(__UpperCamelCase , __UpperCamelCase , 1 ) UpperCamelCase_ : List[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase_ : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase_ : Optional[int] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase_ : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) UpperCamelCase_ : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase_ : int = torch.randn( __UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to(self.device ) UpperCamelCase_ : Tuple = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to( self.device ) else: UpperCamelCase_ : Optional[Any] = torch.randn( __UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCamelCase_ : Union[str, Any] = latents_reference.to(self.device ) UpperCamelCase_ : Any = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images UpperCamelCase_ : int = (latents_shape[3] - latents_shape_reference[3]) // 2 UpperCamelCase_ : Union[str, Any] = (latents_shape[2] - latents_shape_reference[2]) // 2 UpperCamelCase_ : List[Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx UpperCamelCase_ : List[str] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy UpperCamelCase_ : str = 0 if dx < 0 else dx UpperCamelCase_ : List[str] = 0 if dy < 0 else dy UpperCamelCase_ : Dict = max(-dx , 0 ) UpperCamelCase_ : str = max(-dy , 0 ) # import pdb # pdb.set_trace() UpperCamelCase_ : str = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(__UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase_ : Any = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase_ : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase_ : str = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase_ : Any = {} if accepts_eta: UpperCamelCase_ : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase_ : str = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual UpperCamelCase_ : str = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase_,UpperCamelCase_ : Any = noise_pred.chunk(2 ) UpperCamelCase_ : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase_ : int = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ : Optional[int] = 1 / 0.18_215 * latents UpperCamelCase_ : List[str] = self.vae.decode(__UpperCamelCase ).sample UpperCamelCase_ : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: UpperCamelCase_ : List[Any] = self.feature_extractor(self.numpy_to_pil(__UpperCamelCase ) , return_tensors="""pt""" ).to( self.device ) UpperCamelCase_,UpperCamelCase_ : Optional[Any] = self.safety_checker( images=__UpperCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: UpperCamelCase_ : Tuple = None if output_type == "pil": UpperCamelCase_ : Any = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=__UpperCamelCase , nsfw_content_detected=__UpperCamelCase )
138
0
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowercase_ ( A , A ): """simple docstring""" lowerCamelCase_ = 1 @register_to_config def __init__( self : List[str] , __lowerCamelCase : Optional[int]=2_0_0_0 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Union[str, Any]=2_0 , __lowerCamelCase : Optional[int]=1e-3 ): """simple docstring""" _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None def lowerCAmelCase_ ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Union[str, torch.device] = None ): """simple docstring""" _SCREAMING_SNAKE_CASE = torch.linspace(1 , self.config.sampling_eps , __lowerCamelCase , device=__lowerCamelCase ) def lowerCAmelCase_ ( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Any=None ): """simple docstring""" if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _SCREAMING_SNAKE_CASE = ( -0.2_5 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _SCREAMING_SNAKE_CASE = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _SCREAMING_SNAKE_CASE = std.flatten() while len(std.shape ) < len(score.shape ): _SCREAMING_SNAKE_CASE = std.unsqueeze(-1 ) _SCREAMING_SNAKE_CASE = -score / std # compute _SCREAMING_SNAKE_CASE = -1.0 / len(self.timesteps ) _SCREAMING_SNAKE_CASE = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _SCREAMING_SNAKE_CASE = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _SCREAMING_SNAKE_CASE = beta_t.unsqueeze(-1 ) _SCREAMING_SNAKE_CASE = -0.5 * beta_t * x _SCREAMING_SNAKE_CASE = torch.sqrt(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = drift - diffusion**2 * score _SCREAMING_SNAKE_CASE = x + drift * dt # add noise _SCREAMING_SNAKE_CASE = randn_tensor(x.shape , layout=x.layout , generator=__lowerCamelCase , device=x.device , dtype=x.dtype ) _SCREAMING_SNAKE_CASE = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Optional[int] ): """simple docstring""" return self.config.num_train_timesteps
418
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowercase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : int = 3_2 , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 2_5_5 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowerCamelCase : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowerCamelCase : bool = True , __lowerCamelCase : str=7 , __lowerCamelCase : Union[str, Any]=3_0 , __lowerCamelCase : Tuple=4_0_0 , __lowerCamelCase : List[Any]=3 , ): """simple docstring""" _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 2_8_8} _SCREAMING_SNAKE_CASE = size_divisor _SCREAMING_SNAKE_CASE = do_rescale _SCREAMING_SNAKE_CASE = rescale_factor _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = do_center_crop _SCREAMING_SNAKE_CASE = image_mean _SCREAMING_SNAKE_CASE = image_std _SCREAMING_SNAKE_CASE = do_pad _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = min_resolution _SCREAMING_SNAKE_CASE = max_resolution def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCAmelCase_ ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : int=False ): """simple docstring""" if not batched: _SCREAMING_SNAKE_CASE = self.size["shortest_edge"] _SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = image.size else: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] _SCREAMING_SNAKE_CASE = size / min(__lowerCamelCase , __lowerCamelCase ) if h < w: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = size, scale * w else: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = scale * h, size _SCREAMING_SNAKE_CASE = int((1_3_3_3 / 8_0_0) * size ) if max(__lowerCamelCase , __lowerCamelCase ) > max_size: _SCREAMING_SNAKE_CASE = max_size / max(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = newh * scale _SCREAMING_SNAKE_CASE = neww * scale _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = int(newh + 0.5 ), int(neww + 0.5 ) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: _SCREAMING_SNAKE_CASE = [] for image in image_inputs: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _SCREAMING_SNAKE_CASE = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] _SCREAMING_SNAKE_CASE = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ ( A , unittest.TestCase ): """simple docstring""" lowerCamelCase_ = BridgeTowerImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE = BridgeTowerImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : int ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size_divisor" ) ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" # Initialize image processor _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : str ): """simple docstring""" # Initialize image processor _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : str ): """simple docstring""" # Initialize image processor _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
418
1
from __future__ import annotations from decimal import Decimal from numpy import array def a(lowercase__ ): '''simple docstring''' snake_case_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_lowerCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix snake_case_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements snake_case_ = [[0.0, 0.0], [0.0, 0.0]] snake_case_ = matrix[1][1], matrix[0][0] snake_case_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_lowerCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_lowerCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule snake_case_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix snake_case_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] snake_case_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) snake_case_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) snake_case_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) snake_case_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) snake_case_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) snake_case_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) snake_case_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) snake_case_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) snake_case_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) snake_case_ = array(_lowerCamelCase ) for i in range(3 ): for j in range(3 ): snake_case_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix snake_case_ = array(_lowerCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_lowerCamelCase ) # Calculate the inverse of the matrix return [[float(d(_lowerCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
716
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.dummy_uncond_unet snake_case_ = ScoreSdeVeScheduler() snake_case_ = ScoreSdeVePipeline(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) sde_ve.to(__UpperCamelCase ) sde_ve.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=__UpperCamelCase ).images snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=__UpperCamelCase , return_dict=__UpperCamelCase )[ 0 ] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = 'google/ncsnpp-church-256' snake_case_ = UNetaDModel.from_pretrained(__UpperCamelCase ) snake_case_ = ScoreSdeVeScheduler.from_pretrained(__UpperCamelCase ) snake_case_ = ScoreSdeVePipeline(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) sde_ve.to(__UpperCamelCase ) sde_ve.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=10 , output_type='numpy' , generator=__UpperCamelCase ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) snake_case_ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
46
0
import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
283
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class A_ ( datasets.BuilderConfig ): '''simple docstring''' _lowerCAmelCase = None class A_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' _lowerCAmelCase = PandasConfig def a ( self ): return datasets.DatasetInfo(features=self.config.features ) def a ( self , A_ ): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) _UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A_ , (str, list, tuple) ): _UpperCamelCase = data_files if isinstance(A_ , A_ ): _UpperCamelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _UpperCamelCase = [dl_manager.iter_files(A_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(A_ , A_ ): _UpperCamelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _UpperCamelCase = [dl_manager.iter_files(A_ ) for file in files] splits.append(datasets.SplitGenerator(name=A_ , gen_kwargs={"files": files} ) ) return splits def a ( self , A_ ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _UpperCamelCase = table_cast(A_ , self.config.features.arrow_schema ) return pa_table def a ( self , A_ ): for i, file in enumerate(itertools.chain.from_iterable(A_ ) ): with open(A_ , "rb" ) as f: _UpperCamelCase = pa.Table.from_pandas(pd.read_pickle(A_ ) ) yield i, self._cast_table(A_ )
138
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } _A = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } _A = { 'facebook/m2m100_418M': 1024, } # fmt: off _A = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self , A_ , A_ , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<pad>" , A_="<unk>" , A_="m2m100" , A_ = None , A_=8 , **A_ , ) -> None: __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase =language_codes __UpperCamelCase =FAIRSEQ_LANGUAGE_CODES[language_codes] __UpperCamelCase ={lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __UpperCamelCase =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A_ ) for lang_code in fairseq_language_code if self.get_lang_token(A_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_ , tgt_lang=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , language_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A_ , **A_ , ) __UpperCamelCase =vocab_file __UpperCamelCase =load_json(A_ ) __UpperCamelCase ={v: k for k, v in self.encoder.items()} __UpperCamelCase =spm_file __UpperCamelCase =load_spm(A_ , self.sp_model_kwargs ) __UpperCamelCase =len(self.encoder ) __UpperCamelCase ={ self.get_lang_token(A_ ): self.encoder_size + i for i, lang_code in enumerate(A_ ) } __UpperCamelCase ={lang_code: self.encoder_size + i for i, lang_code in enumerate(A_ )} __UpperCamelCase ={v: k for k, v in self.lang_token_to_id.items()} __UpperCamelCase =src_lang if src_lang is not None else 'en' __UpperCamelCase =tgt_lang __UpperCamelCase =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __UpperCamelCase =num_madeup_words @property def _a ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _a ( self ) -> str: return self._src_lang @src_lang.setter def _a ( self , A_ ) -> None: __UpperCamelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _a ( self , A_ ) -> Optional[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A_ , self.encoder[self.unk_token] ) def _a ( self , A_ ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A_ , self.unk_token ) def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =[] __UpperCamelCase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase =[] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) __UpperCamelCase =[1] * len(self.prefix_tokens ) __UpperCamelCase =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self ) -> Dict: __UpperCamelCase ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None return state def __setstate__( self , A_ ) -> None: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =Path(A_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def _a ( self , A_ , A_ = "en" , A_ = None , A_ = "ro" , **A_ , ) -> BatchEncoding: __UpperCamelCase =src_lang __UpperCamelCase =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def _a ( self , A_ , A_ , A_ , **A_ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase =src_lang __UpperCamelCase =self(A_ , add_special_tokens=A_ , **A_ ) __UpperCamelCase =self.get_lang_id(A_ ) __UpperCamelCase =tgt_lang_id return inputs def _a ( self ) -> List[Any]: self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> str: return self.lang_code_to_token[lang] def _a ( self , A_ ) -> int: __UpperCamelCase =self.get_lang_token(A_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict[str, Any] ): __UpperCamelCase =sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE__ ) spm.Load(str(SCREAMING_SNAKE_CASE__ ) ) return spm def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=2 )
682
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Optional[Any]: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> int: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> List[str]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Any: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
682
1
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __lowercase : int = logging.get_logger(__name__) __lowercase : Optional[int] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __lowercase : Dict = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _A : """simple docstring""" UpperCamelCase_ : str = field( default=_UpperCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_UpperCAmelCase )} ) UpperCamelCase_ : str = field( default=_UpperCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) UpperCamelCase_ : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) UpperCamelCase_ : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) UpperCamelCase_ : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) UpperCamelCase_ : bool = field( default=_UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase_ : bool = field( default=_UpperCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) UpperCamelCase_ : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) UpperCamelCase_ : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) UpperCamelCase_ : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) UpperCamelCase_ : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : List[str] = 'train' UpperCamelCase_ : Any = 'dev' class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : SquadDataTrainingArguments UpperCamelCase_ : List[SquadFeatures] UpperCamelCase_ : Split UpperCamelCase_ : bool def __init__( self : int , A_ : SquadDataTrainingArguments , A_ : PreTrainedTokenizer , A_ : Optional[int] = None , A_ : Union[str, Split] = Split.train , A_ : Optional[bool] = False , A_ : Optional[str] = None , A_ : Optional[str] = "pt" , ) -> List[Any]: __snake_case = args __snake_case = is_language_sensitive __snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(A_ , A_ ): try: __snake_case = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) __snake_case = mode # Load data features from cache or dataset file __snake_case = "v2" if args.version_2_with_negative else "v1" __snake_case = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case = cached_features_file + ".lock" with FileLock(A_ ): if os.path.exists(A_ ) and not args.overwrite_cache: __snake_case = time.time() __snake_case = torch.load(A_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __snake_case = self.old_features["features"] __snake_case = self.old_features.get('''dataset''' , A_ ) __snake_case = self.old_features.get('''examples''' , A_ ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" ''' future run''' ) else: if mode == Split.dev: __snake_case = self.processor.get_dev_examples(args.data_dir ) else: __snake_case = self.processor.get_train_examples(args.data_dir ) __snake_case = squad_convert_examples_to_features( examples=self.examples , tokenizer=A_ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=A_ , ) __snake_case = time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , A_ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : Dict ) -> Optional[Any]: return len(self.features ) def __getitem__( self : List[Any] , A_ : str ) -> Tuple: __snake_case = self.features[i] __snake_case = torch.tensor(feature.input_ids , dtype=torch.long ) __snake_case = torch.tensor(feature.attention_mask , dtype=torch.long ) __snake_case = torch.tensor(feature.token_type_ids , dtype=torch.long ) __snake_case = torch.tensor(feature.cls_index , dtype=torch.long ) __snake_case = torch.tensor(feature.p_mask , dtype=torch.float ) __snake_case = torch.tensor(feature.is_impossible , dtype=torch.float ) __snake_case = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __snake_case = torch.tensor(feature.start_position , dtype=torch.long ) __snake_case = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
564
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _UpperCAmelCase : def __init__( self : int , a : Dict , a : Optional[Any]=1_3 , a : str=3_0 , a : Dict=2 , a : List[Any]=3 , a : Optional[int]=True , a : Tuple=True , a : List[Any]=3_2 , a : int=2 , a : List[str]=4 , a : Dict=3_7 , a : Optional[Any]="gelu" , a : List[str]=0.1 , a : Dict=0.1 , a : List[Any]=1_0 , a : Union[str, Any]=0.02 , a : Union[str, Any]=3 , a : int=None , a : Any=2 , ): '''simple docstring''' lowercase_ : Any = parent lowercase_ : Union[str, Any] = batch_size lowercase_ : Any = image_size lowercase_ : str = patch_size lowercase_ : int = num_channels lowercase_ : str = is_training lowercase_ : str = use_labels lowercase_ : List[Any] = hidden_size lowercase_ : List[str] = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : str = hidden_act lowercase_ : Union[str, Any] = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : List[str] = type_sequence_label_size lowercase_ : List[Any] = initializer_range lowercase_ : str = scope lowercase_ : Tuple = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ : Any = (image_size // patch_size) ** 2 lowercase_ : str = num_patches + 2 def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : List[Any] = None if self.use_labels: lowercase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCAmelCase__ ( self : Any , a : List[str] , a : str , a : Tuple ): '''simple docstring''' lowercase_ : List[str] = TFDeiTModel(config=a ) lowercase_ : int = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : Dict , a : Optional[int] , a : List[Any] , a : Union[str, Any] ): '''simple docstring''' lowercase_ : List[str] = TFDeiTForMaskedImageModeling(config=a ) lowercase_ : Union[str, Any] = model(a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ : Dict = 1 lowercase_ : Tuple = TFDeiTForMaskedImageModeling(a ) lowercase_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Dict = model(a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase__ ( self : int , a : List[str] , a : List[str] , a : Optional[int] ): '''simple docstring''' lowercase_ : str = self.type_sequence_label_size lowercase_ : Union[str, Any] = TFDeiTForImageClassification(a ) lowercase_ : int = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ : Dict = 1 lowercase_ : str = TFDeiTForImageClassification(a ) lowercase_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Any = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Dict = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ : Optional[int] = config_and_inputs lowercase_ : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _UpperCAmelCase ( snake_case , snake_case , unittest.TestCase ): __lowerCamelCase: Tuple = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __lowerCamelCase: Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __lowerCamelCase: Union[str, Any] = False __lowerCamelCase: Any = False __lowerCamelCase: List[str] = False __lowerCamelCase: Optional[Any] = False def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : int = TFDeiTModelTester(self ) lowercase_ : Any = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' pass def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ , lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Dict = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , tf.keras.layers.Dense ) ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ , lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Any = model_class(a ) lowercase_ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : int = [*signature.parameters.keys()] lowercase_ : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) def lowerCAmelCase__ ( self : Any , a : int , a : Union[str, Any] , a : Any=False ): '''simple docstring''' lowercase_ : Union[str, Any] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[Any] = TFDeiTModel.from_pretrained(a ) self.assertIsNotNone(a ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Optional[Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) lowercase_ : Union[str, Any] = self.default_image_processor lowercase_ : Tuple = prepare_img() lowercase_ : Optional[Any] = image_processor(images=a , return_tensors="tf" ) # forward pass lowercase_ : int = model(**a ) # verify the logits lowercase_ : Union[str, Any] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase_ : Optional[Any] = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) )
620
0
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _a ( UpperCamelCase__ , unittest.TestCase ): # TODO: is there an appropriate internal test set? _lowercase : Optional[Any] = '''ssube/stable-diffusion-x4-upscaler-onnx''' def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Optional[int]=0 ) -> Optional[int]: """simple docstring""" lowercase__ = floats_tensor((1, 3, 128, 128) , rng=random.Random(UpperCamelCase_ ) ) lowercase__ = torch.manual_seed(UpperCamelCase_ ) lowercase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**UpperCamelCase_ ).images lowercase__ = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) lowercase__ = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowercase__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**UpperCamelCase_ ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase_ ( self: Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**UpperCamelCase_ ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowercase__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**UpperCamelCase_ ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase_ ( self: Optional[Any] ) -> int: """simple docstring""" lowercase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowercase__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**UpperCamelCase_ ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _a ( unittest.TestCase ): @property def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = ort.SessionOptions() lowercase__ = False return options def lowerCamelCase_ ( self: Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowercase__ = init_image.resize((128, 128) ) # using the PNDM scheduler by default lowercase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = '''A fantasy landscape, trending on artstation''' lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase_ , output_type='''np''' , ) lowercase__ = output.images lowercase__ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowercase__ = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowercase__ = init_image.resize((128, 128) ) lowercase__ = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' ) lowercase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=UpperCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = '''A fantasy landscape, trending on artstation''' lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=UpperCamelCase_ , output_type='''np''' , ) lowercase__ = output.images lowercase__ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowercase__ = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
429
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = OrderedDict( [ ('audio-spectrogram-transformer', 'ASTFeatureExtractor'), ('beit', 'BeitFeatureExtractor'), ('chinese_clip', 'ChineseCLIPFeatureExtractor'), ('clap', 'ClapFeatureExtractor'), ('clip', 'CLIPFeatureExtractor'), ('clipseg', 'ViTFeatureExtractor'), ('conditional_detr', 'ConditionalDetrFeatureExtractor'), ('convnext', 'ConvNextFeatureExtractor'), ('cvt', 'ConvNextFeatureExtractor'), ('data2vec-audio', 'Wav2Vec2FeatureExtractor'), ('data2vec-vision', 'BeitFeatureExtractor'), ('deformable_detr', 'DeformableDetrFeatureExtractor'), ('deit', 'DeiTFeatureExtractor'), ('detr', 'DetrFeatureExtractor'), ('dinat', 'ViTFeatureExtractor'), ('donut-swin', 'DonutFeatureExtractor'), ('dpt', 'DPTFeatureExtractor'), ('encodec', 'EncodecFeatureExtractor'), ('flava', 'FlavaFeatureExtractor'), ('glpn', 'GLPNFeatureExtractor'), ('groupvit', 'CLIPFeatureExtractor'), ('hubert', 'Wav2Vec2FeatureExtractor'), ('imagegpt', 'ImageGPTFeatureExtractor'), ('layoutlmv2', 'LayoutLMv2FeatureExtractor'), ('layoutlmv3', 'LayoutLMv3FeatureExtractor'), ('levit', 'LevitFeatureExtractor'), ('maskformer', 'MaskFormerFeatureExtractor'), ('mctct', 'MCTCTFeatureExtractor'), ('mobilenet_v1', 'MobileNetV1FeatureExtractor'), ('mobilenet_v2', 'MobileNetV2FeatureExtractor'), ('mobilevit', 'MobileViTFeatureExtractor'), ('nat', 'ViTFeatureExtractor'), ('owlvit', 'OwlViTFeatureExtractor'), ('perceiver', 'PerceiverFeatureExtractor'), ('poolformer', 'PoolFormerFeatureExtractor'), ('regnet', 'ConvNextFeatureExtractor'), ('resnet', 'ConvNextFeatureExtractor'), ('segformer', 'SegformerFeatureExtractor'), ('sew', 'Wav2Vec2FeatureExtractor'), ('sew-d', 'Wav2Vec2FeatureExtractor'), ('speech_to_text', 'Speech2TextFeatureExtractor'), ('speecht5', 'SpeechT5FeatureExtractor'), ('swiftformer', 'ViTFeatureExtractor'), ('swin', 'ViTFeatureExtractor'), ('swinv2', 'ViTFeatureExtractor'), ('table-transformer', 'DetrFeatureExtractor'), ('timesformer', 'VideoMAEFeatureExtractor'), ('tvlt', 'TvltFeatureExtractor'), ('unispeech', 'Wav2Vec2FeatureExtractor'), ('unispeech-sat', 'Wav2Vec2FeatureExtractor'), ('van', 'ConvNextFeatureExtractor'), ('videomae', 'VideoMAEFeatureExtractor'), ('vilt', 'ViltFeatureExtractor'), ('vit', 'ViTFeatureExtractor'), ('vit_mae', 'ViTFeatureExtractor'), ('vit_msn', 'ViTFeatureExtractor'), ('wav2vec2', 'Wav2Vec2FeatureExtractor'), ('wav2vec2-conformer', 'Wav2Vec2FeatureExtractor'), ('wavlm', 'Wav2Vec2FeatureExtractor'), ('whisper', 'WhisperFeatureExtractor'), ('xclip', 'CLIPFeatureExtractor'), ('yolos', 'YolosFeatureExtractor'), ] ) lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowercase__ = model_type_to_module_name(SCREAMING_SNAKE_CASE ) lowercase__ = importlib.import_module(f'.{module_name}' , '''transformers.models''' ) try: return getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE , '''__name__''' , SCREAMING_SNAKE_CASE ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowercase__ = importlib.import_module('''transformers''' ) if hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return None def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , **SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase__ = get_file_from_repo( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE , resume_download=SCREAMING_SNAKE_CASE , proxies=SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE , revision=SCREAMING_SNAKE_CASE , local_files_only=SCREAMING_SNAKE_CASE , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as reader: return json.load(SCREAMING_SNAKE_CASE ) class _a : def __init__( self: Optional[Any] ) -> Any: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(UpperCamelCase_ ) def lowerCamelCase_ ( cls: List[str] , UpperCamelCase_: List[Any] , **UpperCamelCase_: Tuple ) -> Optional[int]: """simple docstring""" lowercase__ = kwargs.pop('''config''' , UpperCamelCase_ ) lowercase__ = kwargs.pop('''trust_remote_code''' , UpperCamelCase_ ) lowercase__ = True lowercase__ , lowercase__ = FeatureExtractionMixin.get_feature_extractor_dict(UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = config_dict.get('''feature_extractor_type''' , UpperCamelCase_ ) lowercase__ = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): lowercase__ = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) # It could be in `config.feature_extractor_type`` lowercase__ = getattr(UpperCamelCase_ , '''feature_extractor_type''' , UpperCamelCase_ ) if hasattr(UpperCamelCase_ , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: lowercase__ = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: lowercase__ = feature_extractor_class_from_name(UpperCamelCase_ ) lowercase__ = feature_extractor_auto_map is not None lowercase__ = feature_extractor_class is not None or type(UpperCamelCase_ ) in FEATURE_EXTRACTOR_MAPPING lowercase__ = resolve_trust_remote_code( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if has_remote_code and trust_remote_code: lowercase__ = get_class_from_dynamic_module( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = kwargs.pop('''code_revision''' , UpperCamelCase_ ) if os.path.isdir(UpperCamelCase_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(UpperCamelCase_ ) in FEATURE_EXTRACTOR_MAPPING: lowercase__ = FEATURE_EXTRACTOR_MAPPING[type(UpperCamelCase_ )] return feature_extractor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) raise ValueError( f'Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ' f'`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ' f'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}' ) @staticmethod def lowerCamelCase_ ( UpperCamelCase_: List[str] , UpperCamelCase_: int ) -> Dict: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(UpperCamelCase_ , UpperCamelCase_ )
429
1
"""simple docstring""" def __UpperCamelCase ( SCREAMING_SNAKE_CASE = 1_00 ) -> int: """simple docstring""" __snake_case = 0 __snake_case = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
163
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = """pytorch_model.bin""" @dataclasses.dataclass class __magic_name__ : _SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=lowercase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : _SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) _SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=lowercase__ , metadata={'help': 'A csv or a json file containing the validation data.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=lowercase__ , metadata={'help': 'The name of the task to train on.'} , ) _SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field( default=lowercase__ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : _SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) _SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=10 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) _SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) _SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=lowercase__ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) _SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=lowercase__ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) _SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=lowercase__ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) _SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) _SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=100 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) _SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=lowercase__ , metadata={'help': 'Random seed for initialization.'} , ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" __snake_case = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __snake_case = dataset.filter(lambda SCREAMING_SNAKE_CASE : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __snake_case = int(eval_result * len(SCREAMING_SNAKE_CASE ) ) print(SCREAMING_SNAKE_CASE ) __snake_case = dataset.sort("probability" , reverse=SCREAMING_SNAKE_CASE ) __snake_case = dataset.select(range(SCREAMING_SNAKE_CASE ) ) __snake_case = dataset.remove_columns(["label", "probability"] ) __snake_case = dataset.rename_column("prediction" , "label" ) __snake_case = dataset.map(lambda SCREAMING_SNAKE_CASE : {"label": idalabel[example["label"]]} ) __snake_case = dataset.shuffle(seed=args.seed ) __snake_case = os.path.join(SCREAMING_SNAKE_CASE , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) else: dataset.to_json(SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" __snake_case = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __snake_case = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE ) __snake_case = STDataArguments(train_file=SCREAMING_SNAKE_CASE , infer_file=SCREAMING_SNAKE_CASE ) __snake_case = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE ) __snake_case = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE ).items(): setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Sanity checks __snake_case = {} __snake_case = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __snake_case = args.train_file __snake_case = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __snake_case = args.eval_file for key in data_files: __snake_case = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: __snake_case = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) __snake_case = F'''{args.output_dir}/self-train_iter-{{}}'''.format __snake_case = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() __snake_case = None __snake_case = None __snake_case = 0 __snake_case = False # Show the progress bar __snake_case = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __snake_case = data_dir_format(SCREAMING_SNAKE_CASE ) assert os.path.exists(SCREAMING_SNAKE_CASE ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __snake_case = os.path.join(SCREAMING_SNAKE_CASE , "stage-1" ) __snake_case = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): arguments_dict.update({key: value} ) __snake_case = os.path.join(SCREAMING_SNAKE_CASE , "best-checkpoint" , SCREAMING_SNAKE_CASE ) if os.path.exists(SCREAMING_SNAKE_CASE ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , SCREAMING_SNAKE_CASE ) finetune(**SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE ) logger.info("Self-training job completed: iteration: %d, stage: 1." , SCREAMING_SNAKE_CASE ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __snake_case = os.path.join(SCREAMING_SNAKE_CASE , "best-checkpoint" ) __snake_case = os.path.join(SCREAMING_SNAKE_CASE , "stage-2" ) # Update arguments_dict __snake_case = model_path __snake_case = data_files["train"] __snake_case = current_output_dir __snake_case = os.path.join(SCREAMING_SNAKE_CASE , "best-checkpoint" , SCREAMING_SNAKE_CASE ) if os.path.exists(SCREAMING_SNAKE_CASE ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , SCREAMING_SNAKE_CASE ) finetune(**SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE ) logger.info("Self-training job completed: iteration: %d, stage: 2." , SCREAMING_SNAKE_CASE ) __snake_case = iteration __snake_case = data_dir_format(iteration + 1 ) __snake_case = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE , "best-checkpoint" ) ) __snake_case = config.idalabel __snake_case = os.path.join(SCREAMING_SNAKE_CASE , "eval_results_best-checkpoint.json" ) __snake_case = os.path.join(SCREAMING_SNAKE_CASE , "test_results_best-checkpoint.json" ) assert os.path.exists(SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , "r" ) as f: __snake_case = float(json.load(SCREAMING_SNAKE_CASE )[args.eval_metric] ) __snake_case = os.path.join(SCREAMING_SNAKE_CASE , "infer_output_best-checkpoint.csv" ) assert os.path.exists(SCREAMING_SNAKE_CASE ) # Loading the dataset from local csv or json files. __snake_case = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] __snake_case = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) shutil.copy(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE ): shutil.copy(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() __snake_case = os.path.join(SCREAMING_SNAKE_CASE , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __snake_case = eval_result if best_iteration is None: __snake_case = new_iteration __snake_case = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __snake_case = new_iteration __snake_case = new_eval_result __snake_case = 0 else: if new_eval_result == best_eval_result: __snake_case = new_iteration __snake_case = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __snake_case = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , SCREAMING_SNAKE_CASE ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE , "eval_results_best-iteration.json" ) , )
163
1
def _lowerCAmelCase ( UpperCamelCase__: int ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) A = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 A = 1 if upper_limit > 0: A = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(UpperCamelCase__ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("\n********* Catalan Numbers Using Dynamic Programming ************\n") print("\n*** Enter -1 at any time to quit ***") print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="") try: while True: _lowercase : Optional[int] = int(input().strip()) if N < 0: print("\n********* Goodbye!! ************") break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("Try another upper limit for the sequence: ", end="") except (NameError, ValueError): print("\n********* Invalid input, goodbye! ************\n") import doctest doctest.testmod()
715
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _lowercase : int = logging.get_logger(__name__) class _UpperCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase = 'upernet' def __init__( self , a__=None , a__=512 , a__=0.02 , a__=[1, 2, 3, 6] , a__=True , a__=0.4 , a__=384 , a__=256 , a__=1 , a__=False , a__=255 , **a__ , ) -> Tuple: super().__init__(**a__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(a__ , a__ ): A = backbone_config.get("""model_type""" ) A = CONFIG_MAPPING[backbone_model_type] A = config_class.from_dict(a__ ) A = backbone_config A = hidden_size A = initializer_range A = pool_scales A = use_auxiliary_head A = auxiliary_loss_weight A = auxiliary_in_channels A = auxiliary_channels A = auxiliary_num_convs A = auxiliary_concat_input A = loss_ignore_index def _UpperCAmelCase ( self ) -> Dict: A = copy.deepcopy(self.__dict__ ) A = self.backbone_config.to_dict() A = self.__class__.model_type return output
546
0
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType A_ = None A_ = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image A_ = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class snake_case : '''simple docstring''' UpperCAmelCase : bool = True UpperCAmelCase : Optional[str] = None # Automatically constructed UpperCAmelCase : ClassVar[str] = "PIL.Image.Image" UpperCAmelCase : ClassVar[Any] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) UpperCAmelCase : str = field(default="""Image""" , init=lowerCAmelCase__ , repr=lowerCAmelCase__ ) def __call__( self : Union[str, Any] ) -> str: """simple docstring""" return self.pa_type def _lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): SCREAMING_SNAKE_CASE_ = np.array(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return {"path": value, "bytes": None} elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return {"path": None, "bytes": value} elif isinstance(lowerCAmelCase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowerCAmelCase_ ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( F'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def _lowercase ( self : Dict , lowerCAmelCase_ : dict , lowerCAmelCase_ : Any=None ) -> "PIL.Image.Image": """simple docstring""" if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(F'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE_ = PIL.Image.open(lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE_ = path.split('''::''' )[-1] try: SCREAMING_SNAKE_CASE_ = string_to_dict(lowerCAmelCase_ , config.HUB_DATASETS_URL )['''repo_id'''] SCREAMING_SNAKE_CASE_ = token_per_repo_id.get(lowerCAmelCase_ ) except ValueError: SCREAMING_SNAKE_CASE_ = None with xopen(lowerCAmelCase_ , '''rb''' , use_auth_token=lowerCAmelCase_ ) as f: SCREAMING_SNAKE_CASE_ = BytesIO(f.read() ) SCREAMING_SNAKE_CASE_ = PIL.Image.open(bytes_ ) else: SCREAMING_SNAKE_CASE_ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def _lowercase ( self : int ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def _lowercase ( self : List[Any] , lowerCAmelCase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): SCREAMING_SNAKE_CASE_ = pa.array([None] * len(lowerCAmelCase_ ) , type=pa.binary() ) SCREAMING_SNAKE_CASE_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): SCREAMING_SNAKE_CASE_ = pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) SCREAMING_SNAKE_CASE_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: SCREAMING_SNAKE_CASE_ = storage.field('''bytes''' ) else: SCREAMING_SNAKE_CASE_ = pa.array([None] * len(lowerCAmelCase_ ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: SCREAMING_SNAKE_CASE_ = storage.field('''path''' ) else: SCREAMING_SNAKE_CASE_ = pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) SCREAMING_SNAKE_CASE_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): SCREAMING_SNAKE_CASE_ = pa.array( [encode_np_array(np.array(lowerCAmelCase_ ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) SCREAMING_SNAKE_CASE_ = pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) SCREAMING_SNAKE_CASE_ = pa.StructArray.from_arrays( [bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase_ , self.pa_type ) def _lowercase ( self : Dict , lowerCAmelCase_ : pa.StructArray ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(lowerCAmelCase_ : List[str] ): with xopen(lowerCAmelCase_ , '''rb''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() return bytes_ SCREAMING_SNAKE_CASE_ = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) SCREAMING_SNAKE_CASE_ = pa.array( [os.path.basename(lowerCAmelCase_ ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) SCREAMING_SNAKE_CASE_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase_ , self.pa_type ) def UpperCAmelCase ( )-> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() SCREAMING_SNAKE_CASE_ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def UpperCAmelCase ( UpperCAmelCase )-> bytes: '''simple docstring''' SCREAMING_SNAKE_CASE_ = BytesIO() if image.format in list_image_compression_formats(): SCREAMING_SNAKE_CASE_ = image.format else: SCREAMING_SNAKE_CASE_ = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(UpperCAmelCase ,format=UpperCAmelCase ) return buffer.getvalue() def UpperCAmelCase ( UpperCAmelCase )-> dict: '''simple docstring''' if hasattr(UpperCAmelCase ,'''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCAmelCase )} def UpperCAmelCase ( UpperCAmelCase )-> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) SCREAMING_SNAKE_CASE_ = array.dtype SCREAMING_SNAKE_CASE_ = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER SCREAMING_SNAKE_CASE_ = dtype.kind SCREAMING_SNAKE_CASE_ = dtype.itemsize SCREAMING_SNAKE_CASE_ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: SCREAMING_SNAKE_CASE_ = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: SCREAMING_SNAKE_CASE_ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: SCREAMING_SNAKE_CASE_ = dtype_byteorder + dtype_kind + str(UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = np.dtype(UpperCAmelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) SCREAMING_SNAKE_CASE_ = PIL.Image.fromarray(array.astype(UpperCAmelCase ) ) return {"path": None, "bytes": image_to_bytes(UpperCAmelCase )} def UpperCAmelCase ( UpperCAmelCase )-> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = first_non_null_value(UpperCAmelCase ) if isinstance(UpperCAmelCase ,UpperCAmelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCAmelCase ,np.ndarray ): SCREAMING_SNAKE_CASE_ = no_op_if_value_is_null(UpperCAmelCase ) return [obj_to_image_dict_func(UpperCAmelCase ) for obj in objs] elif isinstance(UpperCAmelCase ,PIL.Image.Image ): SCREAMING_SNAKE_CASE_ = no_op_if_value_is_null(UpperCAmelCase ) return [obj_to_image_dict_func(UpperCAmelCase ) for obj in objs] else: return objs else: return objs
393
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class snake_case : '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : str ) -> int: """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden SCREAMING_SNAKE_CASE_ = deepcopy(lowerCAmelCase_ ) elif os.path.exists(lowerCAmelCase_ ): with io.open(lowerCAmelCase_ , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ = json.load(lowerCAmelCase_ ) else: try: SCREAMING_SNAKE_CASE_ = baseaa.urlsafe_baadecode(lowerCAmelCase_ ).decode('''utf-8''' ) SCREAMING_SNAKE_CASE_ = json.loads(lowerCAmelCase_ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) SCREAMING_SNAKE_CASE_ = config self.set_stage_and_offload() def _lowercase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_value('''zero_optimization.stage''' , -1 ) # offload SCREAMING_SNAKE_CASE_ = False if self.is_zeroa() or self.is_zeroa(): SCREAMING_SNAKE_CASE_ = set(['''cpu''', '''nvme'''] ) SCREAMING_SNAKE_CASE_ = set( [ self.get_value('''zero_optimization.offload_optimizer.device''' ), self.get_value('''zero_optimization.offload_param.device''' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: SCREAMING_SNAKE_CASE_ = True def _lowercase ( self : Optional[Any] , lowerCAmelCase_ : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.config # find the config node of interest if it exists SCREAMING_SNAKE_CASE_ = ds_key_long.split('''.''' ) SCREAMING_SNAKE_CASE_ = nodes.pop() for node in nodes: SCREAMING_SNAKE_CASE_ = config.get(lowerCAmelCase_ ) if config is None: return None, ds_key return config, ds_key def _lowercase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any]=None ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = self.find_config_node(lowerCAmelCase_ ) if config is None: return default return config.get(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowercase ( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any=False ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.config # find the config node of interest if it exists SCREAMING_SNAKE_CASE_ = ds_key_long.split('''.''' ) for node in nodes: SCREAMING_SNAKE_CASE_ = config SCREAMING_SNAKE_CASE_ = config.get(lowerCAmelCase_ ) if config is None: if must_exist: raise ValueError(F'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(lowerCAmelCase_ ) def _lowercase ( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_value(lowerCAmelCase_ ) return False if value is None else bool(lowerCAmelCase_ ) def _lowercase ( self : List[str] , lowerCAmelCase_ : Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_value(lowerCAmelCase_ ) return False if value is None else not bool(lowerCAmelCase_ ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return self._stage == 2 def _lowercase ( self : Optional[int] ) -> List[Any]: """simple docstring""" return self._stage == 3 def _lowercase ( self : List[str] ) -> int: """simple docstring""" return self._offload class snake_case : '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : List[str] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = engine def _lowercase ( self : int , lowerCAmelCase_ : str , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" self.engine.backward(lowerCAmelCase_ , **lowerCAmelCase_ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] ) -> List[str]: """simple docstring""" super().__init__(lowerCAmelCase_ , device_placement=lowerCAmelCase_ , scaler=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = hasattr(self.optimizer , '''overflow''' ) def _lowercase ( self : Optional[int] , lowerCAmelCase_ : Optional[int]=None ) -> Any: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _lowercase ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _lowercase ( self : List[str] ) -> str: """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] ) -> str: """simple docstring""" super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowercase ( self : List[str] ) -> str: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class snake_case : '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=0.001 , lowerCAmelCase_ : Union[str, Any]=0 , **lowerCAmelCase_ : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = params SCREAMING_SNAKE_CASE_ = lr SCREAMING_SNAKE_CASE_ = weight_decay SCREAMING_SNAKE_CASE_ = kwargs class snake_case : '''simple docstring''' def __init__( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Union[str, Any]=0 , **lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = optimizer SCREAMING_SNAKE_CASE_ = total_num_steps SCREAMING_SNAKE_CASE_ = warmup_num_steps SCREAMING_SNAKE_CASE_ = kwargs
393
1
class _UpperCamelCase : '''simple docstring''' def __init__( self : str ): '''simple docstring''' __lowerCamelCase : Optional[Any] = {} def _snake_case ( self : Any ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(UpperCamelCase__ , """ -> """ , """ -> """.join([str(UpperCamelCase__ ) for j in self.vertex[i]] ) ) def _snake_case ( self : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] ): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(UpperCamelCase__ ) else: # else make a new vertex __lowerCamelCase : Union[str, Any] = [to_vertex] def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowerCamelCase : List[Any] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(UpperCamelCase__ , UpperCamelCase__ ) def _snake_case ( self : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] ): '''simple docstring''' __lowerCamelCase : str = True print(UpperCamelCase__ , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": __UpperCamelCase : int = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
709
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _UpperCAmelCase ( UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Any=1_024 ): """simple docstring""" __lowerCamelCase , __lowerCamelCase : str = [], [] __lowerCamelCase : Any = list(zip(UpperCAmelCase , UpperCAmelCase ) ) __lowerCamelCase , __lowerCamelCase : List[str] = sorted_examples[0] def is_too_big(UpperCAmelCase : Optional[Any] ): return tok(UpperCAmelCase , return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __lowerCamelCase : Union[str, Any] = new_src + """ """ + src __lowerCamelCase : str = new_tgt + """ """ + tgt if is_too_big(UpperCAmelCase ) or is_too_big(UpperCAmelCase ): # cant fit, finalize example finished_src.append(UpperCAmelCase ) finished_tgt.append(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : str = src, tgt else: # can fit, keep adding __lowerCamelCase , __lowerCamelCase : int = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(UpperCAmelCase ) finished_tgt.append(UpperCAmelCase ) return finished_src, finished_tgt def _UpperCAmelCase ( UpperCAmelCase : Tuple , UpperCAmelCase : Path , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ): """simple docstring""" __lowerCamelCase : List[Any] = Path(UpperCAmelCase ) save_path.mkdir(exist_ok=UpperCAmelCase ) for split in ["train"]: __lowerCamelCase , __lowerCamelCase : List[Any] = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" __lowerCamelCase : Tuple = [x.rstrip() for x in Path(UpperCAmelCase ).open().readlines()] __lowerCamelCase : Tuple = [x.rstrip() for x in Path(UpperCAmelCase ).open().readlines()] __lowerCamelCase , __lowerCamelCase : int = pack_examples(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) print(f"""packed {split} split from {len(UpperCAmelCase )} examples -> {len(UpperCAmelCase )}.""" ) Path(save_path / f"""{split}.source""" ).open("""w""" ).write("""\n""".join(UpperCAmelCase ) ) Path(save_path / f"""{split}.target""" ).open("""w""" ).write("""\n""".join(UpperCAmelCase ) ) for split in ["val", "test"]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" shutil.copyfile(UpperCAmelCase , save_path / f"""{split}.source""" ) shutil.copyfile(UpperCAmelCase , save_path / f"""{split}.target""" ) def _UpperCAmelCase ( ): """simple docstring""" __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=UpperCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" , type=UpperCAmelCase , default=128 ) parser.add_argument("""--data_dir""" , type=UpperCAmelCase ) parser.add_argument("""--save_path""" , type=UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = parser.parse_args() __lowerCamelCase : Tuple = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(UpperCAmelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
458
0
import json import sys def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: '''simple docstring''' with open(__lowerCamelCase , encoding="""utf-8""" ) as f: UpperCAmelCase__ : Any = json.load(__lowerCamelCase ) UpperCAmelCase__ : Dict = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(__lowerCamelCase ): UpperCAmelCase__ : Optional[int] = results[benchmark_name] UpperCAmelCase__ : List[Any] = benchmark_name.split("""/""" )[-1] output_md.append(F"### Benchmark: {benchmark_file_name}" ) UpperCAmelCase__ : Union[str, Any] = """| metric |""" UpperCAmelCase__ : List[Any] = """|--------|""" UpperCAmelCase__ : str = """| new / old (diff) |""" for metric_name in sorted(__lowerCamelCase ): UpperCAmelCase__ : Optional[int] = benchmark_res[metric_name] UpperCAmelCase__ : Optional[int] = metric_vals["""new"""] UpperCAmelCase__ : Union[str, Any] = metric_vals.get("""old""" , __lowerCamelCase ) UpperCAmelCase__ : Optional[int] = metric_vals.get("""diff""" , __lowerCamelCase ) UpperCAmelCase__ : List[Any] = F" {new_val:f}" if isinstance(__lowerCamelCase , (int, float) ) else """None""" if old_val is not None: val_str += F" / {old_val:f}" if isinstance(__lowerCamelCase , (int, float) ) else "None" if dif_val is not None: val_str += F" ({dif_val:f})" if isinstance(__lowerCamelCase , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(__lowerCamelCase ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = sys.argv[1] SCREAMING_SNAKE_CASE__ : str = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
79
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {} class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : Dict = "llama" A__ : int = ["past_key_values"] def __init__( self , snake_case_=32000 , snake_case_=4096 , snake_case_=11008 , snake_case_=32 , snake_case_=32 , snake_case_=None , snake_case_="silu" , snake_case_=2048 , snake_case_=0.02 , snake_case_=1e-6 , snake_case_=True , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=1 , snake_case_=False , snake_case_=None , **snake_case_ , ) -> Any: _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = intermediate_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads # for backward compatibility if num_key_value_heads is None: _UpperCAmelCase = num_attention_heads _UpperCAmelCase = num_key_value_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = rms_norm_eps _UpperCAmelCase = pretraining_tp _UpperCAmelCase = use_cache _UpperCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , tie_word_embeddings=snake_case_ , **snake_case_ , ) def __A ( self ) -> List[str]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case_ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"""got {self.rope_scaling}""" ) _UpperCAmelCase = self.rope_scaling.get("type" , snake_case_ ) _UpperCAmelCase = self.rope_scaling.get("factor" , snake_case_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(snake_case_ , snake_case_ ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
426
0
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _A : int = Lock() def __magic_name__ ( __snake_case : List[str] , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] ) -> List[str]: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__snake_case ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowercase : Tuple = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowercase : Optional[Any] = min(__snake_case , __snake_case ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__snake_case ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowercase : Optional[Any] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowercase : Any = max(__snake_case , __snake_case ) # after all swaps are performed, send the values back to main result_pipe[1].send(__snake_case ) def __magic_name__ ( __snake_case : List[str] ) -> List[str]: lowercase : List[str] = [] lowercase : Any = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowercase : Optional[int] = Pipe() lowercase : Any = Pipe() process_array_.append( Process( target=__snake_case , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowercase : List[Any] = temp_rs lowercase : Optional[int] = temp_rr for i in range(1 , len(__snake_case ) - 1 ): lowercase : Union[str, Any] = Pipe() lowercase : Dict = Pipe() process_array_.append( Process( target=__snake_case , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowercase : Tuple = temp_rs lowercase : str = temp_rr process_array_.append( Process( target=__snake_case , args=( len(__snake_case ) - 1, arr[len(__snake_case ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__snake_case ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__snake_case ) ): lowercase : List[str] = result_pipe[p][0].recv() process_array_[p].join() return arr def __magic_name__ ( ) -> List[str]: lowercase : Dict = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*__snake_case ) lowercase : Tuple = odd_even_transposition(__snake_case ) print("Sorted List\n" ) print(*__snake_case ) if __name__ == "__main__": main()
716
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class a__ ( unittest.TestCase ): @slow def __magic_name__ ( self ): lowercase : List[str] = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) lowercase : Any = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) model.to(_a ) from datasets import load_dataset lowercase : Any = load_dataset("nielsr/rvlcdip-demo" ) lowercase : List[str] = dataset["train"][0]["image"].convert("RGB" ) lowercase : str = image_processor(_a , return_tensors="pt" ).to(_a ) # forward pass with torch.no_grad(): lowercase : Tuple = model(**_a ) lowercase : Dict = outputs.logits lowercase : Union[str, Any] = torch.Size((1, 16) ) self.assertEqual(logits.shape , _a ) lowercase : int = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=_a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , _a , atol=1E-4 ) )
518
0
def UpperCAmelCase__ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> str: if index == number_of_items: return 0 _A = 0 _A = 0 _A = knapsack(snake_case_ , snake_case_ , snake_case_ , snake_case_ , index + 1 ) if weights[index] <= max_weight: _A = values[index] + knapsack( snake_case_ , snake_case_ , snake_case_ , max_weight - weights[index] , index + 1 ) return max(snake_case_ , snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
317
"""simple docstring""" import numpy as np def A_ ( snake_case_ : Tuple ,snake_case_ : Any ,snake_case_ : str ,snake_case_ : Optional[int] ,snake_case_ : List[str] ): '''simple docstring''' UpperCamelCase : int = int(np.ceil((x_end - xa) / h ) ) UpperCamelCase : Dict = np.zeros((n + 1,) ) UpperCamelCase : Optional[int] = ya UpperCamelCase : Optional[Any] = xa for k in range(snake_case_ ): UpperCamelCase : Optional[Any] = f(snake_case_ ,y[k] ) UpperCamelCase : Optional[Any] = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) UpperCamelCase : Optional[Any] = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) UpperCamelCase : Optional[int] = f(x + h ,y[k] + h * ka ) UpperCamelCase : Tuple = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
499
0
lowerCAmelCase : str =[ (1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def A__ ( __A ): '''simple docstring''' _lowerCamelCase : str = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Union[str, Any] = 0 while place < len(__A ): if (place + 1 < len(__A )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def A__ ( __A ): '''simple docstring''' _lowerCamelCase : List[Any] = [] for arabic, roman in ROMAN: (_lowerCamelCase) : List[str] = divmod(__A , __A ) result.append(roman * factor ) if number == 0: break return "".join(__A ) if __name__ == "__main__": import doctest doctest.testmod()
711
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A__ ( __A , __A , __A , __A , __A , __A , __A , __A=False , ): '''simple docstring''' output_path.parent.mkdir(parents=__A , exist_ok=__A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , ) else: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , ) @torch.no_grad() def A__ ( __A , __A , __A , __A = False ): '''simple docstring''' _lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _lowerCamelCase : str = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _lowerCamelCase : List[str] = """cpu""" _lowerCamelCase : Dict = Path(__A ) # VAE DECODER _lowerCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" ) _lowerCamelCase : List[str] = vae_decoder.config.latent_channels # forward only through the decoder part _lowerCamelCase : Tuple = vae_decoder.decode onnx_export( __A , model_args=( torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__A , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowerCAmelCase : Optional[Any] =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
15
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class a__ ( __lowercase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _SCREAMING_SNAKE_CASE : Optional[Any] = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) _SCREAMING_SNAKE_CASE : Any = Features({'text': Value('string' )} ) _SCREAMING_SNAKE_CASE : Any = Features({'summary': Value('string' )} ) _SCREAMING_SNAKE_CASE : Optional[Any] = 'text' _SCREAMING_SNAKE_CASE : str = 'summary' @property def _lowerCamelCase ( self ): """simple docstring""" return {self.text_column: "text", self.summary_column: "summary"}
245
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __UpperCAmelCase = 2_5_0_0_0_4 __UpperCAmelCase = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class a_( lowercase__ , unittest.TestCase ): """simple docstring""" __snake_case : Tuple =MBartaaTokenizer __snake_case : Any =MBartaaTokenizerFast __snake_case : str =True __snake_case : Tuple =True def __UpperCamelCase ( self : Dict) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE = MBartaaTokenizer(lowerCAmelCase__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self : int) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = '<s>' SCREAMING_SNAKE_CASE = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def __UpperCamelCase ( self : Dict) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , '<mask>') self.assertEqual(len(lowerCAmelCase__) , 1_0_5_4) def __UpperCamelCase ( self : int) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_5_4) def __UpperCamelCase ( self : int) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = MBartaaTokenizer(lowerCAmelCase__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test') self.assertListEqual(lowerCAmelCase__ , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowerCAmelCase__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def __UpperCamelCase ( self : str) -> List[str]: """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE = {'input_ids': [[2_5_0_0_0_4, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [2_5_0_0_0_4, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_0_0_0_4, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def __UpperCamelCase ( self : List[str]) -> List[str]: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})'''): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(lowerCAmelCase__) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files)) SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f) self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(lowerCAmelCase__) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase__) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(lowerCAmelCase__) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(lowerCAmelCase__) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__)) shutil.rmtree(lowerCAmelCase__) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(lowerCAmelCase__) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(lowerCAmelCase__) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__)) shutil.rmtree(lowerCAmelCase__) @require_torch @require_sentencepiece @require_tokenizers class a_( unittest.TestCase ): """simple docstring""" __snake_case : List[Any] ='''facebook/mbart-large-50-one-to-many-mmt''' __snake_case : Union[str, Any] =[ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] __snake_case : Union[str, Any] =[ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] __snake_case : str =[EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def __UpperCamelCase ( cls : List[Any]) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO') SCREAMING_SNAKE_CASE = 1 return cls def __UpperCamelCase ( self : Union[str, Any]) -> str: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 2_5_0_0_0_1) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 2_5_0_0_0_4) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 2_5_0_0_2_0) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 2_5_0_0_3_8) def __UpperCamelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__) def __UpperCamelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids) SCREAMING_SNAKE_CASE = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] SCREAMING_SNAKE_CASE = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__) def __UpperCamelCase ( self : Tuple) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = ['this is gunna be a long sentence ' * 2_0] assert isinstance(src_text[0] , lowerCAmelCase__) SCREAMING_SNAKE_CASE = 1_0 SCREAMING_SNAKE_CASE = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__).input_ids[0] self.assertEqual(ids[0] , lowerCAmelCase__) self.assertEqual(ids[-1] , 2) self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) def __UpperCamelCase ( self : Tuple) -> str: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR']) , [2_5_0_0_5_3, 2_5_0_0_0_1]) def __UpperCamelCase ( self : Any) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE = MBartaaTokenizer.from_pretrained(lowerCAmelCase__) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__) @require_torch def __UpperCamelCase ( self : int) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='pt') SCREAMING_SNAKE_CASE = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __UpperCamelCase ( self : List[str]) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens) , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) self.assertEqual((2, 1_4) , batch.input_ids.shape) self.assertEqual((2, 1_4) , batch.attention_mask.shape) SCREAMING_SNAKE_CASE = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__) self.assertEqual(2 , batch.decoder_input_ids[0, 0]) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE]) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) def __UpperCamelCase ( self : List[str]) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='pt') SCREAMING_SNAKE_CASE = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=1_0 , return_tensors='pt') SCREAMING_SNAKE_CASE = targets['input_ids'] SCREAMING_SNAKE_CASE = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0) @require_torch def __UpperCamelCase ( self : List[str]) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR') self.assertEqual( nested_simplify(lowerCAmelCase__) , { # en_XX, A, test, EOS 'input_ids': [[2_5_0_0_0_4, 6_2, 3_0_3_4, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 2_5_0_0_0_1, } , )
259
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __UpperCAmelCase = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class a_( unittest.TestCase ): """simple docstring""" __snake_case : Union[str, Any] =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __snake_case : Dict =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __snake_case : Optional[Any] ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __snake_case : Any ={ config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __UpperCamelCase ( self : List[Any]) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt') SCREAMING_SNAKE_CASE = text_classifier('This is great !') self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'LABEL_0', 'score': 0.5_04}]) SCREAMING_SNAKE_CASE = text_classifier('This is great !' , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase__) , [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}]) SCREAMING_SNAKE_CASE = text_classifier(['This is great !', 'This is bad'] , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase__) , [ [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], ] , ) SCREAMING_SNAKE_CASE = text_classifier('This is great !' , top_k=1) self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'LABEL_0', 'score': 0.5_04}]) # Legacy behavior SCREAMING_SNAKE_CASE = text_classifier('This is great !' , return_all_scores=lowerCAmelCase__) self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'LABEL_0', 'score': 0.5_04}]) SCREAMING_SNAKE_CASE = text_classifier('This is great !' , return_all_scores=lowerCAmelCase__) self.assertEqual( nested_simplify(lowerCAmelCase__) , [[{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}]]) SCREAMING_SNAKE_CASE = text_classifier(['This is great !', 'Something else'] , return_all_scores=lowerCAmelCase__) self.assertEqual( nested_simplify(lowerCAmelCase__) , [ [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], ] , ) SCREAMING_SNAKE_CASE = text_classifier(['This is great !', 'Something else'] , return_all_scores=lowerCAmelCase__) self.assertEqual( nested_simplify(lowerCAmelCase__) , [ {'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_0', 'score': 0.5_04}, ] , ) @require_torch def __UpperCamelCase ( self : str) -> Dict: """simple docstring""" import torch SCREAMING_SNAKE_CASE = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' , device=torch.device('cpu') , ) SCREAMING_SNAKE_CASE = text_classifier('This is great !') self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'LABEL_0', 'score': 0.5_04}]) @require_tf def __UpperCamelCase ( self : int) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='tf') SCREAMING_SNAKE_CASE = text_classifier('This is great !') self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'LABEL_0', 'score': 0.5_04}]) @slow @require_torch def __UpperCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = pipeline('text-classification') SCREAMING_SNAKE_CASE = text_classifier('This is great !') self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'POSITIVE', 'score': 1.0}]) SCREAMING_SNAKE_CASE = text_classifier('This is bad !') self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'NEGATIVE', 'score': 1.0}]) SCREAMING_SNAKE_CASE = text_classifier('Birds are a type of animal') self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'POSITIVE', 'score': 0.9_88}]) @slow @require_tf def __UpperCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = pipeline('text-classification' , framework='tf') SCREAMING_SNAKE_CASE = text_classifier('This is great !') self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'POSITIVE', 'score': 1.0}]) SCREAMING_SNAKE_CASE = text_classifier('This is bad !') self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'NEGATIVE', 'score': 1.0}]) SCREAMING_SNAKE_CASE = text_classifier('Birds are a type of animal') self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'POSITIVE', 'score': 0.9_88}]) def __UpperCamelCase ( self : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = TextClassificationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return text_classifier, ["HuggingFace is in", "This is another test"] def __UpperCamelCase ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 SCREAMING_SNAKE_CASE = 'HuggingFace is in' SCREAMING_SNAKE_CASE = text_classifier(lowerCAmelCase__) self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)}]) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values()) SCREAMING_SNAKE_CASE = ['HuggingFace is in ', 'Paris is in France'] SCREAMING_SNAKE_CASE = text_classifier(lowerCAmelCase__) self.assertEqual( nested_simplify(lowerCAmelCase__) , [{'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)}, {'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values()) self.assertTrue(outputs[1]['label'] in model.config.idalabel.values()) # Forcing to get all results with `top_k=None` # This is NOT the legacy format SCREAMING_SNAKE_CASE = text_classifier(lowerCAmelCase__ , top_k=lowerCAmelCase__) SCREAMING_SNAKE_CASE = len(model.config.idalabel.values()) self.assertEqual( nested_simplify(lowerCAmelCase__) , [[{'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)}] * N, [{'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)}] * N] , ) SCREAMING_SNAKE_CASE = {'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'} SCREAMING_SNAKE_CASE = text_classifier(lowerCAmelCase__) self.assertEqual( nested_simplify(lowerCAmelCase__) , {'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)} , ) self.assertTrue(outputs['label'] in model.config.idalabel.values()) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. SCREAMING_SNAKE_CASE = [['HuggingFace is in ', 'Paris is in France']] with self.assertRaises(lowerCAmelCase__): text_classifier(lowerCAmelCase__) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility SCREAMING_SNAKE_CASE = text_classifier([[['HuggingFace is in ', 'Paris is in France']]]) self.assertEqual( nested_simplify(lowerCAmelCase__) , [{'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values())
259
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = "gpt_neo" _lowerCamelCase = ["past_key_values"] _lowerCamelCase = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self ,lowerCamelCase_=5_0_2_5_7 ,lowerCamelCase_=2_0_4_8 ,lowerCamelCase_=2_0_4_8 ,lowerCamelCase_=2_4 ,lowerCamelCase_=[[["global", "local"], 1_2]] ,lowerCamelCase_=1_6 ,lowerCamelCase_=None ,lowerCamelCase_=2_5_6 ,lowerCamelCase_="gelu_new" ,lowerCamelCase_=0.0 ,lowerCamelCase_=0.0 ,lowerCamelCase_=0.0 ,lowerCamelCase_=0.1 ,lowerCamelCase_=1E-5 ,lowerCamelCase_=0.02 ,lowerCamelCase_=True ,lowerCamelCase_=5_0_2_5_6 ,lowerCamelCase_=5_0_2_5_6 ,**lowerCamelCase_ ,) -> Tuple: A = vocab_size A = max_position_embeddings A = hidden_size A = num_layers A = num_heads A = intermediate_size A = window_size A = activation_function A = resid_dropout A = embed_dropout A = attention_dropout A = classifier_dropout A = layer_norm_epsilon A = initializer_range A = use_cache A = bos_token_id A = eos_token_id A = attention_types A = self.expand_attention_types_params(lowerCamelCase_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ f'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' f'`config.num_layers = {self.num_layers}`. ' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) @staticmethod def UpperCamelCase__ ( lowerCamelCase_ ) -> Any: A = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _A ( _a : int , _a : Tuple , _a : Dict , _a : Union[str, Any] ): """simple docstring""" import torch A = input.size() A = len(SCREAMING_SNAKE_CASE__ ) A = shape[dimension] A = torch.arange(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A = torch.div(sizedim - size , SCREAMING_SNAKE_CASE__ , rounding_mode="""floor""" ) + 1 A = torch.arange(SCREAMING_SNAKE_CASE__ ) + low_indices[:min_length][:, None] A = [slice(SCREAMING_SNAKE_CASE__ )] * rank A = indices A = input[s] A = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(SCREAMING_SNAKE_CASE__ ) def _A ( _a : Tuple , _a : Any ): """simple docstring""" import torch A = torch.arange(1 , SCREAMING_SNAKE_CASE__ ) A = torch.remainder(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A = remainders == 0 A = candidates[divisor_indices] A = torch.max(SCREAMING_SNAKE_CASE__ ) return largest_divisor, torch.div(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rounding_mode="""floor""" ) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def UpperCamelCase__ ( self ) -> Optional[int]: A = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ ,direction="""inputs""" ) A = {0: """batch""", 1: """past_sequence + sequence"""} else: A = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCamelCase__ ( self ) -> int: return self._config.num_heads def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = -1 ,lowerCamelCase_ = -1 ,lowerCamelCase_ = False ,lowerCamelCase_ = None ,) -> str: A = super(lowerCamelCase_ ,self ).generate_dummy_inputs( lowerCamelCase_ ,batch_size=lowerCamelCase_ ,seq_length=lowerCamelCase_ ,is_pair=lowerCamelCase_ ,framework=lowerCamelCase_ ) # We need to order the input in the way they appears in the forward() A = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A = seqlen + 2 A = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A = [ (torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) for _ in range(self.num_layers ) ] A = common_inputs["""attention_mask"""] if self.use_past: A = ordered_inputs["""attention_mask"""].dtype A = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowerCamelCase_ ,lowerCamelCase_ ,dtype=lowerCamelCase_ )] ,dim=1 ) return ordered_inputs @property def UpperCamelCase__ ( self ) -> Tuple: return 1_3
617
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __snake_case ( lowerCAmelCase ): _a : Optional[int]= "openai/whisper-base" _a : int= ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) _a : int= "transcriber" _a : List[str]= WhisperProcessor _a : Optional[int]= WhisperForConditionalGeneration _a : List[str]= ["audio"] _a : Any= ["text"] def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' return self.pre_processor(snake_case ,return_tensors="""pt""" ).input_features def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' return self.model.generate(inputs=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' return self.pre_processor.batch_decode(snake_case ,skip_special_tokens=snake_case )[0]
336
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case_ ( _A): lowerCamelCase :List[str] = ["image_processor", "tokenizer"] lowerCamelCase :Any = "ViltImageProcessor" lowerCamelCase :Optional[int] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , __lowercase=None , __lowercase=None , **__lowercase ) -> Tuple: lowerCamelCase : Tuple =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowercase , ) lowerCamelCase : List[Any] =kwargs.pop('''feature_extractor''' ) lowerCamelCase : List[str] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowercase , __lowercase ) lowerCamelCase : Optional[int] =self.image_processor def __call__( self , __lowercase , __lowercase = None , __lowercase = True , __lowercase = False , __lowercase = None , __lowercase = None , __lowercase = 0 , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = True , __lowercase = None , **__lowercase , ) -> BatchEncoding: lowerCamelCase : Tuple =self.tokenizer( text=__lowercase , add_special_tokens=__lowercase , padding=__lowercase , truncation=__lowercase , max_length=__lowercase , stride=__lowercase , pad_to_multiple_of=__lowercase , return_token_type_ids=__lowercase , return_attention_mask=__lowercase , return_overflowing_tokens=__lowercase , return_special_tokens_mask=__lowercase , return_offsets_mapping=__lowercase , return_length=__lowercase , verbose=__lowercase , return_tensors=__lowercase , **__lowercase , ) # add pixel_values + pixel_mask lowerCamelCase : List[str] =self.image_processor(__lowercase , return_tensors=__lowercase ) encoding.update(__lowercase ) return encoding def __lowercase ( self , *__lowercase , **__lowercase ) -> Any: return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def __lowercase ( self , *__lowercase , **__lowercase ) -> Dict: return self.tokenizer.decode(*__lowercase , **__lowercase ) @property def __lowercase ( self ) -> Dict: lowerCamelCase : Tuple =self.tokenizer.model_input_names lowerCamelCase : Optional[Any] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowercase ( self ) -> Tuple: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowercase , ) return self.image_processor_class @property def __lowercase ( self ) -> Dict: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __lowercase , ) return self.image_processor
705
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''', } class snake_case_ ( _A): lowerCamelCase :Union[str, Any] = "timesformer" def __init__( self , __lowercase=2_2_4 , __lowercase=1_6 , __lowercase=3 , __lowercase=8 , __lowercase=7_6_8 , __lowercase=1_2 , __lowercase=1_2 , __lowercase=3_0_7_2 , __lowercase="gelu" , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.0_2 , __lowercase=1e-6 , __lowercase=True , __lowercase="divided_space_time" , __lowercase=0 , **__lowercase , ) -> List[Any]: super().__init__(**__lowercase ) lowerCamelCase : int =image_size lowerCamelCase : List[str] =patch_size lowerCamelCase : Union[str, Any] =num_channels lowerCamelCase : str =num_frames lowerCamelCase : Dict =hidden_size lowerCamelCase : int =num_hidden_layers lowerCamelCase : Dict =num_attention_heads lowerCamelCase : Dict =intermediate_size lowerCamelCase : Union[str, Any] =hidden_act lowerCamelCase : str =hidden_dropout_prob lowerCamelCase : Union[str, Any] =attention_probs_dropout_prob lowerCamelCase : List[Any] =initializer_range lowerCamelCase : List[Any] =layer_norm_eps lowerCamelCase : List[str] =qkv_bias lowerCamelCase : Tuple =attention_type lowerCamelCase : List[Any] =drop_path_rate
262
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Tuple ={"""configuration_plbart""": ["""PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PLBartConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] =["""PLBartTokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] =[ """PLBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """PLBartForCausalLM""", """PLBartForConditionalGeneration""", """PLBartForSequenceClassification""", """PLBartModel""", """PLBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys _lowercase : Tuple =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
364
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCamelCase_ ( snake_case__ ): # to overwrite at feature extractactor specific tests _a : str = None _a : Tuple = None @property def __a ( self : str ): return self.feat_extract_tester.prepare_feat_extract_dict() def __a ( self : int ): lowerCamelCase_ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCamelCase , 'feature_size' ) ) self.assertTrue(hasattr(lowerCamelCase , 'sampling_rate' ) ) self.assertTrue(hasattr(lowerCamelCase , 'padding_value' ) ) def __a ( self : List[Any] ): lowerCamelCase_ : Dict = self.feat_extract_tester.prepare_inputs_for_common() lowerCamelCase_ : str = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase_ : int = feat_extract.model_input_names[0] lowerCamelCase_ : Optional[int] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCamelCase ) == len(lowerCamelCase ) for x, y in zip(lowerCamelCase , processed_features[input_name] ) ) ) lowerCamelCase_ : Tuple = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCamelCase ) lowerCamelCase_ : Union[str, Any] = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) lowerCamelCase_ : int = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCamelCase_ : Union[str, Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def __a ( self : Dict ): lowerCamelCase_ : Any = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCamelCase ) lowerCamelCase_ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase_ : Tuple = feat_extract.model_input_names[0] lowerCamelCase_ : Any = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) lowerCamelCase_ : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCamelCase_ : Optional[int] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def __a ( self : Tuple ): lowerCamelCase_ : int = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCamelCase ) lowerCamelCase_ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase_ : int = feat_extract.model_input_names[0] lowerCamelCase_ : List[str] = BatchFeature({input_name: speech_inputs} , tensor_type='tf' ) lowerCamelCase_ : Union[str, Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCamelCase_ : Any = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def __a ( self : Optional[Any] , lowerCamelCase : int=False ): def _inputs_have_equal_length(lowerCamelCase : Union[str, Any] ): lowerCamelCase_ : Any = len(input[0] ) for input_slice in input[1:]: if len(lowerCamelCase ) != length: return False return True def _inputs_are_equal(lowerCamelCase : List[str] , lowerCamelCase : Dict ): if len(lowerCamelCase ) != len(lowerCamelCase ): return False for input_slice_a, input_slice_a in zip(lowerCamelCase , lowerCamelCase ): if not np.allclose(np.asarray(lowerCamelCase ) , np.asarray(lowerCamelCase ) , atol=1E-3 ): return False return True lowerCamelCase_ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase_ : str = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCamelCase ) lowerCamelCase_ : List[Any] = feat_extract.model_input_names[0] lowerCamelCase_ : List[Any] = BatchFeature({input_name: speech_inputs} ) lowerCamelCase_ : Optional[int] = self.feat_extract_tester.seq_length_diff lowerCamelCase_ : int = self.feat_extract_tester.max_seq_length + pad_diff lowerCamelCase_ : Optional[int] = self.feat_extract_tester.min_seq_length lowerCamelCase_ : List[Any] = self.feat_extract_tester.batch_size lowerCamelCase_ : int = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowerCamelCase_ : int = feat_extract.pad(lowerCamelCase , padding=lowerCamelCase ) lowerCamelCase_ : Tuple = input_a[input_name] lowerCamelCase_ : List[str] = feat_extract.pad(lowerCamelCase , padding='longest' ) lowerCamelCase_ : Optional[Any] = input_a[input_name] lowerCamelCase_ : List[Any] = feat_extract.pad(lowerCamelCase , padding='max_length' , max_length=len(speech_inputs[-1] ) ) lowerCamelCase_ : List[str] = input_a[input_name] lowerCamelCase_ : Union[str, Any] = feat_extract.pad(lowerCamelCase , padding='longest' , return_tensors='np' ) lowerCamelCase_ : int = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCamelCase ): feat_extract.pad(lowerCamelCase , padding='max_length' )[input_name] lowerCamelCase_ : Union[str, Any] = feat_extract.pad( lowerCamelCase , padding='max_length' , max_length=lowerCamelCase , return_tensors='np' ) lowerCamelCase_ : Dict = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(_inputs_are_equal(lowerCamelCase , lowerCamelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy lowerCamelCase_ : Optional[Any] = feat_extract.pad(lowerCamelCase , pad_to_multiple_of=10 ) lowerCamelCase_ : Dict = input_a[input_name] lowerCamelCase_ : List[Any] = feat_extract.pad(lowerCamelCase , padding='longest' , pad_to_multiple_of=10 ) lowerCamelCase_ : Union[str, Any] = input_a[input_name] lowerCamelCase_ : str = feat_extract.pad( lowerCamelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCamelCase ) lowerCamelCase_ : List[str] = input_a[input_name] lowerCamelCase_ : Any = feat_extract.pad( lowerCamelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCamelCase , return_tensors='np' , ) lowerCamelCase_ : str = input_a[input_name] self.assertTrue(all(len(lowerCamelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(lowerCamelCase , lowerCamelCase ) ) lowerCamelCase_ : Dict = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCamelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct lowerCamelCase_ : Dict = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def __a ( self : Optional[Any] , lowerCamelCase : Any=False ): def _inputs_have_equal_length(lowerCamelCase : Dict ): lowerCamelCase_ : Dict = len(input[0] ) for input_slice in input[1:]: if len(lowerCamelCase ) != length: return False return True def _inputs_are_equal(lowerCamelCase : int , lowerCamelCase : List[str] ): if len(lowerCamelCase ) != len(lowerCamelCase ): return False for input_slice_a, input_slice_a in zip(lowerCamelCase , lowerCamelCase ): if not np.allclose(np.asarray(lowerCamelCase ) , np.asarray(lowerCamelCase ) , atol=1E-3 ): return False return True lowerCamelCase_ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase_ : str = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCamelCase ) lowerCamelCase_ : Any = feat_extract.model_input_names[0] lowerCamelCase_ : str = BatchFeature({input_name: speech_inputs} ) # truncate to smallest lowerCamelCase_ : Dict = feat_extract.pad( lowerCamelCase , padding='max_length' , max_length=len(speech_inputs[0] ) , truncation=lowerCamelCase ) lowerCamelCase_ : int = input_a[input_name] lowerCamelCase_ : str = feat_extract.pad(lowerCamelCase , padding='max_length' , max_length=len(speech_inputs[0] ) ) lowerCamelCase_ : Union[str, Any] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertFalse(_inputs_have_equal_length(lowerCamelCase ) ) # truncate to smallest with np lowerCamelCase_ : Optional[int] = feat_extract.pad( lowerCamelCase , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' , truncation=lowerCamelCase , ) lowerCamelCase_ : List[str] = input_a[input_name] lowerCamelCase_ : int = feat_extract.pad( lowerCamelCase , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' ) lowerCamelCase_ : Tuple = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCamelCase ) ) # truncate to middle lowerCamelCase_ : Tuple = feat_extract.pad( lowerCamelCase , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=lowerCamelCase , return_tensors='np' , ) lowerCamelCase_ : Union[str, Any] = input_a[input_name] lowerCamelCase_ : str = feat_extract.pad( lowerCamelCase , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=lowerCamelCase ) lowerCamelCase_ : Any = input_a[input_name] lowerCamelCase_ : int = feat_extract.pad( lowerCamelCase , padding='max_length' , max_length=len(speech_inputs[1] ) , return_tensors='np' ) lowerCamelCase_ : Optional[int] = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(_inputs_are_equal(lowerCamelCase , lowerCamelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCamelCase ): feat_extract.pad(lowerCamelCase , truncation=lowerCamelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCamelCase ): feat_extract.pad(lowerCamelCase , padding='longest' , truncation=lowerCamelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCamelCase ): feat_extract.pad(lowerCamelCase , padding='longest' , truncation=lowerCamelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCamelCase ): feat_extract.pad(lowerCamelCase , padding='max_length' , truncation=lowerCamelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowerCamelCase_ : str = 12 lowerCamelCase_ : List[Any] = feat_extract.pad( lowerCamelCase , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCamelCase , truncation=lowerCamelCase , ) lowerCamelCase_ : List[str] = input_a[input_name] lowerCamelCase_ : List[Any] = feat_extract.pad( lowerCamelCase , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCamelCase , ) lowerCamelCase_ : Dict = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowerCamelCase_ : Optional[Any] = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: lowerCamelCase_ : str = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertFalse(_inputs_have_equal_length(lowerCamelCase ) ) def __a ( self : Any ): self._check_padding(numpify=lowerCamelCase ) def __a ( self : List[Any] ): self._check_padding(numpify=lowerCamelCase ) def __a ( self : int ): self._check_truncation(numpify=lowerCamelCase ) def __a ( self : Optional[int] ): self._check_truncation(numpify=lowerCamelCase ) @require_torch def __a ( self : str ): lowerCamelCase_ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase_ : str = self.feat_extract_tester.prepare_inputs_for_common() lowerCamelCase_ : Optional[Any] = feat_extract.model_input_names[0] lowerCamelCase_ : Optional[Any] = BatchFeature({input_name: speech_inputs} ) lowerCamelCase_ : int = feat_extract.pad(lowerCamelCase , padding='longest' , return_tensors='np' )[input_name] lowerCamelCase_ : Dict = feat_extract.pad(lowerCamelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def __a ( self : Any ): lowerCamelCase_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase_ : List[str] = self.feat_extract_tester.prepare_inputs_for_common() lowerCamelCase_ : Tuple = feat_extract.model_input_names[0] lowerCamelCase_ : Tuple = BatchFeature({input_name: speech_inputs} ) lowerCamelCase_ : Dict = feat_extract.pad(lowerCamelCase , padding='longest' , return_tensors='np' )[input_name] lowerCamelCase_ : List[str] = feat_extract.pad(lowerCamelCase , padding='longest' , return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def __a ( self : str ): lowerCamelCase_ : Any = self.feat_extract_dict lowerCamelCase_ : Optional[Any] = True lowerCamelCase_ : Dict = self.feature_extraction_class(**lowerCamelCase ) lowerCamelCase_ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_common() lowerCamelCase_ : List[str] = [len(lowerCamelCase ) for x in speech_inputs] lowerCamelCase_ : List[Any] = feat_extract.model_input_names[0] lowerCamelCase_ : List[str] = BatchFeature({input_name: speech_inputs} ) lowerCamelCase_ : Tuple = feat_extract.pad(lowerCamelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCamelCase ) def __a ( self : Dict ): lowerCamelCase_ : int = self.feat_extract_dict lowerCamelCase_ : Any = True lowerCamelCase_ : int = self.feature_extraction_class(**lowerCamelCase ) lowerCamelCase_ : List[str] = self.feat_extract_tester.prepare_inputs_for_common() lowerCamelCase_ : str = [len(lowerCamelCase ) for x in speech_inputs] lowerCamelCase_ : Optional[Any] = feat_extract.model_input_names[0] lowerCamelCase_ : Any = BatchFeature({input_name: speech_inputs} ) lowerCamelCase_ : Optional[Any] = min(lowerCamelCase ) lowerCamelCase_ : List[Any] = feat_extract.pad( lowerCamelCase , padding='max_length' , max_length=lowerCamelCase , truncation=lowerCamelCase , return_tensors='np' ) self.assertIn('attention_mask' , lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
364
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : Dict = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase : List[Any] = 2_5_0_0_0_4 UpperCAmelCase : Tuple = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class lowerCamelCase (a__ , unittest.TestCase ): _lowercase : str = MBartTokenizer _lowercase : List[Any] = MBartTokenizerFast _lowercase : int = True _lowercase : int = True def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _snake_case : str = MBartTokenizer(lowercase__ , keep_accents=lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : Tuple = MBartTokenizer(lowercase__ , keep_accents=lowercase__ ) _snake_case : Dict = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _snake_case : List[str] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _snake_case : str = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual( lowercase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _snake_case : Tuple = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _snake_case : Any = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case : Tuple = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) _snake_case : List[Any] = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) _snake_case : Dict = tempfile.mkdtemp() _snake_case : int = tokenizer_r.save_pretrained(lowercase__ ) _snake_case : Dict = tokenizer_p.save_pretrained(lowercase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) _snake_case : Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowercase__ , lowercase__ ) # Checks everything loads correctly in the same way _snake_case : Tuple = tokenizer_r.from_pretrained(lowercase__ ) _snake_case : List[str] = tokenizer_p.from_pretrained(lowercase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase__ , lowercase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase__ ) # Save tokenizer rust, legacy_format=True _snake_case : Tuple = tempfile.mkdtemp() _snake_case : List[str] = tokenizer_r.save_pretrained(lowercase__ , legacy_format=lowercase__ ) _snake_case : Any = tokenizer_p.save_pretrained(lowercase__ ) # Checks it save with the same files self.assertSequenceEqual(lowercase__ , lowercase__ ) # Checks everything loads correctly in the same way _snake_case : Union[str, Any] = tokenizer_r.from_pretrained(lowercase__ ) _snake_case : Dict = tokenizer_p.from_pretrained(lowercase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase__ , lowercase__ ) ) shutil.rmtree(lowercase__ ) # Save tokenizer rust, legacy_format=False _snake_case : List[str] = tempfile.mkdtemp() _snake_case : List[Any] = tokenizer_r.save_pretrained(lowercase__ , legacy_format=lowercase__ ) _snake_case : str = tokenizer_p.save_pretrained(lowercase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _snake_case : str = tokenizer_r.from_pretrained(lowercase__ ) _snake_case : Tuple = tokenizer_p.from_pretrained(lowercase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase__ , lowercase__ ) ) shutil.rmtree(lowercase__ ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase (unittest.TestCase ): _lowercase : Any = """facebook/mbart-large-en-ro""" _lowercase : str = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] _lowercase : Union[str, Any] = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] _lowercase : Any = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def UpperCAmelCase_ ( cls ) -> Dict: """simple docstring""" _snake_case : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) _snake_case : int = 1 return cls def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250_020 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase__ ) def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" self.assertIn(lowercase__ , self.tokenizer.all_special_ids ) _snake_case : Dict = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] _snake_case : str = self.tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) _snake_case : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) self.assertNotIn(self.tokenizer.eos_token , lowercase__ ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Tuple = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowercase__ ) _snake_case : str = 10 _snake_case : Dict = self.tokenizer(lowercase__ , max_length=lowercase__ , truncation=lowercase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowercase__ ) self.assertEqual(len(lowercase__ ) , lowercase__ ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250_026, 250_001] ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Tuple = tempfile.mkdtemp() _snake_case : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase__ ) _snake_case : Tuple = MBartTokenizer.from_pretrained(lowercase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase__ ) @require_torch def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Optional[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase__ , return_tensors='''pt''' ) _snake_case : Union[str, Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase__ , truncation=lowercase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) _snake_case : Optional[int] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _snake_case : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Dict = self.tokenizer(self.src_text , padding=lowercase__ , truncation=lowercase__ , max_length=3 , return_tensors='''pt''' ) _snake_case : Tuple = self.tokenizer( text_target=self.tgt_text , padding=lowercase__ , truncation=lowercase__ , max_length=10 , return_tensors='''pt''' ) _snake_case : Any = targets['''input_ids'''] _snake_case : Dict = shift_tokens_right(lowercase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[Any] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowercase__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3_034, 2, 250_004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250_001, } , )
47
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Any = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : str = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
47
1
"""simple docstring""" from __future__ import annotations from typing import Any class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase = 6 ): lowercase__: Node | None = None lowercase__: Node | None = None self.create_linked_list(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Any = Node() lowercase__: Dict = current_node lowercase__: int = current_node lowercase__: Optional[Any] = current_node for _ in range(1 , _UpperCAmelCase ): lowercase__: List[str] = Node() lowercase__: str = current_node lowercase__: List[Any] = previous_node lowercase__: Union[str, Any] = current_node lowercase__: int = self.front lowercase__: Optional[int] = previous_node def _snake_case ( self ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _snake_case ( self ): self.check_can_perform_operation() return self.front.data if self.front else None def _snake_case ( self , _UpperCAmelCase ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase__: Tuple = self.rear.next if self.rear: lowercase__: Optional[int] = data def _snake_case ( self ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase__: List[str] = self.front.data lowercase__: Union[str, Any] = None return data lowercase__: Tuple = self.front lowercase__: Dict = old_front.next lowercase__: Tuple = old_front.data lowercase__: int = None return data def _snake_case ( self ): if self.is_empty(): raise Exception('''Empty Queue''' ) def _snake_case ( self ): if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class UpperCAmelCase : """simple docstring""" def __init__( self ): lowercase__: Any | None = None lowercase__: Node | None = None lowercase__: Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
586
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DeiTFeatureExtractor"] __A = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
586
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch _snake_case = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict = ["pixel_values"] def __init__( self : Dict , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**UpperCAmelCase_ ) _lowerCAmelCase = size if size is not None else {'shortest_edge': 224} _lowerCAmelCase = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ ) _lowerCAmelCase = crop_size if crop_size is not None else {'height': 256, 'width': 256} _lowerCAmelCase = get_size_dict(UpperCAmelCase_ , param_name='crop_size' ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_flip_channel_order def __lowerCamelCase ( self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PIL.Image.BILINEAR , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[Any] , ) -> np.ndarray: """simple docstring""" _lowerCAmelCase = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) _lowerCAmelCase = get_resize_output_image_size(UpperCAmelCase_ , size=size['shortest_edge'] , default_to_square=UpperCAmelCase_ ) return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def __lowerCamelCase ( self : Dict , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Dict , ) -> np.ndarray: """simple docstring""" _lowerCAmelCase = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(UpperCAmelCase_ , size=(size['height'], size['width']) , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def __lowerCamelCase ( self : Optional[int] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : int , ) -> Optional[Any]: """simple docstring""" return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def __lowerCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: """simple docstring""" return flip_channel_order(UpperCAmelCase_ , data_format=UpperCAmelCase_ ) def __lowerCamelCase ( self : Any , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Tuple , ) -> PIL.Image.Image: """simple docstring""" _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ ) _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(UpperCAmelCase_ , param_name='crop_size' ) _lowerCAmelCase = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(image=UpperCAmelCase_ , size=UpperCAmelCase_ ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _lowerCAmelCase = [self.flip_channel_order(image=UpperCAmelCase_ ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images] _lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ ) def __lowerCamelCase ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Tuple] = None ) -> str: """simple docstring""" _lowerCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(UpperCAmelCase_ ): _lowerCAmelCase = target_sizes.numpy() _lowerCAmelCase = [] for idx in range(len(UpperCAmelCase_ ) ): _lowerCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=UpperCAmelCase_ ) _lowerCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase_ ) else: _lowerCAmelCase = logits.argmax(dim=1 ) _lowerCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
491
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json''', } class _SCREAMING_SNAKE_CASE ( UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict = "gpt_neox_japanese" def __init__( self : Optional[Any] , UpperCAmelCase_ : Any=32_000 , UpperCAmelCase_ : Dict=2_560 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : Union[str, Any]=1.00 , UpperCAmelCase_ : Any=10_000 , UpperCAmelCase_ : Optional[int]=2_048 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Tuple=1E-5 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Tuple=31_996 , UpperCAmelCase_ : List[Any]=31_999 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : List[Any]=0.0 , **UpperCAmelCase_ : str , ) -> int: """simple docstring""" super().__init__(bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_multiple_size _lowerCAmelCase = hidden_act _lowerCAmelCase = rotary_pct _lowerCAmelCase = rotary_emb_base _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = use_cache _lowerCAmelCase = attention_dropout _lowerCAmelCase = hidden_dropout
491
1
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Any=13 , _snake_case : Union[str, Any]=[30, 30] , _snake_case : Optional[int]=2 , _snake_case : str=3 , _snake_case : List[str]=True , _snake_case : Tuple=True , _snake_case : Union[str, Any]=32 , _snake_case : List[str]=5 , _snake_case : str=4 , _snake_case : Tuple=37 , _snake_case : Tuple="gelu" , _snake_case : str=0.1 , _snake_case : Tuple=0.1 , _snake_case : Optional[Any]=10 , _snake_case : Dict=0.0_2 , _snake_case : int=3 , _snake_case : Optional[int]=None , _snake_case : str=8 , _snake_case : Dict=10 , ) -> int: """simple docstring""" A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = scope A_ = n_targets A_ = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A_ = (image_size[1] // patch_size) * (image_size[0] // patch_size) A_ = num_patches + 1 + self.num_detection_tokens def lowerCamelCase__ ( self : Any ) -> str: """simple docstring""" A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A_ = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A_ = [] for i in range(self.batch_size ): A_ = {} A_ = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_snake_case ) A_ = torch.rand(self.n_targets , 4 , device=_snake_case ) labels.append(_snake_case ) A_ = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : List[str] ) -> str: """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def lowerCamelCase__ ( self : Any , _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] ) -> List[str]: """simple docstring""" A_ = YolosModel(config=_snake_case ) model.to(_snake_case ) model.eval() A_ = model(_snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def lowerCamelCase__ ( self : Tuple , _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : Any ) -> Optional[int]: """simple docstring""" A_ = YolosForObjectDetection(_snake_case ) model.to(_snake_case ) model.eval() A_ = model(pixel_values=_snake_case ) A_ = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A_ = model(pixel_values=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def lowerCamelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" A_ = self.prepare_config_and_inputs() A_ , A_ , A_ = config_and_inputs A_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" snake_case = (YolosModel, YolosForObjectDetection) if is_torch_available() else () snake_case = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) snake_case = False snake_case = False snake_case = False snake_case = False def lowerCamelCase__ ( self : int , _snake_case : Optional[int] , _snake_case : Any , _snake_case : Dict=False ) -> List[Any]: """simple docstring""" A_ = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A_ = [] for i in range(self.model_tester.batch_size ): A_ = {} A_ = torch.ones( size=(self.model_tester.n_targets,) , device=_snake_case , dtype=torch.long ) A_ = torch.ones( self.model_tester.n_targets , 4 , device=_snake_case , dtype=torch.float ) labels.append(_snake_case ) A_ = labels return inputs_dict def lowerCamelCase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" A_ = YolosModelTester(self ) A_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def lowerCamelCase__ ( self : List[Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" # YOLOS does not use inputs_embeds pass def lowerCamelCase__ ( self : Dict ) -> List[str]: """simple docstring""" A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , nn.Linear ) ) def lowerCamelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_snake_case ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _snake_case ) def lowerCamelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True # in YOLOS, the seq_len is different A_ = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A_ = True A_ = False A_ = True A_ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A_ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A_ = outputs.attentions self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A_ = True A_ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A_ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A_ = outputs.attentions self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A_ = len(_snake_case ) # Check attention is always last and order is fine A_ = True A_ = True A_ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A_ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A_ = 1 self.assertEqual(out_len + added_hidden_states , len(_snake_case ) ) A_ = outputs.attentions self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowerCamelCase__ ( self : Any ) -> List[Any]: """simple docstring""" def check_hidden_states_output(_snake_case : str , _snake_case : Dict , _snake_case : Dict ): A_ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A_ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A_ = outputs.hidden_states A_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_snake_case ) , _snake_case ) # YOLOS has a different seq_length A_ = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def lowerCamelCase__ ( self : Dict ) -> Any: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_snake_case ) @slow def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = YolosModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def A_ (): '''simple docstring''' A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self : str ) -> Any: """simple docstring""" return AutoImageProcessor.from_pretrained("hustvl/yolos-small" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" A_ = YolosForObjectDetection.from_pretrained("hustvl/yolos-small" ).to(_snake_case ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=_snake_case , return_tensors="pt" ).to(_snake_case ) # forward pass with torch.no_grad(): A_ = model(inputs.pixel_values ) # verify outputs A_ = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , _snake_case ) A_ = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=_snake_case , ) A_ = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _snake_case , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _snake_case , atol=1e-4 ) ) # verify postprocessing A_ = image_processor.post_process_object_detection( _snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A_ = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(_snake_case ) A_ = [75, 75, 17, 63, 17] A_ = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(_snake_case ) self.assertEqual(len(results["scores"] ) , 5 ) self.assertTrue(torch.allclose(results["scores"] , _snake_case , atol=1e-4 ) ) self.assertSequenceEqual(results["labels"].tolist() , _snake_case ) self.assertTrue(torch.allclose(results["boxes"][0, :] , _snake_case ) )
115
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def A_ (__a , __a , __a , __a , __a ): '''simple docstring''' with open(__a ) as metadata_file: A_ = json.load(__a ) A_ = LukeConfig(use_entity_aware_attention=__a , **metadata["model_config"] ) # Load in the weights from the checkpoint_path A_ = torch.load(__a , map_location="cpu" ) # Load the entity vocab file A_ = load_entity_vocab(__a ) A_ = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("<ent>" , lstrip=__a , rstrip=__a ) A_ = AddedToken("<ent2>" , lstrip=__a , rstrip=__a ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(__a , __a ) A_ = LukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens A_ = state_dict["embeddings.word_embeddings.weight"] A_ = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) A_ = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = f'encoder.layer.{layer_index}.attention.self.' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["entity_embeddings.entity_embeddings.weight"] A_ = entity_emb[entity_vocab["[MASK]"]] A_ = LukeModel(config=__a ).eval() A_ , A_ = model.load_state_dict(__a , strict=__a ) if not (len(__a ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f'Missing keys {", ".join(__a )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" f' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs A_ = LukeTokenizer.from_pretrained(__a , task="entity_classification" ) A_ = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) A_ = (39, 42) A_ = tokenizer(__a , entity_spans=[span] , add_prefix_space=__a , return_tensors="pt" ) A_ = model(**__a ) # Verify word hidden states if model_size == "large": A_ = torch.Size((1, 42, 1024) ) A_ = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base A_ = torch.Size((1, 42, 768) ) A_ = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": A_ = torch.Size((1, 1, 1024) ) A_ = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base A_ = torch.Size((1, 1, 768) ) A_ = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __a , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(__a ) ) model.save_pretrained(__a ) def A_ (__a ): '''simple docstring''' A_ = {} with open(__a , "r" , encoding="utf-8" ) as f: for index, line in enumerate(__a ): A_ , A_ = line.rstrip().split("\t" ) A_ = index return entity_vocab if __name__ == "__main__": UpperCamelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) UpperCamelCase_ : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
115
1
"""simple docstring""" def UpperCAmelCase ( ): '''simple docstring''' return [list(range(1000 - i, -1000 - i, -1 ) ) for i in range(1000 )] _A = generate_large_matrix() _A = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase ( a_ ): '''simple docstring''' assert all(row == sorted(a_, reverse=a_ ) for row in grid ) assert all(list(a_ ) == sorted(a_, reverse=a_ ) for col in zip(*a_ ) ) def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : List[Any] = 0 lowerCamelCase : Optional[int] = len(a_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCamelCase : Tuple = (left + right) // 2 lowerCamelCase : List[str] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCamelCase : List[Any] = mid + 1 else: lowerCamelCase : List[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : Union[str, Any] = 0 lowerCamelCase : List[str] = len(grid[0] ) for i in range(len(a_ ) ): lowerCamelCase : Tuple = find_negative_index(grid[i][:bound] ) total += bound return (len(a_ ) * len(grid[0] )) - total def UpperCAmelCase ( a_ ): '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : List[Any] = 0 for row in grid: for i, number in enumerate(a_ ): if number < 0: total += len(a_ ) - i break return total def UpperCAmelCase ( ): '''simple docstring''' from timeit import timeit print('Running benchmarks' ) lowerCamelCase : Dict = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCamelCase : List[str] = timeit(F"""{func}(grid=grid)""", setup=a_, number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
133
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class _lowercase ( __UpperCAmelCase ): lowercase_ = 'swin2sr' lowercase_ = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , UpperCAmelCase_=64 , UpperCAmelCase_=1 , UpperCAmelCase_=3 , UpperCAmelCase_=180 , UpperCAmelCase_=[6, 6, 6, 6, 6, 6] , UpperCAmelCase_=[6, 6, 6, 6, 6, 6] , UpperCAmelCase_=8 , UpperCAmelCase_=2.0 , UpperCAmelCase_=True , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.1 , UpperCAmelCase_="gelu" , UpperCAmelCase_=False , UpperCAmelCase_=0.02 , UpperCAmelCase_=1E-5 , UpperCAmelCase_=2 , UpperCAmelCase_=1.0 , UpperCAmelCase_="1conv" , UpperCAmelCase_="pixelshuffle" , **UpperCAmelCase_ , ) -> Union[str, Any]: super().__init__(**UpperCAmelCase_ ) lowerCamelCase : int = image_size lowerCamelCase : Tuple = patch_size lowerCamelCase : Union[str, Any] = num_channels lowerCamelCase : List[Any] = embed_dim lowerCamelCase : int = depths lowerCamelCase : Any = len(UpperCAmelCase_ ) lowerCamelCase : Tuple = num_heads lowerCamelCase : Optional[int] = window_size lowerCamelCase : str = mlp_ratio lowerCamelCase : Tuple = qkv_bias lowerCamelCase : Optional[Any] = hidden_dropout_prob lowerCamelCase : Dict = attention_probs_dropout_prob lowerCamelCase : Optional[Any] = drop_path_rate lowerCamelCase : Optional[int] = hidden_act lowerCamelCase : str = use_absolute_embeddings lowerCamelCase : Dict = layer_norm_eps lowerCamelCase : Dict = initializer_range lowerCamelCase : Optional[int] = upscale lowerCamelCase : List[Any] = img_range lowerCamelCase : Optional[Any] = resi_connection lowerCamelCase : Union[str, Any] = upsampler
133
1
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: bool = True ,__UpperCamelCase: float = math.inf ,__UpperCamelCase: float = -math.inf ,__UpperCamelCase: float = math.inf ,__UpperCamelCase: float = -math.inf ,__UpperCamelCase: bool = False ,__UpperCamelCase: float = 1_00 ,__UpperCamelCase: float = 0.0_1 ,__UpperCamelCase: float = 1 ,): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Any = search_prob SCREAMING_SNAKE_CASE : Any = start_temperate SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : Tuple = None while not search_end: SCREAMING_SNAKE_CASE : str = current_state.score() if best_state is None or current_score > best_state.score(): SCREAMING_SNAKE_CASE : Any = current_state scores.append(__UpperCamelCase ) iterations += 1 SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : List[str] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to SCREAMING_SNAKE_CASE : Optional[int] = random.randint(0 ,len(__UpperCamelCase ) - 1 ) # picking a random neighbor SCREAMING_SNAKE_CASE : Union[str, Any] = neighbors.pop(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: SCREAMING_SNAKE_CASE : str = change * -1 # in case we are finding minimum if change > 0: # improves the solution SCREAMING_SNAKE_CASE : str = picked_neighbor else: SCREAMING_SNAKE_CASE : List[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability SCREAMING_SNAKE_CASE : List[Any] = picked_neighbor SCREAMING_SNAKE_CASE : Any = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor SCREAMING_SNAKE_CASE : Tuple = True else: SCREAMING_SNAKE_CASE : Dict = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__UpperCamelCase ) ,__UpperCamelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Any ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCamelCase_ = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) UpperCamelCase_ = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCamelCase_ = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) UpperCamelCase_ = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ): """simple docstring""" return (3 * x**2) - (6 * y) UpperCamelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCamelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"""{local_min.score()}""" ) UpperCamelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCamelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"""{local_min.score()}""" )
28
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = StableDiffusionXLImgaImgPipeline A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} A : str = PipelineTesterMixin.required_optional_params - {'''latents'''} A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, ) SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler( beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, ) SCREAMING_SNAKE_CASE : int = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A ) SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : str = image / 2 + 0.5 if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) # forward without prompt embeds SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']] SCREAMING_SNAKE_CASE : int = sd_pipe(**A ) SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )] ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe( **A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A ) SCREAMING_SNAKE_CASE : str = pipe(**A ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
28
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : Optional[int] = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class UpperCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , UpperCamelCase_ = 101 ): lowercase_ :Tuple = length def __len__( self ): return self.length def __getitem__( self , UpperCamelCase_ ): return i class UpperCamelCase : '''simple docstring''' def __call__( self , UpperCamelCase_ ): return {"input_ids": torch.tensor(UpperCamelCase_ ), "labels": torch.tensor(UpperCamelCase_ )} class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() # Add some (unused) params otherwise DDP will complain. lowercase_ :List[Any] = nn.Linear(120 , 80 ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class UpperCamelCase ( lowercase__ ): '''simple docstring''' @require_torch_neuroncore def UpperCamelCase ( self ): lowercase_ :int = f"--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() lowercase_ :List[str] = self.get_auto_remove_tmp_dir() lowercase_ :List[str] = f"--output_dir {output_dir}".split() lowercase_ :Any = ['''torchrun'''] + distributed_args + args execute_subprocess_async(UpperCamelCase_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class UpperCamelCase ( lowercase__ ): '''simple docstring''' @require_torch_multi_gpu def UpperCamelCase ( self ): lowercase_ :Any = f"--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() lowercase_ :str = self.get_auto_remove_tmp_dir() lowercase_ :List[str] = f"--output_dir {output_dir}".split() lowercase_ :Dict = ['''torchrun'''] + distributed_args + args execute_subprocess_async(UpperCamelCase_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args_into_dataclasses()[0] logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " f"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE : Dict = DummyDataset(dataset_length) def UpperCamelCase ( _a ) -> Dict: '''simple docstring''' lowercase_ :Optional[Any] = list(range(len(_a ) ) ) lowercase_ :Optional[Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" ) return {"success": success} SCREAMING_SNAKE_CASE : Optional[Any] = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE : Any = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE : Optional[int] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE : Union[str, Any] = 2 SCREAMING_SNAKE_CASE : Any = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE : List[str] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE : Optional[int] = None
441
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart _UpperCAmelCase : Optional[int] = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } _UpperCAmelCase : Union[str, Any] = { '''facebook/bart-base''': 10_24, '''facebook/bart-large''': 10_24, '''facebook/bart-large-mnli''': 10_24, '''facebook/bart-large-cnn''': 10_24, '''facebook/bart-large-xsum''': 10_24, '''yjernite/bart_eli5''': 10_24, } @lru_cache() def UpperCamelCase ( ) -> int: '''simple docstring''' lowercase =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase =bs[:] lowercase =0 for b in range(2**8 ): if b not in bs: bs.append(lowercase_ ) cs.append(2**8 + n ) n += 1 lowercase =[chr(lowercase_ ) for n in cs] return dict(zip(lowercase_ , lowercase_ ) ) def UpperCamelCase ( lowercase_ : int ) -> Optional[int]: '''simple docstring''' lowercase =set() lowercase =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase =char return pairs class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ['input_ids', 'attention_mask'] def __init__( self , snake_case_ , snake_case_ , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , **snake_case_ , ): lowercase =AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else bos_token lowercase =AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else eos_token lowercase =AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else sep_token lowercase =AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else cls_token lowercase =AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else unk_token lowercase =AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase =AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , **snake_case_ , ) with open(snake_case_ , encoding='''utf-8''' ) as vocab_handle: lowercase =json.load(snake_case_ ) lowercase ={v: k for k, v in self.encoder.items()} lowercase =errors # how to handle errors in decoding lowercase =bytes_to_unicode() lowercase ={v: k for k, v in self.byte_encoder.items()} with open(snake_case_ , encoding='''utf-8''' ) as merges_handle: lowercase =merges_handle.read().split('''\n''' )[1:-1] lowercase =[tuple(merge.split() ) for merge in bpe_merges] lowercase =dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) lowercase ={} lowercase =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase =re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def _A( self ): return len(self.encoder ) def _A( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _A( self , snake_case_ ): if token in self.cache: return self.cache[token] lowercase =tuple(snake_case_ ) lowercase =get_pairs(snake_case_ ) if not pairs: return token while True: lowercase =min(snake_case_ , key=lambda snake_case_ : self.bpe_ranks.get(snake_case_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase =bigram lowercase =[] lowercase =0 while i < len(snake_case_ ): try: lowercase =word.index(snake_case_ , snake_case_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase =j if word[i] == first and i < len(snake_case_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase =tuple(snake_case_ ) lowercase =new_word if len(snake_case_ ) == 1: break else: lowercase =get_pairs(snake_case_ ) lowercase =''' '''.join(snake_case_ ) lowercase =word return word def _A( self , snake_case_ ): lowercase =[] for token in re.findall(self.pat , snake_case_ ): lowercase =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case_ ).split(''' ''' ) ) return bpe_tokens def _A( self , snake_case_ ): return self.encoder.get(snake_case_ , self.encoder.get(self.unk_token ) ) def _A( self , snake_case_ ): return self.decoder.get(snake_case_ ) def _A( self , snake_case_ ): lowercase =''''''.join(snake_case_ ) lowercase =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _A( self , snake_case_ , snake_case_ = None ): if not os.path.isdir(snake_case_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase =os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase =os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case_ , ensure_ascii=snake_case_ ) + '''\n''' ) lowercase =0 with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case_ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase =token_index writer.write(''' '''.join(snake_case_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def _A( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase =[self.cls_token_id] lowercase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _A( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def _A( self , snake_case_ , snake_case_ = None ): lowercase =[self.sep_token_id] lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _A( self , snake_case_ , snake_case_=False , **snake_case_ ): lowercase =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case_ ) > 0 and not text[0].isspace()): lowercase =''' ''' + text return (text, kwargs)
72
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __UpperCamelCase : List[str] = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __UpperCamelCase : Union[str, Any] = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ __UpperCamelCase : str = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def __UpperCamelCase ( self ) ->Union[str, Any]: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = CHRF.CHAR_ORDER , lowerCamelCase = CHRF.WORD_ORDER , lowerCamelCase = CHRF.BETA , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = False , ) ->Union[str, Any]: '''simple docstring''' __a = len(references[0] ) if any(len(lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) __a = [[refs[i] for refs in references] for i in range(lowerCamelCase )] __a = CHRF(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __a = sb_chrf.corpus_score(lowerCamelCase , lowerCamelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
448
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Optional[Any] = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } __UpperCAmelCase : Tuple = { "google/fnet-base": 5_1_2, "google/fnet-large": 5_1_2, } __UpperCAmelCase : int = "▁" class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'token_type_ids'] _A = FNetTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=False ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase="<unk>" ,UpperCamelCase="[SEP]" ,UpperCamelCase="<pad>" ,UpperCamelCase="[CLS]" ,UpperCamelCase="[MASK]" ,**UpperCamelCase ,) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. snake_case__ :List[str] = ( AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ,normalized=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else mask_token ) super().__init__( UpperCamelCase ,tokenizer_file=UpperCamelCase ,do_lower_case=UpperCamelCase ,remove_space=UpperCamelCase ,keep_accents=UpperCamelCase ,unk_token=UpperCamelCase ,sep_token=UpperCamelCase ,pad_token=UpperCamelCase ,cls_token=UpperCamelCase ,mask_token=UpperCamelCase ,**UpperCamelCase ,) snake_case__ :Optional[Any] = do_lower_case snake_case__ :int = remove_space snake_case__ :Optional[Any] = keep_accents snake_case__ :Any = vocab_file snake_case__ :Optional[int] = False if not self.vocab_file else True def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Tuple = [self.sep_token_id] snake_case__ :Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case__ :List[str] = os.path.join( UpperCamelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file ,UpperCamelCase ) return (out_vocab_file,)
57
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
57
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase__ : Union[str, Any] = 1_6 lowerCamelCase__ : List[Any] = 3_2 def UpperCamelCase ( lowercase_ , lowercase_ = 16 ) -> List[str]: '''simple docstring''' lowercase__ : Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ : Optional[int] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase_ ): # max_length=None => use the model max length (it's actually the default) lowercase__ : Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : List[str] = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : Optional[int] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Dict = 16 elif accelerator.mixed_precision != "no": lowercase__ : str = 8 else: lowercase__ : Dict = None return tokenizer.pad( lowercase_ , padding="""longest""" , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase__ : int = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) lowercase__ : Optional[int] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase__ : str = mocked_dataloaders # noqa: F811 def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase_ ) == "1": lowercase__ : List[str] = 2 # New Code # lowercase__ : List[str] = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ : Optional[int] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase_ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Dict = config["""lr"""] lowercase__ : Dict = int(config["""num_epochs"""] ) lowercase__ : int = int(config["""seed"""] ) lowercase__ : int = int(config["""batch_size"""] ) lowercase__ : str = evaluate.load("""glue""" , """mrpc""" ) set_seed(lowercase_ ) lowercase__ , lowercase__ : Dict = get_dataloaders(lowercase_ , lowercase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : str = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Any = AdamW(params=model.parameters() , lr=lowercase_ ) # Instantiate scheduler lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=1_00 , num_training_steps=(len(lowercase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Now we train the model for epoch in range(lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase_ ): lowercase__ : List[str] = model(**lowercase_ ) lowercase__ : Any = output.loss accelerator.backward(lowercase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : List[str] = model(**lowercase_ ) lowercase__ : Optional[Any] = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) lowercase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowercase_ ) def UpperCamelCase ( ) -> str: '''simple docstring''' lowercase__ : int = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase_ , default=lowercase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=lowercase_ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase__ : str = parser.parse_args() lowercase__ : List[Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
12
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline _A = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a , __a , __a=False , ) -> Optional[Any]: """simple docstring""" output_path.parent.mkdir(parents=__a , exist_ok=__a ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __a , __a , f=output_path.as_posix() , input_names=__a , output_names=__a , dynamic_axes=__a , do_constant_folding=__a , use_external_data_format=__a , enable_onnx_checker=__a , opset_version=__a , ) else: export( __a , __a , f=output_path.as_posix() , input_names=__a , output_names=__a , dynamic_axes=__a , do_constant_folding=__a , opset_version=__a , ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] =torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): SCREAMING_SNAKE_CASE : Dict ='''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: SCREAMING_SNAKE_CASE : int ='''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] =StableDiffusionPipeline.from_pretrained(__a , torch_dtype=__a ).to(__a ) SCREAMING_SNAKE_CASE : Optional[Any] =Path(__a ) # TEXT ENCODER SCREAMING_SNAKE_CASE : List[Any] =pipeline.text_encoder.config.max_position_embeddings SCREAMING_SNAKE_CASE : Tuple =pipeline.text_encoder.config.hidden_size SCREAMING_SNAKE_CASE : Optional[int] =pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=__a , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=__a , dtype=torch.intaa )) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=__a , ) del pipeline.text_encoder # UNET SCREAMING_SNAKE_CASE : Optional[int] =pipeline.unet.config.in_channels SCREAMING_SNAKE_CASE : List[Any] =pipeline.unet.config.sample_size SCREAMING_SNAKE_CASE : str =output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet , model_args=( torch.randn(2 , __a , __a , __a ).to(device=__a , dtype=__a ), torch.randn(2 ).to(device=__a , dtype=__a ), torch.randn(2 , __a , __a ).to(device=__a , dtype=__a ), False, ) , output_path=__a , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=__a , use_external_data_format=__a , ) SCREAMING_SNAKE_CASE : Optional[int] =str(unet_path.absolute().as_posix() ) SCREAMING_SNAKE_CASE : List[str] =os.path.dirname(__a ) SCREAMING_SNAKE_CASE : Optional[int] =onnx.load(__a ) # clean up existing tensor files shutil.rmtree(__a ) os.mkdir(__a ) # collate external tensor files into one onnx.save_model( __a , __a , save_as_external_data=__a , all_tensors_to_one_file=__a , location='''weights.pb''' , convert_attribute=__a , ) del pipeline.unet # VAE ENCODER SCREAMING_SNAKE_CASE : str =pipeline.vae SCREAMING_SNAKE_CASE : Any =vae_encoder.config.in_channels SCREAMING_SNAKE_CASE : List[str] =vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder SCREAMING_SNAKE_CASE : Union[str, Any] =lambda __a , __a : vae_encoder.encode(__a , __a )[0].sample() onnx_export( __a , model_args=( torch.randn(1 , __a , __a , __a ).to(device=__a , dtype=__a ), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=__a , ) # VAE DECODER SCREAMING_SNAKE_CASE : str =pipeline.vae SCREAMING_SNAKE_CASE : Optional[int] =vae_decoder.config.latent_channels SCREAMING_SNAKE_CASE : int =vae_decoder.config.out_channels # forward only through the decoder part SCREAMING_SNAKE_CASE : Dict =vae_encoder.decode onnx_export( __a , model_args=( torch.randn(1 , __a , __a , __a ).to(device=__a , dtype=__a ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=__a , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: SCREAMING_SNAKE_CASE : Any =pipeline.safety_checker SCREAMING_SNAKE_CASE : Dict =safety_checker.config.vision_config.num_channels SCREAMING_SNAKE_CASE : Optional[Any] =safety_checker.config.vision_config.image_size SCREAMING_SNAKE_CASE : List[str] =safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , __a , __a , __a , ).to(device=__a , dtype=__a ), torch.randn(1 , __a , __a , __a ).to(device=__a , dtype=__a ), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=__a , ) del pipeline.safety_checker SCREAMING_SNAKE_CASE : int =OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' ) SCREAMING_SNAKE_CASE : Dict =pipeline.feature_extractor else: SCREAMING_SNAKE_CASE : Optional[Any] =None SCREAMING_SNAKE_CASE : Optional[Any] =None SCREAMING_SNAKE_CASE : Union[str, Any] =OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ) , scheduler=pipeline.scheduler , safety_checker=__a , feature_extractor=__a , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(__a ) print('''ONNX pipeline saved to''' , __a ) del pipeline del onnx_pipeline SCREAMING_SNAKE_CASE : str =OnnxStableDiffusionPipeline.from_pretrained(__a , provider='''CPUExecutionProvider''' ) print('''ONNX pipeline is loadable''' ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") _A = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
258
0
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__ ( lowercase__ , lowercase__ , lowercase__ ) -> List[str]: # Initialise PyTorch model __lowercase = LxmertConfig.from_json_file(lowercase__ ) print(F"Building PyTorch model from configuration: {config}" ) __lowercase = LxmertForPreTraining(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
634
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class _lowerCAmelCase ( _UpperCAmelCase ): """simple docstring""" lowercase__ : str = field(default="""summarization""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowercase__ : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) lowercase__ : ClassVar[Features] = Features({"""summary""": Value("""string""" )} ) lowercase__ : str = "text" lowercase__ : str = "summary" @property def snake_case__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text", self.summary_column: "summary"}
634
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class _snake_case (__SCREAMING_SNAKE_CASE): __A : Tuple ="longformer" def __init__( self ,_snake_case = 5_12 ,_snake_case = 2 ,_snake_case = 1 ,_snake_case = 0 ,_snake_case = 2 ,_snake_case = 3_05_22 ,_snake_case = 7_68 ,_snake_case = 12 ,_snake_case = 12 ,_snake_case = 30_72 ,_snake_case = "gelu" ,_snake_case = 0.1 ,_snake_case = 0.1 ,_snake_case = 5_12 ,_snake_case = 2 ,_snake_case = 0.02 ,_snake_case = 1E-12 ,_snake_case = False ,**_snake_case ,): super().__init__(pad_token_id=_snake_case ,**_snake_case ) UpperCAmelCase_ : Union[str, Any] = attention_window UpperCAmelCase_ : str = sep_token_id UpperCAmelCase_ : List[str] = bos_token_id UpperCAmelCase_ : Optional[Any] = eos_token_id UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Optional[Any] = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : Optional[Any] = type_vocab_size UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : Optional[int] = onnx_export class _snake_case (__SCREAMING_SNAKE_CASE): def __init__( self ,_snake_case ,_snake_case = "default" ,_snake_case = None ): super().__init__(_snake_case ,_snake_case ,_snake_case ) UpperCAmelCase_ : int = True @property def UpperCamelCase__ ( self ): if self.task == "multiple-choice": UpperCAmelCase_ : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ : Union[str, Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = super().outputs if self.task == "default": UpperCAmelCase_ : str = {0: "batch"} return outputs @property def UpperCamelCase__ ( self ): return 1E-4 @property def UpperCamelCase__ ( self ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset ,14 ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case = -1 ,_snake_case = -1 ,_snake_case = False ,_snake_case = None ,): UpperCAmelCase_ : Any = super().generate_dummy_inputs( preprocessor=_snake_case ,batch_size=_snake_case ,seq_length=_snake_case ,is_pair=_snake_case ,framework=_snake_case ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly UpperCAmelCase_ : Tuple = torch.zeros_like(inputs["input_ids"] ) # make every second token global UpperCAmelCase_ : List[str] = 1 return inputs
71
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ ( UpperCAmelCase__ , unittest.TestCase): '''simple docstring''' __a : Tuple = LEDTokenizer __a : Union[str, Any] = LEDTokenizerFast __a : Dict = True def A__ ( self ) ->int: super().setUp() UpperCAmelCase__ :List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] UpperCAmelCase__ :int = dict(zip(A , range(len(A ) ) ) ) UpperCAmelCase__ :Optional[int] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCAmelCase__ :Any = {'unk_token': '<unk>'} UpperCAmelCase__ :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ :Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) def A__ ( self , **A ) ->List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) def A__ ( self , **A ) ->List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **A ) def A__ ( self , A ) ->Union[str, Any]: return "lower newer", "lower newer" @cached_property def A__ ( self ) ->List[Any]: return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def A__ ( self ) ->Tuple: return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def A__ ( self ) ->List[str]: UpperCAmelCase__ :Optional[int] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] UpperCAmelCase__ :Tuple = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ :Optional[int] = tokenizer(A , max_length=len(A ) , padding=A , return_tensors='pt' ) self.assertIsInstance(A , A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCAmelCase__ :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(A , A ) @require_torch def A__ ( self ) ->Tuple: UpperCAmelCase__ :str = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ :Dict = tokenizer(A , padding=A , return_tensors='pt' ) self.assertIn('input_ids' , A ) self.assertIn('attention_mask' , A ) self.assertNotIn('labels' , A ) self.assertNotIn('decoder_attention_mask' , A ) @require_torch def A__ ( self ) ->Dict: UpperCAmelCase__ :str = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ :int = tokenizer(text_target=A , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def A__ ( self ) ->Optional[int]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ :Optional[Any] = tokenizer( ['I am a small frog' * 10_24, 'I am a small frog'] , padding=A , truncation=A , return_tensors='pt' ) self.assertIsInstance(A , A ) self.assertEqual(batch.input_ids.shape , (2, 51_22) ) @require_torch def A__ ( self ) ->Dict: UpperCAmelCase__ :Optional[int] = ['A long paragraph for summarization.'] UpperCAmelCase__ :int = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ :Optional[int] = tokenizer(A , return_tensors='pt' ) UpperCAmelCase__ :List[Any] = tokenizer(text_target=A , return_tensors='pt' ) UpperCAmelCase__ :List[Any] = inputs['input_ids'] UpperCAmelCase__ :Union[str, Any] = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def A__ ( self ) ->Optional[int]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ :List[str] = ['Summary of the text.', 'Another summary.'] UpperCAmelCase__ :Union[str, Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCAmelCase__ :Optional[Any] = tokenizer(A , padding=A ) UpperCAmelCase__ :str = [[0] * len(A ) for x in encoded_output['input_ids']] UpperCAmelCase__ :List[Any] = tokenizer.pad(A ) self.assertSequenceEqual(outputs['global_attention_mask'] , A ) def A__ ( self ) ->Dict: pass def A__ ( self ) ->Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ :Union[str, Any] = self.rust_tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase__ :Tuple = self.tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase__ :Any = 'A, <mask> AllenNLP sentence.' UpperCAmelCase__ :Dict = tokenizer_r.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) UpperCAmelCase__ :Dict = tokenizer_p.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) UpperCAmelCase__ :List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) UpperCAmelCase__ :str = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( A , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( A , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
704
import unittest import numpy as np def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , ): """simple docstring""" UpperCAmelCase__ :Union[str, Any] = np.shape(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Tuple = np.shape(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :List[str] = np.shape(SCREAMING_SNAKE_CASE ) if shape_a[0] != shape_b[0]: UpperCAmelCase__ :str = ( 'Expected the same number of rows for A and B. ' f"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) if shape_b[1] != shape_c[1]: UpperCAmelCase__ :Union[str, Any] = ( 'Expected the same number of columns for B and C. ' f"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :int = pseudo_inv if a_inv is None: try: UpperCAmelCase__ :List[str] = np.linalg.inv(SCREAMING_SNAKE_CASE ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class UpperCamelCase__ ( unittest.TestCase): '''simple docstring''' def A__ ( self ) ->None: UpperCAmelCase__ :str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase__ :List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase__ :Dict = np.array([[2, 1], [6, 3]] ) UpperCAmelCase__ :str = schur_complement(A , A , A ) UpperCAmelCase__ :Dict = np.block([[a, b], [b.T, c]] ) UpperCAmelCase__ :Dict = np.linalg.det(A ) UpperCAmelCase__ :Optional[int] = np.linalg.det(A ) UpperCAmelCase__ :Dict = np.linalg.det(A ) self.assertAlmostEqual(A , det_a * det_s ) def A__ ( self ) ->None: UpperCAmelCase__ :Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase__ :Any = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase__ :List[str] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(A ): schur_complement(A , A , A ) def A__ ( self ) ->None: UpperCAmelCase__ :Dict = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase__ :Union[str, Any] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase__ :Any = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(A ): schur_complement(A , A , A ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
433
0
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = '''T5Config''' class A ( A_ ): UpperCamelCase_ : int ='''mt5''' UpperCamelCase_ : List[Any] =MTaConfig class A ( A_ ): UpperCamelCase_ : Any ='''mt5''' UpperCamelCase_ : Union[str, Any] =MTaConfig class A ( A_ ): UpperCamelCase_ : List[str] ='''mt5''' UpperCamelCase_ : Optional[int] =MTaConfig
230
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def _A (self , lowerCAmelCase , lowerCAmelCase ): return f'gaussian_noise_s={seed}_shape={"_".join([str(lowerCAmelCase ) for s in shape] )}.npy' def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() def _A (self , lowerCAmelCase=0 , lowerCAmelCase=(4, 4, 6_4, 6_4) , lowerCAmelCase=False ): __lowercase= jnp.bfloataa if fpaa else jnp.floataa __lowercase= jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase , lowerCAmelCase ) ) , dtype=lowerCAmelCase ) return image def _A (self , lowerCAmelCase=False , lowerCAmelCase="CompVis/stable-diffusion-v1-4" ): __lowercase= jnp.bfloataa if fpaa else jnp.floataa __lowercase= 'bf16' if fpaa else None __lowercase, __lowercase= FlaxUNetaDConditionModel.from_pretrained( lowerCAmelCase , subfolder='unet' , dtype=lowerCAmelCase , revision=lowerCAmelCase ) return model, params def _A (self , lowerCAmelCase=0 , lowerCAmelCase=(4, 7_7, 7_6_8) , lowerCAmelCase=False ): __lowercase= jnp.bfloataa if fpaa else jnp.floataa __lowercase= jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase , lowerCAmelCase ) ) , dtype=lowerCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.23_23, -0.13_04, 0.08_13, -0.30_93, -0.09_19, -0.15_71, -0.11_25, -0.58_06]], [1_7, 0.55, [-0.08_31, -0.24_43, 0.09_01, -0.09_19, 0.33_96, 0.01_03, -0.37_43, 0.07_01]], [8, 0.89, [-0.48_63, 0.08_59, 0.08_75, -0.16_58, 0.91_99, -0.01_14, 0.48_39, 0.46_39]], [3, 1_0_0_0, [-0.56_49, 0.24_02, -0.55_18, 0.12_48, 1.13_28, -0.24_43, -0.03_25, -1.00_78]], # fmt: on ] ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase, __lowercase= self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowerCAmelCase ) __lowercase= self.get_latents(lowerCAmelCase , fpaa=lowerCAmelCase ) __lowercase= self.get_encoder_hidden_states(lowerCAmelCase , fpaa=lowerCAmelCase ) __lowercase= model.apply( {'params': params} , lowerCAmelCase , jnp.array(lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase , ).sample assert sample.shape == latents.shape __lowercase= jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowercase= jnp.array(lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.15_14, 0.08_07, 0.16_24, 0.10_16, -0.18_96, 0.02_63, 0.06_77, 0.23_10]], [1_7, 0.55, [0.11_64, -0.02_16, 0.01_70, 0.15_89, -0.31_20, 0.10_05, -0.05_81, -0.14_58]], [8, 0.89, [-0.17_58, -0.01_69, 0.10_04, -0.14_11, 0.13_12, 0.11_03, -0.19_96, 0.21_39]], [3, 1_0_0_0, [0.12_14, 0.03_52, -0.07_31, -0.15_62, -0.09_94, -0.09_06, -0.23_40, -0.05_39]], # fmt: on ] ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase, __lowercase= self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowerCAmelCase ) __lowercase= self.get_latents(lowerCAmelCase , shape=(4, 4, 9_6, 9_6) , fpaa=lowerCAmelCase ) __lowercase= self.get_encoder_hidden_states(lowerCAmelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=lowerCAmelCase ) __lowercase= model.apply( {'params': params} , lowerCAmelCase , jnp.array(lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase , ).sample assert sample.shape == latents.shape __lowercase= jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowercase= jnp.array(lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-2 )
230
1
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __lowerCamelCase ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" a_: List[str] = FlaxAutoencoderKL @property def lowerCAmelCase__ ( self : Optional[int] ): _lowerCAmelCase =4 _lowerCAmelCase =3 _lowerCAmelCase =(32, 32) _lowerCAmelCase =jax.random.PRNGKey(0 ) _lowerCAmelCase =jax.random.uniform(lowerCamelCase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase ={ """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } _lowerCAmelCase =self.dummy_input return init_dict, inputs_dict
149
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __SCREAMING_SNAKE_CASE : Dict = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def snake_case_ ( lowercase__ : str = "dhaka" , lowercase__ : int = 5 ): '''simple docstring''' _lowerCAmelCase =min(lowercase__ , 50 ) # Prevent abuse! _lowerCAmelCase ={ """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } _lowerCAmelCase =requests.get("""https://www.google.com/search""" , params=lowercase__ , headers=lowercase__ ) _lowerCAmelCase =BeautifulSoup(html.text , """html.parser""" ) _lowerCAmelCase ="""""".join( re.findall(r"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""" ) ) ) ) _lowerCAmelCase =json.dumps(lowercase__ ) _lowerCAmelCase =json.loads(lowercase__ ) _lowerCAmelCase =re.findall( r"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , lowercase__ , ) if not matched_google_image_data: return 0 _lowerCAmelCase =re.sub( r"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(lowercase__ ) , ) _lowerCAmelCase =re.findall( r"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , lowercase__ , ) for index, fixed_full_res_image in enumerate(lowercase__ ): if index >= max_images: return index _lowerCAmelCase =bytes(lowercase__ , """ascii""" ).decode( """unicode-escape""" ) _lowerCAmelCase =bytes(lowercase__ , """ascii""" ).decode( """unicode-escape""" ) _lowerCAmelCase =urllib.request.build_opener() _lowerCAmelCase =[ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(lowercase__ ) _lowerCAmelCase =f"query_{query.replace(' ' , '_' )}" if not os.path.exists(lowercase__ ): os.makedirs(lowercase__ ) urllib.request.urlretrieve( # noqa: S310 lowercase__ , f"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: __SCREAMING_SNAKE_CASE : Any = download_images_from_google_query(sys.argv[1]) print(F'{image_count} images were downloaded to disk.') except IndexError: print('''Please provide a search term.''') raise
149
1
'''simple docstring''' from scipy.stats import pearsonr import datasets A__ : Optional[int] = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ A__ : Optional[Any] = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ A__ : Tuple = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ ( datasets.Metric ): def A_ ( self : Dict ) -> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def A_ ( self : str , __a : Dict , __a : Tuple , __a : Dict=False ) -> str: '''simple docstring''' if return_pvalue: __snake_case : List[Any] = pearsonr(_lowerCAmelCase , _lowerCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_lowerCAmelCase , _lowerCAmelCase )[0] )}
286
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : jnp.ndarray @flax_register_to_config class a ( nn.Module ,__lowercase ,__lowercase ): SCREAMING_SNAKE_CASE__ : int = 32 SCREAMING_SNAKE_CASE__ : int = 4 SCREAMING_SNAKE_CASE__ : int = 4 SCREAMING_SNAKE_CASE__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE__ : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") SCREAMING_SNAKE_CASE__ : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE__ : Tuple[int] = (320, 640, 1280, 1280) SCREAMING_SNAKE_CASE__ : int = 2 SCREAMING_SNAKE_CASE__ : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE__ : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE__ : int = 1280 SCREAMING_SNAKE_CASE__ : float = 0.0 SCREAMING_SNAKE_CASE__ : bool = False SCREAMING_SNAKE_CASE__ : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE__ : bool = True SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : bool = False def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = (1, self.in_channels, self.sample_size, self.sample_size) __SCREAMING_SNAKE_CASE: Tuple = jnp.zeros(_lowerCAmelCase , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE: Optional[Any] = jnp.ones((1,) , dtype=jnp.intaa ) __SCREAMING_SNAKE_CASE: Optional[int] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[int] = jax.random.split(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )["params"] def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = self.block_out_channels __SCREAMING_SNAKE_CASE: Union[str, Any] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __SCREAMING_SNAKE_CASE: Any = self.num_attention_heads or self.attention_head_dim # input __SCREAMING_SNAKE_CASE: str = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __SCREAMING_SNAKE_CASE: int = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __SCREAMING_SNAKE_CASE: Union[str, Any] = FlaxTimestepEmbedding(_lowerCAmelCase , dtype=self.dtype ) __SCREAMING_SNAKE_CASE: Optional[int] = self.only_cross_attention if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Union[str, Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Any = (num_attention_heads,) * len(self.down_block_types ) # down __SCREAMING_SNAKE_CASE: Union[str, Any] = [] __SCREAMING_SNAKE_CASE: List[str] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): __SCREAMING_SNAKE_CASE: List[str] = output_channel __SCREAMING_SNAKE_CASE: str = block_out_channels[i] __SCREAMING_SNAKE_CASE: Any = i == len(_lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": __SCREAMING_SNAKE_CASE: str = FlaxCrossAttnDownBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __SCREAMING_SNAKE_CASE: Tuple = FlaxDownBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: str = down_blocks # mid __SCREAMING_SNAKE_CASE: Union[str, Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up __SCREAMING_SNAKE_CASE: Optional[int] = [] __SCREAMING_SNAKE_CASE: Tuple = list(reversed(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: Optional[int] = list(reversed(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: str = list(reversed(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: Optional[int] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): __SCREAMING_SNAKE_CASE: int = output_channel __SCREAMING_SNAKE_CASE: List[str] = reversed_block_out_channels[i] __SCREAMING_SNAKE_CASE: List[str] = reversed_block_out_channels[min(i + 1 , len(_lowerCAmelCase ) - 1 )] __SCREAMING_SNAKE_CASE: Union[str, Any] = i == len(_lowerCAmelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": __SCREAMING_SNAKE_CASE: Optional[int] = FlaxCrossAttnUpBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , prev_output_channel=_lowerCAmelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __SCREAMING_SNAKE_CASE: int = FlaxUpBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , prev_output_channel=_lowerCAmelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Any = output_channel __SCREAMING_SNAKE_CASE: Union[str, Any] = up_blocks # out __SCREAMING_SNAKE_CASE: Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __SCREAMING_SNAKE_CASE: Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase = True , _lowerCAmelCase = False , ): """simple docstring""" if not isinstance(_lowerCAmelCase , jnp.ndarray ): __SCREAMING_SNAKE_CASE: Dict = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE: Optional[Any] = timesteps.astype(dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE: Union[str, Any] = jnp.expand_dims(_lowerCAmelCase , 0 ) __SCREAMING_SNAKE_CASE: Any = self.time_proj(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = self.time_embedding(_lowerCAmelCase ) # 2. pre-process __SCREAMING_SNAKE_CASE: int = jnp.transpose(_lowerCAmelCase , (0, 2, 3, 1) ) __SCREAMING_SNAKE_CASE: List[str] = self.conv_in(_lowerCAmelCase ) # 3. down __SCREAMING_SNAKE_CASE: Dict = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[Any] = down_block(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) else: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Tuple = down_block(_lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: __SCREAMING_SNAKE_CASE: Union[str, Any] = () for down_block_res_sample, down_block_additional_residual in zip( _lowerCAmelCase , _lowerCAmelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) __SCREAMING_SNAKE_CASE: Union[str, Any] = new_down_block_res_samples # 4. mid __SCREAMING_SNAKE_CASE: Dict = self.mid_block(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: __SCREAMING_SNAKE_CASE: Union[str, Any] = down_block_res_samples[-(self.layers_per_block + 1) :] __SCREAMING_SNAKE_CASE: Union[str, Any] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Any = up_block( _lowerCAmelCase , temb=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , res_hidden_states_tuple=_lowerCAmelCase , deterministic=not train , ) else: __SCREAMING_SNAKE_CASE: List[str] = up_block(_lowerCAmelCase , temb=_lowerCAmelCase , res_hidden_states_tuple=_lowerCAmelCase , deterministic=not train ) # 6. post-process __SCREAMING_SNAKE_CASE: Optional[Any] = self.conv_norm_out(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = nn.silu(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Tuple = self.conv_out(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = jnp.transpose(_lowerCAmelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowerCAmelCase )
202
0
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _A : Optional[int] =logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int: '''simple docstring''' super().__init__(**UpperCamelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = {} if "candidate_labels" in kwargs: _lowercase : Union[str, Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowercase : int = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = load_image(UpperCamelCase_ ) _lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) _lowercase : Optional[Any] = candidate_labels _lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels] _lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ ) _lowercase : Any = [text_inputs] return inputs def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = model_inputs.pop('candidate_labels' ) _lowercase : List[str] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , UpperCamelCase_ ): _lowercase : Optional[int] = text_inputs[0] else: # Batching case. _lowercase : List[str] = text_inputs[0][0] _lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Optional[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = model_outputs.pop('candidate_labels' ) _lowercase : Optional[int] = model_outputs['logits'][0] if self.framework == "pt": _lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 ) _lowercase : Tuple = probs.tolist() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : List[Any] = [scores] elif self.framework == "tf": _lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 ) _lowercase : List[Any] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowercase : List[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] ) ] return result
4
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _A : int =logging.get_logger(__name__) _A : Union[str, Any] ={ '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_vision_model""" def __init__( self : Union[str, Any] , UpperCamelCase_ : str=1408 , UpperCamelCase_ : Tuple=6144 , UpperCamelCase_ : Union[str, Any]=39 , UpperCamelCase_ : Optional[Any]=16 , UpperCamelCase_ : str=224 , UpperCamelCase_ : Dict=14 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : int=1E-6 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : List[str]=1E-10 , UpperCamelCase_ : str=True , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(**UpperCamelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Tuple = patch_size _lowercase : Dict = image_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = attention_dropout _lowercase : int = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : str = qkv_bias @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : Tuple = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_qformer""" def __init__( self : Tuple , UpperCamelCase_ : Union[str, Any]=3_0522 , UpperCamelCase_ : Union[str, Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : List[str]=3072 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : List[Any]=1E-12 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Any=1408 , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : Optional[int] = hidden_act _lowercase : Union[str, Any] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : Optional[int] = initializer_range _lowercase : Tuple = layer_norm_eps _lowercase : List[str] = position_embedding_type _lowercase : str = cross_attention_frequency _lowercase : int = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Optional[int] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip""" A_ = True def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=32 , **UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase_ ) if vision_config is None: _lowercase : Any = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: _lowercase : List[Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: _lowercase : List[Any] = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowercase : List[Any] = InstructBlipVisionConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = InstructBlipQFormerConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' _lowercase : int = CONFIG_MAPPING[text_model_type](**UpperCamelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : int = self.text_config.is_encoder_decoder _lowercase : Tuple = num_query_tokens _lowercase : str = self.vision_config.hidden_size _lowercase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : List[Any] = 1.0 _lowercase : int = 0.02 @classmethod def __UpperCAmelCase ( cls : Tuple , UpperCamelCase_ : InstructBlipVisionConfig , UpperCamelCase_ : InstructBlipQFormerConfig , UpperCamelCase_ : PretrainedConfig , **UpperCamelCase_ : Dict , ) -> List[str]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase_ , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = copy.deepcopy(self.__dict__ ) _lowercase : Optional[int] = self.vision_config.to_dict() _lowercase : Optional[Any] = self.qformer_config.to_dict() _lowercase : Tuple = self.text_config.to_dict() _lowercase : Dict = self.__class__.model_type return output
4
1
"""simple docstring""" import copy import re class UpperCamelCase__ : """simple docstring""" __UpperCAmelCase = '''hp''' __UpperCAmelCase = {} __UpperCAmelCase = None @classmethod def a__ ( cls : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict ): '''simple docstring''' __magic_name__ = prefix __magic_name__ = defaults cls.build_naming_info() @staticmethod def a__ ( UpperCamelCase_ : int , UpperCamelCase_ : Any ): '''simple docstring''' if len(__snake_case ) == 0: return "" __magic_name__ = None if any(char.isdigit() for char in word ): raise Exception(f"""Parameters should not contain numbers: \'{word}\' contains a number""" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(__snake_case ) + 1 ): __magic_name__ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: __magic_name__ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(UpperCamelCase_ : List[str] ): __magic_name__ = '' while integer != 0: __magic_name__ = chr(ord('A' ) + integer % 1_0 ) + s integer //= 1_0 return s __magic_name__ = 0 while True: __magic_name__ = word + '#' + int_to_alphabetic(__snake_case ) if sword in info["reverse_short_word"]: continue else: __magic_name__ = sword break __magic_name__ = short_word __magic_name__ = word return short_word @staticmethod def a__ ( UpperCamelCase_ : int , UpperCamelCase_ : List[str] ): '''simple docstring''' __magic_name__ = param_name.split('_' ) __magic_name__ = [TrialShortNamer.shortname_for_word(__snake_case , __snake_case ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name __magic_name__ = ['', '_'] for separator in separators: __magic_name__ = separator.join(__snake_case ) if shortname not in info["reverse_short_param"]: __magic_name__ = shortname __magic_name__ = param_name return shortname return param_name @staticmethod def a__ ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] ): '''simple docstring''' __magic_name__ = TrialShortNamer.shortname_for_key(__snake_case , __snake_case ) __magic_name__ = short_name __magic_name__ = param_name @classmethod def a__ ( cls : Optional[Any] ): '''simple docstring''' if cls.NAMING_INFO is not None: return __magic_name__ = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } __magic_name__ = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(__snake_case , __snake_case ) __magic_name__ = info @classmethod def a__ ( cls : Optional[Any] , UpperCamelCase_ : Tuple ): '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None __magic_name__ = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f"""You should provide a default value for the param name {k} with value {v}""" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue __magic_name__ = cls.NAMING_INFO['short_param'][k] if isinstance(__snake_case , __snake_case ): __magic_name__ = 1 if v else 0 __magic_name__ = '' if isinstance(__snake_case , (int, float) ) else '-' __magic_name__ = f"""{key}{sep}{v}""" name.append(__snake_case ) return "_".join(__snake_case ) @classmethod def a__ ( cls : Any , UpperCamelCase_ : str ): '''simple docstring''' __magic_name__ = repr[len(cls.PREFIX ) + 1 :] if repr == "": __magic_name__ = [] else: __magic_name__ = repr.split('_' ) __magic_name__ = {} for value in values: if "-" in value: __magic_name__ , __magic_name__ = value.split('-' ) else: __magic_name__ = re.sub('[0-9.]' , '' , __snake_case ) __magic_name__ = float(re.sub('[^0-9.]' , '' , __snake_case ) ) __magic_name__ = cls.NAMING_INFO['reverse_short_param'][p_k] __magic_name__ = p_v for k in cls.DEFAULTS: if k not in parameters: __magic_name__ = cls.DEFAULTS[k] return parameters
545
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : torch.FloatTensor UpperCAmelCase__ : Optional[torch.FloatTensor] = None def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Any=0.999 , __lowerCAmelCase : Tuple="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCAmelCase : Optional[int] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCAmelCase : int ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) a__ = [] for i in range(__lowerCAmelCase ): a__ = i / num_diffusion_timesteps a__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCAmelCase ) / alpha_bar_fn(__lowerCAmelCase ) , __lowerCAmelCase ) ) return torch.tensor(__lowerCAmelCase , dtype=torch.floataa ) class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : Optional[int] = 1 @register_to_config def __init__( self :Any ,__snake_case :int = 10_00 ,__snake_case :float = 0.00_01 ,__snake_case :float = 0.02 ,__snake_case :str = "linear" ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ,__snake_case :bool = True ,__snake_case :bool = True ,__snake_case :int = 0 ,__snake_case :str = "epsilon" ,__snake_case :float = 1.0 ,**__snake_case :str ,) -> List[Any]: if kwargs.get('set_alpha_to_one' ,__snake_case ) is not None: a__ = ( 'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.' ) deprecate('set_alpha_to_one' ,'1.0.0' ,__snake_case ,standard_warn=__snake_case ) a__ = kwargs['set_alpha_to_one'] if trained_betas is not None: a__ = torch.tensor(__snake_case ,dtype=torch.floataa ) elif beta_schedule == "linear": a__ = torch.linspace(__snake_case ,__snake_case ,__snake_case ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a__ = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,__snake_case ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a__ = betas_for_alpha_bar(__snake_case ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) a__ = 1.0 - self.betas a__ = torch.cumprod(self.alphas ,dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. a__ = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution a__ = 1.0 # setable values a__ = None a__ = torch.from_numpy(np.arange(0 ,__snake_case ).copy().astype(np.intaa ) ) def lowerCamelCase__( self :Optional[Any] ,__snake_case :torch.FloatTensor ,__snake_case :Optional[int] = None ) -> torch.FloatTensor: return sample def lowerCamelCase__( self :Dict ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> Union[str, Any]: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) a__ = num_inference_steps a__ = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a__ = (np.arange(0 ,__snake_case ) * step_ratio).round().copy().astype(np.intaa ) a__ = torch.from_numpy(__snake_case ).to(__snake_case ) self.timesteps += self.config.steps_offset def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :float = 0.0 ,__snake_case :bool = False ,__snake_case :Optional[torch.FloatTensor] = None ,__snake_case :bool = True ,) -> Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) a__ = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process a__ = self.alphas_cumprod[timestep] a__ = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) a__ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": a__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 a__ = model_output elif self.config.prediction_type == "sample": a__ = model_output a__ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": a__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output a__ = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ' `v_prediction`' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: a__ = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a__ = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a__ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__snake_case ,pred_original_sample=__snake_case ) def __len__( self :Tuple ) -> Optional[int]: return self.config.num_train_timesteps
335
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: # Load configuration defined in the metadata file with open(lowerCamelCase ) as metadata_file: UpperCamelCase_: Dict = json.load(lowerCamelCase ) UpperCamelCase_: Optional[int] = LukeConfig(use_entity_aware_attention=lowerCamelCase , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path UpperCamelCase_: Optional[int] = torch.load(lowerCamelCase , map_location="""cpu""" )["""module"""] # Load the entity vocab file UpperCamelCase_: str = load_original_entity_vocab(lowerCamelCase ) # add an entry for [MASK2] UpperCamelCase_: Tuple = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 UpperCamelCase_: str = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks UpperCamelCase_: Any = AddedToken("""<ent>""" , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) UpperCamelCase_: Optional[Any] = AddedToken("""<ent2>""" , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(lowerCamelCase ) with open(os.path.join(lowerCamelCase , """tokenizer_config.json""" ) , """r""" ) as f: UpperCamelCase_: Optional[Any] = json.load(lowerCamelCase ) UpperCamelCase_: Optional[Any] = """MLukeTokenizer""" with open(os.path.join(lowerCamelCase , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(lowerCamelCase , lowerCamelCase ) with open(os.path.join(lowerCamelCase , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[int] = MLukeTokenizer.from_pretrained(lowerCamelCase ) # Initialize the embeddings of the special tokens UpperCamelCase_: Optional[Any] = tokenizer.convert_tokens_to_ids(["""@"""] )[0] UpperCamelCase_: Tuple = tokenizer.convert_tokens_to_ids(["""#"""] )[0] UpperCamelCase_: List[str] = state_dict["""embeddings.word_embeddings.weight"""] UpperCamelCase_: int = word_emb[ent_init_index].unsqueeze(0 ) UpperCamelCase_: Optional[Any] = word_emb[enta_init_index].unsqueeze(0 ) UpperCamelCase_: Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: UpperCamelCase_: List[str] = state_dict[bias_name] UpperCamelCase_: List[str] = decoder_bias[ent_init_index].unsqueeze(0 ) UpperCamelCase_: Any = decoder_bias[enta_init_index].unsqueeze(0 ) UpperCamelCase_: Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCamelCase_: Any = F'''encoder.layer.{layer_index}.attention.self.''' UpperCamelCase_: Union[str, Any] = state_dict[prefix + matrix_name] UpperCamelCase_: int = state_dict[prefix + matrix_name] UpperCamelCase_: Optional[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCamelCase_: List[str] = state_dict["""entity_embeddings.entity_embeddings.weight"""] UpperCamelCase_: List[Any] = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) UpperCamelCase_: List[Any] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' UpperCamelCase_: str = state_dict["""entity_predictions.bias"""] UpperCamelCase_: Optional[Any] = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) UpperCamelCase_: List[str] = torch.cat([entity_prediction_bias, entity_mask_bias] ) UpperCamelCase_: List[str] = LukeForMaskedLM(config=lowerCamelCase ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) UpperCamelCase_: Any = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): UpperCamelCase_: Dict = state_dict[key] else: UpperCamelCase_: Any = state_dict[key] UpperCamelCase_, UpperCamelCase_: Any = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) if set(lowerCamelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(lowerCamelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs UpperCamelCase_: int = MLukeTokenizer.from_pretrained(lowerCamelCase , task="""entity_classification""" ) UpperCamelCase_: Optional[int] = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" UpperCamelCase_: Any = (0, 9) UpperCamelCase_: Optional[int] = tokenizer(lowerCamelCase , entity_spans=[span] , return_tensors="""pt""" ) UpperCamelCase_: Any = model(**lowerCamelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase_: Optional[Any] = torch.Size((1, 33, 7_68) ) UpperCamelCase_: List[str] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase_: Any = torch.Size((1, 1, 7_68) ) UpperCamelCase_: List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCamelCase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction UpperCamelCase_: List[str] = MLukeTokenizer.from_pretrained(lowerCamelCase ) UpperCamelCase_: List[Any] = """Tokyo is the capital of <mask>.""" UpperCamelCase_: Union[str, Any] = (24, 30) UpperCamelCase_: str = tokenizer(lowerCamelCase , entity_spans=[span] , return_tensors="""pt""" ) UpperCamelCase_: Dict = model(**lowerCamelCase ) UpperCamelCase_: str = encoding["""input_ids"""][0].tolist() UpperCamelCase_: str = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) UpperCamelCase_: Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCamelCase ) UpperCamelCase_: Optional[int] = outputs.entity_logits[0][0].argmax().item() UpperCamelCase_: Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(lowerCamelCase ) ) model.save_pretrained(lowerCamelCase ) def A__ ( lowerCamelCase ) -> str: UpperCamelCase_: Optional[int] = ["""[MASK]""", """[PAD]""", """[UNK]"""] UpperCamelCase_: Optional[Any] = [json.loads(lowerCamelCase ) for line in open(lowerCamelCase )] UpperCamelCase_: Union[str, Any] = {} for entry in data: UpperCamelCase_: Any = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: UpperCamelCase_: List[str] = entity_id break UpperCamelCase_: Union[str, Any] = F'''{language}:{entity_name}''' UpperCamelCase_: Dict = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) lowerCamelCase_ : int = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
670
import cva import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , snake_case_ : float , snake_case_ : int ): if k in (0.04, 0.06): UpperCamelCase_: Union[str, Any] = k UpperCamelCase_: Union[str, Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ): return str(self.k ) def lowerCAmelCase__ ( self : Optional[Any] , snake_case_ : str ): UpperCamelCase_: int = cva.imread(snake_case_ , 0 ) UpperCamelCase_, UpperCamelCase_: List[Any] = img.shape UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: int = img.copy() UpperCamelCase_: Any = cva.cvtColor(snake_case_ , cva.COLOR_GRAY2RGB ) UpperCamelCase_, UpperCamelCase_: List[Any] = np.gradient(snake_case_ ) UpperCamelCase_: Optional[Any] = dx**2 UpperCamelCase_: Dict = dy**2 UpperCamelCase_: Optional[Any] = dx * dy UpperCamelCase_: str = 0.04 UpperCamelCase_: int = self.window_size // 2 for y in range(snake_case_ , h - offset ): for x in range(snake_case_ , w - offset ): UpperCamelCase_: List[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase_: List[str] = (wxx * wyy) - (wxy**2) UpperCamelCase_: Optional[int] = wxx + wyy UpperCamelCase_: Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = HarrisCorner(0.04, 3) lowerCamelCase_ , lowerCamelCase_ : Any = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
670
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> None: warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
18
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def _UpperCamelCase ( self ) -> Any: snake_case_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(a , 'embed_dim' ) ) self.parent.assertTrue(hasattr(a , 'num_heads' ) ) class UpperCamelCase_ : '''simple docstring''' def __init__( self , a , a=13 , a=64 , a=3 , a=[16, 48, 96] , a=[1, 3, 6] , a=[1, 2, 10] , a=[7, 3, 3] , a=[4, 2, 2] , a=[2, 1, 1] , a=[2, 2, 2] , a=[False, False, True] , a=[0.0, 0.0, 0.0] , a=0.02 , a=1E-12 , a=True , a=True , a=2 , ) -> List[Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_sizes snake_case_ = patch_stride snake_case_ = patch_padding snake_case_ = is_training snake_case_ = use_labels snake_case_ = num_labels snake_case_ = num_channels snake_case_ = embed_dim snake_case_ = num_heads snake_case_ = stride_kv snake_case_ = depth snake_case_ = cls_token snake_case_ = attention_drop_rate snake_case_ = initializer_range snake_case_ = layer_norm_eps def _UpperCamelCase ( self ) -> Dict: snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: # create a random int32 tensor of given shape snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self ) -> Dict: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self , a , a , a ) -> int: snake_case_ = TFCvtModel(config=a ) snake_case_ = model(a , training=a ) snake_case_ = (self.image_size, self.image_size) snake_case_ , snake_case_ = image_size[0], image_size[1] for i in range(len(self.depth ) ): snake_case_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) snake_case_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _UpperCamelCase ( self , a , a , a ) -> Dict: snake_case_ = self.num_labels snake_case_ = TFCvtForImageClassification(a ) snake_case_ = model(a , labels=a , training=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Tuple: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowerCAmelCase = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _UpperCamelCase ( self ) -> Optional[int]: snake_case_ = TFCvtModelTester(self ) snake_case_ = TFCvtConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def _UpperCamelCase ( self ) -> Optional[int]: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='Cvt does not output attentions' ) def _UpperCamelCase ( self ) -> Dict: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def _UpperCamelCase ( self ) -> List[str]: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def _UpperCamelCase ( self ) -> Optional[int]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) def _UpperCamelCase ( self ) -> Dict: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) @slow def _UpperCamelCase ( self ) -> Dict: super().test_keras_fit() @unittest.skip(reason='Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8' ) def _UpperCamelCase ( self ) -> List[str]: snake_case_ = tf.keras.mixed_precision.Policy('mixed_float16' ) tf.keras.mixed_precision.set_global_policy(a ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('float32' ) def _UpperCamelCase ( self ) -> Optional[int]: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(a ) snake_case_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCamelCase ( self ) -> Optional[Any]: def check_hidden_states_output(a , a , a ): snake_case_ = model_class(a ) snake_case_ = model(**self._prepare_for_class(a , a ) ) snake_case_ = outputs.hidden_states snake_case_ = len(self.model_tester.depth ) self.assertEqual(len(a ) , a ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(a , a , a ) def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCamelCase ( self ) -> List[str]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def _UpperCamelCase ( self ) -> int: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = TFCvtModel.from_pretrained(a ) self.assertIsNotNone(a ) def __UpperCAmelCase ( ): snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCamelCase ( self ) -> Any: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _UpperCamelCase ( self ) -> Dict: snake_case_ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=a , return_tensors='tf' ) # forward pass snake_case_ = model(**a ) # verify the logits snake_case_ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , a ) snake_case_ = tf.constant([0.9_285, 0.9_015, -0.3_150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , a , atol=1E-4 ) )
198
0
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a =logging.get_logger(__name__) a ={"""vocab_file""": """spiece.model"""} a ={ """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), } } a ={ """google/bigbird-roberta-base""": 4096, """google/bigbird-roberta-large""": 4096, """google/bigbird-base-trivia-itc""": 4096, } class A_ ( __UpperCAmelCase ): _UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] _UpperCAmelCase : Optional[int] = [] def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="<unk>" ,SCREAMING_SNAKE_CASE__ : int="<s>" ,SCREAMING_SNAKE_CASE__ : Dict="</s>" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="<pad>" ,SCREAMING_SNAKE_CASE__ : Any="[SEP]" ,SCREAMING_SNAKE_CASE__ : Optional[Any]="[MASK]" ,SCREAMING_SNAKE_CASE__ : List[Any]="[CLS]" ,SCREAMING_SNAKE_CASE__ : Dict = None ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ,): __lowerCamelCase : Tuple = AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else bos_token __lowerCamelCase : Optional[Any] = AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else eos_token __lowerCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else unk_token __lowerCamelCase : List[Any] = AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else pad_token __lowerCamelCase : Dict = AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else cls_token __lowerCamelCase : Dict = AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else sep_token # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase : str = AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else mask_token __lowerCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE__ ,eos_token=SCREAMING_SNAKE_CASE__ ,unk_token=SCREAMING_SNAKE_CASE__ ,pad_token=SCREAMING_SNAKE_CASE__ ,sep_token=SCREAMING_SNAKE_CASE__ ,mask_token=SCREAMING_SNAKE_CASE__ ,cls_token=SCREAMING_SNAKE_CASE__ ,sp_model_kwargs=self.sp_model_kwargs ,**SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : Optional[int] = vocab_file __lowerCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(SCREAMING_SNAKE_CASE__) @property def lowerCAmelCase ( self : List[str]): return self.sp_model.get_piece_size() def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : Tuple = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Optional[Any]): __lowerCamelCase : Any = self.__dict__.copy() __lowerCamelCase : Any = None return state def __setstate__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : int = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs'): __lowerCamelCase : Tuple = {} __lowerCamelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : str): return self.sp_model.encode(SCREAMING_SNAKE_CASE__ ,out_type=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[Any]): return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Dict): __lowerCamelCase : Tuple = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__) return token def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Optional[int]): __lowerCamelCase : Any = [] __lowerCamelCase : Any = '' __lowerCamelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__) + token __lowerCamelCase : List[Any] = True __lowerCamelCase : List[str] = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__) return out_string.strip() def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Tuple = False ,SCREAMING_SNAKE_CASE__ : Tuple = None ,SCREAMING_SNAKE_CASE__ : Optional[Any] = True ,**SCREAMING_SNAKE_CASE__ : Tuple ,): __lowerCamelCase : Optional[Any] = kwargs.pop('use_source_tokenizer' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ,skip_special_tokens=SCREAMING_SNAKE_CASE__) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __lowerCamelCase : Tuple = [] __lowerCamelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : Union[str, Any] = [] sub_texts.append(SCREAMING_SNAKE_CASE__) else: current_sub_text.append(SCREAMING_SNAKE_CASE__) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE__)) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __lowerCamelCase : Tuple = re.sub(R' (\[(MASK|SEP)\])' ,R'\1' ,' '.join(SCREAMING_SNAKE_CASE__)) else: __lowerCamelCase : Optional[Any] = ''.join(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __lowerCamelCase : Union[str, Any] = self.clean_up_tokenization(SCREAMING_SNAKE_CASE__) return clean_text else: return text def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] = None): if not os.path.isdir(SCREAMING_SNAKE_CASE__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __lowerCamelCase : List[str] = os.path.join( SCREAMING_SNAKE_CASE__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(SCREAMING_SNAKE_CASE__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file ,SCREAMING_SNAKE_CASE__) elif not os.path.isfile(self.vocab_file): with open(SCREAMING_SNAKE_CASE__ ,'wb') as fi: __lowerCamelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__) return (out_vocab_file,) def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase : List[Any] = [self.cls_token_id] __lowerCamelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[Any] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ ,token_ids_a=SCREAMING_SNAKE_CASE__ ,already_has_special_tokens=SCREAMING_SNAKE_CASE__) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Dict = None): __lowerCamelCase : Union[str, Any] = [self.sep_token_id] __lowerCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
717
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() a =logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a =[] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: __lowerCamelCase : List[Any] = state_dict.pop(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = val def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: __lowerCamelCase : List[str] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __lowerCamelCase : Optional[Any] = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) __lowerCamelCase : str = value else: __lowerCamelCase : List[Any] = value return new_state_dict def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]: __lowerCamelCase : str = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowerCamelCase : int = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) __lowerCamelCase : str = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase : Optional[Any] = in_proj_weight[:2_5_6, :] __lowerCamelCase : Dict = in_proj_bias[:2_5_6] __lowerCamelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] __lowerCamelCase : List[str] = in_proj_bias[2_5_6:5_1_2] __lowerCamelCase : Dict = in_proj_weight[-2_5_6:, :] __lowerCamelCase : Dict = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __lowerCamelCase : List[str] = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) __lowerCamelCase : Tuple = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase : Union[str, Any] = in_proj_weight[:2_5_6, :] __lowerCamelCase : List[str] = in_proj_bias[:2_5_6] __lowerCamelCase : Union[str, Any] = in_proj_weight[2_5_6:5_1_2, :] __lowerCamelCase : Optional[int] = in_proj_bias[2_5_6:5_1_2] __lowerCamelCase : Union[str, Any] = in_proj_weight[-2_5_6:, :] __lowerCamelCase : Optional[Any] = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention __lowerCamelCase : List[Any] = state_dict.pop( F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) __lowerCamelCase : str = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __lowerCamelCase : Tuple = in_proj_weight_cross_attn[:2_5_6, :] __lowerCamelCase : List[Any] = in_proj_bias_cross_attn[:2_5_6] __lowerCamelCase : Optional[int] = in_proj_weight_cross_attn[2_5_6:5_1_2, :] __lowerCamelCase : Tuple = in_proj_bias_cross_attn[2_5_6:5_1_2] __lowerCamelCase : Optional[Any] = in_proj_weight_cross_attn[-2_5_6:, :] __lowerCamelCase : Optional[int] = in_proj_bias_cross_attn[-2_5_6:] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> str: __lowerCamelCase , __lowerCamelCase : Tuple = image.size __lowerCamelCase : Dict = max(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : int = 8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 __lowerCamelCase : Optional[int] = target_max_size / current_max_size __lowerCamelCase : int = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]: __lowerCamelCase : int = F.to_tensor(lowerCamelCase__ ) __lowerCamelCase : List[str] = F.normalize(lowerCamelCase__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: logger.info('Converting model...' ) # load original state dict __lowerCamelCase : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : int = rename_backbone_keys(lowerCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowerCamelCase : Optional[Any] = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): __lowerCamelCase : int = state_dict.pop(lowerCamelCase__ ) __lowerCamelCase : Tuple = val # create HuggingFace model and load state dict __lowerCamelCase : Union[str, Any] = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: __lowerCamelCase : int = 1_5 __lowerCamelCase : Optional[Any] = 2 __lowerCamelCase : int = {0: 'table', 1: 'table rotated'} __lowerCamelCase : Union[str, Any] = idalabel __lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} else: __lowerCamelCase : List[str] = 1_2_5 __lowerCamelCase : str = 6 __lowerCamelCase : List[Any] = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } __lowerCamelCase : List[str] = idalabel __lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} __lowerCamelCase : Optional[int] = DetrImageProcessor( format='coco_detection' , max_size=8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 ) __lowerCamelCase : int = TableTransformerForObjectDetection(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify our conversion __lowerCamelCase : Optional[Any] = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' __lowerCamelCase : Dict = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=lowerCamelCase__ ) __lowerCamelCase : Dict = Image.open(lowerCamelCase__ ).convert('RGB' ) __lowerCamelCase : Any = normalize(resize(lowerCamelCase__ , lowerCamelCase__ ) ).unsqueeze(0 ) __lowerCamelCase : Union[str, Any] = model(lowerCamelCase__ ) if "detection" in checkpoint_url: __lowerCamelCase : Dict = (1, 1_5, 3) __lowerCamelCase : List[str] = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) __lowerCamelCase : Dict = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: __lowerCamelCase : Tuple = (1, 1_2_5, 7) __lowerCamelCase : Optional[int] = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) __lowerCamelCase : Optional[Any] = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) __lowerCamelCase : List[str] = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(lowerCamelCase__ ) image_processor.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": a =argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) a =parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
337
0
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> int: _snake_case = RemBertConfig.from_json_file(UpperCAmelCase__ ) print('Building PyTorch model from configuration: {}'.format(str(UpperCAmelCase__ ) ) ) _snake_case = RemBertModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print('Save PyTorch model to {}'.format(UpperCAmelCase__ ) ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase : List[Any] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
495
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class lowercase_ ( UpperCamelCase__): """simple docstring""" def __init__( self , _UpperCAmelCase ): """simple docstring""" a_ = data def __iter__( self ): """simple docstring""" for element in self.data: yield element def lowerCamelCase_ ( UpperCAmelCase__=True ): """simple docstring""" a_ = Accelerator(even_batches=UpperCAmelCase__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False ): """simple docstring""" if iterable: a_ = DummyIterableDataset(torch.as_tensor(range(UpperCAmelCase__ ) ) ) else: a_ = TensorDataset(torch.as_tensor(range(UpperCAmelCase__ ) ) ) a_ = DataLoader(UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) a_ = accelerator.prepare(UpperCAmelCase__ ) return dl def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): """simple docstring""" a_ = create_dataloader(accelerator=UpperCAmelCase__ , dataset_size=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) a_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def lowerCamelCase_ ( ): """simple docstring""" a_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def lowerCamelCase_ ( ): """simple docstring""" a_ = create_accelerator(even_batches=UpperCAmelCase__ ) verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def lowerCamelCase_ ( ): """simple docstring""" a_ = create_accelerator(even_batches=UpperCAmelCase__ ) a_ = torch.nn.Linear(1 , 1 ) a_ = accelerator.prepare(UpperCAmelCase__ ) a_ = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) a_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(UpperCAmelCase__ ): a_ = ddp_model(batch[0].float() ) a_ = output.sum() loss.backward() batch_idxs.append(UpperCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" with warnings.catch_warnings(record=UpperCAmelCase__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , UpperCAmelCase__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def lowerCamelCase_ ( ): """simple docstring""" a_ = True a_ = False a_ = create_accelerator(even_batches=UpperCAmelCase__ ) a_ = torch.nn.Linear(1 , 1 ) a_ = accelerator.prepare(UpperCAmelCase__ ) a_ = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) a_ = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): a_ = train_dl.batch_sampler.even_batches a_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def lowerCamelCase_ ( ): """simple docstring""" a_ = True a_ = False a_ = create_accelerator(even_batches=UpperCAmelCase__ ) a_ = torch.nn.Linear(1 , 1 ) a_ = accelerator.prepare(UpperCAmelCase__ ) create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase__ ) a_ = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): a_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def lowerCamelCase_ ( ): """simple docstring""" a_ = create_accelerator() a_ = torch.nn.Linear(1 , 1 ) a_ = accelerator.prepare(UpperCAmelCase__ ) create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase__ ) with warnings.catch_warnings(record=UpperCAmelCase__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): pass assert issubclass(w[-1].category , UpperCAmelCase__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def lowerCamelCase_ ( ): """simple docstring""" a_ = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) a_ = accelerator.state.distributed_type a_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(UpperCAmelCase__ ) a_ = original_state if __name__ == "__main__": main()
483
0
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Optional[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A : Optional[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A : str = spec.loader.load_module() __A : Tuple = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : str = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A : str = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def UpperCAmelCase ( ) -> List[Any]: '''simple docstring''' __lowerCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): __lowerCAmelCase = False # source code of `config_class` __lowerCAmelCase = inspect.getsource(UpperCamelCase__ ) __lowerCAmelCase = _re_checkpoint.findall(UpperCamelCase__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` __lowerCAmelCase , __lowerCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link __lowerCAmelCase = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: __lowerCAmelCase = True break __lowerCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __lowerCAmelCase = """\n""".join(sorted(UpperCamelCase__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
334
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
288
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__="attention" ) -> Dict: A_ = params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] A_ = params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] A_ = params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] A_ = params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=False ) -> Optional[Any]: if split_mlp_wi: A_ = params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] A_ = params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] A_ = (wi_a, wi_a) else: A_ = params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] A_ = params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Any: return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def UpperCAmelCase__ ( UpperCAmelCase__, *, UpperCAmelCase__, UpperCAmelCase__ ) -> Union[str, Any]: A_ = traverse_util.flatten_dict(variables["""target"""] ) A_ = {"""/""".join(UpperCAmelCase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi A_ = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""", UpperCAmelCase__ ) A_ = collections.OrderedDict() # Shared embeddings. A_ = old["""token_embedder/embedding"""] # Encoder. for i in range(UpperCAmelCase__ ): # Block i, layer 0 (Self Attention). A_ = tax_layer_norm_lookup(UpperCAmelCase__, UpperCAmelCase__, """encoder""", """pre_attention_layer_norm""" ) A_ , A_ , A_ , A_ = tax_attention_lookup(UpperCAmelCase__, UpperCAmelCase__, """encoder""", """attention""" ) A_ = layer_norm A_ = k.T A_ = o.T A_ = q.T A_ = v.T # Block i, layer 1 (MLP). A_ = tax_layer_norm_lookup(UpperCAmelCase__, UpperCAmelCase__, """encoder""", """pre_mlp_layer_norm""" ) A_ , A_ = tax_mlp_lookup(UpperCAmelCase__, UpperCAmelCase__, """encoder""", UpperCAmelCase__ ) A_ = layer_norm if split_mlp_wi: A_ = wi[0].T A_ = wi[1].T else: A_ = wi.T A_ = wo.T A_ = old[ """encoder/relpos_bias/rel_embedding""" ].T A_ = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(UpperCAmelCase__ ): # Block i, layer 0 (Self Attention). A_ = tax_layer_norm_lookup(UpperCAmelCase__, UpperCAmelCase__, """decoder""", """pre_self_attention_layer_norm""" ) A_ , A_ , A_ , A_ = tax_attention_lookup(UpperCAmelCase__, UpperCAmelCase__, """decoder""", """self_attention""" ) A_ = layer_norm A_ = k.T A_ = o.T A_ = q.T A_ = v.T # Block i, layer 1 (Cross Attention). A_ = tax_layer_norm_lookup(UpperCAmelCase__, UpperCAmelCase__, """decoder""", """pre_cross_attention_layer_norm""" ) A_ , A_ , A_ , A_ = tax_attention_lookup(UpperCAmelCase__, UpperCAmelCase__, """decoder""", """encoder_decoder_attention""" ) A_ = layer_norm A_ = k.T A_ = o.T A_ = q.T A_ = v.T # Block i, layer 2 (MLP). A_ = tax_layer_norm_lookup(UpperCAmelCase__, UpperCAmelCase__, """decoder""", """pre_mlp_layer_norm""" ) A_ , A_ = tax_mlp_lookup(UpperCAmelCase__, UpperCAmelCase__, """decoder""", UpperCAmelCase__ ) A_ = layer_norm if split_mlp_wi: A_ = wi[0].T A_ = wi[1].T else: A_ = wi.T A_ = wo.T A_ = old["""decoder/decoder_norm/scale"""] A_ = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: A_ = old["""decoder/logits_dense/kernel"""].T return new def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: A_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: A_ = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: A_ = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) A_ = state_dict["""shared.weight"""] return state_dict def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Union[str, Any]: A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) A_ = convert_tax_to_pytorch(UpperCAmelCase__, num_layers=config.num_layers, is_encoder_only=UpperCAmelCase__ ) A_ = make_state_dict(UpperCAmelCase__, UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = False ) -> List[Any]: A_ = TaConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: A_ = TaEncoderModel(UpperCAmelCase__ ) else: A_ = TaForConditionalGeneration(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(UpperCAmelCase__ ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCAmelCase__ ) print("""Done""" ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) __lowerCamelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
288
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , ) -> str: if config_name_or_path is None: UpperCamelCase : Dict = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: UpperCamelCase : Tuple = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: UpperCamelCase : Tuple = question_encoder_name_or_path UpperCamelCase : Any = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. UpperCamelCase : Optional[Any] = RagConfig.from_pretrained(_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained(_lowerCAmelCase ) UpperCamelCase : Tuple = AutoConfig.from_pretrained(_lowerCAmelCase ) UpperCamelCase : int = gen_config UpperCamelCase : Dict = question_encoder_config UpperCamelCase : Tuple = model_class.from_pretrained_question_encoder_generator( _lowerCAmelCase , _lowerCAmelCase , config=_lowerCAmelCase ) rag_model.save_pretrained(_lowerCAmelCase ) # Sanity check. model_class.from_pretrained(_lowerCAmelCase ) # Save tokenizers. UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) __lowerCamelCase : Dict = parser.parse_args() __lowerCamelCase : Dict = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
38
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( __snake_case ): _UpperCAmelCase :Optional[int] = ['image_processor', 'tokenizer'] _UpperCAmelCase :Tuple = 'BlipImageProcessor' _UpperCAmelCase :Optional[int] = 'AutoTokenizer' def __init__( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : str = False super().__init__(A_ , A_ ) UpperCamelCase : str = self.image_processor def __call__( self , A_ = None , A_ = None , A_ = True , A_ = False , A_ = None , A_ = None , A_ = 0 , A_ = None , A_ = None , A_ = False , A_ = False , A_ = False , A_ = False , A_ = False , A_ = True , A_ = None , **A_ , ): '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: UpperCamelCase : int = self.tokenizer UpperCamelCase : Optional[int] = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) return text_encoding # add pixel_values UpperCamelCase : int = self.image_processor(A_ , return_tensors=A_ ) if text is not None: UpperCamelCase : Dict = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) else: UpperCamelCase : Dict = None if text_encoding is not None: encoding_image_processor.update(A_ ) return encoding_image_processor def __UpperCamelCase( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.batch_decode(*A_ , **A_ ) def __UpperCamelCase( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.decode(*A_ , **A_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = self.tokenizer.model_input_names UpperCamelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
38
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __lowerCamelCase ( lowerCAmelCase ): a__: Optional[int] = 'decision_transformer' a__: str = ['past_key_values'] a__: Dict = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , UpperCAmelCase=17 , UpperCAmelCase=4 , UpperCAmelCase=128 , UpperCAmelCase=4096 , UpperCAmelCase=True , UpperCAmelCase=1 , UpperCAmelCase=1024 , UpperCAmelCase=3 , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase="relu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.0_2 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=5_0256 , UpperCAmelCase=5_0256 , UpperCAmelCase=False , UpperCAmelCase=False , **UpperCAmelCase , ): lowerCamelCase_ = state_dim lowerCamelCase_ = act_dim lowerCamelCase_ = hidden_size lowerCamelCase_ = max_ep_len lowerCamelCase_ = action_tanh lowerCamelCase_ = vocab_size lowerCamelCase_ = n_positions lowerCamelCase_ = n_layer lowerCamelCase_ = n_head lowerCamelCase_ = n_inner lowerCamelCase_ = activation_function lowerCamelCase_ = resid_pdrop lowerCamelCase_ = embd_pdrop lowerCamelCase_ = attn_pdrop lowerCamelCase_ = layer_norm_epsilon lowerCamelCase_ = initializer_range lowerCamelCase_ = scale_attn_weights lowerCamelCase_ = use_cache lowerCamelCase_ = scale_attn_by_inverse_layer_idx lowerCamelCase_ = reorder_and_upcast_attn lowerCamelCase_ = bos_token_id lowerCamelCase_ = eos_token_id super().__init__(bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
29
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : Dict = ["pixel_values"] def __init__( self , a = True , a = None , a = None , a = PILImageResampling.BILINEAR , a = True , a = 1 / 2_55 , a = True , a = None , a = None , **a , ) -> None: '''simple docstring''' super().__init__(**a ) _UpperCamelCase = size if size is not None else {"""shortest_edge""": 3_84} _UpperCamelCase = get_size_dict(a , default_to_square=a ) _UpperCamelCase = do_resize _UpperCamelCase = size # Default value set here for backwards compatibility where the value in config is None _UpperCamelCase = crop_pct if crop_pct is not None else 2_24 / 2_56 _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A_ ( self , a , a , a , a = PILImageResampling.BICUBIC , a = None , **a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) _UpperCamelCase = size["""shortest_edge"""] if shortest_edge < 3_84: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _UpperCamelCase = int(shortest_edge / crop_pct ) _UpperCamelCase = get_resize_output_image_size(a , size=a , default_to_square=a ) _UpperCamelCase = resize(image=a , size=a , resample=a , data_format=a , **a ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=a , size=(shortest_edge, shortest_edge) , data_format=a , **a ) else: # warping (no cropping) when evaluated at 384 or larger return resize( a , size=(shortest_edge, shortest_edge) , resample=a , data_format=a , **a ) def A_ ( self , a , a , a = None , **a , ) -> Optional[int]: '''simple docstring''' return rescale(a , scale=a , data_format=a , **a ) def A_ ( self , a , a , a , a = None , **a , ) -> np.ndarray: '''simple docstring''' return normalize(a , mean=a , std=a , data_format=a , **a ) def A_ ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> PIL.Image.Image: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(a , default_to_square=a ) _UpperCamelCase = make_list_of_images(a ) if not valid_images(a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(a ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=a , size=a , crop_pct=a , resample=a ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=a , mean=a , std=a ) for image in images] _UpperCamelCase = [to_channel_dimension_format(a , a ) for image in images] _UpperCamelCase = {"""pixel_values""": images} return BatchFeature(data=a , tensor_type=a )
612
0
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ (__a , unittest.TestCase ): __magic_name__ = GPTSanJapaneseTokenizer __magic_name__ = False __magic_name__ = {'''do_clean_text''': False, '''add_prefix_space''': False} def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: super().setUp() # fmt: off UpperCAmelCase_ : List[str] = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on UpperCAmelCase_ : Any = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 UpperCAmelCase_ : List[Any] = {"unk_token": "<unk>"} UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(A__ ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **lowerCAmelCase_ : Optional[Any] ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **A__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] ) -> Any: UpperCAmelCase_ : Tuple = "こんにちは、世界。 \nこんばんは、㔺界。😀" UpperCAmelCase_ : Optional[Any] = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : List[str] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_input_output_texts(A__ ) UpperCAmelCase_ : Optional[int] = tokenizer.encode(A__ , add_special_tokens=A__ ) UpperCAmelCase_ : Any = tokenizer.decode(A__ , clean_up_tokenization_spaces=A__ ) return text, ids def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: UpperCAmelCase_ : List[Any] = self.get_tokenizer() # Testing tokenization UpperCAmelCase_ : Any = "こんにちは、世界。 こんばんは、㔺界。" UpperCAmelCase_ : str = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] UpperCAmelCase_ : int = tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) # Testing conversion to ids without special tokens UpperCAmelCase_ : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCAmelCase_ : str = tokenizer.convert_tokens_to_ids(A__ ) self.assertListEqual(A__ , A__ ) # Testing conversion to ids with special tokens UpperCAmelCase_ : Tuple = tokens + [tokenizer.unk_token] UpperCAmelCase_ : Any = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] UpperCAmelCase_ : str = tokenizer.convert_tokens_to_ids(A__ ) self.assertListEqual(A__ , A__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: UpperCAmelCase_ : List[Any] = self.get_tokenizer() # Testing tokenization UpperCAmelCase_ : Union[str, Any] = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" UpperCAmelCase_ : List[str] = "こんにちは、、、、世界。こんばんは、、、、世界。" UpperCAmelCase_ : List[str] = tokenizer.encode(A__ ) UpperCAmelCase_ : Optional[Any] = tokenizer.decode(A__ ) self.assertEqual(A__ , A__ ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCAmelCase_ : Union[str, Any] = "こんにちは、世界。" UpperCAmelCase_ : Union[str, Any] = "こんばんは、㔺界。😀" UpperCAmelCase_ : Any = "こんにちは、世界。こんばんは、世界。😀" UpperCAmelCase_ : Tuple = tokenizer.encode(prefix_text + input_text ) UpperCAmelCase_ : Optional[Any] = tokenizer.encode("" , prefix_text=prefix_text + input_text ) UpperCAmelCase_ : Any = tokenizer.encode(A__ , prefix_text=A__ ) UpperCAmelCase_ : Dict = tokenizer.decode(A__ ) UpperCAmelCase_ : int = tokenizer.decode(A__ ) UpperCAmelCase_ : List[str] = tokenizer.decode(A__ ) self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: UpperCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCAmelCase_ : int = "こんにちは、世界。" UpperCAmelCase_ : Any = "こんばんは、㔺界。😀" UpperCAmelCase_ : Optional[int] = len(tokenizer.encode(A__ ) ) - 2 UpperCAmelCase_ : Dict = len(tokenizer.encode(A__ ) ) - 2 UpperCAmelCase_ : Tuple = [1] + [0] * (len_prefix + len_text + 1) UpperCAmelCase_ : str = [1] * (len_prefix + len_text + 1) + [0] UpperCAmelCase_ : Optional[Any] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCAmelCase_ : str = tokenizer(prefix_text + input_text ).token_type_ids UpperCAmelCase_ : int = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids UpperCAmelCase_ : Tuple = tokenizer(A__ , prefix_text=A__ ).token_type_ids self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCAmelCase_ : Any = tokenizer.encode("あンいワ" ) UpperCAmelCase_ : str = tokenizer.encode("" , prefix_text="あンいワ" ) UpperCAmelCase_ : Union[str, Any] = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(A__ ) , tokenizer.decode(A__ ) ) self.assertEqual(tokenizer.decode(A__ ) , tokenizer.decode(A__ ) ) self.assertNotEqual(A__ , A__ ) self.assertNotEqual(A__ , A__ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCAmelCase_ : int = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] UpperCAmelCase_ : Dict = tokenizer(A__ , padding=A__ ) UpperCAmelCase_ : int = tokenizer.batch_encode_plus(A__ , padding=A__ ) # fmt: off UpperCAmelCase_ : Any = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] UpperCAmelCase_ : Tuple = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCAmelCase_ : Union[str, Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , A__ ) self.assertListEqual(x_token.token_type_ids , A__ ) self.assertListEqual(x_token.attention_mask , A__ ) self.assertListEqual(x_token_a.input_ids , A__ ) self.assertListEqual(x_token_a.token_type_ids , A__ ) self.assertListEqual(x_token_a.attention_mask , A__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: # tokenizer has no padding token pass
700
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def snake_case ( A__ ): UpperCAmelCase_ : Tuple = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def snake_case ( A__ ,A__ ): UpperCAmelCase_ : List[Any] = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def snake_case ( A__ ): UpperCAmelCase_ : Union[str, Any] = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", "stage2.cls_token") ) return token def snake_case ( ): UpperCAmelCase_ : str = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def snake_case ( A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : int = "imagenet-1k-id2label.json" UpperCAmelCase_ : Union[str, Any] = 10_00 UpperCAmelCase_ : Any = "huggingface/label-files" UpperCAmelCase_ : Optional[int] = num_labels UpperCAmelCase_ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(A__ ,A__ ,repo_type="dataset" ) ) ,"r" ) ) UpperCAmelCase_ : Optional[int] = {int(A__ ): v for k, v in idalabel.items()} UpperCAmelCase_ : Optional[int] = idalabel UpperCAmelCase_ : Optional[Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : str = CvtConfig(num_labels=A__ ,idalabel=A__ ,labelaid=A__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" ,1 )[-1][4:6] == "13": UpperCAmelCase_ : Optional[int] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" ,1 )[-1][4:6] == "21": UpperCAmelCase_ : str = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: UpperCAmelCase_ : Optional[int] = [2, 2, 20] UpperCAmelCase_ : List[str] = [3, 12, 16] UpperCAmelCase_ : Optional[Any] = [1_92, 7_68, 10_24] UpperCAmelCase_ : Tuple = CvtForImageClassification(A__ ) UpperCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) UpperCAmelCase_ : int = image_size UpperCAmelCase_ : List[str] = torch.load(A__ ,map_location=torch.device("cpu" ) ) UpperCAmelCase_ : int = OrderedDict() UpperCAmelCase_ : Optional[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: UpperCAmelCase_ : Optional[Any] = list_of_state_dict + cls_token(A__ ) UpperCAmelCase_ : Any = list_of_state_dict + embeddings(A__ ) for cnt in range(config.depth[idx] ): UpperCAmelCase_ : Dict = list_of_state_dict + attention(A__ ,A__ ) UpperCAmelCase_ : Union[str, Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(A__ ) for i in range(len(A__ ) ): UpperCAmelCase_ : Any = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=r'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCamelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
463
0
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :int , *__A :int , **__A :Any ) -> None: """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , __A , ) super().__init__(*__A , **__A )
6
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = (DDPMParallelScheduler,) def _snake_case ( self , **_lowerCAmelCase ) -> int: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def _snake_case ( self ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _snake_case ( self ) -> List[str]: self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def _snake_case ( self ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Dict: for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = self.dummy_sample_deter + 0.1 _lowerCAmelCase = self.dummy_sample_deter - 0.1 _lowerCAmelCase = samplea.shape[0] _lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) _lowerCAmelCase = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) _lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _lowerCAmelCase = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCAmelCase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowerCAmelCase ): if i == len(_lowerCAmelCase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowerCAmelCase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowerCAmelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowerCAmelCase ) with self.assertRaises(_lowerCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=_lowerCAmelCase , timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_lowerCAmelCase )
18
0
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser( description=( """Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""roberta""", choices=["""roberta""", """gpt2"""]) parser.add_argument("""--model_name""", default="""roberta-large""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_roberta_048131723.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") UpperCamelCase__ = parser.parse_args() if args.model_type == "roberta": UpperCamelCase__ = RobertaForMaskedLM.from_pretrained(args.model_name) UpperCamelCase__ = """roberta""" elif args.model_type == "gpt2": UpperCamelCase__ = GPTaLMHeadModel.from_pretrained(args.model_name) UpperCamelCase__ = """transformer""" UpperCamelCase__ = model.state_dict() UpperCamelCase__ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: UpperCamelCase__ = state_dict[f'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: UpperCamelCase__ = f'''{prefix}.embeddings.{w}.weight''' UpperCamelCase__ = state_dict[param_name] for w in ["weight", "bias"]: UpperCamelCase__ = f'''{prefix}.embeddings.LayerNorm.{w}''' UpperCamelCase__ = state_dict[param_name] # Transformer Blocks # UpperCamelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[ f'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] UpperCamelCase__ = state_dict[f'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: UpperCamelCase__ = state_dict[f'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[f'''lm_head.dense.{w}'''] UpperCamelCase__ = state_dict[f'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[f'''{prefix}.ln_f.{w}'''] UpperCamelCase__ = state_dict["""lm_head.weight"""] print(f'''N layers selected for distillation: {std_idx}''') print(f'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(f'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
552
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class a__ ( snake_case__ ): def __init__( self , *_A , **_A ): """simple docstring""" super().__init__(*_A , **_A ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def __SCREAMING_SNAKE_CASE( self , _A=None ): """simple docstring""" __lowerCAmelCase = {} if top_k is not None: __lowerCAmelCase = top_k return {}, {}, postprocess_params def __call__( self , _A , **_A ): """simple docstring""" return super().__call__(_A , **_A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = load_image(_A ) __lowerCAmelCase = self.image_processor(images=_A , return_tensors=self.framework ) return model_inputs def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = self.model(**_A ) return model_outputs def __SCREAMING_SNAKE_CASE( self , _A , _A=5 ): """simple docstring""" if top_k > self.model.config.num_labels: __lowerCAmelCase = self.model.config.num_labels if self.framework == "pt": __lowerCAmelCase = model_outputs.logits.softmax(-1 )[0] __lowerCAmelCase , __lowerCAmelCase = probs.topk(_A ) elif self.framework == "tf": __lowerCAmelCase = stable_softmax(model_outputs.logits , axis=-1 )[0] __lowerCAmelCase = tf.math.top_k(_A , k=_A ) __lowerCAmelCase , __lowerCAmelCase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __lowerCAmelCase = scores.tolist() __lowerCAmelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_A , _A )]
552
1
from manim import * class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): def A_ ( self ): snake_case__ = Rectangle(height=0.5 , width=0.5 ) snake_case__ = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) snake_case__ = [mem.copy() for i in range(6 )] snake_case__ = [mem.copy() for i in range(6 )] snake_case__ = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) snake_case__ = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) snake_case__ = VGroup(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) snake_case__ = Text("CPU" , font_size=24 ) snake_case__ = Group(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0.5 , aligned_edge=lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase ) snake_case__ = [mem.copy() for i in range(1 )] snake_case__ = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) snake_case__ = Text("GPU" , font_size=24 ) snake_case__ = Group(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0.5 , aligned_edge=lowerCamelCase ) gpu.align_to(lowerCamelCase , lowerCamelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase ) snake_case__ = [mem.copy() for i in range(6 )] snake_case__ = VGroup(*lowerCamelCase ).arrange(lowerCamelCase , buff=0 ) snake_case__ = Text("Model" , font_size=24 ) snake_case__ = Group(lowerCamelCase , lowerCamelCase ).arrange(lowerCamelCase , buff=0.5 , aligned_edge=lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase , run_time=1 ) , Create(lowerCamelCase , run_time=1 ) , Create(lowerCamelCase , run_time=1 ) , ) snake_case__ = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) snake_case__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case__ = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase , run_time=2.5 ) , Write(lowerCamelCase ) , Write(lowerCamelCase ) ) self.add(lowerCamelCase ) snake_case__ = [] snake_case__ = [] snake_case__ = [] for i, rect in enumerate(lowerCamelCase ): snake_case__ = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase , opacity=0.7 ) cpu_target.move_to(lowerCamelCase ) cpu_target.generate_target() snake_case__ = 0.4_6 / 4 snake_case__ = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase , buff=0.0 ) cpu_targs.append(lowerCamelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase ) ) second_animations.append(MoveToTarget(lowerCamelCase , run_time=1.5 ) ) self.play(*lowerCamelCase ) self.play(*lowerCamelCase ) self.wait()
276
import math __magic_name__ = 10 __magic_name__ = 7 __magic_name__ = BALLS_PER_COLOUR * NUM_COLOURS def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase = 20 ): snake_case__ = math.comb(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __lowerCAmelCase ) snake_case__ = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
276
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _UpperCamelCase : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.14.0""", """To fix: pip install -r examples/pytorch/audio-classification/requirements.txt""") def __UpperCamelCase ( snake_case , snake_case , snake_case = 1_6_0_0_0 ) -> Tuple: '''simple docstring''' __A = int(round(sample_rate * max_length ) ) if len(snake_case ) <= sample_length: return wav __A = randint(0 , len(snake_case ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class _lowerCAmelCase: """simple docstring""" lowerCamelCase__ = field(default=_a , metadata={'''help''': '''Name of a dataset from the datasets package'''}) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''}) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''A file containing the training audio paths and labels.'''}) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''A file containing the validation audio paths and labels.'''}) lowerCamelCase__ = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) lowerCamelCase__ = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) lowerCamelCase__ = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) lowerCamelCase__ = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''}) lowerCamelCase__ = field( default=_a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCamelCase__ = field( default=_a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) lowerCamelCase__ = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class _lowerCAmelCase: """simple docstring""" lowerCamelCase__ = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''}) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''}) lowerCamelCase__ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''Name or path of preprocessor config.'''}) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''}) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''}) lowerCamelCase__ = field( default=_a , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''}) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def SCREAMING_SNAKE_CASE__ ( self )-> List[str]: if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , UpperCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def __UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __A , __A , __A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __A , __A , __A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , snake_case , snake_case ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __A = training_args.get_process_log_level() logger.setLevel(snake_case ) transformers.utils.logging.set_verbosity(snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. __A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. __A = DatasetDict() __A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) __A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' F"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " '''Make sure to set `--label_column_name` to the correct text column - one of ''' F"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy __A = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. __A = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) __A = feature_extractor.model_input_names[0] def train_transforms(snake_case ): __A = [] for audio in batch[data_args.audio_column_name]: __A = random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(snake_case ) __A = feature_extractor(snake_case , sampling_rate=feature_extractor.sampling_rate ) __A = {model_input_name: inputs.get(snake_case )} __A = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(snake_case ): __A = [audio['''array'''] for audio in batch[data_args.audio_column_name]] __A = feature_extractor(snake_case , sampling_rate=feature_extractor.sampling_rate ) __A = {model_input_name: inputs.get(snake_case )} __A = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __A = raw_datasets['''train'''].features[data_args.label_column_name].names __A , __A = {}, {} for i, label in enumerate(snake_case ): __A = str(snake_case ) __A = label # Load the accuracy metric from the datasets package __A = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(snake_case ): __A = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=snake_case , references=eval_pred.label_ids ) __A = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(snake_case ) , labelaid=snake_case , idalabel=snake_case , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __A = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: __A = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(snake_case , output_all_columns=snake_case ) if training_args.do_eval: if data_args.max_eval_samples is not None: __A = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(snake_case , output_all_columns=snake_case ) # Initialize our trainer __A = Trainer( model=snake_case , args=snake_case , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=snake_case , tokenizer=snake_case , ) # Training if training_args.do_train: __A = None if training_args.resume_from_checkpoint is not None: __A = training_args.resume_from_checkpoint elif last_checkpoint is not None: __A = last_checkpoint __A = trainer.train(resume_from_checkpoint=snake_case ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __A = trainer.evaluate() trainer.log_metrics('''eval''' , snake_case ) trainer.save_metrics('''eval''' , snake_case ) # Write model card and (optionally) push to hub __A = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case ) else: trainer.create_model_card(**snake_case ) if __name__ == "__main__": main()
341
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class _lowerCAmelCase( unittest.TestCase): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> Any: __A = 3 __A = 2_50 __A = ids_tensor((batch_size, length) , UpperCAmelCase ) __A = torch.ones((batch_size, length) , device=UpperCAmelCase , dtype=torch.float ) / length return input_ids, scores def SCREAMING_SNAKE_CASE__ ( self )-> Optional[int]: __A , __A = self._get_tensors(5 ) __A = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) ) __A , __A = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) ) __A , __A = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase , UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self )-> Dict: __A = MaxLengthCriteria(max_length=10 ) __A , __A = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) ) __A , __A = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) ) __A , __A = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase , UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self )-> Union[str, Any]: __A = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __A , __A = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) ) __A , __A = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) ) __A , __A = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase , UpperCAmelCase ) ) __A = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def SCREAMING_SNAKE_CASE__ ( self )-> Optional[Any]: __A , __A = self._get_tensors(5 ) __A = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) ) __A = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCAmelCase , UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self )-> int: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __A = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCAmelCase ) , 1 )
341
1
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _A : Dict = 8 def __magic_name__ ( __snake_case : List[str] , __snake_case : Union[str, Any]=BITS ) -> List[Any]: lowercase : Optional[Any] = x.device lowercase : Optional[int] = (x * 255).int().clamp(0 , 255 ) lowercase : int = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase__ ) lowercase : Union[str, Any] = rearrange(UpperCamelCase__ , "d -> d 1 1" ) lowercase : str = rearrange(UpperCamelCase__ , "b c h w -> b c 1 h w" ) lowercase : Dict = ((x & mask) != 0).float() lowercase : Optional[Any] = rearrange(UpperCamelCase__ , "b c d h w -> b (c d) h w" ) lowercase : List[str] = bits * 2 - 1 return bits def __magic_name__ ( __snake_case : str , __snake_case : Tuple=BITS ) -> Union[str, Any]: lowercase : Dict = x.device lowercase : Tuple = (x > 0).int() lowercase : Tuple = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase__ , dtype=torch.intaa ) lowercase : Optional[Any] = rearrange(UpperCamelCase__ , "d -> d 1 1" ) lowercase : str = rearrange(UpperCamelCase__ , "b (c d) h w -> b c d h w" , d=8 ) lowercase : str = reduce(x * mask , "b c d h w -> b c h w" , "sum" ) return (dec / 255).clamp(0.0 , 1.0 ) def __magic_name__ ( self : List[Any] , __snake_case : torch.FloatTensor , __snake_case : int , __snake_case : torch.FloatTensor , __snake_case : float = 0.0 , __snake_case : bool = True , __snake_case : str=None , __snake_case : bool = True , ) -> Dict: if self.num_inference_steps is None: raise ValueError( "Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowercase : Any = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowercase : int = self.alphas_cumprod[timestep] lowercase : Optional[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowercase : List[str] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowercase : Optional[Any] = self.bit_scale if self.config.clip_sample: lowercase : Optional[Any] = torch.clamp(UpperCamelCase__ , -scale , UpperCamelCase__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowercase : int = self._get_variance(UpperCamelCase__ , UpperCamelCase__ ) lowercase : Optional[int] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowercase : Dict = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase : Any = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase : Optional[Any] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowercase : Optional[int] = model_output.device if torch.is_tensor(UpperCamelCase__ ) else "cpu" lowercase : List[Any] = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase__ ).to(UpperCamelCase__ ) lowercase : Tuple = self._get_variance(UpperCamelCase__ , UpperCamelCase__ ) ** 0.5 * eta * noise lowercase : List[Any] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=UpperCamelCase__ , pred_original_sample=UpperCamelCase__ ) def __magic_name__ ( self : Optional[Any] , __snake_case : torch.FloatTensor , __snake_case : int , __snake_case : torch.FloatTensor , __snake_case : Tuple="epsilon" , __snake_case : int=None , __snake_case : bool = True , ) -> Optional[Any]: lowercase : Optional[int] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowercase , lowercase : List[str] = torch.split(UpperCamelCase__ , sample.shape[1] , dim=1 ) else: lowercase : Optional[Any] = None # 1. compute alphas, betas lowercase : List[str] = self.alphas_cumprod[t] lowercase : Optional[Any] = self.alphas_cumprod[t - 1] if t > 0 else self.one lowercase : int = 1 - alpha_prod_t lowercase : Union[str, Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowercase : Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowercase : int = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" lowercase : int = self.bit_scale if self.config.clip_sample: lowercase : List[Any] = torch.clamp(UpperCamelCase__ , -scale , UpperCamelCase__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowercase : List[str] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase : Any = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowercase : List[Any] = 0 if t > 0: lowercase : Tuple = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase__ ).to(model_output.device ) lowercase : List[str] = (self._get_variance(UpperCamelCase__ , predicted_variance=UpperCamelCase__ ) ** 0.5) * noise lowercase : str = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=UpperCamelCase__ , pred_original_sample=UpperCamelCase__ ) class a__ ( a_ ): def __init__( self , _a , _a , _a = 1.0 , ): super().__init__() lowercase : Dict = bit_scale lowercase : Any = ( ddim_bit_scheduler_step if isinstance(__a , __a ) else ddpm_bit_scheduler_step ) self.register_modules(unet=__a , scheduler=__a ) @torch.no_grad() def __call__( self , _a = 256 , _a = 256 , _a = 50 , _a = None , _a = 1 , _a = "pil" , _a = True , **_a , ): lowercase : Optional[int] = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=__a , ) lowercase : Optional[int] = decimal_to_bits(__a ) * self.bit_scale lowercase : List[Any] = latents.to(self.device ) self.scheduler.set_timesteps(__a ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowercase : Tuple = self.unet(__a , __a ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase : str = self.scheduler.step(__a , __a , __a ).prev_sample lowercase : Optional[Any] = bits_to_decimal(__a ) if output_type == "pil": lowercase : Any = self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a )
361
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __lowerCAmelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class A ( UpperCAmelCase ): def __init__( self : Dict , __a : List[Any] , __a : Optional[Any] ) -> Dict: super().__init__() self.register_modules(unet=__a , scheduler=__a ) @torch.no_grad() def __call__( self : Tuple , __a : int = 1 , __a : int = 1_0_0 , __a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __a : Optional[float] = None , __a : bool = True , ) -> Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: __UpperCAmelCase = self.unet.config.sample_size / self.unet.config.sample_rate __UpperCAmelCase = audio_length_in_s * self.unet.config.sample_rate __UpperCAmelCase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" f""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) __UpperCAmelCase = int(__a ) if sample_size % down_scale_factor != 0: __UpperCAmelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" f""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" ''' process.''' ) __UpperCAmelCase = int(__a ) __UpperCAmelCase = next(iter(self.unet.parameters() ) ).dtype __UpperCAmelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__a , __a ) and len(__a ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__a )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __UpperCAmelCase = randn_tensor(__a , generator=__a , device=self.device , dtype=__a ) # set step values self.scheduler.set_timesteps(__a , device=audio.device ) __UpperCAmelCase = self.scheduler.timesteps.to(__a ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __UpperCAmelCase = self.unet(__a , __a ).sample # 2. compute previous image: x_t -> t_t-1 __UpperCAmelCase = self.scheduler.step(__a , __a , __a ).prev_sample __UpperCAmelCase = audio.clamp(-1 , 1 ).float().cpu().numpy() __UpperCAmelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__a )
262
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any , lowerCAmelCase: Any=0.999 , lowerCAmelCase: List[Any]="cosine" , ) -> Any: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase: str ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase: str ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase : Optional[Any] = [] for i in range(lowerCAmelCase ): _UpperCAmelCase : str = i / num_diffusion_timesteps _UpperCAmelCase : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase ) / alpha_bar_fn(lowerCAmelCase ) , lowerCAmelCase ) ) return torch.tensor(lowerCAmelCase , dtype=torch.floataa ) class a ( UpperCAmelCase , UpperCAmelCase ): _lowercase = [e.name for e in KarrasDiffusionSchedulers] _lowercase = 2 @register_to_config def __init__( self , A_ = 1000 , A_ = 0.0_00_85 , A_ = 0.0_12 , A_ = "linear" , A_ = None , A_ = "epsilon" , A_ = False , A_ = False , A_ = 1.0 , A_ = "linspace" , A_ = 0 , ): '''simple docstring''' if trained_betas is not None: _UpperCAmelCase : str = torch.tensor(A_ , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase : List[Any] = torch.linspace(A_ , A_ , A_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase : str = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , A_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase : Dict = betas_for_alpha_bar(A_ , alpha_transform_type="cosine" ) elif beta_schedule == "exp": _UpperCAmelCase : Tuple = betas_for_alpha_bar(A_ , alpha_transform_type="exp" ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase : Union[str, Any] = 1.0 - self.betas _UpperCAmelCase : Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(A_ , A_ , A_ ) _UpperCAmelCase : Optional[int] = use_karras_sigmas def _UpperCAmelCase ( self , A_ , A_=None ): '''simple docstring''' if schedule_timesteps is None: _UpperCAmelCase : Dict = self.timesteps _UpperCAmelCase : Tuple = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _UpperCAmelCase : Optional[Any] = 1 if len(A_ ) > 1 else 0 else: _UpperCAmelCase : List[Any] = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep _UpperCAmelCase : int = self._index_counter[timestep_int] return indices[pos].item() @property def _UpperCAmelCase ( self ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _UpperCAmelCase ( self , A_ , A_ , ): '''simple docstring''' _UpperCAmelCase : Dict = self.index_for_timestep(A_ ) _UpperCAmelCase : str = self.sigmas[step_index] _UpperCAmelCase : Tuple = sample / ((sigma**2 + 1) ** 0.5) return sample def _UpperCAmelCase ( self , A_ , A_ = None , A_ = None , ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = num_inference_steps _UpperCAmelCase : Any = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _UpperCAmelCase : List[Any] = np.linspace(0 , num_train_timesteps - 1 , A_ , dtype=A_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _UpperCAmelCase : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase : Any = (np.arange(0 , A_ ) * step_ratio).round()[::-1].copy().astype(A_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _UpperCAmelCase : Any = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase : Any = (np.arange(A_ , 0 , -step_ratio )).round().copy().astype(A_ ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) _UpperCAmelCase : Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _UpperCAmelCase : Optional[Any] = np.log(A_ ) _UpperCAmelCase : Dict = np.interp(A_ , np.arange(0 , len(A_ ) ) , A_ ) if self.config.use_karras_sigmas: _UpperCAmelCase : Union[str, Any] = self._convert_to_karras(in_sigmas=A_ , num_inference_steps=self.num_inference_steps ) _UpperCAmelCase : List[str] = np.array([self._sigma_to_t(A_ , A_ ) for sigma in sigmas] ) _UpperCAmelCase : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _UpperCAmelCase : Dict = torch.from_numpy(A_ ).to(device=A_ ) _UpperCAmelCase : str = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _UpperCAmelCase : Tuple = torch.from_numpy(A_ ) _UpperCAmelCase : int = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(A_ ).startswith("mps" ): # mps does not support float64 _UpperCAmelCase : int = timesteps.to(A_ , dtype=torch.floataa ) else: _UpperCAmelCase : str = timesteps.to(device=A_ ) # empty dt and derivative _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Optional[int] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _UpperCAmelCase : str = defaultdict(A_ ) def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Dict = np.log(A_ ) # get distribution _UpperCAmelCase : int = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _UpperCAmelCase : Union[str, Any] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _UpperCAmelCase : Union[str, Any] = low_idx + 1 _UpperCAmelCase : Union[str, Any] = log_sigmas[low_idx] _UpperCAmelCase : Union[str, Any] = log_sigmas[high_idx] # interpolate sigmas _UpperCAmelCase : Dict = (low - log_sigma) / (low - high) _UpperCAmelCase : List[str] = np.clip(A_ , 0 , 1 ) # transform interpolation to time range _UpperCAmelCase : Dict = (1 - w) * low_idx + w * high_idx _UpperCAmelCase : Dict = t.reshape(sigma.shape ) return t def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : float = in_sigmas[-1].item() _UpperCAmelCase : float = in_sigmas[0].item() _UpperCAmelCase : str = 7.0 # 7.0 is the value used in the paper _UpperCAmelCase : Union[str, Any] = np.linspace(0 , 1 , A_ ) _UpperCAmelCase : Optional[Any] = sigma_min ** (1 / rho) _UpperCAmelCase : Union[str, Any] = sigma_max ** (1 / rho) _UpperCAmelCase : Dict = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _UpperCAmelCase ( self ): '''simple docstring''' return self.dt is None def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ = True , ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.index_for_timestep(A_ ) # advance index counter by 1 _UpperCAmelCase : Tuple = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _UpperCAmelCase : Optional[int] = self.sigmas[step_index] _UpperCAmelCase : List[Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _UpperCAmelCase : Dict = self.sigmas[step_index - 1] _UpperCAmelCase : Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _UpperCAmelCase : str = 0 _UpperCAmelCase : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _UpperCAmelCase : int = sigma_hat if self.state_in_first_order else sigma_next _UpperCAmelCase : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _UpperCAmelCase : Any = sigma_hat if self.state_in_first_order else sigma_next _UpperCAmelCase : Optional[int] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _UpperCAmelCase : Union[str, Any] = model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: _UpperCAmelCase : Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _UpperCAmelCase : Union[str, Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _UpperCAmelCase : Optional[Any] = sigma_next - sigma_hat # store for 2nd order step _UpperCAmelCase : Optional[Any] = derivative _UpperCAmelCase : int = dt _UpperCAmelCase : List[Any] = sample else: # 2. 2nd order / Heun's method _UpperCAmelCase : str = (sample - pred_original_sample) / sigma_next _UpperCAmelCase : Any = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _UpperCAmelCase : Union[str, Any] = self.dt _UpperCAmelCase : Optional[int] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : int = None _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A_ ) def _UpperCAmelCase ( self , A_ , A_ , A_ , ): '''simple docstring''' _UpperCAmelCase : Optional[int] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(A_ ): # mps does not support float64 _UpperCAmelCase : List[str] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _UpperCAmelCase : List[Any] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _UpperCAmelCase : Dict = self.timesteps.to(original_samples.device ) _UpperCAmelCase : Optional[int] = timesteps.to(original_samples.device ) _UpperCAmelCase : List[Any] = [self.index_for_timestep(A_ , A_ ) for t in timesteps] _UpperCAmelCase : Dict = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _UpperCAmelCase : Dict = sigma.unsqueeze(-1 ) _UpperCAmelCase : Union[str, Any] = original_samples + noise * sigma return noisy_samples def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
467
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class a ( UpperCAmelCase ): def __init__( self , *A_ , **A_ ): '''simple docstring''' warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , A_ , ) super().__init__(*A_ , **A_ )
467
1
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( snake_case__ ): _A = (IPNDMScheduler,) _A = (("""num_inference_steps""", 50),) def _a(self : Union[str, Any] , **snake_case : Optional[Any] ) -> Optional[Any]: _lowercase : List[str] = {"num_train_timesteps": 1000} config.update(**SCREAMING_SNAKE_CASE__ ) return config def _a(self : List[str] , snake_case : Dict=0 , **snake_case : Any ) -> str: _lowercase : Tuple = dict(self.forward_default_kwargs ) _lowercase : Dict = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE__ ) _lowercase : Union[str, Any] = self.dummy_sample _lowercase : Optional[Any] = 0.1 * sample _lowercase : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowercase : Any = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) _lowercase : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals _lowercase : Optional[int] = dummy_past_residuals[:] if time_step is None: _lowercase : Any = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) _lowercase : List[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals _lowercase : Optional[Any] = dummy_past_residuals[:] _lowercase : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample _lowercase : Optional[int] = new_scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _lowercase : str = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample _lowercase : Any = new_scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _a(self : int ) -> Dict: pass def _a(self : Dict , snake_case : Dict=0 , **snake_case : Optional[Any] ) -> Union[str, Any]: _lowercase : Optional[int] = dict(self.forward_default_kwargs ) _lowercase : Optional[Any] = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE__ ) _lowercase : List[Any] = self.dummy_sample _lowercase : Union[str, Any] = 0.1 * sample _lowercase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowercase : Any = self.get_scheduler_config() _lowercase : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals (must be after setting timesteps) _lowercase : Tuple = dummy_past_residuals[:] if time_step is None: _lowercase : List[str] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) _lowercase : Any = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residual (must be after setting timesteps) _lowercase : Any = dummy_past_residuals[:] _lowercase : str = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample _lowercase : List[str] = new_scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _lowercase : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample _lowercase : Any = new_scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _a(self : Tuple , **snake_case : Optional[int] ) -> Dict: _lowercase : Union[str, Any] = self.scheduler_classes[0] _lowercase : Any = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) _lowercase : int = scheduler_class(**SCREAMING_SNAKE_CASE__ ) _lowercase : Tuple = 10 _lowercase : List[Any] = self.dummy_model() _lowercase : Dict = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): _lowercase : List[Any] = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _lowercase : Any = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): _lowercase : Tuple = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _lowercase : Tuple = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample return sample def _a(self : List[Any] ) -> List[Any]: _lowercase : Union[str, Any] = dict(self.forward_default_kwargs ) _lowercase : int = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE__ ) for scheduler_class in self.scheduler_classes: _lowercase : Union[str, Any] = self.get_scheduler_config() _lowercase : int = scheduler_class(**SCREAMING_SNAKE_CASE__ ) _lowercase : Union[str, Any] = self.dummy_sample _lowercase : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE__ , "set_timesteps" ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE__ , "set_timesteps" ): _lowercase : Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowercase : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _lowercase : Tuple = dummy_past_residuals[:] _lowercase : int = scheduler.timesteps[5] _lowercase : Union[str, Any] = scheduler.timesteps[6] _lowercase : Dict = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample _lowercase : str = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _lowercase : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample _lowercase : Any = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _a(self : List[Any] ) -> Any: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ , time_step=SCREAMING_SNAKE_CASE__ ) def _a(self : Any ) -> Optional[Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE__ , time_step=SCREAMING_SNAKE_CASE__ ) def _a(self : int ) -> str: _lowercase : Dict = self.full_loop() _lowercase : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 254_0529 ) < 10
461
'''simple docstring''' import numpy as np def __lowercase ( __SCREAMING_SNAKE_CASE ) -> np.ndarray: """simple docstring""" return 1 / (1 + np.exp(-vector )) def __lowercase ( __SCREAMING_SNAKE_CASE ) -> np.ndarray: """simple docstring""" return vector * sigmoid(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
582
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) UpperCAmelCase : List[Any] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 UpperCAmelCase : Optional[int] = 1 if upper_limit > 0: UpperCAmelCase : int = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(UpperCAmelCase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("\n********* Catalan Numbers Using Dynamic Programming ************\n") print("\n*** Enter -1 at any time to quit ***") print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="") try: while True: lowercase__ = int(input().strip()) if N < 0: print("\n********* Goodbye!! ************") break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("Try another upper limit for the sequence: ", end="") except (NameError, ValueError): print("\n********* Invalid input, goodbye! ************\n") import doctest doctest.testmod()
695
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
1
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig UpperCamelCase = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : List[str] = """maskformer""" _snake_case : Any = {"""hidden_size""": """mask_feature_size"""} _snake_case : Union[str, Any] = ["""resnet""", """swin"""] _snake_case : List[str] = ["""detr"""] def __init__( self :Any , lowerCamelCase__ :int = 2_56 , lowerCamelCase__ :int = 2_56 , lowerCamelCase__ :float = 0.1 , lowerCamelCase__ :bool = False , lowerCamelCase__ :Optional[Dict] = None , lowerCamelCase__ :Optional[Dict] = None , lowerCamelCase__ :float = 0.02 , lowerCamelCase__ :float = 1.0 , lowerCamelCase__ :float = 1.0 , lowerCamelCase__ :float = 1.0 , lowerCamelCase__ :float = 20.0 , lowerCamelCase__ :Optional[bool] = None , **lowerCamelCase__ :str , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCamelCase__ :Optional[Any] = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase__ :List[Any] = backbone_config.pop("""model_type""" ) UpperCamelCase__ :Any = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ :Optional[int] = config_class.from_dict(lowerCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCamelCase__ :Tuple = DetrConfig() else: # verify that the decoder is supported UpperCamelCase__ :Optional[Any] = ( decoder_config.pop("""model_type""" ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase__ :Any = CONFIG_MAPPING[decoder_type] UpperCamelCase__ :Optional[Any] = config_class.from_dict(lowerCamelCase__ ) UpperCamelCase__ :Tuple = backbone_config UpperCamelCase__ :Optional[int] = decoder_config # main feature dimension for the model UpperCamelCase__ :Union[str, Any] = fpn_feature_size UpperCamelCase__ :int = mask_feature_size # initializer UpperCamelCase__ :Union[str, Any] = init_std UpperCamelCase__ :Tuple = init_xavier_std # Hungarian matcher && loss UpperCamelCase__ :Dict = cross_entropy_weight UpperCamelCase__ :int = dice_weight UpperCamelCase__ :Optional[Any] = mask_weight UpperCamelCase__ :int = use_auxiliary_loss UpperCamelCase__ :List[str] = no_object_weight UpperCamelCase__ :Any = output_auxiliary_logits UpperCamelCase__ :Union[str, Any] = self.decoder_config.encoder_attention_heads UpperCamelCase__ :Any = self.decoder_config.num_hidden_layers super().__init__(**lowerCamelCase__ ) @classmethod def __a ( cls :Tuple , lowerCamelCase__ :PretrainedConfig , lowerCamelCase__ :PretrainedConfig , **lowerCamelCase__ :List[Any] ): return cls( backbone_config=lowerCamelCase__ , decoder_config=lowerCamelCase__ , **lowerCamelCase__ , ) def __a ( self :List[Any] ): UpperCamelCase__ :List[Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase__ :Dict = self.backbone_config.to_dict() UpperCamelCase__ :str = self.decoder_config.to_dict() UpperCamelCase__ :Optional[int] = self.__class__.model_type return output
45
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __A : Any = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) __A : List[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) __A : List[str] = False __A : int = False def __snake_case ( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : int=False ): '''simple docstring''' lowercase :Union[str, Any] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): lowercase :Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class __magic_name__ ( __UpperCAmelCase ): def __init__( self : Any , snake_case__ : Dict , snake_case__ : Dict=1_3 , snake_case__ : Tuple=7 , snake_case__ : Optional[Any]=True , snake_case__ : Union[str, Any]=True , snake_case__ : str=True , snake_case__ : Optional[Any]=True , snake_case__ : Any=9_9 , snake_case__ : Optional[Any]=3_2 , snake_case__ : Optional[Any]=3_2 , snake_case__ : Any=2 , snake_case__ : Optional[int]=4 , snake_case__ : List[Any]=3_7 , snake_case__ : Optional[int]="gelu" , snake_case__ : List[Any]=0.1 , snake_case__ : str=0.1 , snake_case__ : List[Any]=5_1_2 , snake_case__ : List[str]=1_6 , snake_case__ : Union[str, Any]=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : Optional[Any]=3 , snake_case__ : Dict=4 , snake_case__ : int=None , ): '''simple docstring''' lowercase :Tuple = parent lowercase :Tuple = batch_size lowercase :Optional[Any] = seq_length lowercase :Optional[Any] = is_training lowercase :Optional[Any] = use_input_mask lowercase :List[Any] = use_token_type_ids lowercase :str = use_labels lowercase :List[str] = vocab_size lowercase :str = hidden_size lowercase :Optional[int] = num_hidden_layers lowercase :Dict = num_attention_heads lowercase :Any = intermediate_size lowercase :List[str] = hidden_act lowercase :Optional[Any] = hidden_dropout_prob lowercase :List[Any] = attention_probs_dropout_prob lowercase :List[Any] = max_position_embeddings lowercase :List[Any] = type_vocab_size lowercase :Union[str, Any] = type_sequence_label_size lowercase :Union[str, Any] = initializer_range lowercase :Any = num_labels lowercase :int = num_choices lowercase :Dict = scope lowercase :Dict = embedding_size def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase :int = None if self.use_input_mask: lowercase :int = random_attention_mask([self.batch_size, self.seq_length] ) lowercase :Tuple = None if self.use_token_type_ids: lowercase :int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase :Union[str, Any] = None lowercase :int = None lowercase :str = None if self.use_labels: lowercase :int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase :str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase :Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase :Optional[int] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Tuple ): '''simple docstring''' lowercase :Dict = TFMobileBertModel(config=snake_case__ ) lowercase :Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase :List[Any] = model(snake_case__ ) lowercase :Optional[int] = [input_ids, input_mask] lowercase :Optional[int] = model(snake_case__ ) lowercase :Union[str, Any] = model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __snake_case ( self : List[Any] , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : str , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Optional[int] ): '''simple docstring''' lowercase :Any = TFMobileBertForMaskedLM(config=snake_case__ ) lowercase :Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase :int = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self : Tuple , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Tuple ): '''simple docstring''' lowercase :Optional[Any] = TFMobileBertForNextSentencePrediction(config=snake_case__ ) lowercase :Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase :Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __snake_case ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Dict ): '''simple docstring''' lowercase :int = TFMobileBertForPreTraining(config=snake_case__ ) lowercase :Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase :List[Any] = model(snake_case__ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __snake_case ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' lowercase :List[Any] = self.num_labels lowercase :List[Any] = TFMobileBertForSequenceClassification(config=snake_case__ ) lowercase :Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase :List[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : Any , snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] ): '''simple docstring''' lowercase :Tuple = self.num_choices lowercase :Any = TFMobileBertForMultipleChoice(config=snake_case__ ) lowercase :Any = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) lowercase :Union[str, Any] = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) lowercase :List[Any] = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) lowercase :Dict = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase :Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self : Any , snake_case__ : str , snake_case__ : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Dict ): '''simple docstring''' lowercase :List[Any] = self.num_labels lowercase :List[str] = TFMobileBertForTokenClassification(config=snake_case__ ) lowercase :int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase :int = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self : List[str] , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : str ): '''simple docstring''' lowercase :Union[str, Any] = TFMobileBertForQuestionAnswering(config=snake_case__ ) lowercase :List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase :str = model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Dict = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) :Dict = config_and_inputs lowercase :Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def __snake_case ( self : Optional[Any] ): '''simple docstring''' lowercase :List[Any] = TFMobileBertModelTest.TFMobileBertModelTester(self ) lowercase :List[str] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __snake_case ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case__ ) def __snake_case ( self : Any ): '''simple docstring''' lowercase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case__ ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' lowercase :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case__ ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case__ ) def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case__ ) def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case__ ) def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case__ ) def __snake_case ( self : Dict ): '''simple docstring''' lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case__ ) @slow def __snake_case ( self : int ): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: lowercase :List[str] = TFMobileBertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_tf class __magic_name__ ( unittest.TestCase ): @slow def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :int = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) lowercase :Optional[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase :List[Any] = model(snake_case__ )[0] lowercase :Union[str, Any] = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , snake_case__ ) lowercase :Optional[int] = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case__ , atol=1e-4 )
677
0
'''simple docstring''' from __future__ import annotations class UpperCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase_) -> Union[str, Any]: """simple docstring""" a_ =TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float.") if len(lowerCAmelCase_) != 0: a_ =len(rows[0]) if cols == 0: raise error for row in rows: if len(lowerCAmelCase_) != cols: raise error for value in row: if not isinstance(lowerCAmelCase_ , (int, float)): raise error a_ =rows else: a_ =[] def lowercase_ ( self) -> list[list[int]]: """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def lowercase_ ( self) -> int: """simple docstring""" return len(self.rows) @property def lowercase_ ( self) -> int: """simple docstring""" return len(self.rows[0]) @property def lowercase_ ( self) -> tuple[int, int]: """simple docstring""" return (self.num_rows, self.num_columns) @property def lowercase_ ( self) -> bool: """simple docstring""" return self.order[0] == self.order[1] def lowercase_ ( self) -> Matrix: """simple docstring""" a_ =[ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(lowerCAmelCase_) def lowercase_ ( self) -> int: """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def lowercase_ ( self) -> bool: """simple docstring""" return bool(self.determinant()) def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_) -> int: """simple docstring""" a_ =[ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(lowerCAmelCase_).determinant() def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_) -> int: """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(lowerCAmelCase_ , lowerCAmelCase_) return -1 * self.get_minor(lowerCAmelCase_ , lowerCAmelCase_) def lowercase_ ( self) -> Matrix: """simple docstring""" return Matrix( [ [self.get_minor(lowerCAmelCase_ , lowerCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def lowercase_ ( self) -> Matrix: """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def lowercase_ ( self) -> Matrix: """simple docstring""" a_ =[ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(lowerCAmelCase_) def lowercase_ ( self) -> Matrix: """simple docstring""" a_ =self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse") return self.adjugate() * (1 / determinant) def __repr__( self) -> str: """simple docstring""" return str(self.rows) def __str__( self) -> str: """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(lowerCAmelCase_) for value in row]) + ".]" for row in self.rows ]) + "]" ) def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ = None) -> None: """simple docstring""" a_ =TypeError("Row must be a list containing all ints and/or floats") if not isinstance(lowerCAmelCase_ , lowerCAmelCase_): raise type_error for value in row: if not isinstance(lowerCAmelCase_ , (int, float)): raise type_error if len(lowerCAmelCase_) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix") if position is None: self.rows.append(lowerCAmelCase_) else: a_ =self.rows[0:position] + [row] + self.rows[position:] def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ = None) -> None: """simple docstring""" a_ =TypeError( "Column must be a list containing all ints and/or floats") if not isinstance(lowerCAmelCase_ , lowerCAmelCase_): raise type_error for value in column: if not isinstance(lowerCAmelCase_ , (int, float)): raise type_error if len(lowerCAmelCase_) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix") if position is None: a_ =[self.rows[i] + [column[i]] for i in range(self.num_rows)] else: a_ =[ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self , lowerCAmelCase_) -> bool: """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self , lowerCAmelCase_) -> bool: """simple docstring""" return not self == other def __neg__( self) -> Matrix: """simple docstring""" return self * -1 def __add__( self , lowerCAmelCase_) -> Matrix: """simple docstring""" if self.order != other.order: raise ValueError("Addition requires matrices of the same order") return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self , lowerCAmelCase_) -> Matrix: """simple docstring""" if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order") return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self , lowerCAmelCase_) -> Matrix: """simple docstring""" if isinstance(lowerCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second") return Matrix( [ [Matrix.dot_product(lowerCAmelCase_ , lowerCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix") def __pow__( self , lowerCAmelCase_) -> Matrix: """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_): raise TypeError("A Matrix can only be raised to the power of an int") if not self.is_square: raise ValueError("Only square matrices can be raised to a power") if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power") a_ =self for _ in range(other - 1): result *= self return result @classmethod def lowercase_ ( cls , lowerCAmelCase_ , lowerCAmelCase_) -> int: """simple docstring""" return sum(row[i] * column[i] for i in range(len(lowerCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
720
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowercase = logging.get_logger(__name__) set_seed(770) lowercase = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } lowercase = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } lowercase = os.path.dirname(os.path.abspath(__file__)) lowercase = os.path.join(os.path.expanduser('''~'''), '''.cache''') lowercase = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def UpperCAmelCase_ ( lowercase__ , lowercase__=False ): '''simple docstring''' a_ =model_type if use_small: key += "_small" return os.path.join(lowercase__ , REMOTE_MODEL_PATHS[key]["file_name"] ) def UpperCAmelCase_ ( lowercase__ , lowercase__ ): '''simple docstring''' os.makedirs(lowercase__ , exist_ok=lowercase__ ) hf_hub_download(repo_id=lowercase__ , filename=lowercase__ , local_dir=lowercase__ ) def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__=False , lowercase__="text" ): '''simple docstring''' if model_type == "text": a_ =BarkSemanticModel a_ =BarkSemanticConfig a_ =BarkSemanticGenerationConfig elif model_type == "coarse": a_ =BarkCoarseModel a_ =BarkCoarseConfig a_ =BarkCoarseGenerationConfig elif model_type == "fine": a_ =BarkFineModel a_ =BarkFineConfig a_ =BarkFineGenerationConfig else: raise NotImplementedError() a_ =F"""{model_type}_small""" if use_small else model_type a_ =REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowercase__ ): logger.info(F"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info["repo_id"] , model_info["file_name"] ) a_ =torch.load(lowercase__ , map_location=lowercase__ ) # this is a hack a_ =checkpoint["model_args"] if "input_vocab_size" not in model_args: a_ =model_args["vocab_size"] a_ =model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments a_ =model_args.pop("n_head" ) a_ =model_args.pop("n_embd" ) a_ =model_args.pop("n_layer" ) a_ =ConfigClass(**checkpoint["model_args"] ) a_ =ModelClass(config=lowercase__ ) a_ =GenerationConfigClass() a_ =model_generation_config a_ =checkpoint["model"] # fixup checkpoint a_ ="_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(lowercase__ ): # replace part of the key with corresponding layer name in HF implementation a_ =k[len(lowercase__ ) :] for old_layer_name in new_layer_name_dict: a_ =new_k.replace(lowercase__ , new_layer_name_dict[old_layer_name] ) a_ =state_dict.pop(lowercase__ ) a_ =set(state_dict.keys() ) - set(model.state_dict().keys() ) a_ ={k for k in extra_keys if not k.endswith(".attn.bias" )} a_ =set(model.state_dict().keys() ) - set(state_dict.keys() ) a_ ={k for k in missing_keys if not k.endswith(".attn.bias" )} if len(lowercase__ ) != 0: raise ValueError(F"""extra keys found: {extra_keys}""" ) if len(lowercase__ ) != 0: raise ValueError(F"""missing keys: {missing_keys}""" ) model.load_state_dict(lowercase__ , strict=lowercase__ ) a_ =model.num_parameters(exclude_embeddings=lowercase__ ) a_ =checkpoint["best_val_loss"].item() logger.info(F"""model loaded: {round(n_params/1E6 , 1 )}M params, {round(lowercase__ , 3 )} loss""" ) model.eval() model.to(lowercase__ ) del checkpoint, state_dict return model def UpperCAmelCase_ ( lowercase__ , lowercase__=False , lowercase__="text" ): '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() a_ ="cpu" # do conversion on cpu a_ =_get_ckpt_path(lowercase__ , use_small=lowercase__ ) a_ =_load_model(lowercase__ , lowercase__ , model_type=lowercase__ , use_small=lowercase__ ) # load bark initial model a_ =_bark_load_model(lowercase__ , "cpu" , model_type=lowercase__ , use_small=lowercase__ ) if model_type == "text": a_ =bark_model["model"] if model.num_parameters(exclude_embeddings=lowercase__ ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model a_ =5 a_ =1_0 if model_type in ["text", "coarse"]: a_ =torch.randint(2_5_6 , (batch_size, sequence_length) , dtype=torch.int ) a_ =bark_model(lowercase__ )[0] a_ =model(lowercase__ ) # take last logits a_ =output_new_model_total.logits[:, [-1], :] else: a_ =3 a_ =8 a_ =torch.randint(2_5_6 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) a_ =model(lowercase__ , lowercase__ ) a_ =bark_model(lowercase__ , lowercase__ ) a_ =output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("initial and new outputs are not equal" ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): '''simple docstring''' a_ =os.path.join(lowercase__ , lowercase__ ) a_ =BarkSemanticConfig.from_pretrained(os.path.join(lowercase__ , "config.json" ) ) a_ =BarkCoarseConfig.from_pretrained(os.path.join(lowercase__ , "config.json" ) ) a_ =BarkFineConfig.from_pretrained(os.path.join(lowercase__ , "config.json" ) ) a_ =EncodecConfig.from_pretrained("facebook/encodec_24khz" ) a_ =BarkSemanticModel.from_pretrained(lowercase__ ) a_ =BarkCoarseModel.from_pretrained(lowercase__ ) a_ =BarkFineModel.from_pretrained(lowercase__ ) a_ =EncodecModel.from_pretrained("facebook/encodec_24khz" ) a_ =BarkConfig.from_sub_model_configs( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) a_ =BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) a_ =BarkModel(lowercase__ ) a_ =semantic a_ =coarseAcoustic a_ =fineAcoustic a_ =codec a_ =bark_generation_config Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) bark.save_pretrained(lowercase__ , repo_id=lowercase__ , push_to_hub=lowercase__ ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') lowercase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
41
0