code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import Any import numpy as np def _lowerCamelCase ( __A : np.ndarray ) -> bool: return np.array_equal(__A , matrix.conjugate().T ) def _lowerCamelCase ( __A : np.ndarray , __A : np.ndarray ) -> Any: _UpperCAmelCase : int = v.conjugate().T _UpperCAmelCase : str = v_star.dot(__A ) assert isinstance(__A , np.ndarray ) return (v_star_dot.dot(__A )) / (v_star.dot(__A )) def _lowerCamelCase ( ) -> None: _UpperCAmelCase : Dict = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) _UpperCAmelCase : Optional[Any] = np.array([[1], [2], [3]] ) assert is_hermitian(__A ), f'''{a} is not hermitian.''' print(rayleigh_quotient(__A , __A ) ) _UpperCAmelCase : Optional[Any] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__A ), f'''{a} is not hermitian.''' assert rayleigh_quotient(__A , __A ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
485
def _lowerCamelCase ( __A : int ) -> str: _UpperCAmelCase : Tuple = int(__A ) if decimal in (0, 1): # Exit cases for the recursion return str(__A ) _UpperCAmelCase , _UpperCAmelCase : int = divmod(__A , 2 ) return binary_recursive(__A ) + str(__A ) def _lowerCamelCase ( __A : str ) -> str: _UpperCAmelCase : List[Any] = str(__A ).strip() if not number: raise ValueError('''No input value was provided''' ) _UpperCAmelCase : Tuple = '''-''' if number.startswith('''-''' ) else '''''' _UpperCAmelCase : Dict = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return f'''{negative}0b{binary_recursive(int(__A ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
485
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] ,lowerCamelCase_ : Optional[int]=10): '''simple docstring''' lowerCAmelCase__ : List[str] = [] for _ in range(lowerCamelCase_): lrs.append(scheduler.get_lr()[0]) scheduler.step() return lrs def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : Optional[Any]=10): '''simple docstring''' lowerCAmelCase__ : str = [] for step in range(lowerCamelCase_): lrs.append(scheduler.get_lr()[0]) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Optional[Any] = os.path.join(lowerCamelCase_ ,'''schedule.bin''') torch.save(scheduler.state_dict() ,lowerCamelCase_) lowerCAmelCase__ : int = torch.load(lowerCamelCase_) scheduler.load_state_dict(lowerCamelCase_) return lrs @require_torch class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Optional[int]: """simple docstring""" self.assertEqual(len(__lowerCamelCase ) ,len(__lowerCamelCase ) ) for a, b in zip(__lowerCamelCase ,__lowerCamelCase ): self.assertAlmostEqual(__lowerCamelCase ,__lowerCamelCase ,delta=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase__ : List[str] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase__ : Dict = AdamW(params=[w] ,lr=2e-1 ,weight_decay=0.0 ) for _ in range(1_00 ): lowerCAmelCase__ : Optional[int] = criterion(__lowerCamelCase ,__lowerCamelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1e-2 ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : List[str] = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase__ : List[str] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase__ : List[str] = Adafactor( params=[w] ,lr=1e-2 ,eps=(1e-30, 1e-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__lowerCamelCase ,weight_decay=0.0 ,relative_step=__lowerCamelCase ,scale_parameter=__lowerCamelCase ,warmup_init=__lowerCamelCase ,) for _ in range(10_00 ): lowerCAmelCase__ : Tuple = criterion(__lowerCamelCase ,__lowerCamelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1e-2 ) @require_torch class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' snake_case_ =nn.Linear(50 , 50) if is_torch_available() else None snake_case_ =AdamW(m.parameters() , lr=10.0) if is_torch_available() else None snake_case_ =10 def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase=None ) -> Any: """simple docstring""" self.assertEqual(len(__lowerCamelCase ) ,len(__lowerCamelCase ) ) for a, b in zip(__lowerCamelCase ,__lowerCamelCase ): self.assertAlmostEqual(__lowerCamelCase ,__lowerCamelCase ,delta=__lowerCamelCase ,msg=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : Tuple = {'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowerCAmelCase__ : Optional[Any] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = data lowerCAmelCase__ : str = scheduler_func(self.optimizer ,**__lowerCamelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) lowerCAmelCase__ : Union[str, Any] = unwrap_schedule(__lowerCamelCase ,self.num_steps ) self.assertListAlmostEqual( __lowerCamelCase ,__lowerCamelCase ,tol=1e-2 ,msg=f"""failed for {scheduler_func} in normal scheduler""" ,) lowerCAmelCase__ : Union[str, Any] = scheduler_func(self.optimizer ,**__lowerCamelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__lowerCamelCase ) # wrap to test picklability of the schedule lowerCAmelCase__ : Optional[int] = unwrap_and_save_reload_schedule(__lowerCamelCase ,self.num_steps ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ,msg=f"""failed for {scheduler_func} in save and reload""" ) class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Any = fn def __call__(self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Tuple: """simple docstring""" return self.fn(*__lowerCamelCase ,**__lowerCamelCase ) @classmethod def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = list(map(self ,scheduler.lr_lambdas ) )
90
from __future__ import annotations def lowerCAmelCase__ ( lowerCamelCase_ : list[int]): '''simple docstring''' return len(set(lowerCamelCase_)) == len(lowerCamelCase_) if __name__ == "__main__": import doctest doctest.testmod()
90
1
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowerCAmelCase ( _UpperCAmelCase ): """simple docstring""" def __init__( self : str , __snake_case : NestedDataStructureLike[PathLike] , __snake_case : Optional[NamedSplit] = None , __snake_case : Optional[Features] = None , __snake_case : str = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : Optional[str] = None , __snake_case : Optional[int] = None , **__snake_case : str , )-> Dict: super().__init__( UpperCAmelCase_ , split=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , streaming=UpperCAmelCase_ , num_proc=UpperCAmelCase_ , **UpperCAmelCase_ , ) snake_case = field snake_case = path_or_paths if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else {self.split: path_or_paths} snake_case = Json( cache_dir=UpperCAmelCase_ , data_files=UpperCAmelCase_ , features=UpperCAmelCase_ , field=UpperCAmelCase_ , **UpperCAmelCase_ , ) def lowerCAmelCase ( self : Union[str, Any] )-> str: # Build iterable dataset if self.streaming: snake_case = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case = None snake_case = None snake_case = None snake_case = None self.builder.download_and_prepare( download_config=UpperCAmelCase_ , download_mode=UpperCAmelCase_ , verification_mode=UpperCAmelCase_ , base_path=UpperCAmelCase_ , num_proc=self.num_proc , ) snake_case = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase_ , in_memory=self.keep_in_memory ) return dataset class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , __snake_case : Dataset , __snake_case : Union[PathLike, BinaryIO] , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , **__snake_case : Tuple , )-> int: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) snake_case = dataset snake_case = path_or_buf snake_case = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE snake_case = num_proc snake_case = """utf-8""" snake_case = to_json_kwargs def lowerCAmelCase ( self : List[str] )-> Any: snake_case = self.to_json_kwargs.pop("""path_or_buf""" , UpperCAmelCase_ ) snake_case = self.to_json_kwargs.pop("""orient""" , """records""" ) snake_case = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) snake_case = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) snake_case = self.to_json_kwargs.pop("""compression""" , UpperCAmelCase_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=UpperCAmelCase_ ) as buffer: snake_case = self._write(file_obj=UpperCAmelCase_ , orient=UpperCAmelCase_ , lines=UpperCAmelCase_ , index=UpperCAmelCase_ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""" ) snake_case = self._write( file_obj=self.path_or_buf , orient=UpperCAmelCase_ , lines=UpperCAmelCase_ , index=UpperCAmelCase_ , **self.to_json_kwargs ) return written def lowerCAmelCase ( self : Union[str, Any] , __snake_case : List[str] )-> str: snake_case , snake_case , snake_case , snake_case , snake_case = args snake_case = query_table( table=self.dataset.data , key=slice(UpperCAmelCase_ , offset + self.batch_size ) , indices=self.dataset._indices , ) snake_case = batch.to_pandas().to_json( path_or_buf=UpperCAmelCase_ , orient=UpperCAmelCase_ , lines=UpperCAmelCase_ , index=UpperCAmelCase_ , **UpperCAmelCase_ ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def lowerCAmelCase ( self : List[Any] , __snake_case : BinaryIO , __snake_case : Any , __snake_case : Any , __snake_case : Optional[int] , **__snake_case : List[Any] , )-> str: snake_case = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): snake_case = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(UpperCAmelCase_ ) else: snake_case , snake_case = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCAmelCase_ , UpperCAmelCase_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(UpperCAmelCase_ ) return written
369
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __snake_case = logging.get_logger(__name__) __snake_case = { """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class lowercase__ ( _UpperCAmelCase ): A__ : Optional[int] ="""imagegpt""" A__ : Union[str, Any] =["""past_key_values"""] A__ : Union[str, Any] ={ """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : int , UpperCAmelCase_ : Dict=512 + 1 , UpperCAmelCase_ : Union[str, Any]=32 * 32 , UpperCAmelCase_ : List[str]=512 , UpperCAmelCase_ : Union[str, Any]=24 , UpperCAmelCase_ : List[str]=8 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Tuple="quick_gelu" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=1e-5 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Optional[Any]=False , **UpperCAmelCase_ : List[str] , ): SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = n_positions SCREAMING_SNAKE_CASE__ = n_embd SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_inner SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = layer_norm_epsilon SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = scale_attn_weights SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE__ = reorder_and_upcast_attn SCREAMING_SNAKE_CASE__ = tie_word_embeddings super().__init__(tie_word_embeddings=UpperCAmelCase_ , **UpperCAmelCase_ ) class lowercase__ ( _UpperCAmelCase ): @property def A_ ( self : List[str] ): return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ] ) def A_ ( self : Optional[int] , UpperCAmelCase_ : "FeatureExtractionMixin" , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : int = 32 , ): SCREAMING_SNAKE_CASE__ = self._generate_dummy_images(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = dict(preprocessor(images=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) ) return inputs
472
0
def snake_case (__lowercase , __lowercase ) -> int: '''simple docstring''' return x if y == 0 else greatest_common_divisor(__lowercase , x % y ) def snake_case (__lowercase , __lowercase ) -> int: '''simple docstring''' return (x * y) // greatest_common_divisor(__lowercase , __lowercase ) def snake_case (__lowercase = 20 ) -> int: '''simple docstring''' _snake_case : List[Any] = 1 for i in range(1 , n + 1 ): _snake_case : Tuple = lcm(__lowercase , __lowercase ) return g if __name__ == "__main__": print(F'''{solution() = }''')
580
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def snake_case (__lowercase ) -> Optional[int]: '''simple docstring''' _snake_case : Optional[int] = np.inf def set_batch_size(__lowercase ) -> None: nonlocal batch_size if isinstance(__lowercase , __lowercase ): _snake_case : Dict = min(__lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__lowercase , __lowercase ): _snake_case : str = min(__lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__lowercase , __lowercase ) and feature.dtype == "binary": _snake_case : Any = min(__lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__lowercase , __lowercase ) return None if batch_size is np.inf else batch_size class lowercase_ ( __snake_case ): def __init__( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = None , **lowercase_ , ): super().__init__( lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , ) _snake_case : int = path_or_paths if isinstance(lowercase_ , lowercase_ ) else {self.split: path_or_paths} _snake_case : Optional[int] = _PACKAGED_DATASETS_MODULES["parquet"][1] _snake_case : Optional[Any] = Parquet( cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , hash=lowercase_ , **lowercase_ , ) def UpperCamelCase ( self ): # Build iterable dataset if self.streaming: _snake_case : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _snake_case : Union[str, Any] = None _snake_case : Optional[Any] = None _snake_case : Any = None _snake_case : Tuple = None self.builder.download_and_prepare( download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , ) _snake_case : int = self.builder.as_dataset( split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory ) return dataset class lowercase_ : def __init__( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): _snake_case : Optional[int] = dataset _snake_case : List[str] = path_or_buf _snake_case : Optional[Any] = batch_size or get_writer_batch_size(dataset.features ) _snake_case : int = parquet_writer_kwargs def UpperCamelCase ( self ): _snake_case : Any = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: _snake_case : Union[str, Any] = self._write(file_obj=lowercase_ , batch_size=lowercase_ , **self.parquet_writer_kwargs ) else: _snake_case : int = self._write(file_obj=self.path_or_buf , batch_size=lowercase_ , **self.parquet_writer_kwargs ) return written def UpperCamelCase ( self , lowercase_ , lowercase_ , **lowercase_ ): _snake_case : List[str] = 0 _snake_case : List[Any] = parquet_writer_kwargs.pop("path_or_buf" , lowercase_ ) _snake_case : str = self.dataset.features.arrow_schema _snake_case : Tuple = pq.ParquetWriter(lowercase_ , schema=lowercase_ , **lowercase_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , lowercase_ ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): _snake_case : Dict = query_table( table=self.dataset._data , key=slice(lowercase_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(lowercase_ ) written += batch.nbytes writer.close() return written
580
1
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): def __init__( self : int , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" super().__init__() UpperCamelCase = nn.ModuleList(lowerCamelCase_ ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : List[str] = None , lowerCamelCase_ : Any = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[Any] = None , lowerCamelCase_ : List[Any] = False , lowerCamelCase_ : int = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(lowerCamelCase_ , lowerCamelCase_ , self.nets ) ): UpperCamelCase = controlnet( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) # merge samples if i == 0: UpperCamelCase = down_samples, mid_sample else: UpperCamelCase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowerCamelCase_ , lowerCamelCase_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] = True , lowerCamelCase_ : List[Any] = None , lowerCamelCase_ : Dict = False , lowerCamelCase_ : Any = None , ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowerCamelCase_ , is_main_process=lowerCamelCase_ , save_function=lowerCamelCase_ , safe_serialization=lowerCamelCase_ , variant=lowerCamelCase_ , ) idx += 1 UpperCamelCase = model_path_to_save + f"""_{idx}""" @classmethod def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... UpperCamelCase = pretrained_model_path while os.path.isdir(lowerCamelCase_ ): UpperCamelCase = ControlNetModel.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) controlnets.append(lowerCamelCase_ ) idx += 1 UpperCamelCase = pretrained_model_path + f"""_{idx}""" logger.info(f"""{len(lowerCamelCase_ )} controlnets loaded from {pretrained_model_path}.""" ) if len(lowerCamelCase_ ) == 0: raise ValueError( f"""No ControlNets found under {os.path.dirname(lowerCamelCase_ )}. Expected at least {pretrained_model_path + "_0"}.""" ) return cls(lowerCamelCase_ )
537
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "distilbert-base-uncased": 5_1_2, "distilbert-base-uncased-distilled-squad": 5_1_2, "distilbert-base-cased": 5_1_2, "distilbert-base-cased-distilled-squad": 5_1_2, "distilbert-base-german-cased": 5_1_2, "distilbert-base-multilingual-cased": 5_1_2, } UpperCamelCase_ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION A : Optional[int] = ['''input_ids''', '''attention_mask'''] A : List[Any] = DistilBertTokenizer def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ): '''simple docstring''' super().__init__( A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase', A ) != do_lower_case or normalizer_state.get('strip_accents', A ) != strip_accents or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case SCREAMING_SNAKE_CASE : List[str] = strip_accents SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A ) SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case def UpperCamelCase_ ( self, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A ) return tuple(A )
28
0
import math def __lowerCamelCase (UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = [True] * n SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): SCREAMING_SNAKE_CASE = i * 2 while index < n: SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = index + i SCREAMING_SNAKE_CASE = [2] for i in range(3 , UpperCAmelCase__ , 2 ): if is_prime[i]: primes.append(UpperCAmelCase__ ) return primes def __lowerCamelCase (UpperCAmelCase__ : int = 9_9_9_9_6_6_6_6_3_3_3_3 ): SCREAMING_SNAKE_CASE = math.floor(math.sqrt(UpperCAmelCase__ ) ) + 1_0_0 SCREAMING_SNAKE_CASE = prime_sieve(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = primes[prime_index] while (last_prime**2) <= limit: SCREAMING_SNAKE_CASE = primes[prime_index + 1] SCREAMING_SNAKE_CASE = last_prime**2 SCREAMING_SNAKE_CASE = next_prime**2 # Get numbers divisible by lps(current) SCREAMING_SNAKE_CASE = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) SCREAMING_SNAKE_CASE = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps SCREAMING_SNAKE_CASE = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair SCREAMING_SNAKE_CASE = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
711
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib _lowerCamelCase : str = threading.Lock() _lowerCamelCase : Optional[logging.Handler] = None _lowerCamelCase : Any = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } _lowerCamelCase : Union[str, Any] = logging.WARNING _lowerCamelCase : List[Any] = True def __lowerCamelCase (): SCREAMING_SNAKE_CASE = os.getenv("TRANSFORMERS_VERBOSITY" , UpperCAmelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, " F"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def __lowerCamelCase (): return __name__.split("." )[0] def __lowerCamelCase (): return logging.getLogger(_get_library_name() ) def __lowerCamelCase (): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return SCREAMING_SNAKE_CASE = logging.StreamHandler() # Set sys.stderr as stream. SCREAMING_SNAKE_CASE = sys.stderr.flush # Apply our default configuration to the library root logger. SCREAMING_SNAKE_CASE = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) SCREAMING_SNAKE_CASE = False def __lowerCamelCase (): global _default_handler with _lock: if not _default_handler: return SCREAMING_SNAKE_CASE = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) SCREAMING_SNAKE_CASE = None def __lowerCamelCase (): return log_levels def __lowerCamelCase (UpperCAmelCase__ : Optional[str] = None ): if name is None: SCREAMING_SNAKE_CASE = _get_library_name() _configure_library_root_logger() return logging.getLogger(UpperCAmelCase__ ) def __lowerCamelCase (): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def __lowerCamelCase (UpperCAmelCase__ : int ): _configure_library_root_logger() _get_library_root_logger().setLevel(UpperCAmelCase__ ) def __lowerCamelCase (): return set_verbosity(UpperCAmelCase__ ) def __lowerCamelCase (): return set_verbosity(UpperCAmelCase__ ) def __lowerCamelCase (): return set_verbosity(UpperCAmelCase__ ) def __lowerCamelCase (): return set_verbosity(UpperCAmelCase__ ) def __lowerCamelCase (): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def __lowerCamelCase (): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def __lowerCamelCase (UpperCAmelCase__ : logging.Handler ): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : logging.Handler ): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(UpperCAmelCase__ ) def __lowerCamelCase (): _configure_library_root_logger() SCREAMING_SNAKE_CASE = False def __lowerCamelCase (): _configure_library_root_logger() SCREAMING_SNAKE_CASE = True def __lowerCamelCase (): SCREAMING_SNAKE_CASE = _get_library_root_logger().handlers for handler in handlers: SCREAMING_SNAKE_CASE = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(UpperCAmelCase__ ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(UpperCAmelCase__ ) def __lowerCamelCase (self : str , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[str] ): SCREAMING_SNAKE_CASE = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , UpperCAmelCase__ ) if no_advisory_warnings: return self.warning(*UpperCAmelCase__ , **UpperCAmelCase__ ) _lowerCamelCase : str = warning_advice @functools.lru_cache(UpperCAmelCase__ ) def __lowerCamelCase (self : List[str] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int ): self.warning(*UpperCAmelCase__ , **UpperCAmelCase__ ) _lowerCamelCase : Dict = warning_once class lowercase : def __init__( self : List[Any] , *_UpperCamelCase : Union[str, Any] , **_UpperCamelCase : str ) -> List[Any]: # pylint: disable=unused-argument '''simple docstring''' SCREAMING_SNAKE_CASE = args[0] if args else None def __iter__( self : Optional[Any] ) -> str: '''simple docstring''' return iter(self._iterator ) def __getattr__( self : List[str] , _UpperCamelCase : Any ) -> List[Any]: '''simple docstring''' def empty_fn(*_UpperCamelCase : List[str] , **_UpperCamelCase : Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Any ) -> Optional[Any]: '''simple docstring''' return self def __exit__( self : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : str , _UpperCamelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' return class lowercase : def __call__( self : Union[str, Any] , *_UpperCamelCase : Optional[Any] , **_UpperCamelCase : Tuple ) -> Tuple: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*_UpperCamelCase , **_UpperCamelCase ) else: return EmptyTqdm(*_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : Dict , *_UpperCamelCase : Dict , **_UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() _lowerCamelCase : Union[str, Any] = _tqdm_cls() def __lowerCamelCase (): global _tqdm_active return bool(_tqdm_active ) def __lowerCamelCase (): global _tqdm_active SCREAMING_SNAKE_CASE = True hf_hub_utils.enable_progress_bars() def __lowerCamelCase (): global _tqdm_active SCREAMING_SNAKE_CASE = False hf_hub_utils.disable_progress_bars()
647
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( UpperCAmelCase_ ) ->int: """simple docstring""" for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(UpperCAmelCase_ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(UpperCAmelCase_ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
522
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def lowerCamelCase_ ( *UpperCAmelCase_ ) ->Optional[int]: """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = list(UpperCAmelCase_ ) for i in range(len(UpperCAmelCase_ ) ): __UpperCAmelCase : Optional[Any] = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def lowerCamelCase_ ( UpperCAmelCase_ ) ->bool: """simple docstring""" __UpperCAmelCase : Optional[int] = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def lowerCamelCase_ ( UpperCAmelCase_ = None , UpperCAmelCase_ = 1_28 ) ->str: """simple docstring""" if function is None: return functools.partial(UpperCAmelCase_ , starting_batch_size=UpperCAmelCase_ ) __UpperCAmelCase : List[str] = starting_batch_size def decorator(*UpperCAmelCase_ , **UpperCAmelCase_ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __UpperCAmelCase : Optional[int] = list(inspect.signature(UpperCAmelCase_ ).parameters.keys() ) # Guard against user error if len(UpperCAmelCase_ ) < (len(UpperCAmelCase_ ) + 1): __UpperCAmelCase : Dict = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) except Exception as e: if should_reduce_batch_size(UpperCAmelCase_ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
522
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel a ="""0.12""" # assumed parallelism: 8 @require_flax @is_staging_test class A_ ( unittest.TestCase ): @classmethod def lowerCAmelCase ( cls : Union[str, Any]): __lowerCamelCase : int = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE__) @classmethod def lowerCAmelCase ( cls : Dict): try: delete_repo(token=cls._token ,repo_id='test-model-flax') except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-model-flax-org') except HTTPError: pass def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Union[str, Any] = BertConfig( vocab_size=9_9 ,hidden_size=3_2 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=3_7) __lowerCamelCase : str = FlaxBertModel(SCREAMING_SNAKE_CASE__) model.push_to_hub('test-model-flax' ,use_auth_token=self._token) __lowerCamelCase : Optional[Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax") __lowerCamelCase : List[Any] = flatten_dict(unfreeze(model.params)) __lowerCamelCase : Optional[int] = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): __lowerCamelCase : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(SCREAMING_SNAKE_CASE__ ,1E-3 ,msg=F"{key} not identical") # Reset repo delete_repo(token=self._token ,repo_id='test-model-flax') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(SCREAMING_SNAKE_CASE__ ,repo_id='test-model-flax' ,push_to_hub=SCREAMING_SNAKE_CASE__ ,use_auth_token=self._token) __lowerCamelCase : str = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax") __lowerCamelCase : str = flatten_dict(unfreeze(model.params)) __lowerCamelCase : Union[str, Any] = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): __lowerCamelCase : List[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(SCREAMING_SNAKE_CASE__ ,1E-3 ,msg=F"{key} not identical") def lowerCAmelCase ( self : int): __lowerCamelCase : Union[str, Any] = BertConfig( vocab_size=9_9 ,hidden_size=3_2 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=3_7) __lowerCamelCase : List[str] = FlaxBertModel(SCREAMING_SNAKE_CASE__) model.push_to_hub('valid_org/test-model-flax-org' ,use_auth_token=self._token) __lowerCamelCase : Any = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org') __lowerCamelCase : List[str] = flatten_dict(unfreeze(model.params)) __lowerCamelCase : int = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): __lowerCamelCase : Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(SCREAMING_SNAKE_CASE__ ,1E-3 ,msg=F"{key} not identical") # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-model-flax-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( SCREAMING_SNAKE_CASE__ ,repo_id='valid_org/test-model-flax-org' ,push_to_hub=SCREAMING_SNAKE_CASE__ ,use_auth_token=self._token) __lowerCamelCase : List[str] = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org') __lowerCamelCase : str = flatten_dict(unfreeze(model.params)) __lowerCamelCase : int = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): __lowerCamelCase : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(SCREAMING_SNAKE_CASE__ ,1E-3 ,msg=F"{key} not identical") def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: __lowerCamelCase : int = True __lowerCamelCase : List[str] = flatten_dict(modela.params ) __lowerCamelCase : Any = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __lowerCamelCase : Tuple = False return models_are_equal @require_flax class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only') __lowerCamelCase : str = FlaxBertModel(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)) with self.assertRaises(SCREAMING_SNAKE_CASE__): __lowerCamelCase : Union[str, Any] = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ,subfolder=SCREAMING_SNAKE_CASE__) self.assertTrue(check_models_equal(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)) def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only') __lowerCamelCase : Dict = FlaxBertModel(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) ,max_shard_size='10KB') with self.assertRaises(SCREAMING_SNAKE_CASE__): __lowerCamelCase : Optional[int] = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ,subfolder=SCREAMING_SNAKE_CASE__) self.assertTrue(check_models_equal(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)) def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Tuple = 'bert' __lowerCamelCase : Union[str, Any] = 'hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(SCREAMING_SNAKE_CASE__): __lowerCamelCase : int = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ,subfolder=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Tuple): __lowerCamelCase : Optional[int] = 'bert' __lowerCamelCase : str = 'hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(SCREAMING_SNAKE_CASE__): __lowerCamelCase : Optional[int] = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ,subfolder=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__)
337
import os import pytest from attr import dataclass a ="""us-east-1""" # defaults region @dataclass class A_ : _UpperCAmelCase : str _UpperCAmelCase : Tuple = '''arn:aws:iam::558105141721:role/sagemaker_execution_role''' _UpperCAmelCase : Optional[int] = { '''task_name''': '''mnli''', '''per_device_train_batch_size''': 16, '''per_device_eval_batch_size''': 16, '''do_train''': True, '''do_eval''': True, '''do_predict''': True, '''output_dir''': '''/opt/ml/model''', '''overwrite_output_dir''': True, '''max_steps''': 500, '''save_steps''': 5_500, } _UpperCAmelCase : int = {**hyperparameters, '''max_steps''': 1_000} @property def lowerCAmelCase ( self : Dict): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase ( self : List[str]): return F"{self.framework}-transfromers-test" @property def lowerCAmelCase ( self : List[Any]): return F"./tests/sagemaker/scripts/{self.framework}" @property def lowerCAmelCase ( self : List[Any]): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Any: __lowerCamelCase : List[str] = SageMakerTestEnvironment(framework=request.cls.framework )
337
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase__ = TypeVar("T") def _A( UpperCamelCase__ : int ) -> int: '''simple docstring''' return (position - 1) // 2 def _A( UpperCamelCase__ : int ) -> int: '''simple docstring''' return (2 * position) + 1 def _A( UpperCamelCase__ : int ) -> int: '''simple docstring''' return (2 * position) + 2 class a ( Generic[T] ): """simple docstring""" def __init__( self : Tuple ) -> None: """simple docstring""" __lowercase = [] __lowercase = {} __lowercase = 0 def __len__( self : str ) -> int: """simple docstring""" return self.elements def __repr__( self : int ) -> str: """simple docstring""" return str(self.heap ) def UpperCAmelCase_ ( self : List[Any] ) -> bool: """simple docstring""" return self.elements == 0 def UpperCAmelCase_ ( self : Dict , lowerCamelCase__ : T , lowerCamelCase__ : int ) -> None: """simple docstring""" self.heap.append((elem, weight) ) __lowercase = self.elements self.elements += 1 self._bubble_up(lowerCamelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __lowercase , __lowercase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __lowercase , __lowercase = self.heap[0] self._bubble_down(lowerCamelCase__ ) return elem def UpperCAmelCase_ ( self : Union[str, Any] , lowerCamelCase__ : T , lowerCamelCase__ : int ) -> None: """simple docstring""" __lowercase = self.position_map[elem] __lowercase = (elem, weight) if position > 0: __lowercase = get_parent_position(lowerCamelCase__ ) __lowercase , __lowercase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(lowerCamelCase__ ) else: self._bubble_down(lowerCamelCase__ ) else: self._bubble_down(lowerCamelCase__ ) def UpperCAmelCase_ ( self : str , lowerCamelCase__ : T ) -> None: """simple docstring""" __lowercase = self.position_map[elem] if curr_pos == 0: return None __lowercase = get_parent_position(lowerCamelCase__ ) __lowercase , __lowercase = self.heap[curr_pos] __lowercase , __lowercase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(lowerCamelCase__ , lowerCamelCase__ ) return self._bubble_up(lowerCamelCase__ ) return None def UpperCAmelCase_ ( self : Optional[Any] , lowerCamelCase__ : T ) -> None: """simple docstring""" __lowercase = self.position_map[elem] __lowercase , __lowercase = self.heap[curr_pos] __lowercase = get_child_left_position(lowerCamelCase__ ) __lowercase = get_child_right_position(lowerCamelCase__ ) if child_left_position < self.elements and child_right_position < self.elements: __lowercase , __lowercase = self.heap[child_left_position] __lowercase , __lowercase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(lowerCamelCase__ , lowerCamelCase__ ) return self._bubble_down(lowerCamelCase__ ) if child_left_position < self.elements: __lowercase , __lowercase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(lowerCamelCase__ , lowerCamelCase__ ) return self._bubble_down(lowerCamelCase__ ) else: return None if child_right_position < self.elements: __lowercase , __lowercase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(lowerCamelCase__ , lowerCamelCase__ ) return self._bubble_down(lowerCamelCase__ ) return None def UpperCAmelCase_ ( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> None: """simple docstring""" __lowercase = self.heap[nodea_pos][0] __lowercase = self.heap[nodea_pos][0] __lowercase , __lowercase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __lowercase = nodea_pos __lowercase = nodea_pos class a ( Generic[T] ): """simple docstring""" def __init__( self : Tuple ) -> None: """simple docstring""" __lowercase = {} __lowercase = 0 def __repr__( self : str ) -> str: """simple docstring""" return str(self.connections ) def __len__( self : str ) -> int: """simple docstring""" return self.nodes def UpperCAmelCase_ ( self : List[Any] , lowerCamelCase__ : T ) -> None: """simple docstring""" if node not in self.connections: __lowercase = {} self.nodes += 1 def UpperCAmelCase_ ( self : List[Any] , lowerCamelCase__ : T , lowerCamelCase__ : T , lowerCamelCase__ : int ) -> None: """simple docstring""" self.add_node(lowerCamelCase__ ) self.add_node(lowerCamelCase__ ) __lowercase = weight __lowercase = weight def _A( UpperCamelCase__ : GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: '''simple docstring''' __lowercase = {node: maxsize for node in graph.connections} __lowercase = {node: None for node in graph.connections} __lowercase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(UpperCamelCase__ , UpperCamelCase__ ) if priority_queue.is_empty(): return dist, parent # initialization __lowercase = priority_queue.extract_min() __lowercase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __lowercase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(UpperCamelCase__ , dist[neighbour] ) __lowercase = node # running prim's algorithm while not priority_queue.is_empty(): __lowercase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __lowercase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(UpperCamelCase__ , dist[neighbour] ) __lowercase = node return dist, parent
332
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = MgpstrTokenizer UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Any = {} UpperCamelCase_ : List[str] = False def UpperCAmelCase_ ( self : List[Any] ) -> int: """simple docstring""" super().setUp() # fmt: off __lowercase = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __lowercase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '''\n''' ) def UpperCAmelCase_ ( self : List[str] , **lowerCamelCase__ : Optional[Any] ) -> List[str]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase_ ( self : Tuple , lowerCamelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = '''tester''' __lowercase = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: """simple docstring""" pass def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __lowercase = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) __lowercase = tokenizer.encode([special_token] , add_special_tokens=lowerCamelCase__ ) self.assertEqual(len(lowerCamelCase__ ) , 1 ) __lowercase = tokenizer.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __lowercase , __lowercase = self.get_input_output_texts(lowerCamelCase__ ) __lowercase = tokenizer.tokenize(lowerCamelCase__ ) __lowercase = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) __lowercase = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertNotEqual(len(lowerCamelCase__ ) , 0 ) __lowercase = tokenizer.decode(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , lowerCamelCase__ ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def UpperCAmelCase_ ( self : Tuple ) -> str: """simple docstring""" pass
332
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def a_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" with open(__UpperCAmelCase ) as metadata_file: snake_case: Dict =json.load(__UpperCAmelCase ) snake_case: Dict =LukeConfig(use_entity_aware_attention=__UpperCAmelCase , **metadata['model_config'] ) # Load in the weights from the checkpoint_path snake_case: List[Any] =torch.load(__UpperCAmelCase , map_location='cpu' )['module'] # Load the entity vocab file snake_case: Optional[Any] =load_original_entity_vocab(__UpperCAmelCase ) # add an entry for [MASK2] snake_case: str =max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 snake_case: List[Any] =XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks snake_case: Optional[int] =AddedToken('<ent>' , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) snake_case: List[Any] =AddedToken('<ent2>' , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(__UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , 'tokenizer_config.json' ) , 'r' ) as f: snake_case: List[Any] =json.load(__UpperCAmelCase ) snake_case: Any ='MLukeTokenizer' with open(os.path.join(__UpperCAmelCase , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) snake_case: List[Any] =MLukeTokenizer.from_pretrained(__UpperCAmelCase ) # Initialize the embeddings of the special tokens snake_case: str =tokenizer.convert_tokens_to_ids(['@'] )[0] snake_case: List[str] =tokenizer.convert_tokens_to_ids(['#'] )[0] snake_case: int =state_dict['embeddings.word_embeddings.weight'] snake_case: List[str] =word_emb[ent_init_index].unsqueeze(0 ) snake_case: Any =word_emb[enta_init_index].unsqueeze(0 ) snake_case: Optional[int] =torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: snake_case: Optional[int] =state_dict[bias_name] snake_case: Optional[Any] =decoder_bias[ent_init_index].unsqueeze(0 ) snake_case: Any =decoder_bias[enta_init_index].unsqueeze(0 ) snake_case: str =torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case: Union[str, Any] =f'''encoder.layer.{layer_index}.attention.self.''' snake_case: Union[str, Any] =state_dict[prefix + matrix_name] snake_case: Union[str, Any] =state_dict[prefix + matrix_name] snake_case: List[Any] =state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case: Optional[Any] =state_dict['entity_embeddings.entity_embeddings.weight'] snake_case: Dict =entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) snake_case: Optional[int] =torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' snake_case: Optional[int] =state_dict['entity_predictions.bias'] snake_case: Union[str, Any] =entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) snake_case: List[Any] =torch.cat([entity_prediction_bias, entity_mask_bias] ) snake_case: int =LukeForMaskedLM(config=__UpperCAmelCase ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) snake_case: Optional[int] =OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): snake_case: Union[str, Any] =state_dict[key] else: snake_case: Optional[int] =state_dict[key] snake_case: List[str] =model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) if set(__UpperCAmelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(f'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(__UpperCAmelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs snake_case: str =MLukeTokenizer.from_pretrained(__UpperCAmelCase , task='entity_classification' ) snake_case: Union[str, Any] ='ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' snake_case: List[str] =(0, 9) snake_case: Tuple =tokenizer(__UpperCAmelCase , entity_spans=[span] , return_tensors='pt' ) snake_case: Union[str, Any] =model(**__UpperCAmelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base snake_case: Any =torch.Size((1, 33, 7_68) ) snake_case: str =torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base snake_case: Optional[int] =torch.Size((1, 1, 7_68) ) snake_case: Optional[Any] =torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' f''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction snake_case: Tuple =MLukeTokenizer.from_pretrained(__UpperCAmelCase ) snake_case: Union[str, Any] ='Tokyo is the capital of <mask>.' snake_case: str =(24, 30) snake_case: List[Any] =tokenizer(__UpperCAmelCase , entity_spans=[span] , return_tensors='pt' ) snake_case: int =model(**__UpperCAmelCase ) snake_case: Union[str, Any] =encoding['input_ids'][0].tolist() snake_case: int =input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) snake_case: int =outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__UpperCAmelCase ) snake_case: Any =outputs.entity_logits[0][0].argmax().item() snake_case: Any =[ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(__UpperCAmelCase ) ) model.save_pretrained(__UpperCAmelCase ) def a_ ( __UpperCAmelCase ) -> Optional[int]: """simple docstring""" snake_case: Union[str, Any] =['[MASK]', '[PAD]', '[UNK]'] snake_case: List[str] =[json.loads(__UpperCAmelCase ) for line in open(__UpperCAmelCase )] snake_case: int ={} for entry in data: snake_case: int =entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: snake_case: Optional[Any] =entity_id break snake_case: int =f'''{language}:{entity_name}''' snake_case: Union[str, Any] =entity_id return new_mapping if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) a = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
703
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def a_ ( __UpperCAmelCase ) -> Dict: """simple docstring""" snake_case: Optional[int] =[tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a_ ( snake_case , snake_case , snake_case , unittest.TestCase ): UpperCAmelCase : List[str] = StableDiffusionLatentUpscalePipeline UpperCAmelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } UpperCAmelCase : List[Any] = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} UpperCAmelCase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase : Optional[int] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase : str = frozenset([] ) UpperCAmelCase : Any = True @property def UpperCamelCase ( self : Dict ) -> List[str]: snake_case: Optional[int] =1 snake_case: List[Any] =4 snake_case: Optional[Any] =(1_6, 1_6) snake_case: Union[str, Any] =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a_ ) return image def UpperCamelCase ( self : Any ) -> Tuple: torch.manual_seed(0 ) snake_case: Dict =UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=a_ , block_out_channels=[3_2, 3_2, 6_4, 6_4] , time_cond_proj_dim=1_6_0 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=3_2 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=a_ , only_cross_attention=a_ , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) snake_case: int =AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4, 6_4] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) snake_case: Optional[int] =EulerDiscreteScheduler(prediction_type='sample' ) snake_case: Optional[int] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='quick_gelu' , projection_dim=5_1_2 , ) snake_case: Dict =CLIPTextModel(a_ ) snake_case: List[str] =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case: Tuple ={ 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def UpperCamelCase ( self : int , a_ : Optional[int] , a_ : str=0 ) -> List[Any]: if str(a_ ).startswith('mps' ): snake_case: str =torch.manual_seed(a_ ) else: snake_case: List[str] =torch.Generator(device=a_ ).manual_seed(a_ ) snake_case: Optional[Any] ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self : Union[str, Any] ) -> Any: snake_case: Optional[Any] ='cpu' snake_case: List[Any] =self.get_dummy_components() snake_case: str =self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) snake_case: Union[str, Any] =self.get_dummy_inputs(a_ ) snake_case: Any =pipe(**a_ ).images snake_case: Dict =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_5_6, 2_5_6, 3) ) snake_case: Dict =np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) snake_case: Any =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a_ , 1E-3 ) def UpperCamelCase ( self : Tuple ) -> List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def UpperCamelCase ( self : str ) -> Optional[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase ( self : Tuple ) -> Optional[Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def UpperCamelCase ( self : Union[str, Any] ) -> int: super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def UpperCamelCase ( self : List[str] ) -> Optional[int]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def UpperCamelCase ( self : Optional[int] ) -> Any: super().test_save_load_local(expected_max_difference=3E-3 ) def UpperCamelCase ( self : Dict ) -> Optional[Any]: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def UpperCamelCase ( self : List[str] ) -> Union[str, Any]: snake_case: Dict =[ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] snake_case: Union[str, Any] =self.get_dummy_components() snake_case: str =self.pipeline_class(**a_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) snake_case: str =self.get_dummy_inputs(a_ ) snake_case: Optional[int] =2 snake_case: List[str] =[] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case: int =getattr(a_ , scheduler_enum.name ) snake_case: Optional[Any] =scheduler_cls.from_config(pipe.scheduler.config ) snake_case: str =pipe(**a_ )[0] outputs.append(a_ ) assert check_same_shape(a_ ) @require_torch_gpu @slow class a_ ( unittest.TestCase ): def UpperCamelCase ( self : List[Any] ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : Any ) -> str: snake_case: List[str] =torch.manual_seed(3_3 ) snake_case: Optional[int] =StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) snake_case: Optional[Any] =StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) snake_case: str ='a photo of an astronaut high resolution, unreal engine, ultra realistic' snake_case: Any =pipe(a_ , generator=a_ , output_type='latent' ).images snake_case: Optional[int] =upscaler( prompt=a_ , image=a_ , num_inference_steps=2_0 , guidance_scale=0 , generator=a_ , output_type='np' , ).images[0] snake_case: str =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def UpperCamelCase ( self : Dict ) -> str: snake_case: Optional[Any] =torch.manual_seed(3_3 ) snake_case: Union[str, Any] =StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) snake_case: List[str] ='the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' snake_case: Union[str, Any] =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) snake_case: List[str] =upscaler( prompt=a_ , image=a_ , num_inference_steps=2_0 , guidance_scale=0 , generator=a_ , output_type='np' , ).images[0] snake_case: List[Any] =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5E-2
347
0
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _lowercase = logging.get_logger(__name__) # General docstring _lowercase = '''MobileNetV1Config''' # Base docstring _lowercase = '''google/mobilenet_v1_1.0_224''' _lowercase = [1, 10_24, 7, 7] # Image classification docstring _lowercase = '''google/mobilenet_v1_1.0_224''' _lowercase = '''tabby, tabby cat''' _lowercase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def _A (UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : List[Any]=None ) ->Dict: '''simple docstring''' lowerCamelCase__ : Union[str, Any] = {} if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): lowerCamelCase__ : Optional[Any] = model.mobilenet_va else: lowerCamelCase__ : Optional[Any] = model lowerCamelCase__ : Any = """MobilenetV1/Conv2d_0/""" lowerCamelCase__ : List[Any] = backbone.conv_stem.convolution.weight lowerCamelCase__ : str = backbone.conv_stem.normalization.bias lowerCamelCase__ : List[Any] = backbone.conv_stem.normalization.weight lowerCamelCase__ : Dict = backbone.conv_stem.normalization.running_mean lowerCamelCase__ : Dict = backbone.conv_stem.normalization.running_var for i in range(13 ): lowerCamelCase__ : Dict = i + 1 lowerCamelCase__ : Any = i * 2 lowerCamelCase__ : Dict = backbone.layer[pt_index] lowerCamelCase__ : Dict = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" lowerCamelCase__ : Any = pointer.convolution.weight lowerCamelCase__ : int = pointer.normalization.bias lowerCamelCase__ : int = pointer.normalization.weight lowerCamelCase__ : int = pointer.normalization.running_mean lowerCamelCase__ : Tuple = pointer.normalization.running_var lowerCamelCase__ : List[str] = backbone.layer[pt_index + 1] lowerCamelCase__ : Optional[Any] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" lowerCamelCase__ : str = pointer.convolution.weight lowerCamelCase__ : Any = pointer.normalization.bias lowerCamelCase__ : Union[str, Any] = pointer.normalization.weight lowerCamelCase__ : str = pointer.normalization.running_mean lowerCamelCase__ : Optional[int] = pointer.normalization.running_var if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): lowerCamelCase__ : Optional[Any] = """MobilenetV1/Logits/Conv2d_1c_1x1/""" lowerCamelCase__ : Dict = model.classifier.weight lowerCamelCase__ : str = model.classifier.bias return tf_to_pt_map def _A (UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : Optional[int] ) ->str: '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model lowerCamelCase__ : Tuple = tf.train.list_variables(lowerCAmelCase_ ) lowerCamelCase__ : List[Any] = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) lowerCamelCase__ : List[str] = tf.train.load_variable(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCamelCase__ : Dict = array # Build TF to PyTorch weights loading map lowerCamelCase__ : Dict = _build_tf_to_pytorch_map(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue lowerCamelCase__ : Any = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) lowerCamelCase__ : Union[str, Any] = np.transpose(lowerCAmelCase_ , (2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer lowerCamelCase__ : Any = array.squeeze().transpose() else: lowerCamelCase__ : List[Any] = np.transpose(lowerCAmelCase_ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) lowerCamelCase__ : int = torch.from_numpy(lowerCAmelCase_ ) tf_weights.pop(lowerCAmelCase_ , lowerCAmelCase_ ) tf_weights.pop(name + """/RMSProp""" , lowerCAmelCase_ ) tf_weights.pop(name + """/RMSProp_1""" , lowerCAmelCase_ ) tf_weights.pop(name + """/ExponentialMovingAverage""" , lowerCAmelCase_ ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def _A (UpperCamelCase : Tuple , UpperCamelCase : List[str] ) ->torch.Tensor: '''simple docstring''' lowerCamelCase__ ,lowerCamelCase__ : Optional[int] = features.shape[-2:] lowerCamelCase__ ,lowerCamelCase__ : Tuple = conv_layer.stride lowerCamelCase__ ,lowerCamelCase__ : Union[str, Any] = conv_layer.kernel_size if in_height % stride_height == 0: lowerCamelCase__ : Union[str, Any] = max(kernel_height - stride_height , 0 ) else: lowerCamelCase__ : List[str] = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: lowerCamelCase__ : Optional[int] = max(kernel_width - stride_width , 0 ) else: lowerCamelCase__ : List[str] = max(kernel_width - (in_width % stride_width) , 0 ) lowerCamelCase__ : List[str] = pad_along_width // 2 lowerCamelCase__ : Optional[int] = pad_along_width - pad_left lowerCamelCase__ : Union[str, Any] = pad_along_height // 2 lowerCamelCase__ : int = pad_along_height - pad_top lowerCamelCase__ : int = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowerCAmelCase_ , lowerCAmelCase_ , """constant""" , 0.0 ) class __A ( nn.Module ): def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 1 , __magic_name__ = 1 , __magic_name__ = False , __magic_name__ = True , __magic_name__ = True , ): super().__init__() lowerCamelCase__ : List[Any] = config if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups." ) if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups." ) lowerCamelCase__ : Optional[Any] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowerCamelCase__ : List[Any] = nn.Convad( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=__lowerCamelCase , stride=__lowerCamelCase , padding=__lowerCamelCase , groups=__lowerCamelCase , bias=__lowerCamelCase , padding_mode="""zeros""" , ) if use_normalization: lowerCamelCase__ : Union[str, Any] = nn.BatchNormad( num_features=__lowerCamelCase , eps=config.layer_norm_eps , momentum=0.99_97 , affine=__lowerCamelCase , track_running_stats=__lowerCamelCase , ) else: lowerCamelCase__ : List[str] = None if use_activation: if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : str = ACTaFN[use_activation] elif isinstance(config.hidden_act , __lowerCamelCase ): lowerCamelCase__ : int = ACTaFN[config.hidden_act] else: lowerCamelCase__ : Any = config.hidden_act else: lowerCamelCase__ : int = None def _snake_case (self , __magic_name__ ): if self.config.tf_padding: lowerCamelCase__ : str = apply_tf_padding(__lowerCamelCase , self.convolution ) lowerCamelCase__ : List[str] = self.convolution(__lowerCamelCase ) if self.normalization is not None: lowerCamelCase__ : int = self.normalization(__lowerCamelCase ) if self.activation is not None: lowerCamelCase__ : Union[str, Any] = self.activation(__lowerCamelCase ) return features class __A ( __SCREAMING_SNAKE_CASE ): UpperCamelCase :str = MobileNetVaConfig UpperCamelCase :Dict = load_tf_weights_in_mobilenet_va UpperCamelCase :List[str] = '''mobilenet_v1''' UpperCamelCase :Optional[Any] = '''pixel_values''' UpperCamelCase :List[Any] = False def _snake_case (self , __magic_name__ ): if isinstance(__lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _lowercase = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowercase = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , __SCREAMING_SNAKE_CASE , ) class __A ( __SCREAMING_SNAKE_CASE ): def __init__(self , __magic_name__ , __magic_name__ = True ): super().__init__(__lowerCamelCase ) lowerCamelCase__ : List[Any] = config lowerCamelCase__ : Tuple = 32 lowerCamelCase__ : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) lowerCamelCase__ : Tuple = MobileNetVaConvLayer( __lowerCamelCase , in_channels=config.num_channels , out_channels=__lowerCamelCase , kernel_size=3 , stride=2 , ) lowerCamelCase__ : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowerCamelCase__ : Union[str, Any] = nn.ModuleList() for i in range(13 ): lowerCamelCase__ : Any = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowerCamelCase__ : str = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( __lowerCamelCase , in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=__lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( __lowerCamelCase , in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=1 , ) ) lowerCamelCase__ : Tuple = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _snake_case (self , __magic_name__ ): raise NotImplementedError @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case (self , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , ): lowerCamelCase__ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase__ : int = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) lowerCamelCase__ : List[Any] = self.conv_stem(__lowerCamelCase ) lowerCamelCase__ : List[str] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowerCamelCase__ : List[Any] = layer_module(__lowerCamelCase ) if output_hidden_states: lowerCamelCase__ : Union[str, Any] = all_hidden_states + (hidden_states,) lowerCamelCase__ : Dict = hidden_states if self.pooler is not None: lowerCamelCase__ : Union[str, Any] = torch.flatten(self.pooler(__lowerCamelCase ) , start_dim=1 ) else: lowerCamelCase__ : str = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCamelCase , pooler_output=__lowerCamelCase , hidden_states=__lowerCamelCase , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , __SCREAMING_SNAKE_CASE , ) class __A ( __SCREAMING_SNAKE_CASE ): def __init__(self , __magic_name__ ): super().__init__(__lowerCamelCase ) lowerCamelCase__ : Any = config.num_labels lowerCamelCase__ : Dict = MobileNetVaModel(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowerCamelCase__ : Optional[Any] = nn.Dropout(config.classifier_dropout_prob , inplace=__lowerCamelCase ) lowerCamelCase__ : Dict = nn.Linear(__lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case (self , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , ): lowerCamelCase__ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ : List[Any] = self.mobilenet_va(__lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase ) lowerCamelCase__ : Tuple = outputs.pooler_output if return_dict else outputs[1] lowerCamelCase__ : str = self.classifier(self.dropout(__lowerCamelCase ) ) lowerCamelCase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCamelCase__ : Any = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCamelCase__ : Union[str, Any] = """single_label_classification""" else: lowerCamelCase__ : Optional[Any] = """multi_label_classification""" if self.config.problem_type == "regression": lowerCamelCase__ : str = MSELoss() if self.num_labels == 1: lowerCamelCase__ : List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCamelCase__ : Union[str, Any] = loss_fct(__lowerCamelCase , __lowerCamelCase ) elif self.config.problem_type == "single_label_classification": lowerCamelCase__ : Dict = CrossEntropyLoss() lowerCamelCase__ : str = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCamelCase__ : List[str] = BCEWithLogitsLoss() lowerCamelCase__ : Optional[int] = loss_fct(__lowerCamelCase , __lowerCamelCase ) if not return_dict: lowerCamelCase__ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__lowerCamelCase , logits=__lowerCamelCase , hidden_states=outputs.hidden_states , )
157
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : str = '''openai/whisper-base''' A__ : List[Any] = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) A__ : str = '''transcriber''' A__ : List[Any] = WhisperProcessor A__ : Optional[int] = WhisperForConditionalGeneration A__ : List[str] = ['''audio'''] A__ : Optional[int] = ['''text'''] def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ): """simple docstring""" return self.pre_processor(__lowerCamelCase , return_tensors='''pt''' ).input_features def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : List[str] ): """simple docstring""" return self.model.generate(inputs=__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : int ): """simple docstring""" return self.pre_processor.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )[0]
103
0
def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if index == number_of_items: return 0 lowerCamelCase : Any =0 lowerCamelCase : List[str] =0 lowerCamelCase : Optional[int] =knapsack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index + 1 ) if weights[index] <= max_weight: lowerCamelCase : Union[str, Any] =values[index] + knapsack( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , max_weight - weights[index] , index + 1 ) return max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
262
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = '''▁''' snake_case_ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } snake_case_ = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } snake_case_ = { '''facebook/m2m100_418M''': 1_0_2_4, } # fmt: off snake_case_ = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class snake_case_ ( _A): lowerCamelCase :Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase :List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase :str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase :Union[str, Any] = ["input_ids", "attention_mask"] lowerCamelCase :List[int] = [] lowerCamelCase :List[int] = [] def __init__( self , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<pad>" , __lowercase="<unk>" , __lowercase="m2m100" , __lowercase = None , __lowercase=8 , **__lowercase , ) -> None: lowerCamelCase : Union[str, Any] ={} if sp_model_kwargs is None else sp_model_kwargs lowerCamelCase : List[str] =language_codes lowerCamelCase : int =FAIRSEQ_LANGUAGE_CODES[language_codes] lowerCamelCase : str ={lang_code: F"__{lang_code}__" for lang_code in fairseq_language_code} lowerCamelCase : List[Any] =kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__lowercase ) for lang_code in fairseq_language_code if self.get_lang_token(__lowercase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__lowercase , tgt_lang=__lowercase , bos_token=__lowercase , eos_token=__lowercase , sep_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , language_codes=__lowercase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__lowercase , **__lowercase , ) lowerCamelCase : Dict =vocab_file lowerCamelCase : List[Any] =load_json(__lowercase ) lowerCamelCase : Optional[int] ={v: k for k, v in self.encoder.items()} lowerCamelCase : List[Any] =spm_file lowerCamelCase : str =load_spm(__lowercase , self.sp_model_kwargs ) lowerCamelCase : Tuple =len(self.encoder ) lowerCamelCase : Optional[int] ={ self.get_lang_token(__lowercase ): self.encoder_size + i for i, lang_code in enumerate(__lowercase ) } lowerCamelCase : Tuple ={lang_code: self.encoder_size + i for i, lang_code in enumerate(__lowercase )} lowerCamelCase : Tuple ={v: k for k, v in self.lang_token_to_id.items()} lowerCamelCase : Optional[Any] =src_lang if src_lang is not None else '''en''' lowerCamelCase : Any =tgt_lang lowerCamelCase : List[Any] =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) lowerCamelCase : Optional[Any] =num_madeup_words @property def __lowercase ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def __lowercase ( self ) -> str: return self._src_lang @src_lang.setter def __lowercase ( self , __lowercase ) -> None: lowerCamelCase : Any =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowercase ( self , __lowercase ) -> List[str]: return self.sp_model.encode(__lowercase , out_type=__lowercase ) def __lowercase ( self , __lowercase ) -> Optional[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__lowercase , self.encoder[self.unk_token] ) def __lowercase ( self , __lowercase ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__lowercase , self.unk_token ) def __lowercase ( self , __lowercase ) -> str: lowerCamelCase : Dict =[] lowerCamelCase : Dict ='''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowercase ) + token lowerCamelCase : str =[] else: current_sub_tokens.append(__lowercase ) out_string += self.sp_model.decode(__lowercase ) return out_string.strip() def __lowercase ( self , __lowercase , __lowercase = None , __lowercase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) lowerCamelCase : int =[1] * len(self.prefix_tokens ) lowerCamelCase : List[str] =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowercase )) + suffix_ones return prefix_ones + ([0] * len(__lowercase )) + ([0] * len(__lowercase )) + suffix_ones def __lowercase ( self , __lowercase , __lowercase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowercase ( self ) -> Dict: lowerCamelCase : Dict ={self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: lowerCamelCase : Optional[Any] =self.__dict__.copy() lowerCamelCase : Union[str, Any] =None return state def __setstate__( self , __lowercase ) -> None: lowerCamelCase : int =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase : Optional[int] ={} lowerCamelCase : Optional[Any] =load_spm(self.spm_file , self.sp_model_kwargs ) def __lowercase ( self , __lowercase , __lowercase = None ) -> Tuple[str]: lowerCamelCase : Optional[Any] =Path(__lowercase ) if not save_dir.is_dir(): raise OSError(F"{save_directory} should be a directory" ) lowerCamelCase : List[str] =save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) lowerCamelCase : Tuple =save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __lowercase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowercase ) elif not os.path.isfile(self.spm_file ): with open(__lowercase , '''wb''' ) as fi: lowerCamelCase : List[Any] =self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (str(__lowercase ), str(__lowercase )) def __lowercase ( self , __lowercase , __lowercase = "en" , __lowercase = None , __lowercase = "ro" , **__lowercase , ) -> BatchEncoding: lowerCamelCase : Union[str, Any] =src_lang lowerCamelCase : Optional[int] =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__lowercase , __lowercase , **__lowercase ) def __lowercase ( self , __lowercase , __lowercase , __lowercase , **__lowercase ) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowerCamelCase : List[Any] =src_lang lowerCamelCase : str =self(__lowercase , add_special_tokens=__lowercase , **__lowercase ) lowerCamelCase : Tuple =self.get_lang_id(__lowercase ) lowerCamelCase : Optional[int] =tgt_lang_id return inputs def __lowercase ( self ) -> List[str]: self.set_src_lang_special_tokens(self.src_lang ) def __lowercase ( self ) -> List[str]: self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowercase ( self , __lowercase ) -> None: lowerCamelCase : Union[str, Any] =self.get_lang_token(__lowercase ) lowerCamelCase : List[Any] =self.lang_token_to_id[lang_token] lowerCamelCase : Optional[Any] =[self.cur_lang_id] lowerCamelCase : Union[str, Any] =[self.eos_token_id] def __lowercase ( self , __lowercase ) -> None: lowerCamelCase : Tuple =self.get_lang_token(__lowercase ) lowerCamelCase : Tuple =self.lang_token_to_id[lang_token] lowerCamelCase : List[Any] =[self.cur_lang_id] lowerCamelCase : Tuple =[self.eos_token_id] def __lowercase ( self , __lowercase ) -> str: return self.lang_code_to_token[lang] def __lowercase ( self , __lowercase ) -> int: lowerCamelCase : List[str] =self.get_lang_token(__lowercase ) return self.lang_token_to_id[lang_token] def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> sentencepiece.SentencePieceProcessor: lowerCamelCase : List[Any] =sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE_ ) spm.Load(str(SCREAMING_SNAKE_CASE_ ) ) return spm def A__ ( SCREAMING_SNAKE_CASE_ ) -> Union[Dict, List]: with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as f: return json.load(SCREAMING_SNAKE_CASE_ ) def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: with open(SCREAMING_SNAKE_CASE_ , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , indent=2 )
262
1
'''simple docstring''' SCREAMING_SNAKE_CASE = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
94
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MvpTokenizer UpperCamelCase_ = MvpTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = filter_roberta_detectors def A__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' super().setUp() lowercase : Dict =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowercase : Tuple =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[Any] =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowercase : List[Any] ={'''unk_token''': '''<unk>'''} lowercase : Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase ) ) def A__ ( self : Union[str, Any] , **UpperCAmelCase : Dict ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self : List[str] , **UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self : Tuple , UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' return "lower newer", "lower newer" @cached_property def A__ ( self : Tuple ) -> List[Any]: '''simple docstring''' return MvpTokenizer.from_pretrained('''RUCAIBox/mvp''' ) @cached_property def A__ ( self : Any ) -> int: '''simple docstring''' return MvpTokenizerFast.from_pretrained('''RUCAIBox/mvp''' ) @require_torch def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowercase : List[str] =[0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Union[str, Any] =tokenizer(UpperCAmelCase , max_length=len(UpperCAmelCase ) , padding=UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowercase : Union[str, Any] =batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Test that special tokens are reset @require_torch def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : Any =['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Dict =tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) # check if input_ids are returned and no labels self.assertIn('''input_ids''' , UpperCAmelCase ) self.assertIn('''attention_mask''' , UpperCAmelCase ) self.assertNotIn('''labels''' , UpperCAmelCase ) self.assertNotIn('''decoder_attention_mask''' , UpperCAmelCase ) @require_torch def A__ ( self : Dict ) -> int: '''simple docstring''' lowercase : int =[ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Optional[Any] =tokenizer(text_target=UpperCAmelCase , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def A__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Union[str, Any] =tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def A__ ( self : str ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =['''A long paragraph for summarization.'''] lowercase : List[Any] =[ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : List[str] =tokenizer(UpperCAmelCase , text_target=UpperCAmelCase , return_tensors='''pt''' ) lowercase : Optional[int] =inputs['''input_ids'''] lowercase : Optional[Any] =inputs['''labels'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def A__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass def A__ ( self : List[str] ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase : Union[str, Any] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowercase : Tuple =self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowercase : Optional[Any] ='''A, <mask> AllenNLP sentence.''' lowercase : int =tokenizer_r.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) lowercase : List[Any] =tokenizer_p.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowercase : Any =tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowercase : str =tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
94
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = 42 @flax_register_to_config class UpperCamelCase_ ( nn.Module , UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = 32 UpperCAmelCase__ = 4 UpperCAmelCase__ = 4 UpperCAmelCase__ = ( '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''', '''DownBlock2D''', ) UpperCAmelCase__ = ('''UpBlock2D''', '''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''') UpperCAmelCase__ = False UpperCAmelCase__ = (320, 640, 1280, 1280) UpperCAmelCase__ = 2 UpperCAmelCase__ = 8 UpperCAmelCase__ = None UpperCAmelCase__ = 1280 UpperCAmelCase__ = 0.0 UpperCAmelCase__ = False UpperCAmelCase__ = jnp.floataa UpperCAmelCase__ = True UpperCAmelCase__ = 0 UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Union[str, Any]) ->Tuple: '''simple docstring''' A__ = (1, self.in_channels, self.sample_size, self.sample_size) A__ = jnp.zeros(__lowerCAmelCase , dtype=jnp.floataa) A__ = jnp.ones((1,) , dtype=jnp.intaa) A__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa) A__ , A__ = jax.random.split(__lowerCAmelCase) A__ = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase)["params"] def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]: '''simple docstring''' A__ = self.block_out_channels A__ = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''') # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. A__ = self.num_attention_heads or self.attention_head_dim # input A__ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time A__ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift) A__ = FlaxTimestepEmbedding(__lowerCAmelCase , dtype=self.dtype) A__ = self.only_cross_attention if isinstance(__lowerCAmelCase , __lowerCAmelCase): A__ = (only_cross_attention,) * len(self.down_block_types) if isinstance(__lowerCAmelCase , __lowerCAmelCase): A__ = (num_attention_heads,) * len(self.down_block_types) # down A__ = [] A__ = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types): A__ = output_channel A__ = block_out_channels[i] A__ = i == len(__lowerCAmelCase) - 1 if down_block_type == "CrossAttnDownBlock2D": A__ = FlaxCrossAttnDownBlockaD( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: A__ = FlaxDownBlockaD( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__lowerCAmelCase) A__ = down_blocks # mid A__ = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up A__ = [] A__ = list(reversed(__lowerCAmelCase)) A__ = list(reversed(__lowerCAmelCase)) A__ = list(reversed(__lowerCAmelCase)) A__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types): A__ = output_channel A__ = reversed_block_out_channels[i] A__ = reversed_block_out_channels[min(i + 1 , len(__lowerCAmelCase) - 1)] A__ = i == len(__lowerCAmelCase) - 1 if up_block_type == "CrossAttnUpBlock2D": A__ = FlaxCrossAttnUpBlockaD( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , prev_output_channel=__lowerCAmelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: A__ = FlaxUpBlockaD( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , prev_output_channel=__lowerCAmelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__lowerCAmelCase) A__ = output_channel A__ = up_blocks # out A__ = nn.GroupNorm(num_groups=32 , epsilon=1e-5) A__ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : List[str] = True , UpperCAmelCase__ : str = False , ) ->Optional[int]: '''simple docstring''' if not isinstance(__lowerCAmelCase , jnp.ndarray): A__ = jnp.array([timesteps] , dtype=jnp.intaa) elif isinstance(__lowerCAmelCase , jnp.ndarray) and len(timesteps.shape) == 0: A__ = timesteps.astype(dtype=jnp.floataa) A__ = jnp.expand_dims(__lowerCAmelCase , 0) A__ = self.time_proj(__lowerCAmelCase) A__ = self.time_embedding(__lowerCAmelCase) # 2. pre-process A__ = jnp.transpose(__lowerCAmelCase , (0, 2, 3, 1)) A__ = self.conv_in(__lowerCAmelCase) # 3. down A__ = (sample,) for down_block in self.down_blocks: if isinstance(__lowerCAmelCase , __lowerCAmelCase): A__ , A__ = down_block(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , deterministic=not train) else: A__ , A__ = down_block(__lowerCAmelCase , __lowerCAmelCase , deterministic=not train) down_block_res_samples += res_samples if down_block_additional_residuals is not None: A__ = () for down_block_res_sample, down_block_additional_residual in zip( __lowerCAmelCase , __lowerCAmelCase): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) A__ = new_down_block_res_samples # 4. mid A__ = self.mid_block(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , deterministic=not train) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: A__ = down_block_res_samples[-(self.layers_per_block + 1) :] A__ = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__lowerCAmelCase , __lowerCAmelCase): A__ = up_block( __lowerCAmelCase , temb=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , res_hidden_states_tuple=__lowerCAmelCase , deterministic=not train , ) else: A__ = up_block(__lowerCAmelCase , temb=__lowerCAmelCase , res_hidden_states_tuple=__lowerCAmelCase , deterministic=not train) # 6. post-process A__ = self.conv_norm_out(__lowerCAmelCase) A__ = nn.silu(__lowerCAmelCase) A__ = self.conv_out(__lowerCAmelCase) A__ = jnp.transpose(__lowerCAmelCase , (0, 3, 1, 2)) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__lowerCAmelCase)
707
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = IFInpaintingPipeline UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def SCREAMING_SNAKE_CASE ( self : Any) ->Dict: '''simple docstring''' return self._get_dummy_components() def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=0) ->int: '''simple docstring''' if str(UpperCAmelCase__).startswith('''mps'''): A__ = torch.manual_seed(UpperCAmelCase__) else: A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(UpperCAmelCase__) A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__)).to(UpperCAmelCase__) A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__)).to(UpperCAmelCase__) A__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''') def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1) def SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: '''simple docstring''' self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
177
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class A ( __lowercase ): snake_case__ :int = "bloom" snake_case__ :str = ["past_key_values"] snake_case__ :List[str] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : List[str] , __magic_name__ : Union[str, Any]=250880 , __magic_name__ : Any=64 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Optional[Any]=8 , __magic_name__ : Tuple=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : Any=True , __magic_name__ : Any=1 , __magic_name__ : List[Any]=2 , __magic_name__ : Any=False , __magic_name__ : Any=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Any=1 , __magic_name__ : Optional[Any]=False , **__magic_name__ : int , ): """simple docstring""" lowerCAmelCase__ = vocab_size # Backward compatibility with n_embed kwarg lowerCAmelCase__ = kwargs.pop("n_embed" , snake_case_ ) lowerCAmelCase__ = hidden_size if n_embed is None else n_embed lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_range lowerCAmelCase__ = use_cache lowerCAmelCase__ = pretraining_tp lowerCAmelCase__ = apply_residual_connection_post_layernorm lowerCAmelCase__ = hidden_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = slow_but_exact super().__init__(bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) class A ( __lowercase ): snake_case__ :Optional[Any] = version.parse('1.12' ) def __init__( self : str , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ): """simple docstring""" super().__init__(snake_case_ , task=snake_case_ , patching_specs=snake_case_ , use_past=snake_case_ ) if not getattr(self._config , "pad_token_id" , snake_case_ ): # TODO: how to do that better? lowerCAmelCase__ = 0 @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(snake_case_ , direction="inputs" , inverted_values_shape=snake_case_ ) lowerCAmelCase__ = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowerCAmelCase__ = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return self._config.n_layer @property def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return self._config.n_head @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return 1E-3 def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : "PreTrainedTokenizer" , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional["TensorType"] = None , ): """simple docstring""" lowerCAmelCase__ = super(snake_case_ , self ).generate_dummy_inputs( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) # We need to order the input in the way they appears in the forward() lowerCAmelCase__ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCAmelCase__ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCAmelCase__ = seqlen + 2 lowerCAmelCase__ = self._config.hidden_size // self.num_attention_heads lowerCAmelCase__ = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowerCAmelCase__ = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowerCAmelCase__ = [ (torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) for _ in range(self.num_layers ) ] lowerCAmelCase__ = common_inputs['''attention_mask'''] if self.use_past: lowerCAmelCase__ = ordered_inputs['''attention_mask'''].dtype lowerCAmelCase__ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_ )] , dim=1 ) return ordered_inputs @property def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return 13
48
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __UpperCamelCase ( lowerCAmelCase__ : List[str] ): __a : Any = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class UpperCamelCase__ ( __lowercase ,__lowercase ,__lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = StableDiffusionLatentUpscalePipeline _SCREAMING_SNAKE_CASE : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } _SCREAMING_SNAKE_CASE : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} _SCREAMING_SNAKE_CASE : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _SCREAMING_SNAKE_CASE : Union[str, Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _SCREAMING_SNAKE_CASE : Optional[int] = frozenset([] ) _SCREAMING_SNAKE_CASE : Optional[int] = True @property def lowerCAmelCase (self : Optional[int] ): __a : Union[str, Any] = 1 __a : Dict = 4 __a : int = (1_6, 1_6) __a : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case_ ) return image def lowerCAmelCase (self : int ): torch.manual_seed(0 ) __a : Dict = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=snake_case_ , block_out_channels=[3_2, 3_2, 6_4, 6_4] , time_cond_proj_dim=1_6_0 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=3_2 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=snake_case_ , only_cross_attention=snake_case_ , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) __a : Optional[int] = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4, 6_4] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) __a : Dict = EulerDiscreteScheduler(prediction_type='''sample''' ) __a : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''quick_gelu''' , projection_dim=5_1_2 , ) __a : int = CLIPTextModel(snake_case_ ) __a : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a : Tuple = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def lowerCAmelCase (self : List[str] , snake_case_ : Tuple , snake_case_ : List[Any]=0 ): if str(snake_case_ ).startswith('''mps''' ): __a : Any = torch.manual_seed(snake_case_ ) else: __a : Optional[Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) __a : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase (self : Tuple ): __a : Optional[int] = '''cpu''' __a : Union[str, Any] = self.get_dummy_components() __a : Any = self.pipeline_class(**snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __a : int = self.get_dummy_inputs(snake_case_ ) __a : Dict = pipe(**snake_case_ ).images __a : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_5_6, 2_5_6, 3) ) __a : List[str] = np.array( [0.4722_2412, 0.4192_1633, 0.4471_7434, 0.4687_4192, 0.4258_8258, 0.4615_0726, 0.467_7534, 0.4558_3832, 0.4857_9055] ) __a : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case_ , 1E-3 ) def lowerCAmelCase (self : Tuple ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def lowerCAmelCase (self : Any ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def lowerCAmelCase (self : Optional[Any] ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCAmelCase (self : Optional[Any] ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def lowerCAmelCase (self : List[str] ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def lowerCAmelCase (self : Tuple ): super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCAmelCase (self : Optional[int] ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCAmelCase (self : Union[str, Any] ): __a : List[Any] = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] __a : List[str] = self.get_dummy_components() __a : List[Any] = self.pipeline_class(**snake_case_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __a : Optional[Any] = self.get_dummy_inputs(snake_case_ ) __a : List[Any] = 2 __a : str = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __a : Union[str, Any] = getattr(snake_case_ , scheduler_enum.name ) __a : Any = scheduler_cls.from_config(pipe.scheduler.config ) __a : Any = pipe(**snake_case_ )[0] outputs.append(snake_case_ ) assert check_same_shape(snake_case_ ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase (self : Union[str, Any] ): __a : Union[str, Any] = torch.manual_seed(3_3 ) __a : List[Any] = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) __a : str = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) __a : int = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' __a : Dict = pipe(snake_case_ , generator=snake_case_ , output_type='''latent''' ).images __a : Any = upscaler( prompt=snake_case_ , image=snake_case_ , num_inference_steps=2_0 , guidance_scale=0 , generator=snake_case_ , output_type='''np''' , ).images[0] __a : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def lowerCAmelCase (self : List[Any] ): __a : int = torch.manual_seed(3_3 ) __a : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) __a : Optional[int] = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' __a : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) __a : Any = upscaler( prompt=snake_case_ , image=snake_case_ , num_inference_steps=2_0 , guidance_scale=0 , generator=snake_case_ , output_type='''np''' , ).images[0] __a : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-2
521
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase_ ( __a ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): super().__init__() # make sure scheduler can always be converted to DDIM a_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=A__ , scheduler=A__ ) @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , A__ ): a_ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: a_ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(A__ , A__ ) and len(A__ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(A__ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) a_ = randn_tensor(A__ , generator=A__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(A__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output a_ = self.unet(A__ , A__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 a_ = self.scheduler.step( A__ , A__ , A__ , eta=A__ , use_clipped_model_output=A__ , generator=A__ ).prev_sample a_ = (image / 2 + 0.5).clamp(0 , 1 ) a_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a_ = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
700
from typing import Any def __SCREAMING_SNAKE_CASE ( UpperCamelCase : list ) -> list[Any]: """simple docstring""" if not input_list: return [] a_ = [input_list.count(UpperCamelCase ) for value in input_list] a_ = max(UpperCamelCase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(UpperCamelCase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
403
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase = ''' Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)["depth"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline("depth-estimation") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to("cuda") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> img = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/cat.png" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda") >>> prompt = "A robot, 4k photo" >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature" >>> generator = torch.Generator(device="cuda").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save("robot_cat.png") ``` ''' def __lowerCAmelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str]=8 ) -> str: lowerCamelCase_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCamelCase_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __A( UpperCAmelCase ): def __init__( self : Optional[Any] , __UpperCamelCase : UNetaDConditionModel , __UpperCamelCase : DDPMScheduler , __UpperCamelCase : VQModel , ): super().__init__() self.register_modules( unet=__UpperCamelCase , scheduler=__UpperCamelCase , movq=__UpperCamelCase , ) lowerCamelCase_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : int ): if latents is None: lowerCamelCase_ = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=__UpperCamelCase , dtype=__UpperCamelCase ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) lowerCamelCase_ = latents.to(__UpperCamelCase ) lowerCamelCase_ = latents * scheduler.init_noise_sigma return latents def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCamelCase_ = torch.device(F'''cuda:{gpu_id}''' ) lowerCamelCase_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Tuple , __UpperCamelCase : Any=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowerCamelCase_ = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=__UpperCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCamelCase_ = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCamelCase_ , lowerCamelCase_ = cpu_offload_with_hook(__UpperCamelCase , __UpperCamelCase , prev_module_hook=__UpperCamelCase ) # We'll offload the last model manually. lowerCamelCase_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowercase__ ( self : Optional[Any] ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__UpperCamelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__UpperCamelCase ) def __call__( self : List[str] , __UpperCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __UpperCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int = 5_1_2 , __UpperCamelCase : int = 5_1_2 , __UpperCamelCase : int = 1_0_0 , __UpperCamelCase : float = 4.0 , __UpperCamelCase : int = 1 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , ): lowerCamelCase_ = self._execution_device lowerCamelCase_ = guidance_scale > 1.0 if isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCamelCase_ = torch.cat(__UpperCamelCase , dim=0 ) if isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCamelCase_ = torch.cat(__UpperCamelCase , dim=0 ) if isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCamelCase_ = torch.cat(__UpperCamelCase , dim=0 ) lowerCamelCase_ = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: lowerCamelCase_ = image_embeds.repeat_interleave(__UpperCamelCase , dim=0 ) lowerCamelCase_ = negative_image_embeds.repeat_interleave(__UpperCamelCase , dim=0 ) lowerCamelCase_ = hint.repeat_interleave(__UpperCamelCase , dim=0 ) lowerCamelCase_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__UpperCamelCase ) lowerCamelCase_ = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=__UpperCamelCase ) self.scheduler.set_timesteps(__UpperCamelCase , device=__UpperCamelCase ) lowerCamelCase_ = self.scheduler.timesteps lowerCamelCase_ = self.movq.config.latent_channels lowerCamelCase_ , lowerCamelCase_ = downscale_height_and_width(__UpperCamelCase , __UpperCamelCase , self.movq_scale_factor ) # create initial latent lowerCamelCase_ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = {"""image_embeds""": image_embeds, """hint""": hint} lowerCamelCase_ = self.unet( sample=__UpperCamelCase , timestep=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , added_cond_kwargs=__UpperCamelCase , return_dict=__UpperCamelCase , )[0] if do_classifier_free_guidance: lowerCamelCase_ , lowerCamelCase_ = noise_pred.split(latents.shape[1] , dim=1 ) lowerCamelCase_ , lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ , lowerCamelCase_ = variance_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCamelCase_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCamelCase_ , lowerCamelCase_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase , )[0] # post-processing lowerCamelCase_ = self.movq.decode(__UpperCamelCase , force_not_quantize=__UpperCamelCase )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: lowerCamelCase_ = image * 0.5 + 0.5 lowerCamelCase_ = image.clamp(0 , 1 ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
272
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __A: def __init__( self : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Optional[int]=7 , __UpperCamelCase : Any=True , __UpperCamelCase : Dict=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Dict=True , __UpperCamelCase : Union[str, Any]=9_9 , __UpperCamelCase : List[str]=3_2 , __UpperCamelCase : int=2 , __UpperCamelCase : Optional[Any]=4 , __UpperCamelCase : Optional[int]=3_7 , __UpperCamelCase : Optional[Any]="gelu" , __UpperCamelCase : int=0.1 , __UpperCamelCase : str=0.1 , __UpperCamelCase : Tuple=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[Any]=0.02 , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : Dict=True , __UpperCamelCase : Any="None" , __UpperCamelCase : List[Any]=3 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : Dict=None , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = relative_attention lowerCamelCase_ = position_biased_input lowerCamelCase_ = pos_att_type lowerCamelCase_ = scope def lowercase__ ( self : Optional[Any] ): lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : List[str] ): lowerCamelCase_ = TFDebertaVaModel(config=__UpperCamelCase ) lowerCamelCase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : int ): lowerCamelCase_ = TFDebertaVaForMaskedLM(config=__UpperCamelCase ) lowerCamelCase_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : List[Any] ): lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFDebertaVaForSequenceClassification(config=__UpperCamelCase ) lowerCamelCase_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] ): lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFDebertaVaForTokenClassification(config=__UpperCamelCase ) lowerCamelCase_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : int ): lowerCamelCase_ = TFDebertaVaForQuestionAnswering(config=__UpperCamelCase ) lowerCamelCase_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Dict ): lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __A( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowercase__ ( self : Dict ): lowerCamelCase_ = TFDebertaVaModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : Dict ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Tuple ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : Any ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : int ): lowerCamelCase_ = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class __A( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def lowercase__ ( self : Optional[int] ): pass @slow def lowercase__ ( self : Any ): lowerCamelCase_ = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) lowerCamelCase_ = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCamelCase_ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] lowerCamelCase_ = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1E-4 )
272
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def lowerCamelCase__ ( __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class _lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): _lowercase =StableDiffusionLatentUpscalePipeline _lowercase =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } _lowercase =PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} _lowercase =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowercase =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowercase =frozenset([] ) _lowercase =True @property def __a ( self ) -> int: lowerCAmelCase_ = 1 lowerCAmelCase_ = 4 lowerCAmelCase_ = (16, 16) lowerCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCamelCase ) return image def __a ( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=_UpperCamelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=_UpperCamelCase , only_cross_attention=_UpperCamelCase , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) lowerCAmelCase_ = EulerDiscreteScheduler(prediction_type="sample" ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="quick_gelu" , projection_dim=512 , ) lowerCAmelCase_ = CLIPTextModel(_UpperCamelCase ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase_ = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def __a ( self , _UpperCamelCase , _UpperCamelCase=0 ) -> Dict: if str(_UpperCamelCase ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_UpperCamelCase ) else: lowerCAmelCase_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) lowerCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __a ( self ) -> Tuple: lowerCAmelCase_ = "cpu" lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase_ = self.get_dummy_inputs(_UpperCamelCase ) lowerCAmelCase_ = pipe(**_UpperCamelCase ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) lowerCAmelCase_ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) lowerCAmelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCamelCase , 1e-3 ) def __a ( self ) -> Optional[Any]: super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def __a ( self ) -> Union[str, Any]: super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def __a ( self ) -> Tuple: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __a ( self ) -> str: super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def __a ( self ) -> str: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def __a ( self ) -> Union[str, Any]: super().test_save_load_local(expected_max_difference=3e-3 ) def __a ( self ) -> str: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __a ( self ) -> str: lowerCAmelCase_ = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**_UpperCamelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase_ = self.get_dummy_inputs(_UpperCamelCase ) lowerCAmelCase_ = 2 lowerCAmelCase_ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue lowerCAmelCase_ = getattr(_UpperCamelCase , scheduler_enum.name ) lowerCAmelCase_ = scheduler_cls.from_config(pipe.scheduler.config ) lowerCAmelCase_ = pipe(**_UpperCamelCase )[0] outputs.append(_UpperCamelCase ) assert check_same_shape(_UpperCamelCase ) @require_torch_gpu @slow class _lowerCAmelCase ( unittest.TestCase ): def __a ( self ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Tuple: lowerCAmelCase_ = torch.manual_seed(33 ) lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) lowerCAmelCase_ = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) lowerCAmelCase_ = "a photo of an astronaut high resolution, unreal engine, ultra realistic" lowerCAmelCase_ = pipe(_UpperCamelCase , generator=_UpperCamelCase , output_type="latent" ).images lowerCAmelCase_ = upscaler( prompt=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=20 , guidance_scale=0 , generator=_UpperCamelCase , output_type="np" , ).images[0] lowerCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5e-2 def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = torch.manual_seed(33 ) lowerCAmelCase_ = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) lowerCAmelCase_ = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" lowerCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) lowerCAmelCase_ = upscaler( prompt=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=20 , guidance_scale=0 , generator=_UpperCamelCase , output_type="np" , ).images[0] lowerCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5e-2
706
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A = "▁" _A = {"vocab_file": "spiece.model"} _A = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } _A = { "google/pegasus-xsum": 5_12, } _A = logging.get_logger(__name__) class _lowerCAmelCase ( __a ): _lowercase =VOCAB_FILES_NAMES _lowercase =VOCAB_FILES_NAMES _lowercase =PRETRAINED_VOCAB_FILES_MAP _lowercase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase =['''input_ids''', '''attention_mask'''] def __init__( self , _UpperCamelCase , _UpperCamelCase="<pad>" , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<mask_2>" , _UpperCamelCase="<mask_1>" , _UpperCamelCase=None , _UpperCamelCase=103 , _UpperCamelCase = None , **_UpperCamelCase , ) -> None: lowerCAmelCase_ = offset if additional_special_tokens is not None: if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError( f"""additional_special_tokens should be of type {type(_UpperCamelCase )}, but is""" f""" {type(_UpperCamelCase )}""" ) lowerCAmelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(_UpperCamelCase ) , self.offset - 1 ) ] if len(set(_UpperCamelCase ) ) != len(_UpperCamelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) lowerCAmelCase_ = additional_special_tokens_extended else: lowerCAmelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , mask_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token_sent=_UpperCamelCase , offset=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) lowerCAmelCase_ = mask_token_sent lowerCAmelCase_ = vocab_file lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) # add special tokens to encoder dict lowerCAmelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowerCAmelCase_ = {v: k for k, v in self.encoder.items()} @property def __a ( self ) -> int: return len(self.sp_model ) + self.offset def __a ( self ) -> Dict[str, int]: lowerCAmelCase_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None return state def __setstate__( self , _UpperCamelCase ) -> Optional[int]: lowerCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self , _UpperCamelCase ) -> List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def __a ( self , _UpperCamelCase ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCAmelCase_ = self.sp_model.piece_to_id(_UpperCamelCase ) return sp_id + self.offset def __a ( self , _UpperCamelCase ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCAmelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def __a ( self , _UpperCamelCase ) -> Optional[Any]: lowerCAmelCase_ = [] lowerCAmelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_UpperCamelCase ) + token lowerCAmelCase_ = [] else: current_sub_tokens.append(_UpperCamelCase ) out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def __a ( self , _UpperCamelCase=False ) -> Optional[int]: return 1 def __a ( self , _UpperCamelCase ) -> int: lowerCAmelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __a ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(_UpperCamelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __a ( self , _UpperCamelCase , _UpperCamelCase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __a ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase_ = os.path.join( _UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , "wb" ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
279
0
'''simple docstring''' import operator as op def SCREAMING_SNAKE_CASE_ ( __A : List[str] ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = lambda __A , __A : int(x / y ) # noqa: E731 integer division operation _SCREAMING_SNAKE_CASE = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(12 ) , "Stack" , sep=" | " ) print("-" * (30 + len(__lowercase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__lowercase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(12 ) , ",".join(__lowercase ) , sep=" | " ) else: _SCREAMING_SNAKE_CASE = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(12 ) , ",".join(__lowercase ) , sep=" | " ) _SCREAMING_SNAKE_CASE = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(12 ) , ",".join(__lowercase ) , sep=" | " ) stack.append( str(opr[x](int(__lowercase ) , int(__lowercase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(12 ) , ",".join(__lowercase ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase_ = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
418
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) # pylint: disable=invalid-name def snake_case (__lowercase ) -> Any: '''simple docstring''' if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(__lowercase ): return ext raise Exception( F"""Unable to determine file format from file extension {path}. """ F"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def snake_case (__lowercase ) -> Any: '''simple docstring''' _snake_case : int = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) _snake_case : List[Any] = try_infer_format_from_ext(args.input ) if args.format == "infer" else args.format _snake_case : Optional[int] = PipelineDataFormat.from_str( format=__lowercase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(__lowercase , __lowercase ) class lowercase_ ( __snake_case ): def __init__( self , lowercase_ , lowercase_ ): _snake_case : str = nlp _snake_case : str = reader @staticmethod def UpperCamelCase ( lowercase_ ): _snake_case : Dict = parser.add_parser("run" , help="Run a pipeline through the CLI" ) run_parser.add_argument("--task" , choices=get_supported_tasks() , help="Task to run" ) run_parser.add_argument("--input" , type=lowercase_ , help="Path to the file to use for inference" ) run_parser.add_argument("--output" , type=lowercase_ , help="Path to the file that will be used post to write results." ) run_parser.add_argument("--model" , type=lowercase_ , help="Name or path to the model to instantiate." ) run_parser.add_argument("--config" , type=lowercase_ , help="Name or path to the model's config to instantiate." ) run_parser.add_argument( "--tokenizer" , type=lowercase_ , help="Name of the tokenizer to use. (default: same as the model name)" ) run_parser.add_argument( "--column" , type=lowercase_ , help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)" , ) run_parser.add_argument( "--format" , type=lowercase_ , default="infer" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="Input format to read from" , ) run_parser.add_argument( "--device" , type=lowercase_ , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , ) run_parser.add_argument("--overwrite" , action="store_true" , help="Allow overwriting the output file." ) run_parser.set_defaults(func=lowercase_ ) def UpperCamelCase ( self ): _snake_case ,_snake_case : Tuple = self._nlp, [] for entry in self._reader: _snake_case : Optional[Any] = nlp(**lowercase_ ) if self._reader.is_multi_columns else nlp(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): outputs.append(lowercase_ ) else: outputs += output # Saving data if self._nlp.binary_output: _snake_case : str = self._reader.save_binary(lowercase_ ) logger.warning(f"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(lowercase_ )
670
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class snake_case_ : def __init__( self :int ,__snake_case :List[Any] ,__snake_case :Optional[Any]=13 ,__snake_case :Dict=7 ,__snake_case :Dict=True ,__snake_case :Tuple=True ,__snake_case :Tuple=True ,__snake_case :Optional[Any]=99 ,__snake_case :List[str]=32 ,__snake_case :Any=5 ,__snake_case :Optional[int]=4 ,__snake_case :int=37 ,__snake_case :int="gelu" ,__snake_case :Optional[Any]=0.1 ,__snake_case :Any=0.1 ,__snake_case :Union[str, Any]=5_12 ,__snake_case :str=16 ,__snake_case :str=2 ,__snake_case :int=0.02 ,__snake_case :Dict=3 ,__snake_case :Union[str, Any]=4 ,__snake_case :Dict=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :Optional[Any] ,__snake_case :str ,__snake_case :int ,__snake_case :List[Any] ,__snake_case :Dict ,*__snake_case :Dict ) -> List[Any]: a__ = OpenAIGPTModel(config=__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) a__ = model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :List[Any] ,__snake_case :str ,*__snake_case :List[Any] ) -> Union[str, Any]: a__ = OpenAIGPTLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Any ,__snake_case :Tuple ,__snake_case :Union[str, Any] ,__snake_case :List[Any] ,__snake_case :Tuple ,*__snake_case :Optional[int] ) -> List[str]: a__ = OpenAIGPTDoubleHeadsModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Tuple ,__snake_case :Optional[Any] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :Dict ,*__snake_case :str ) -> Dict: a__ = self.num_labels a__ = OpenAIGPTForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCamelCase__( self :str ) -> str: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : List[str] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) UpperCAmelCase__ : int = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly UpperCAmelCase__ : Optional[Any] = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__( self :Optional[int] ,__snake_case :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Tuple ,__snake_case :List[str] ) -> List[Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCamelCase__( self :str ,__snake_case :Optional[int] ,__snake_case :Dict ,__snake_case :Any=False ) -> Optional[Any]: a__ = super()._prepare_for_class(__snake_case ,__snake_case ,return_labels=__snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": a__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=__snake_case ,) a__ = inputs_dict['labels'] a__ = inputs_dict['labels'] a__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=__snake_case ,) a__ = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__snake_case ) return inputs_dict def lowerCamelCase__( self :Optional[Any] ) -> List[Any]: a__ = OpenAIGPTModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :List[Any] ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :List[Any] ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__snake_case ) def lowerCamelCase__( self :Optional[int] ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) def lowerCamelCase__( self :str ) -> List[str]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__snake_case ) def lowerCamelCase__( self :int ) -> Optional[int]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__snake_case ) @slow def lowerCamelCase__( self :Optional[Any] ) -> List[str]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = OpenAIGPTModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class snake_case_ (unittest.TestCase ): @slow def lowerCamelCase__( self :Union[str, Any] ) -> Optional[int]: a__ = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(__snake_case ) a__ = torch.tensor([[4_81, 47_35, 5_44]] ,dtype=torch.long ,device=__snake_case ) # the president is a__ = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
657
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class snake_case_ : def __init__( self :Optional[Any] ,__snake_case :str ,__snake_case :Optional[Any]=14 ,__snake_case :Dict=7 ,__snake_case :Optional[int]=True ,__snake_case :Optional[int]=True ,__snake_case :Dict=True ,__snake_case :List[Any]=True ,__snake_case :Optional[int]=True ,__snake_case :Any=99 ,__snake_case :List[str]=32 ,__snake_case :List[str]=5 ,__snake_case :Tuple=4 ,__snake_case :Optional[int]=37 ,__snake_case :Optional[int]="gelu" ,__snake_case :Tuple=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Dict=5_12 ,__snake_case :Union[str, Any]=16 ,__snake_case :str=2 ,__snake_case :Optional[Any]=0.02 ,__snake_case :Dict=3 ,__snake_case :Optional[Any]=4 ,__snake_case :Optional[Any]=None ,) -> Tuple: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_input_mask a__ = use_labels a__ = use_mc_token_ids a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None if self.use_mc_token_ids: a__ = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = self.get_config() a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__( self :Optional[Any] ) -> Tuple: return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def lowerCamelCase__( self :str ,__snake_case :List[str] ,__snake_case :Any ,__snake_case :Dict ,__snake_case :int ,__snake_case :Optional[Any] ,*__snake_case :List[str] ) -> List[Any]: a__ = CTRLModel(config=__snake_case ) model.to(__snake_case ) model.eval() model(__snake_case ,token_type_ids=__snake_case ,head_mask=__snake_case ) model(__snake_case ,token_type_ids=__snake_case ) a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def lowerCamelCase__( self :Optional[int] ,__snake_case :List[str] ,__snake_case :Union[str, Any] ,__snake_case :str ,__snake_case :str ,__snake_case :Dict ,*__snake_case :Dict ) -> Dict: a__ = CTRLLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCamelCase__( self :Optional[int] ,__snake_case :Tuple ,__snake_case :str ,__snake_case :str ,__snake_case :List[str] ,*__snake_case :Optional[int] ) -> List[Any]: a__ = self.num_labels a__ = CTRLForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = model(__snake_case ,token_type_ids=__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ : Any = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ : Any = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Any ,__snake_case :List[str] ,__snake_case :Dict ) -> Union[str, Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCamelCase__( self :int ) -> List[str]: a__ = CTRLModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,n_embd=37 ) def lowerCamelCase__( self :str ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Tuple ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase__( self :str ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: pass @slow def lowerCamelCase__( self :int ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = CTRLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCamelCase__( self :Dict ) -> List[str]: pass @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Union[str, Any] ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCamelCase__( self :Any ) -> Dict: a__ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__snake_case ) a__ = torch.tensor( [[1_18_59, 0, 16_11, 8]] ,dtype=torch.long ,device=__snake_case ) # Legal the president is a__ = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a a__ = model.generate(__snake_case ,do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() ,__snake_case )
657
1
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowercase_ : """simple docstring""" def __init__( self : str ,lowercase__ : str = "cpu" ,lowercase__ : str = "openai/clip-vit-large-patch14" ): __lowercase = device __lowercase = CLIPTokenizerFast.from_pretrained(lowercase__ ) __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] __lowercase = torchvision.transforms.Normalize(self.image_mean ,self.image_std ) __lowercase = torchvision.transforms.Resize(2_2_4 ) __lowercase = torchvision.transforms.CenterCrop(2_2_4 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Dict ): __lowercase = self.resize(lowercase__ ) __lowercase = self.center_crop(lowercase__ ) __lowercase = self.normalize(lowercase__ ) return images def __call__( self : List[Any] ,lowercase__ : str=None ,lowercase__ : Any=None ,**lowercase__ : List[Any] ): __lowercase = self.tokenizer(text=lowercase__ ,**lowercase__ ) __lowercase = self.preprocess_img(lowercase__ ) __lowercase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Any ,lowercase__ : Optional[int]=1_0 ,lowercase__ : Optional[Any]=0.0_1 ,lowercase__ : Optional[int]=None ,lowercase__ : Optional[Any]=None ,lowercase__ : str=None ,lowercase__ : Any=None ,lowercase__ : Optional[Any]=None ,lowercase__ : Union[str, Any]=None ,lowercase__ : Union[str, Any]=False ,lowercase__ : Optional[int]=True ,lowercase__ : Optional[Any]="image" ,lowercase__ : Tuple=True ,lowercase__ : Any=False ,lowercase__ : Optional[int]=False ,lowercase__ : Optional[int]=False ,): super().__init__() __lowercase = None __lowercase = device if device else get_device() if vqgan: __lowercase = vqgan else: __lowercase = load_vqgan(self.device ,conf_path=lowercase__ ,ckpt_path=lowercase__ ) self.vqgan.eval() if clip: __lowercase = clip else: __lowercase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) __lowercase = ProcessorGradientFlow(device=self.device ) __lowercase = iterations __lowercase = lr __lowercase = log __lowercase = make_grid __lowercase = return_val __lowercase = quantize __lowercase = self.vqgan.decoder.z_shape def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[Any]=None ,lowercase__ : Tuple=None ,lowercase__ : Dict=5 ,lowercase__ : Any=True ): __lowercase = [] if output_path is None: __lowercase = '''./animation.gif''' if input_path is None: __lowercase = self.save_path __lowercase = sorted(glob(input_path + '''/*''' ) ) if not len(lowercase__ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(lowercase__ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) __lowercase = total_duration / len(lowercase__ ) __lowercase = [frame_duration] * len(lowercase__ ) if extend_frames: __lowercase = 1.5 __lowercase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(lowercase__ ) ) imageio.mimsave(lowercase__ ,lowercase__ ,duration=lowercase__ ) print(F"gif saved to {output_path}" ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[Any]=None ,lowercase__ : str=None ): if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError __lowercase = preprocess(Image.open(lowercase__ ) ,target_image_size=2_5_6 ).to(self.device ) __lowercase = preprocess_vqgan(lowercase__ ) __lowercase , *__lowercase = self.vqgan.encode(lowercase__ ) return z def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Dict ): __lowercase = self.latent.detach().requires_grad_() __lowercase = base_latent + transform_vector if self.quantize: __lowercase , *__lowercase = self.vqgan.quantize(lowercase__ ) else: __lowercase = trans_latent return self.vqgan.decode(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : List[Any] ,lowercase__ : Optional[int]=None ): __lowercase = self.clip_preprocessor(text=lowercase__ ,images=lowercase__ ,return_tensors='''pt''' ,padding=lowercase__ ) __lowercase = self.clip(**lowercase__ ) __lowercase = clip_outputs.logits_per_image if weights is not None: __lowercase = similarity_logits * weights return similarity_logits.sum() def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Optional[Any] ,lowercase__ : Optional[int] ,lowercase__ : Optional[int] ): __lowercase = self._get_clip_similarity(pos_prompts['''prompts'''] ,lowercase__ ,weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: __lowercase = self._get_clip_similarity(neg_prompts['''prompts'''] ,lowercase__ ,weights=neg_prompts['''weights'''] ) else: __lowercase = torch.tensor([1] ,device=self.device ) __lowercase = -torch.log(lowercase__ ) + torch.log(lowercase__ ) return loss def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ,lowercase__ : str ): __lowercase = torch.randn_like(self.latent ,requires_grad=lowercase__ ,device=self.device ) __lowercase = torch.optim.Adam([vector] ,lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __lowercase = self._add_vector(lowercase__ ) __lowercase = loop_post_process(lowercase__ ) __lowercase = self._get_CLIP_loss(lowercase__ ,lowercase__ ,lowercase__ ) print('''CLIP loss''' ,lowercase__ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=lowercase__ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Union[str, Any] ): wandb.init(reinit=lowercase__ ,project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: __lowercase = Image.open(lowercase__ ) __lowercase = image.resize((2_5_6, 2_5_6) ) wandb.log('''Original Image''' ,wandb.Image(lowercase__ ) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Any ): if not prompts: return [] __lowercase = [] __lowercase = [] if isinstance(lowercase__ ,lowercase__ ): __lowercase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(lowercase__ ,(tuple, list) ): __lowercase = prompt[0] __lowercase = float(prompt[1] ) elif ":" in prompt: __lowercase , __lowercase = prompt.split(''':''' ) __lowercase = float(lowercase__ ) else: __lowercase = prompt __lowercase = 1.0 processed_prompts.append(lowercase__ ) weights.append(lowercase__ ) return { "prompts": processed_prompts, "weights": torch.tensor(lowercase__ ,device=self.device ), } def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Any ,lowercase__ : List[Any]=None ,lowercase__ : Dict=None ,lowercase__ : Optional[int]=True ,lowercase__ : str=False ,lowercase__ : Any=True ,lowercase__ : List[str]=True ,lowercase__ : int=None ,): if image_path: __lowercase = self._get_latent(lowercase__ ) else: __lowercase = torch.randn(self.latent_dim ,device=self.device ) if self.log: self._init_logging(lowercase__ ,lowercase__ ,lowercase__ ) assert pos_prompts, "You must provide at least one positive prompt." __lowercase = self.process_prompts(lowercase__ ) __lowercase = self.process_prompts(lowercase__ ) if save_final and save_path is None: __lowercase = os.path.join('''./outputs/''' ,'''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(lowercase__ ): os.makedirs(lowercase__ ) else: __lowercase = save_path + '''_''' + get_timestamp() os.makedirs(lowercase__ ) __lowercase = save_path __lowercase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(lowercase__ ) ) __lowercase = loop_post_process(lowercase__ ) for iter, transformed_img in enumerate(self._optimize_CLIP(lowercase__ ,lowercase__ ,lowercase__ ) ): if show_intermediate: show_pil(lowercase__ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path ,F"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'''Image''': wandb.Image(lowercase__ )} ) if show_final: show_pil(lowercase__ ) if save_final: transformed_img.save(os.path.join(self.save_path ,F"iter_{iter:03d}_final.png" ) )
41
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __lowerCamelCase : List[str] = """<<<<<<< This should probably be modified because it mentions: """ __lowerCamelCase : Optional[int] = """======= >>>>>>> """ __lowerCamelCase : List[str] = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] __lowerCamelCase : Optional[int] = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def __snake_case (__UpperCAmelCase ): """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowerCAmelCase__ ( _lowerCAmelCase ): @staticmethod def __UpperCamelCase ( UpperCamelCase_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ : int = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=UpperCamelCase_ ) def __init__( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : str , *UpperCamelCase_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = get_logger('''datasets-cli/converting''' ) lowerCamelCase_ : Union[str, Any] = tfds_path lowerCamelCase_ : List[Any] = datasets_directory def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" if os.path.isdir(self._tfds_path ): lowerCamelCase_ : Union[str, Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowerCamelCase_ : Any = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowerCamelCase_ : Optional[int] = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) lowerCamelCase_ : Optional[Any] = [] lowerCamelCase_ : Optional[int] = [] lowerCamelCase_ : str = {} if os.path.isdir(self._tfds_path ): lowerCamelCase_ : Any = os.listdir(UpperCamelCase_ ) else: lowerCamelCase_ : Optional[int] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) lowerCamelCase_ : Dict = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if not os.path.isfile(UpperCamelCase_ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(UpperCamelCase_ , encoding='''utf-8''' ) as f: lowerCamelCase_ : int = f.readlines() lowerCamelCase_ : Union[str, Any] = [] lowerCamelCase_ : Optional[Any] = False lowerCamelCase_ : Optional[Any] = False lowerCamelCase_ : List[Any] = [] for line in lines: lowerCamelCase_ : Any = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowerCamelCase_ : Union[str, Any] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowerCamelCase_ : Union[str, Any] = '''''' continue elif "from absl import logging" in out_line: lowerCamelCase_ : Optional[Any] = '''from datasets import logging\n''' elif "getLogger" in out_line: lowerCamelCase_ : str = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowerCamelCase_ : Optional[Any] = True lowerCamelCase_ : List[Any] = list(filter(lambda UpperCamelCase_ : e in out_line , UpperCamelCase_ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(UpperCamelCase_ ) + '''\n''' ) out_lines.append(UpperCamelCase_ ) out_lines.append(UpperCamelCase_ ) continue else: for pattern, replacement in TO_CONVERT: lowerCamelCase_ : Tuple = re.sub(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowerCamelCase_ : Optional[int] = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , UpperCamelCase_ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowerCamelCase_ : Any = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowerCamelCase_ : Tuple = True out_lines.append(UpperCamelCase_ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowerCamelCase_ : Any = f_name.replace('''.py''' , '''''' ) lowerCamelCase_ : Any = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : List[Any] = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(UpperCamelCase_ ) if needs_manual_update: with_manual_update.append(UpperCamelCase_ ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.writelines(UpperCamelCase_ ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: lowerCamelCase_ : str = os.path.basename(UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(UpperCamelCase_ , UpperCamelCase_ ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
501
0
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = get_activation("swish" ) self.assertIsInstance(UpperCAmelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = get_activation("silu" ) self.assertIsInstance(UpperCAmelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = get_activation("mish" ) self.assertIsInstance(UpperCAmelCase , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = get_activation("gelu" ) self.assertIsInstance(UpperCAmelCase , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
601
from math import sqrt def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 0 for i in range(1 , int(sqrt(__lowerCamelCase ) + 1 ) ): if n % i == 0 and i != sqrt(__lowerCamelCase ): total += i + n // i elif i == sqrt(__lowerCamelCase ): total += i return total - n def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int = 1_0000 ): '''simple docstring''' lowercase_ = sum( i for i in range(1 , __lowerCamelCase ) if sum_of_divisors(sum_of_divisors(__lowerCamelCase ) ) == i and sum_of_divisors(__lowerCamelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
601
1
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : Dict = logging.get_logger(__name__) lowerCamelCase__ : str = ["""model.decoder.embed_positions.weights"""] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]: if "emb" in name: snake_case__ = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: snake_case__ = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: snake_case__ = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: snake_case__ = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: snake_case__ = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: snake_case__ = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: snake_case__ = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: snake_case__ = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: snake_case__ = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: snake_case__ = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: snake_case__ = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple[Dict, Dict]: snake_case__ = list(state_dict.keys() ) snake_case__ = {} for key in keys: snake_case__ = state_dict.pop(__lowerCAmelCase ) snake_case__ = rename_keys(__lowerCAmelCase ) if "in_proj_weight" in key: # split fused qkv proj snake_case__ = val[:hidden_size, :] snake_case__ = val[hidden_size : 2 * hidden_size, :] snake_case__ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: snake_case__ = val else: snake_case__ = val return state_dict, enc_dec_proj_state_dict def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values snake_case__ = 1024 snake_case__ = 24 snake_case__ = 16 elif checkpoint == "medium": snake_case__ = 1536 snake_case__ = 48 snake_case__ = 24 elif checkpoint == "large": snake_case__ = 2048 snake_case__ = 48 snake_case__ = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) snake_case__ = MusicgenDecoderConfig( hidden_size=__lowerCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , ) return config @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="cpu" ) -> Union[str, Any]: snake_case__ = MusicGen.get_pretrained(__lowerCAmelCase , device=__lowerCAmelCase ) snake_case__ = decoder_config_from_checkpoint(__lowerCAmelCase ) snake_case__ = fairseq_model.lm.state_dict() snake_case__ , snake_case__ = rename_state_dict( __lowerCAmelCase , hidden_size=decoder_config.hidden_size ) snake_case__ = TaEncoderModel.from_pretrained('''t5-base''' ) snake_case__ = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) snake_case__ = MusicgenForCausalLM(__lowerCAmelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection snake_case__ , snake_case__ = decoder.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(__lowerCAmelCase ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model snake_case__ = MusicgenForConditionalGeneration(text_encoder=__lowerCAmelCase , audio_encoder=__lowerCAmelCase , decoder=__lowerCAmelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__lowerCAmelCase ) # check we can do a forward pass snake_case__ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) snake_case__ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): snake_case__ = model(input_ids=__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor snake_case__ = AutoTokenizer.from_pretrained('''t5-base''' ) snake_case__ = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) snake_case__ = MusicgenProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) # set the appropriate bos/pad token ids snake_case__ = 2048 snake_case__ = 2048 # set other default generation config params snake_case__ = int(30 * audio_encoder.config.frame_rate ) snake_case__ = True snake_case__ = 3.0 if pytorch_dump_folder is not None: Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(__lowerCAmelCase ) processor.push_to_hub(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) lowerCamelCase__ : Optional[int] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
33
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = DanceDiffusionPipeline _lowerCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } _lowerCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _lowerCAmelCase = False _lowerCAmelCase = False def a ( self ): torch.manual_seed(0 ) _UpperCamelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=A_ , use_timestep_embedding=A_ , time_embedding_type="fourier" , mid_block_type="UNetMidBlock1D" , down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , ) _UpperCamelCase = IPNDMScheduler() _UpperCamelCase = { "unet": unet, "scheduler": scheduler, } return components def a ( self , A_ , A_=0 ): if str(A_ ).startswith("mps" ): _UpperCamelCase = torch.manual_seed(A_ ) else: _UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) _UpperCamelCase = { "batch_size": 1, "generator": generator, "num_inference_steps": 4, } return inputs def a ( self ): _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = DanceDiffusionPipeline(**A_ ) _UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _UpperCamelCase = self.get_dummy_inputs(A_ ) _UpperCamelCase = pipe(**A_ ) _UpperCamelCase = output.audios _UpperCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCamelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def a ( self ): return super().test_save_load_local() @skip_mps def a ( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def a ( self ): return super().test_save_load_optional_components() @skip_mps def a ( self ): return super().test_attention_slicing_forward_pass() def a ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): _UpperCamelCase = torch_device _UpperCamelCase = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ) _UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe(generator=A_ , num_inference_steps=1_00 , audio_length_in_s=4.096 ) _UpperCamelCase = output.audios _UpperCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCamelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self ): _UpperCamelCase = torch_device _UpperCamelCase = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe(generator=A_ , num_inference_steps=1_00 , audio_length_in_s=4.096 ) _UpperCamelCase = output.audios _UpperCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCamelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
138
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: Optional[int] = StableDiffusionPanoramaPipeline __magic_name__: Optional[Any] = TEXT_TO_IMAGE_PARAMS __magic_name__: Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS __magic_name__: Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS __magic_name__: Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) snake_case_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) snake_case_ : str = DDIMScheduler() torch.manual_seed(0 ) snake_case_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) snake_case_ : Any = CLIPTextModel(__UpperCamelCase ) snake_case_ : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case_ : Any = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase_ ( self : int , _A : Any , _A : Optional[int]=0 ) -> Tuple: """simple docstring""" snake_case_ : List[str] = torch.manual_seed(__UpperCamelCase ) snake_case_ : List[str] = { 'prompt': 'a photo of the dolomites', 'generator': generator, # Setting height and width to None to prevent OOMs on CPU. 'height': None, 'width': None, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCAmelCase_ ( self : int ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ : List[str] = self.get_dummy_components() snake_case_ : Union[str, Any] = StableDiffusionPanoramaPipeline(**__UpperCamelCase ) snake_case_ : Union[str, Any] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ : str = self.get_dummy_inputs(__UpperCamelCase ) snake_case_ : List[Any] = sd_pipe(**__UpperCamelCase ).images snake_case_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[Any] = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def UpperCAmelCase_ ( self : int ) -> Optional[int]: """simple docstring""" snake_case_ : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ : List[str] = self.get_dummy_components() snake_case_ : List[Any] = StableDiffusionPanoramaPipeline(**__UpperCamelCase ) snake_case_ : List[Any] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ : List[str] = self.get_dummy_inputs(__UpperCamelCase ) snake_case_ : Optional[Any] = 'french fries' snake_case_ : Union[str, Any] = sd_pipe(**__UpperCamelCase , negative_prompt=__UpperCamelCase ) snake_case_ : List[Any] = output.images snake_case_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[Any] = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ : List[Any] = self.get_dummy_components() snake_case_ : str = StableDiffusionPanoramaPipeline(**__UpperCamelCase ) snake_case_ : List[str] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ : Optional[Any] = self.get_dummy_inputs(__UpperCamelCase ) snake_case_ : Any = sd_pipe(**__UpperCamelCase , view_batch_size=2 ) snake_case_ : Tuple = output.images snake_case_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[str] = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case_ : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ : List[Any] = self.get_dummy_components() snake_case_ : Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' ) snake_case_ : Optional[int] = StableDiffusionPanoramaPipeline(**__UpperCamelCase ) snake_case_ : int = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ : Optional[int] = self.get_dummy_inputs(__UpperCamelCase ) snake_case_ : Tuple = sd_pipe(**__UpperCamelCase ).images snake_case_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : int = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : str ) -> Tuple: """simple docstring""" snake_case_ : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ : int = self.get_dummy_components() snake_case_ : int = PNDMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , skip_prk_steps=__UpperCamelCase ) snake_case_ : List[str] = StableDiffusionPanoramaPipeline(**__UpperCamelCase ) snake_case_ : Optional[int] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ : List[Any] = self.get_dummy_inputs(__UpperCamelCase ) snake_case_ : Dict = sd_pipe(**__UpperCamelCase ).images snake_case_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[str] = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Any , _A : str=0 ) -> Optional[int]: """simple docstring""" snake_case_ : List[Any] = torch.manual_seed(__UpperCamelCase ) snake_case_ : str = { 'prompt': 'a photo of the dolomites', 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: """simple docstring""" snake_case_ : Any = 'stabilityai/stable-diffusion-2-base' snake_case_ : Tuple = DDIMScheduler.from_pretrained(__UpperCamelCase , subfolder='scheduler' ) snake_case_ : int = StableDiffusionPanoramaPipeline.from_pretrained(__UpperCamelCase , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case_ : int = self.get_inputs() snake_case_ : List[str] = pipe(**__UpperCamelCase ).images snake_case_ : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) snake_case_ : str = np.array( [ 0.3_6_9_6_8_3_9_2, 0.2_7_0_2_5_3_7_2, 0.3_2_4_4_6_7_6_6, 0.2_8_3_7_9_3_8_7, 0.3_6_3_6_3_2_7_4, 0.3_0_7_3_3_3_4_7, 0.2_7_1_0_0_0_2_7, 0.2_7_0_5_4_1_2_5, 0.2_5_5_3_6_0_9_6, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" snake_case_ : List[str] = StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base' , safety_checker=__UpperCamelCase ) snake_case_ : Optional[int] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case_ : Any = self.get_inputs() snake_case_ : Optional[int] = pipe(**__UpperCamelCase ).images snake_case_ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) snake_case_ : int = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ : Union[str, Any] = 0 def callback_fn(_A : int , _A : int , _A : torch.FloatTensor ) -> None: snake_case_ : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case_ : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) snake_case_ : List[Any] = latents[0, -3:, -3:, -1] snake_case_ : Tuple = np.array( [ 0.1_8_6_8_1_8_6_9, 0.3_3_9_0_7_8_1_6, 0.5_3_6_1_2_7_6, 0.1_4_4_3_2_8_6_5, -0.0_2_8_5_6_6_1_1, -0.7_3_9_4_1_1_2_3, 0.2_3_3_9_7_9_8_7, 0.4_7_3_2_2_6_8_2, -0.3_7_8_2_3_1_6_4, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: snake_case_ : Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) snake_case_ : Any = latents[0, -3:, -3:, -1] snake_case_ : Any = np.array( [ 0.1_8_5_3_9_6_4_5, 0.3_3_9_8_7_2_4_8, 0.5_3_7_8_5_5_9, 0.1_4_4_3_7_1_4_2, -0.0_2_4_5_5_2_6_1, -0.7_3_3_8_3_1_7, 0.2_3_9_9_0_7_5_5, 0.4_7_3_5_6_2_7_2, -0.3_7_8_6_5_0_5, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 snake_case_ : Any = False snake_case_ : Dict = 'stabilityai/stable-diffusion-2-base' snake_case_ : Dict = DDIMScheduler.from_pretrained(__UpperCamelCase , subfolder='scheduler' ) snake_case_ : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(__UpperCamelCase , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase ) snake_case_ : Optional[Any] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case_ : str = self.get_inputs() pipe(**__UpperCamelCase , callback=__UpperCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ : List[Any] = 'stabilityai/stable-diffusion-2-base' snake_case_ : int = DDIMScheduler.from_pretrained(__UpperCamelCase , subfolder='scheduler' ) snake_case_ : List[str] = StableDiffusionPanoramaPipeline.from_pretrained(__UpperCamelCase , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase ) snake_case_ : Tuple = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case_ : int = self.get_inputs() snake_case_ : Tuple = pipe(**__UpperCamelCase ) snake_case_ : List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
707
from __future__ import annotations from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: float __magic_name__: TreeNode | None = None __magic_name__: TreeNode | None = None def SCREAMING_SNAKE_CASE__ ( __a ): # Validation def is_valid_tree(__a ) -> bool: if node is None: return True if not isinstance(__a , __a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( 'Each node should be type of TreeNode and data should be float.' ) def is_binary_search_tree_recursive_check( __a , __a , __a ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , __a , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , __a ) ) return is_binary_search_tree_recursive_check(__a , -float('inf' ) , float('inf' ) ) if __name__ == "__main__": import doctest doctest.testmod()
534
0
from __future__ import annotations from typing import Any class lowerCamelCase__ ( _A): """simple docstring""" pass class lowerCamelCase__ : """simple docstring""" def __init__( self : int , __lowerCAmelCase : Any ) -> None: _A = data _A = None def __iter__( self : int ) -> Optional[Any]: _A = self _A = [] while node: if node in visited: raise ContainsLoopError visited.append(__lowerCAmelCase ) yield node.data _A = node.next_node @property def snake_case_ ( self : str ) -> bool: try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": UpperCAmelCase_ = Node(1) UpperCAmelCase_ = Node(2) UpperCAmelCase_ = Node(3) UpperCAmelCase_ = Node(4) print(root_node.has_loop) # False UpperCAmelCase_ = root_node.next_node print(root_node.has_loop) # True UpperCAmelCase_ = Node(5) UpperCAmelCase_ = Node(6) UpperCAmelCase_ = Node(5) UpperCAmelCase_ = Node(6) print(root_node.has_loop) # False UpperCAmelCase_ = Node(1) print(root_node.has_loop) # False
2
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A : Optional[Any] = '''pt''' elif is_tf_available(): A : List[Any] = '''tf''' else: A : Union[str, Any] = '''jax''' class A (SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = ByTaTokenizer __lowerCamelCase : Tuple = False def a_ ( self : Dict ) -> Dict: """simple docstring""" super().setUp() A__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a_ ( self : Dict ) -> List[Any]: """simple docstring""" return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def a_ ( self : Union[str, Any] , **__lowerCAmelCase : int ) -> ByTaTokenizer: """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Dict=20 , __lowerCAmelCase : List[str]=5 ) -> Tuple[str, list]: """simple docstring""" A__ = [] for i in range(len(__lowerCAmelCase ) ): try: A__ = tokenizer.decode([i] , clean_up_tokenization_spaces=__lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) A__ = list(filter(lambda __lowerCAmelCase : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , __lowerCAmelCase ) ) A__ = list(filter(lambda __lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__lowerCAmelCase ) , __lowerCAmelCase ) ) if max_length is not None and len(__lowerCAmelCase ) > max_length: A__ = toks[:max_length] if min_length is not None and len(__lowerCAmelCase ) < min_length and len(__lowerCAmelCase ) > 0: while len(__lowerCAmelCase ) < min_length: A__ = toks + toks # toks_str = [t[1] for t in toks] A__ = [t[0] for t in toks] # Ensure consistency A__ = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) if " " not in output_txt and len(__lowerCAmelCase ) > 1: A__ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowerCAmelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowerCAmelCase ) ) if with_prefix_space: A__ = """ """ + output_txt A__ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) return output_txt, output_ids def a_ ( self : List[str] ) -> int: """simple docstring""" A__ = self.ta_base_tokenizer A__ = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) A__ = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def a_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" A__ = self.ta_base_tokenizer A__ = """Unicode €.""" A__ = tokenizer(__lowerCAmelCase ) A__ = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded["""input_ids"""] , __lowerCAmelCase ) # decoding A__ = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , """Unicode €.</s>""" ) A__ = tokenizer("""e è é ê ë""" ) A__ = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded["""input_ids"""] , __lowerCAmelCase ) # decoding A__ = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def a_ ( self : Dict ) -> Optional[int]: """simple docstring""" A__ = self.ta_base_tokenizer A__ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off A__ = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on A__ = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) if FRAMEWORK != "jax": A__ = list(batch.input_ids.numpy()[0] ) else: A__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def a_ ( self : Optional[Any] ) -> List[str]: """simple docstring""" A__ = self.ta_base_tokenizer A__ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] A__ = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , __lowerCAmelCase ) self.assertIn("""attention_mask""" , __lowerCAmelCase ) self.assertNotIn("""decoder_input_ids""" , __lowerCAmelCase ) self.assertNotIn("""decoder_attention_mask""" , __lowerCAmelCase ) def a_ ( self : int ) -> Any: """simple docstring""" A__ = self.ta_base_tokenizer A__ = [ """Summary of the text.""", """Another summary.""", ] A__ = tokenizer( text_target=__lowerCAmelCase , max_length=32 , padding="""max_length""" , truncation=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def a_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" A__ = self.ta_base_tokenizer A__ = ["""A long paragraph for summarization. </s>"""] A__ = ["""Summary of the text. </s>"""] # fmt: off A__ = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] A__ = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on A__ = tokenizer(__lowerCAmelCase , text_target=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , batch["""input_ids"""][0] ) self.assertEqual(__lowerCAmelCase , batch["""labels"""][0] ) def a_ ( self : str ) -> Dict: """simple docstring""" A__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test A__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc A__ = tempfile.mkdtemp() A__ = """ He is very happy, UNwant\u00E9d,running""" A__ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) A__ = tokenizer.__class__.from_pretrained(__lowerCAmelCase ) A__ = after_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) shutil.rmtree(__lowerCAmelCase ) A__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc A__ = tempfile.mkdtemp() A__ = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) A__ = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) A__ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) A__ = tokenizer.__class__.from_pretrained(__lowerCAmelCase ) A__ = after_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) A__ = tokenizer.__class__.from_pretrained(__lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCAmelCase ) def a_ ( self : Optional[int] ) -> str: """simple docstring""" A__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: A__ = json.load(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: A__ = json.load(__lowerCAmelCase ) A__ = [f'<extra_id_{i}>' for i in range(1_25 )] A__ = added_tokens_extra_ids + [ """an_additional_special_token""" ] A__ = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(__lowerCAmelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__lowerCAmelCase , __lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__lowerCAmelCase , __lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files A__ = tokenizer_class.from_pretrained( __lowerCAmelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained A__ = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=__lowerCAmelCase )] A__ = tokenizer_class.from_pretrained( __lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def a_ ( self : Tuple ) -> Optional[Any]: """simple docstring""" A__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCAmelCase ) A__ = tokenizer_class.from_pretrained(__lowerCAmelCase ) self.assertTrue(tokenizer.decode([2_55] ) == """""" ) def a_ ( self : List[Any] ) -> Tuple: """simple docstring""" pass def a_ ( self : Optional[int] ) -> Any: """simple docstring""" pass def a_ ( self : int ) -> Optional[Any]: """simple docstring""" pass def a_ ( self : str ) -> Optional[int]: """simple docstring""" pass def a_ ( self : int ) -> Dict: """simple docstring""" A__ = self.get_tokenizers(fast=__lowerCAmelCase , do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): A__ = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] A__ = tokenizer.convert_tokens_to_string(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : List[Any] ) -> int: """simple docstring""" A__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): A__ = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] A__ = 0 A__ = tokenizer.convert_ids_to_tokens( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) for attr in attributes_list: setattr(__lowerCAmelCase , attr + """_id""" , __lowerCAmelCase ) self.assertEqual(getattr(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(getattr(__lowerCAmelCase , attr + """_id""" ) , __lowerCAmelCase ) setattr(__lowerCAmelCase , attr + """_id""" , __lowerCAmelCase ) self.assertEqual(getattr(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(getattr(__lowerCAmelCase , attr + """_id""" ) , __lowerCAmelCase ) setattr(__lowerCAmelCase , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__lowerCAmelCase , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__lowerCAmelCase , """additional_special_tokens_ids""" ) , [] ) setattr(__lowerCAmelCase , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(__lowerCAmelCase , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(__lowerCAmelCase , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
176
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE_ = { '''unc-nlp/lxmert-base-uncased''': 512, } SCREAMING_SNAKE_CASE_ = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = LxmertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[Any]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(snake_case_ , normalizer_state.pop("""type""" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**snake_case_ ) __lowerCAmelCase = do_lower_case def A__ ( self , snake_case_ , snake_case_=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
711
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = KandinskyInpaintPipeline _snake_case = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _snake_case = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _snake_case = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case = False @property def A__ ( self ) -> Any: return 32 @property def A__ ( self ) -> Tuple: return 32 @property def A__ ( self ) -> List[str]: return self.time_input_dim @property def A__ ( self ) -> int: return self.time_input_dim * 4 @property def A__ ( self ) -> Optional[int]: return 100 @property def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self ) -> Tuple: torch.manual_seed(0 ) __lowerCAmelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) __lowerCAmelCase = MultilingualCLIP(snake_case_ ) __lowerCAmelCase = text_encoder.eval() return text_encoder @property def A__ ( self ) -> Dict: torch.manual_seed(0 ) __lowerCAmelCase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __lowerCAmelCase = UNetaDConditionModel(**snake_case_ ) return model @property def A__ ( self ) -> Optional[int]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self ) -> Dict: torch.manual_seed(0 ) __lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self ) -> Tuple: __lowerCAmelCase = self.dummy_text_encoder __lowerCAmelCase = self.dummy_tokenizer __lowerCAmelCase = self.dummy_unet __lowerCAmelCase = self.dummy_movq __lowerCAmelCase = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=snake_case_ , ) __lowerCAmelCase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self , snake_case_ , snake_case_=0 ) -> List[Any]: __lowerCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) __lowerCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(snake_case_ ) # create init_image __lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(snake_case_ ) ).convert("""RGB""" ).resize((256, 256) ) # create mask __lowerCAmelCase = np.ones((64, 64) , dtype=np.floataa ) __lowerCAmelCase = 0 if str(snake_case_ ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(snake_case_ ) else: __lowerCAmelCase = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) __lowerCAmelCase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self ) -> Dict: __lowerCAmelCase = """cpu""" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**snake_case_ ) __lowerCAmelCase = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(snake_case_ ) ) __lowerCAmelCase = output.images __lowerCAmelCase = pipe( **self.get_dummy_inputs(snake_case_ ) , return_dict=snake_case_ , )[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def A__ ( self ) -> Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> List[Any]: __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __lowerCAmelCase = np.ones((768, 768) , dtype=np.floataa ) __lowerCAmelCase = 0 __lowerCAmelCase = """a hat""" __lowerCAmelCase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case_ ) __lowerCAmelCase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __lowerCAmelCase = pipeline.to(snake_case_ ) pipeline.set_progress_bar_config(disable=snake_case_ ) __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase = pipe_prior( snake_case_ , generator=snake_case_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __lowerCAmelCase = pipeline( snake_case_ , image=snake_case_ , mask_image=snake_case_ , image_embeds=snake_case_ , negative_image_embeds=snake_case_ , generator=snake_case_ , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) __lowerCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case_ , snake_case_ )
573
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'google/vit-base-patch16-224': 'https://huggingface.co/vit-base-patch16-224/resolve/main/config.json', # See all ViT models at https://huggingface.co/models?filter=vit } class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="vit" def __init__( self , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=2_24 , UpperCamelCase_=16 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=16 , **UpperCamelCase_ , ) -> Any: super().__init__(**UpperCamelCase_ ) __lowercase : Tuple = hidden_size __lowercase : List[str] = num_hidden_layers __lowercase : List[Any] = num_attention_heads __lowercase : List[str] = intermediate_size __lowercase : str = hidden_act __lowercase : Optional[Any] = hidden_dropout_prob __lowercase : Any = attention_probs_dropout_prob __lowercase : Optional[Any] = initializer_range __lowercase : int = layer_norm_eps __lowercase : Optional[int] = image_size __lowercase : List[str] = patch_size __lowercase : Union[str, Any] = num_channels __lowercase : str = qkv_bias __lowercase : int = encoder_stride class UpperCAmelCase_ ( snake_case ): UpperCamelCase =version.parse("1.11" ) @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowerCamelCase ( self ) -> float: return 1E-4
76
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = '▁' a_ = {'vocab_file': 'sentencepiece.bpe.model'} a_ = { 'vocab_file': { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model' ), } } a_ = { 'xlm-roberta-base': 5_1_2, 'xlm-roberta-large': 5_1_2, 'xlm-roberta-large-finetuned-conll02-dutch': 5_1_2, 'xlm-roberta-large-finetuned-conll02-spanish': 5_1_2, 'xlm-roberta-large-finetuned-conll03-english': 5_1_2, 'xlm-roberta-large-finetuned-conll03-german': 5_1_2, } class UpperCAmelCase_ ( snake_case ): UpperCamelCase =VOCAB_FILES_NAMES UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase =["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __lowercase : List[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __lowercase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __lowercase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __lowercase : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowercase : List[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowercase : Tuple = 1 __lowercase : Any = len(self.sp_model ) + self.fairseq_offset __lowercase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Optional[Any]: __lowercase : int = self.__dict__.copy() __lowercase : int = None __lowercase : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ) -> Tuple: __lowercase : List[str] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowercase : str = {} __lowercase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase : Dict = [self.cls_token_id] __lowercase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> List[int]: __lowercase : Optional[Any] = [self.sep_token_id] __lowercase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCamelCase ( self ) -> Dict: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _lowerCamelCase ( self ) -> str: __lowercase : List[str] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCamelCase ( self , UpperCamelCase_ ) -> List[str]: return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> str: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowercase : Optional[Any] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowerCamelCase ( self , UpperCamelCase_ ) -> Tuple: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Dict: __lowercase : Tuple = ''''''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ''' ''' ).strip() return out_string def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase : List[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: __lowercase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
76
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __UpperCamelCase : Dict = logging.get_logger(__name__) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE__, (list, tuple) ) and isinstance(videos[0], (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE__, (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): __a =["pixel_values"] def __init__( self , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = 1 / 255 , lowerCamelCase = True , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ) ->None: '''simple docstring''' super().__init__(**lowerCamelCase ) __a = size if size is not None else {'shortest_edge': 256} __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) __a = crop_size if crop_size is not None else {'height': 224, 'width': 224} __a = get_size_dict(lowerCamelCase , param_name='crop_size' ) __a = do_resize __a = size __a = do_center_crop __a = crop_size __a = resample __a = do_rescale __a = rescale_factor __a = offset __a = do_normalize __a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = None , **lowerCamelCase , ) ->np.ndarray: '''simple docstring''' __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "shortest_edge" in size: __a = get_resize_output_image_size(lowerCamelCase , size['shortest_edge'] , default_to_square=lowerCamelCase ) elif "height" in size and "width" in size: __a = (size['height'], size['width']) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ) ->np.ndarray: '''simple docstring''' __a = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(lowerCamelCase , size=(size['height'], size['width']) , data_format=lowerCamelCase , **lowerCamelCase ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , lowerCamelCase = None , **lowerCamelCase , ) ->Optional[Any]: '''simple docstring''' __a = image.astype(np.floataa ) if offset: __a = image - (scale / 2) return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ) ->np.ndarray: '''simple docstring''' return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , ) ->np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. __a = to_numpy_array(lowerCamelCase ) if do_resize: __a = self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) if do_center_crop: __a = self.center_crop(lowerCamelCase , size=lowerCamelCase ) if do_rescale: __a = self.rescale(image=lowerCamelCase , scale=lowerCamelCase , offset=lowerCamelCase ) if do_normalize: __a = self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) __a = to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) return image def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) ->PIL.Image.Image: '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = resample if resample is not None else self.resample __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = offset if offset is not None else self.offset __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(lowerCamelCase , param_name='crop_size' ) if not valid_images(lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) __a = make_batched(lowerCamelCase ) __a = [ [ self._preprocess_image( image=lowerCamelCase , do_resize=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , do_center_crop=lowerCamelCase , crop_size=lowerCamelCase , do_rescale=lowerCamelCase , rescale_factor=lowerCamelCase , offset=lowerCamelCase , do_normalize=lowerCamelCase , image_mean=lowerCamelCase , image_std=lowerCamelCase , data_format=lowerCamelCase , ) for img in video ] for video in videos ] __a = {'pixel_values': videos} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
270
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) @dataclass class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): __a =[ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **lowerCamelCase ) ->List[Any]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __a = deprecated_arg[3:] setattr(self , lowerCamelCase , not kwargs.pop(lowerCamelCase ) ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) __a = kwargs.pop('torchscript' , self.torchscript ) __a = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics ) __a = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level ) super().__init__(**lowerCamelCase ) __a =field(default=_lowerCAmelCase , metadata={"help": "Trace the models using torchscript"} ) __a =field(default=_lowerCAmelCase , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) __a =field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def __UpperCamelCase ( self ) ->Tuple["torch.device", int]: '''simple docstring''' requires_backends(self , ['torch'] ) logger.info('PyTorch: setting up devices' ) if not self.cuda: __a = torch.device('cpu' ) __a = 0 elif is_torch_tpu_available(): __a = xm.xla_device() __a = 0 else: __a = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __a = torch.cuda.device_count() return device, n_gpu @property def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def __UpperCamelCase ( self ) ->int: '''simple docstring''' requires_backends(self , ['torch'] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __UpperCamelCase ( self ) ->"torch.device": '''simple docstring''' requires_backends(self , ['torch'] ) return self._setup_devices[0] @property def __UpperCamelCase ( self ) ->List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) return self._setup_devices[1] @property def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' return self.n_gpu > 0
270
1
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _lowercase : List[Any] =argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--original_config_file", type=str, required=True, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--image_size", default=512, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") def lowerCAmelCase_ ( _lowercase : Optional[Any]) -> int: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F'''could not parse string as bool {string}''') parser.add_argument( "--use_linear_projection", help="Override for use linear projection", required=False, type=parse_bool ) parser.add_argument("--cross_attention_dim", help="Override for cross attention_dim", required=False, type=int) _lowercase : Dict =parser.parse_args() _lowercase : Optional[Any] =download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
136
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class _a ( __a ): """simple docstring""" A_ = '''camembert''' def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any]=30_522 , lowercase_ : Optional[Any]=768 , lowercase_ : Tuple=12 , lowercase_ : Dict=12 , lowercase_ : Tuple=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : List[Any]=512 , lowercase_ : Optional[int]=2 , lowercase_ : str=0.0_2 , lowercase_ : int=1e-12 , lowercase_ : str=1 , lowercase_ : List[str]=0 , lowercase_ : int=2 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[Any]=True , lowercase_ : List[Any]=None , **lowercase_ : int , ): '''simple docstring''' super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = hidden_act lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache lowercase_ = classifier_dropout class _a ( __a ): """simple docstring""" @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
451
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel SCREAMING_SNAKE_CASE__ = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def A ( __UpperCamelCase , __UpperCamelCase=False ) -> Tuple: A__ , A__ = create_model( 'HTSAT-tiny' , 'roberta' , __UpperCamelCase , precision='fp32' , device='cuda:0' if torch.cuda.is_available() else 'cpu' , enable_fusion=__UpperCamelCase , fusion_type='aff_2d' if enable_fusion else None , ) return model, model_cfg def A ( __UpperCamelCase ) -> Any: A__ = {} A__ = r'.*sequential.(\d+).*' A__ = r'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: A__ = key.replace(__UpperCamelCase , __UpperCamelCase ) if re.match(__UpperCamelCase , __UpperCamelCase ): # replace sequential layers with list A__ = re.match(__UpperCamelCase , __UpperCamelCase ).group(1 ) A__ = key.replace(f'''sequential.{sequential_layer}.''' , f'''layers.{int(__UpperCamelCase )//3}.linear.''' ) elif re.match(__UpperCamelCase , __UpperCamelCase ): A__ = int(re.match(__UpperCamelCase , __UpperCamelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... A__ = 1 if projecton_layer == 0 else 2 A__ = key.replace(f'''_projection.{projecton_layer}.''' , f'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value A__ = value A__ = mixed_qkv.size(0 ) // 3 A__ = mixed_qkv[:qkv_dim] A__ = mixed_qkv[qkv_dim : qkv_dim * 2] A__ = mixed_qkv[qkv_dim * 2 :] A__ = query_layer A__ = key_layer A__ = value_layer else: A__ = value return model_state_dict def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> Union[str, Any]: A__ , A__ = init_clap(__UpperCamelCase , enable_fusion=__UpperCamelCase ) clap_model.eval() A__ = clap_model.state_dict() A__ = rename_state_dict(__UpperCamelCase ) A__ = ClapConfig() A__ = enable_fusion A__ = ClapModel(__UpperCamelCase ) # ignore the spectrogram embedding layer model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) transformers_config.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
52
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase ) -> YolosConfig: A__ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: A__ = 192 A__ = 768 A__ = 12 A__ = 3 A__ = [800, 1_333] A__ = False elif yolos_name == "yolos_s_dWr": A__ = 330 A__ = 14 A__ = 6 A__ = 1_320 elif "yolos_s" in yolos_name: A__ = 384 A__ = 1_536 A__ = 12 A__ = 6 elif "yolos_b" in yolos_name: A__ = [800, 1_344] A__ = 91 A__ = 'huggingface/label-files' A__ = 'coco-detection-id2label.json' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} return config def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = False ) -> str: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) A__ = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[: config.hidden_size, :] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[-config.hidden_size :, :] A__ = in_proj_bias[-config.hidden_size :] def A ( __UpperCamelCase ) -> str: if "backbone" in name: A__ = name.replace('backbone' , 'vit' ) if "cls_token" in name: A__ = name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: A__ = name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: A__ = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: A__ = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: A__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: A__ = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: A__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: A__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A__ = name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: A__ = name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: A__ = name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: A__ = name.replace('vit.norm' , 'vit.layernorm' ) return name def A ( __UpperCamelCase , __UpperCamelCase ) -> dict: for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(__UpperCamelCase ) if "qkv" in key: A__ = key.split('.' ) A__ = int(key_split[2] ) A__ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: A__ = val[:dim, :] A__ = val[ dim : dim * 2, : ] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = val return orig_state_dict def A ( ) -> torch.Tensor: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = False ) -> List[str]: A__ = get_yolos_config(__UpperCamelCase ) # load original state_dict A__ = torch.load(__UpperCamelCase , map_location='cpu' )['model'] # load 🤗 model A__ = YolosForObjectDetection(__UpperCamelCase ) model.eval() A__ = convert_state_dict(__UpperCamelCase , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by YolosImageProcessor A__ = 800 if yolos_name != 'yolos_ti' else 512 A__ = YolosImageProcessor(format='coco_detection' , size=__UpperCamelCase ) A__ = image_processor(images=prepare_img() , return_tensors='pt' ) A__ = model(**__UpperCamelCase ) A__ , A__ = outputs.logits, outputs.pred_boxes A__ , A__ = None, None if yolos_name == "yolos_ti": A__ = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) A__ = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": A__ = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) A__ = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": A__ = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) A__ = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": A__ = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) A__ = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": A__ = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) A__ = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , __UpperCamelCase , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __UpperCamelCase , atol=1E-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: A__ = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) A__ = model_mapping[yolos_name] image_processor.push_to_hub(__UpperCamelCase , organization='hustvl' ) model.push_to_hub(__UpperCamelCase , organization='hustvl' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
52
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( snake_case , unittest.TestCase ): UpperCamelCase__ = DiTPipeline UpperCamelCase__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS UpperCamelCase__ = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } UpperCamelCase__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS UpperCamelCase__ = False def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) __magic_name__ : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_a , activation_fn="gelu-approximate" , num_embeds_ada_norm=1_000 , norm_type="ada_norm_zero" , norm_elementwise_affine=_a , ) __magic_name__ : int = AutoencoderKL() __magic_name__ : str = DDIMScheduler() __magic_name__ : int = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def SCREAMING_SNAKE_CASE ( self , _a , _a=0 ): if str(_a ).startswith("mps" ): __magic_name__ : str = torch.manual_seed(_a ) else: __magic_name__ : Optional[Any] = torch.Generator(device=_a ).manual_seed(_a ) __magic_name__ : Dict = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = "cpu" __magic_name__ : Optional[int] = self.get_dummy_components() __magic_name__ : Any = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __magic_name__ : Tuple = self.get_dummy_inputs(_a ) __magic_name__ : Any = pipe(**_a ).images __magic_name__ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __magic_name__ : List[Any] = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) __magic_name__ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE ( self ): self._test_inference_batch_single_identical(relax_max_difference=_a , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = torch.manual_seed(0 ) __magic_name__ : Optional[int] = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) __magic_name__ : int = ["vase", "umbrella", "white shark", "white wolf"] __magic_name__ : str = pipe.get_label_ids(_a ) __magic_name__ : Dict = pipe(_a , generator=_a , num_inference_steps=40 , output_type="np" ).images for word, image in zip(_a , _a ): __magic_name__ : int = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : str = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) __magic_name__ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) __magic_name__ : List[str] = ["vase", "umbrella"] __magic_name__ : Any = pipe.get_label_ids(_a ) __magic_name__ : List[str] = torch.manual_seed(0 ) __magic_name__ : Optional[Any] = pipe(_a , generator=_a , num_inference_steps=25 , output_type="np" ).images for word, image in zip(_a , _a ): __magic_name__ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
124
def lowerCAmelCase_ ( _snake_case : str , _snake_case : str ) -> float: '''simple docstring''' def get_matched_characters(_snake_case : str , _snake_case : str ) -> str: __magic_name__ : str = [] __magic_name__ : Optional[Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __magic_name__ : str = int(max(0 , i - limit ) ) __magic_name__ : Dict = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_snake_case ) __magic_name__ : Dict = F'''{_stra[0:_stra.index(_snake_case )]} {_stra[_stra.index(_snake_case ) + 1:]}''' return "".join(_snake_case ) # matching characters __magic_name__ : List[Any] = get_matched_characters(_snake_case , _snake_case ) __magic_name__ : Any = get_matched_characters(_snake_case , _snake_case ) __magic_name__ : List[str] = len(_snake_case ) # transposition __magic_name__ : Tuple = ( len([(ca, ca) for ca, ca in zip(_snake_case , _snake_case ) if ca != ca] ) // 2 ) if not match_count: __magic_name__ : Tuple = 0.0 else: __magic_name__ : List[str] = ( 1 / 3 * ( match_count / len(_snake_case ) + match_count / len(_snake_case ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __magic_name__ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
124
1
'''simple docstring''' def lowercase_ ( lowercase__ ) ->list[int]: _snake_case: int = len(lowercase__ ) for i in range(lowercase__ ): for j in range(i + 1 , lowercase__ ): if numbers[j] < numbers[i]: _snake_case , _snake_case: List[str] = numbers[j], numbers[i] return numbers if __name__ == "__main__": A : List[Any] = input('Enter numbers separated by a comma:\n').strip() A : Dict = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
273
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar A : str = TypeVar('T') class lowerCamelCase ( Generic[T] ): _SCREAMING_SNAKE_CASE = 42 # Cache store of keys _SCREAMING_SNAKE_CASE = 42 # References of the keys in cache _SCREAMING_SNAKE_CASE = 10 # Maximum capacity of cache def __init__( self : List[Any] , __snake_case : int ): '''simple docstring''' _snake_case: Dict = deque() _snake_case: Union[str, Any] = set() if not n: _snake_case: Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: _snake_case: Tuple = n def SCREAMING_SNAKE_CASE_ ( self : Any , __snake_case : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _snake_case: int = self.dq_store.pop() self.key_reference.remove(__snake_case ) else: self.dq_store.remove(__snake_case ) self.dq_store.appendleft(__snake_case ) self.key_reference.add(__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' for k in self.dq_store: print(__snake_case ) def __repr__( self : List[Any] ): '''simple docstring''' return f'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() A : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
273
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : List[str] = """conditional_detr""" _UpperCamelCase : Optional[int] = ["""past_key_values"""] _UpperCamelCase : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=3 , _lowerCAmelCase=3_0_0 , _lowerCAmelCase=6 , _lowerCAmelCase=2_0_4_8 , _lowerCAmelCase=8 , _lowerCAmelCase=6 , _lowerCAmelCase=2_0_4_8 , _lowerCAmelCase=8 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase="relu" , _lowerCAmelCase=2_5_6 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1.0 , _lowerCAmelCase=False , _lowerCAmelCase="sine" , _lowerCAmelCase="resnet50" , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=0.25 , **_lowerCAmelCase , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _lowercase : int = CONFIG_MAPPING["resnet"](out_features=['stage4'] ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = backbone_config.get('model_type' ) _lowercase : List[Any] = CONFIG_MAPPING[backbone_model_type] _lowercase : Union[str, Any] = config_class.from_dict(_lowerCAmelCase ) _lowercase : str = use_timm_backbone _lowercase : List[str] = backbone_config _lowercase : Union[str, Any] = num_channels _lowercase : Any = num_queries _lowercase : Optional[int] = d_model _lowercase : Union[str, Any] = encoder_ffn_dim _lowercase : Tuple = encoder_layers _lowercase : List[str] = encoder_attention_heads _lowercase : Any = decoder_ffn_dim _lowercase : Tuple = decoder_layers _lowercase : Tuple = decoder_attention_heads _lowercase : Optional[int] = dropout _lowercase : List[str] = attention_dropout _lowercase : Union[str, Any] = activation_dropout _lowercase : List[str] = activation_function _lowercase : Optional[Any] = init_std _lowercase : Union[str, Any] = init_xavier_std _lowercase : Any = encoder_layerdrop _lowercase : Dict = decoder_layerdrop _lowercase : List[str] = encoder_layers _lowercase : Optional[Any] = auxiliary_loss _lowercase : Tuple = position_embedding_type _lowercase : Union[str, Any] = backbone _lowercase : Optional[int] = use_pretrained_backbone _lowercase : str = dilation # Hungarian matcher _lowercase : Any = class_cost _lowercase : Optional[Any] = bbox_cost _lowercase : Tuple = giou_cost # Loss coefficients _lowercase : str = mask_loss_coefficient _lowercase : Optional[int] = dice_loss_coefficient _lowercase : str = cls_loss_coefficient _lowercase : Tuple = bbox_loss_coefficient _lowercase : Tuple = giou_loss_coefficient _lowercase : str = focal_alpha super().__init__(is_encoder_decoder=_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): return self.encoder_attention_heads @property def __a ( self ): return self.d_model def __a ( self ): _lowercase : Any = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _lowercase : List[Any] = self.backbone_config.to_dict() _lowercase : Tuple = self.__class__.model_type return output class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Dict = version.parse("1.11" ) @property def __a ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def __a ( self ): return 1E-5 @property def __a ( self ): return 1_2
66
from __future__ import annotations import math def lowercase ( a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :List[Any] = u for i in range(1 , a ): SCREAMING_SNAKE_CASE_ :Union[str, Any] = temp * (u - i) return temp def lowercase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = int(input("enter the numbers of values: " ) ) SCREAMING_SNAKE_CASE_ :list[list[float]] = [] for _ in range(a ): y.append([] ) for i in range(a ): for j in range(a ): y[i].append(a ) SCREAMING_SNAKE_CASE_ :Any = 0 print("enter the values of parameters in a list: " ) SCREAMING_SNAKE_CASE_ :Dict = list(map(a , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(a ): SCREAMING_SNAKE_CASE_ :List[Any] = float(input() ) SCREAMING_SNAKE_CASE_ :Optional[Any] = int(input("enter the value to interpolate: " ) ) SCREAMING_SNAKE_CASE_ :str = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , a ): for j in range(n - i ): SCREAMING_SNAKE_CASE_ :List[str] = y[j + 1][i - 1] - y[j][i - 1] SCREAMING_SNAKE_CASE_ :Tuple = y[0][0] for i in range(1 , a ): summ += (ucal(a , a ) * y[0][i]) / math.factorial(a ) print(F"the value at {value} is {summ}" ) if __name__ == "__main__": main()
631
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=30 , _snake_case=4_00 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=[0.5, 0.5, 0.5] , _snake_case=[0.5, 0.5, 0.5] , _snake_case=True , _snake_case=1 / 2_55 , _snake_case=True , ): """simple docstring""" __lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = num_channels __lowerCamelCase = min_resolution __lowerCamelCase = max_resolution __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = do_normalize __lowerCamelCase = image_mean __lowerCamelCase = image_std __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_pad def _lowerCamelCase ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowerCamelCase ( self , _snake_case , _snake_case=False ): """simple docstring""" if not batched: __lowerCamelCase = image_inputs[0] if isinstance(_snake_case , Image.Image ): __lowerCamelCase , __lowerCamelCase = image.size else: __lowerCamelCase , __lowerCamelCase = image.shape[1], image.shape[2] if w < h: __lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) __lowerCamelCase = self.size['''shortest_edge'''] elif w > h: __lowerCamelCase = self.size['''shortest_edge'''] __lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: __lowerCamelCase = self.size['''shortest_edge'''] __lowerCamelCase = self.size['''shortest_edge'''] else: __lowerCamelCase = [] for image in image_inputs: __lowerCamelCase , __lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCamelCase = max(_snake_case , key=lambda _snake_case : item[0] )[0] __lowerCamelCase = max(_snake_case , key=lambda _snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ConditionalDetrImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = ConditionalDetrImageProcessingTester(self ) @property def _lowerCamelCase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(_snake_case , '''image_std''' ) ) self.assertTrue(hasattr(_snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(_snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(_snake_case , '''size''' ) ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , _snake_case ) __lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_snake_case ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , _snake_case ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCamelCase , __lowerCamelCase = self.image_processor_tester.get_expected_values(_snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase , __lowerCamelCase = self.image_processor_tester.get_expected_values(_snake_case , batched=_snake_case ) __lowerCamelCase = image_processing(_snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCamelCase , __lowerCamelCase = self.image_processor_tester.get_expected_values(_snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase = image_processing(_snake_case , return_tensors='''pt''' ).pixel_values __lowerCamelCase , __lowerCamelCase = self.image_processor_tester.get_expected_values(_snake_case , batched=_snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCamelCase , __lowerCamelCase = self.image_processor_tester.get_expected_values(_snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase = image_processing(_snake_case , return_tensors='''pt''' ).pixel_values __lowerCamelCase , __lowerCamelCase = self.image_processor_tester.get_expected_values(_snake_case , batched=_snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: __lowerCamelCase = json.loads(f.read() ) __lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them __lowerCamelCase = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) __lowerCamelCase = image_processing(images=_snake_case , annotations=_snake_case , return_tensors='''pt''' ) # verify pixel values __lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , _snake_case ) __lowerCamelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _snake_case , atol=1E-4 ) ) # verify area __lowerCamelCase = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _snake_case ) ) # verify boxes __lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _snake_case ) __lowerCamelCase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _snake_case , atol=1E-3 ) ) # verify image_id __lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _snake_case ) ) # verify is_crowd __lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _snake_case ) ) # verify class_labels __lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _snake_case ) ) # verify orig_size __lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _snake_case ) ) # verify size __lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _snake_case ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: __lowerCamelCase = json.loads(f.read() ) __lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} __lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them __lowerCamelCase = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) __lowerCamelCase = image_processing(images=_snake_case , annotations=_snake_case , masks_path=_snake_case , return_tensors='''pt''' ) # verify pixel values __lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , _snake_case ) __lowerCamelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _snake_case , atol=1E-4 ) ) # verify area __lowerCamelCase = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _snake_case ) ) # verify boxes __lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _snake_case ) __lowerCamelCase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _snake_case , atol=1E-3 ) ) # verify image_id __lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _snake_case ) ) # verify is_crowd __lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _snake_case ) ) # verify class_labels __lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _snake_case ) ) # verify masks __lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _snake_case ) # verify orig_size __lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _snake_case ) ) # verify size __lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _snake_case ) )
710
'''simple docstring''' import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TransfoXLTokenizer SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def _lowerCamelCase ( self ): """simple docstring""" super().setUp() __lowerCamelCase = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _lowerCamelCase ( self , **_snake_case ): """simple docstring""" __lowerCamelCase = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def _lowerCamelCase ( self , _snake_case ): """simple docstring""" __lowerCamelCase = '''<unk> UNwanted , running''' __lowerCamelCase = '''<unk> unwanted, running''' return input_text, output_text def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=_snake_case ) __lowerCamelCase = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(_snake_case , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [0, 4, 8, 7] ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = TransfoXLTokenizer(lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = TransfoXLTokenizer(lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = TransfoXLTokenizer(lower_case=_snake_case ) __lowerCamelCase = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' __lowerCamelCase = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(_snake_case ) , _snake_case ) self.assertEqual(tokenizer.convert_tokens_to_string(_snake_case ) , _snake_case ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = len(_snake_case ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_snake_case ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
575
0
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __UpperCAmelCase =logging.getLogger(__name__) class a__ ( a_ ): def SCREAMING_SNAKE_CASE__ ( self : str , a : int , a : List[Any] , a : List[str]=None , a : str=None ): """simple docstring""" __lowerCamelCase = self.layer[current_layer](_a , _a , head_mask[current_layer] ) __lowerCamelCase = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , a_ , ) class a__ ( a_ ): def __init__( self : Dict , a : Optional[int] ): """simple docstring""" super().__init__(_a ) __lowerCamelCase = BertEncoderWithPabee(_a ) self.init_weights() __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : Optional[Any] ): """simple docstring""" __lowerCamelCase = threshold def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : int ): """simple docstring""" __lowerCamelCase = patience def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = 0 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = self.inference_layers_num / self.inference_instances_num __lowerCamelCase = ( f"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" f""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_a ) @add_start_docstrings_to_model_forward(_a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : Union[str, Any]=None , a : Any=None , a : Optional[int]=None , a : List[str]=None , a : Dict=None , a : Union[str, Any]=None , a : Dict=None , a : Union[str, Any]=None , a : Optional[Any]=None , a : Union[str, Any]=None , a : Dict=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: __lowerCamelCase = input_ids.size() elif inputs_embeds is not None: __lowerCamelCase = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) __lowerCamelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __lowerCamelCase = torch.ones(_a , device=_a ) if token_type_ids is None: __lowerCamelCase = torch.zeros(_a , dtype=torch.long , device=_a ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __lowerCamelCase = self.get_extended_attention_mask(_a , _a , _a ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __lowerCamelCase = encoder_hidden_states.size() __lowerCamelCase = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __lowerCamelCase = torch.ones(_a , device=_a ) __lowerCamelCase = self.invert_attention_mask(_a ) else: __lowerCamelCase = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __lowerCamelCase = self.get_head_mask(_a , self.config.num_hidden_layers ) __lowerCamelCase = self.embeddings( input_ids=_a , position_ids=_a , token_type_ids=_a , inputs_embeds=_a ) __lowerCamelCase = embedding_output if self.training: __lowerCamelCase = [] for i in range(self.config.num_hidden_layers ): __lowerCamelCase = self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a ) __lowerCamelCase = self.pooler(_a ) __lowerCamelCase = output_layers[i](output_dropout(_a ) ) res.append(_a ) elif self.patience == 0: # Use all layers for inference __lowerCamelCase = self.encoder( _a , attention_mask=_a , head_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) __lowerCamelCase = self.pooler(encoder_outputs[0] ) __lowerCamelCase = [output_layers[self.config.num_hidden_layers - 1](_a )] else: __lowerCamelCase = 0 __lowerCamelCase = None __lowerCamelCase = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __lowerCamelCase = self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a ) __lowerCamelCase = self.pooler(_a ) __lowerCamelCase = output_layers[i](_a ) if regression: __lowerCamelCase = logits.detach() if patient_result is not None: __lowerCamelCase = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __lowerCamelCase = 0 else: __lowerCamelCase = logits.detach().argmax(dim=1 ) if patient_result is not None: __lowerCamelCase = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_a ) ): patient_counter += 1 else: __lowerCamelCase = 0 __lowerCamelCase = logits if patient_counter == self.patience: break __lowerCamelCase = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , a_ , ) class a__ ( a_ ): def __init__( self : List[str] , a : Optional[Any] ): """simple docstring""" super().__init__(_a ) __lowerCamelCase = config.num_labels __lowerCamelCase = BertModelWithPabee(_a ) __lowerCamelCase = nn.Dropout(config.hidden_dropout_prob ) __lowerCamelCase = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_a ) def SCREAMING_SNAKE_CASE__ ( self : Dict , a : Tuple=None , a : List[str]=None , a : List[str]=None , a : Optional[Any]=None , a : Optional[Any]=None , a : int=None , a : Optional[Any]=None , ): """simple docstring""" __lowerCamelCase = self.bert( input_ids=_a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __lowerCamelCase = (logits[-1],) if labels is not None: __lowerCamelCase = None __lowerCamelCase = 0 for ix, logits_item in enumerate(_a ): if self.num_labels == 1: # We are doing regression __lowerCamelCase = MSELoss() __lowerCamelCase = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __lowerCamelCase = CrossEntropyLoss() __lowerCamelCase = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __lowerCamelCase = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __lowerCamelCase = (total_loss / total_weights,) + outputs return outputs
546
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A : str = logging.get_logger(__name__) _A : Tuple = { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class a__ ( a_ ): __lowerCAmelCase = """big_bird""" def __init__( self , _a=50_358 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=4_096 , _a=2 , _a=0.0_2 , _a=1E-12 , _a=True , _a=0 , _a=1 , _a=2 , _a=66 , _a="block_sparse" , _a=True , _a=False , _a=64 , _a=3 , _a=None , **_a , ): super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , sep_token_id=_a , **_a , ) lowercase : List[Any] = vocab_size lowercase : Optional[Any] = max_position_embeddings lowercase : str = hidden_size lowercase : int = num_hidden_layers lowercase : Optional[Any] = num_attention_heads lowercase : List[Any] = intermediate_size lowercase : int = hidden_act lowercase : str = hidden_dropout_prob lowercase : List[Any] = attention_probs_dropout_prob lowercase : Tuple = initializer_range lowercase : Optional[int] = type_vocab_size lowercase : str = layer_norm_eps lowercase : Tuple = use_cache lowercase : Any = rescale_embeddings lowercase : List[str] = attention_type lowercase : int = use_bias lowercase : Dict = block_size lowercase : List[str] = num_random_blocks lowercase : int = classifier_dropout class a__ ( a_ ): @property def __magic_name__ ( self ): if self.task == "multiple-choice": lowercase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: lowercase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
361
0
from manim import * class a ( UpperCAmelCase__ ): def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE_: int =Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE_: Optional[Any] =[mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_: List[Any] =[mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_: Dict =VGroup(*lowerCAmelCase ).arrange(lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_: Dict =VGroup(*lowerCAmelCase ).arrange(lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_: Optional[int] =VGroup(lowerCAmelCase , lowerCAmelCase ).arrange(lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =Text("""CPU""" , font_size=24 ) SCREAMING_SNAKE_CASE_: str =Group(lowerCAmelCase , lowerCAmelCase ).arrange(lowerCAmelCase , buff=0.5 , aligned_edge=lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =[mem.copy() for i in range(1 )] SCREAMING_SNAKE_CASE_: Dict =VGroup(*lowerCAmelCase ).arrange(lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_: Dict =Text("""GPU""" , font_size=24 ) SCREAMING_SNAKE_CASE_: str =Group(lowerCAmelCase , lowerCAmelCase ).arrange(lowerCAmelCase , buff=0.5 , aligned_edge=lowerCAmelCase ) gpu.align_to(lowerCAmelCase , lowerCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =[mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_: Tuple =VGroup(*lowerCAmelCase ).arrange(lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =Text("""Model""" , font_size=24 ) SCREAMING_SNAKE_CASE_: List[Any] =Group(lowerCAmelCase , lowerCAmelCase ).arrange(lowerCAmelCase , buff=0.5 , aligned_edge=lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCAmelCase , run_time=1 ) , Create(lowerCAmelCase , run_time=1 ) , Create(lowerCAmelCase , run_time=1 ) , ) SCREAMING_SNAKE_CASE_: List[Any] =MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) SCREAMING_SNAKE_CASE_: Union[str, Any] =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE_: Any =MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase , run_time=2.5 ) , Write(lowerCAmelCase ) , Write(lowerCAmelCase ) ) self.add(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =[] SCREAMING_SNAKE_CASE_: Union[str, Any] =[] SCREAMING_SNAKE_CASE_: List[Any] =[] for i, rect in enumerate(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Dict =Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCAmelCase , opacity=0.7 ) cpu_target.move_to(lowerCAmelCase ) cpu_target.generate_target() SCREAMING_SNAKE_CASE_: str =0.4_6 / 4 SCREAMING_SNAKE_CASE_: Union[str, Any] =0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCAmelCase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCAmelCase , buff=0.0 ) cpu_targs.append(lowerCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCAmelCase ) ) second_animations.append(MoveToTarget(lowerCAmelCase , run_time=1.5 ) ) self.play(*lowerCAmelCase ) self.play(*lowerCAmelCase ) self.wait()
704
"""simple docstring""" from __future__ import annotations def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =divmod(len(lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = [float(x) for x in input("""Enter the elements of first array: """).split()] _UpperCAmelCase = [float(x) for x in input("""Enter the elements of second array: """).split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
36
0
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __snake_case ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple=10 ): lowerCamelCase_ = [] for _ in range(snake_case_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str]=10 ): lowerCamelCase_ = [] for step in range(snake_case_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = os.path.join(snake_case_ , "schedule.bin" ) torch.save(scheduler.state_dict() , snake_case_ ) lowerCamelCase_ = torch.load(snake_case_ ) scheduler.load_state_dict(snake_case_ ) return lrs @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" self.assertEqual(len(_a ) , len(_a ) ) for a, b in zip(_a , _a ): self.assertAlmostEqual(_a , _a , delta=_a ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_a ) lowerCamelCase_ = torch.tensor([0.4, 0.2, -0.5] ) lowerCamelCase_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCamelCase_ = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): lowerCamelCase_ = criterion(_a , _a ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_a ) lowerCamelCase_ = torch.tensor([0.4, 0.2, -0.5] ) lowerCamelCase_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCamelCase_ = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_a , weight_decay=0.0 , relative_step=_a , scale_parameter=_a , warmup_init=_a , ) for _ in range(1000 ): lowerCamelCase_ = criterion(_a , _a ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = nn.Linear(50 , 50 ) if is_torch_available() else None _lowerCamelCase = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _lowerCamelCase = 10 def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None ): """simple docstring""" self.assertEqual(len(_a ) , len(_a ) ) for a, b in zip(_a , _a ): self.assertAlmostEqual(_a , _a , delta=_a , msg=_a ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = {"""num_warmup_steps""": 2, """num_training_steps""": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowerCamelCase_ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"""num_warmup_steps""": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, """num_cycles""": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, """power""": 2.0, """lr_end""": 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"""num_warmup_steps""": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): lowerCamelCase_ = data lowerCamelCase_ = scheduler_func(self.optimizer , **_a ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) lowerCamelCase_ = unwrap_schedule(_a , self.num_steps ) self.assertListAlmostEqual( _a , _a , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) lowerCamelCase_ = scheduler_func(self.optimizer , **_a ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_a ) # wrap to test picklability of the schedule lowerCamelCase_ = unwrap_and_save_reload_schedule(_a , self.num_steps ) self.assertListEqual(_a , _a , msg=f'''failed for {scheduler_func} in save and reload''' ) class snake_case : """simple docstring""" def __init__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = fn def __call__( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.fn(*_a , **_a ) @classmethod def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = list(map(self , scheduler.lr_lambdas ) )
675
import string import numpy def lowerCAmelCase_ ( snake_case_,snake_case_ ): return b if a == 0 else greatest_common_divisor(b % a,snake_case_ ) class lowercase : _a = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) _a = numpy.vectorize(lambda UpperCamelCase__ : x % 3_6 ) _a = numpy.vectorize(UpperCamelCase__ ) def __init__( self , _a ) -> None: _A : Dict = self.modulus(_a ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _A : str = encrypt_key.shape[0] def a__ ( self , _a ) -> int: return self.key_string.index(_a ) def a__ ( self , _a ) -> str: return self.key_string[round(_a )] def a__ ( self ) -> None: _A : Union[str, Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _A : Union[str, Any] = det % len(self.key_string ) _A : Optional[Any] = len(self.key_string ) if greatest_common_divisor(_a , len(self.key_string ) ) != 1: _A : List[Any] = ( F'''determinant modular {req_l} of encryption key({det}) ''' F'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(_a ) def a__ ( self , _a ) -> str: _A : List[str] = [char for char in text.upper() if char in self.key_string] _A : Tuple = chars[-1] while len(_a ) % self.break_key != 0: chars.append(_a ) return "".join(_a ) def a__ ( self , _a ) -> str: _A : int = self.process_text(text.upper() ) _A : int = """""" for i in range(0 , len(_a ) - self.break_key + 1 , self.break_key ): _A : Dict = text[i : i + self.break_key] _A : int = [self.replace_letters(_a ) for char in batch] _A : str = numpy.array([vec] ).T _A : Optional[Any] = self.modulus(self.encrypt_key.dot(_a ) ).T.tolist()[ 0 ] _A : Tuple = """""".join( self.replace_digits(_a ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def a__ ( self ) -> numpy.ndarray: _A : List[str] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _A : str = det % len(self.key_string ) _A : List[str] = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _A : Dict = i break _A : Union[str, Any] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(_a ) ) def a__ ( self , _a ) -> str: _A : Optional[Any] = self.make_decrypt_key() _A : Dict = self.process_text(text.upper() ) _A : Optional[int] = """""" for i in range(0 , len(_a ) - self.break_key + 1 , self.break_key ): _A : Optional[int] = text[i : i + self.break_key] _A : List[Any] = [self.replace_letters(_a ) for char in batch] _A : Tuple = numpy.array([vec] ).T _A : List[str] = self.modulus(decrypt_key.dot(_a ) ).T.tolist()[0] _A : str = """""".join( self.replace_digits(_a ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCAmelCase_ ( ): _A : Union[str, Any] = int(input("""Enter the order of the encryption key: """ ) ) _A : Optional[int] = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(snake_case_ ): _A : Any = [int(snake_case_ ) for x in input().split()] hill_matrix.append(snake_case_ ) _A : Dict = HillCipher(numpy.array(snake_case_ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) _A : str = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": _A : str = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(snake_case_ ) ) elif option == "2": _A : Tuple = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
307
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( lowerCamelCase_): def merge(lowerCamelCase_ , lowerCamelCase_) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0) yield from left yield from right return list(_merge()) if len(lowerCamelCase_) <= 1: return collection a__ = len(lowerCamelCase_) // 2 return merge(merge_sort(collection[:mid]) , merge_sort(collection[mid:])) if __name__ == "__main__": import doctest doctest.testmod() __a : List[Any] = input('Enter numbers separated by a comma:\n').strip() __a : Union[str, Any] = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
200
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =0.0 _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =jnp.floataa def lowercase ( self: Union[str, Any] ): '''simple docstring''' a__ = [] a__ = [] for i in range(self.num_layers ): a__ = self.in_channels if i == 0 else self.out_channels a__ = FlaxResnetBlockaD( in_channels=__A , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) a__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__A ) a__ = resnets a__ = attentions if self.add_downsample: a__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Optional[int] , __A: Union[str, Any] , __A: str , __A: Optional[Any] , __A: Any=True ): '''simple docstring''' a__ = () for resnet, attn in zip(self.resnets , self.attentions ): a__ = resnet(__A , __A , deterministic=__A ) a__ = attn(__A , __A , deterministic=__A ) output_states += (hidden_states,) if self.add_downsample: a__ = self.downsamplers_a(__A ) output_states += (hidden_states,) return hidden_states, output_states class _SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =0.0 _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =jnp.floataa def lowercase ( self: Union[str, Any] ): '''simple docstring''' a__ = [] for i in range(self.num_layers ): a__ = self.in_channels if i == 0 else self.out_channels a__ = FlaxResnetBlockaD( in_channels=__A , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) a__ = resnets if self.add_downsample: a__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Dict , __A: int , __A: Dict , __A: Optional[Any]=True ): '''simple docstring''' a__ = () for resnet in self.resnets: a__ = resnet(__A , __A , deterministic=__A ) output_states += (hidden_states,) if self.add_downsample: a__ = self.downsamplers_a(__A ) output_states += (hidden_states,) return hidden_states, output_states class _SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =0.0 _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =jnp.floataa def lowercase ( self: Optional[int] ): '''simple docstring''' a__ = [] a__ = [] for i in range(self.num_layers ): a__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels a__ = self.prev_output_channel if i == 0 else self.out_channels a__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) a__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__A ) a__ = resnets a__ = attentions if self.add_upsample: a__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Any , __A: Optional[int] , __A: List[Any] , __A: List[str] , __A: Optional[Any] , __A: Any=True ): '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states a__ = res_hidden_states_tuple[-1] a__ = res_hidden_states_tuple[:-1] a__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) a__ = resnet(__A , __A , deterministic=__A ) a__ = attn(__A , __A , deterministic=__A ) if self.add_upsample: a__ = self.upsamplers_a(__A ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =0.0 _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =jnp.floataa def lowercase ( self: str ): '''simple docstring''' a__ = [] for i in range(self.num_layers ): a__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels a__ = self.prev_output_channel if i == 0 else self.out_channels a__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) a__ = resnets if self.add_upsample: a__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Tuple , __A: Optional[Any] , __A: Optional[Any] , __A: Union[str, Any] , __A: Dict=True ): '''simple docstring''' for resnet in self.resnets: # pop res hidden states a__ = res_hidden_states_tuple[-1] a__ = res_hidden_states_tuple[:-1] a__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) a__ = resnet(__A , __A , deterministic=__A ) if self.add_upsample: a__ = self.upsamplers_a(__A ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =0.0 _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =jnp.floataa def lowercase ( self: Tuple ): '''simple docstring''' a__ = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] a__ = [] for _ in range(self.num_layers ): a__ = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__A ) a__ = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) a__ = resnets a__ = attentions def __call__( self: Any , __A: Optional[int] , __A: int , __A: Tuple , __A: str=True ): '''simple docstring''' a__ = self.resnets[0](__A , __A ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): a__ = attn(__A , __A , deterministic=__A ) a__ = resnet(__A , __A , deterministic=__A ) return hidden_states
200
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowercase_ : Union[str, Any] = StableDiffusionXLImgaImgPipeline lowercase_ : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} lowercase_ : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} lowercase_ : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase_ : int = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase_ : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : List[str] ): torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=__lowerCAmelCase , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) __snake_case = EulerDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0 ) __snake_case = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=3_2 , ) __snake_case = CLIPTextModel(__lowerCAmelCase ) __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=__lowerCAmelCase ) __snake_case = CLIPTextModelWithProjection(__lowerCAmelCase ) __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=__lowerCAmelCase ) __snake_case = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowercase__ ( self : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str=0 ): __snake_case = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) __snake_case = image / 2 + 0.5 if str(__lowerCAmelCase ).startswith('mps' ): __snake_case = torch.manual_seed(__lowerCAmelCase ) else: __snake_case = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) __snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def lowercase__ ( self : Optional[Any] ): __snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator __snake_case = self.get_dummy_components() __snake_case = StableDiffusionXLImgaImgPipeline(**__lowerCAmelCase ) __snake_case = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) __snake_case = self.get_dummy_inputs(__lowerCAmelCase ) __snake_case = sd_pipe(**__lowerCAmelCase ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __snake_case = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Dict ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowercase__ ( self : Dict ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowercase__ ( self : str ): pass def lowercase__ ( self : Optional[Any] ): __snake_case = self.get_dummy_components() __snake_case = StableDiffusionXLImgaImgPipeline(**__lowerCAmelCase ) __snake_case = sd_pipe.to(__lowerCAmelCase ) __snake_case = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) # forward without prompt embeds __snake_case = self.get_dummy_inputs(__lowerCAmelCase ) __snake_case = 3 * ['this is a negative prompt'] __snake_case = negative_prompt __snake_case = 3 * [inputs['prompt']] __snake_case = sd_pipe(**__lowerCAmelCase ) __snake_case = output.images[0, -3:, -3:, -1] # forward with prompt embeds __snake_case = self.get_dummy_inputs(__lowerCAmelCase ) __snake_case = 3 * ['this is a negative prompt'] __snake_case = 3 * [inputs.pop('prompt' )] ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = sd_pipe.encode_prompt(__lowerCAmelCase , negative_prompt=__lowerCAmelCase ) __snake_case = sd_pipe( **__lowerCAmelCase , prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , pooled_prompt_embeds=__lowerCAmelCase , negative_pooled_prompt_embeds=__lowerCAmelCase , ) __snake_case = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class a_ ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int]="cpu" , __lowerCAmelCase : Union[str, Any]=torch.floataa , __lowerCAmelCase : Any=0 ): __snake_case = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) __snake_case = np.random.RandomState(__lowerCAmelCase ).standard_normal((1, 4, 6_4, 6_4) ) __snake_case = torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ) __snake_case = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase__ ( self : Dict ): __snake_case = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) __snake_case = self.get_inputs(__lowerCAmelCase ) __snake_case = pipe(**__lowerCAmelCase ).images __snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __snake_case = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
356
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a_ : def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int]=1_3 , __lowerCAmelCase : Tuple=7 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Union[str, Any]=9_9 , __lowerCAmelCase : Any=3_2 , __lowerCAmelCase : Tuple=5 , __lowerCAmelCase : int=4 , __lowerCAmelCase : List[str]=3_7 , __lowerCAmelCase : List[Any]="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Any=5_1_2 , __lowerCAmelCase : Dict=1_6 , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Optional[Any]=3 , __lowerCAmelCase : str=4 , __lowerCAmelCase : List[str]=None , ): __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope __snake_case = self.vocab_size - 1 def lowercase__ ( self : Union[str, Any] ): __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = ids_tensor([self.batch_size] , self.num_choices ) __snake_case = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __snake_case = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowercase__ ( self : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , *__lowerCAmelCase : List[str] ): __snake_case = OpenAIGPTModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __snake_case = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , head_mask=__lowerCAmelCase ) __snake_case = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) __snake_case = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , *__lowerCAmelCase : str ): __snake_case = OpenAIGPTLMHeadModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __snake_case = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , *__lowerCAmelCase : Tuple ): __snake_case = OpenAIGPTDoubleHeadsModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __snake_case = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , *__lowerCAmelCase : int ): __snake_case = self.num_labels __snake_case = OpenAIGPTForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[str] ): __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class a_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowercase_ : List[str] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowercase_ : Union[str, Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowercase_ : str = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : Any ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowercase__ ( self : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str]=False ): __snake_case = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCAmelCase , ) __snake_case = inputs_dict['labels'] __snake_case = inputs_dict['labels'] __snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCAmelCase , ) __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def lowercase__ ( self : Tuple ): __snake_case = OpenAIGPTModelTester(self ) __snake_case = ConfigTester(self , config_class=__lowerCAmelCase , n_embd=3_7 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__lowerCAmelCase ) def lowercase__ ( self : int ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCAmelCase ) def lowercase__ ( self : Any ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__lowerCAmelCase ) def lowercase__ ( self : str ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCAmelCase ) @slow def lowercase__ ( self : str ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = OpenAIGPTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_torch class a_ ( unittest.TestCase ): @slow def lowercase__ ( self : int ): __snake_case = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(__lowerCAmelCase ) __snake_case = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=__lowerCAmelCase ) # the president is __snake_case = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the __snake_case = model.generate(__lowerCAmelCase , do_sample=__lowerCAmelCase ) self.assertListEqual(output_ids[0].tolist() , __lowerCAmelCase )
356
1
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib _A = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } _A = logging.WARNING def lowercase_ ( ) -> Optional[int]: lowerCAmelCase__ : List[str] = os.getenv("""DATASETS_VERBOSITY""" , __UpperCAmelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def lowercase_ ( ) -> str: return __name__.split(""".""" )[0] def lowercase_ ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def lowercase_ ( ) -> None: # Apply our default configuration to the library root logger. lowerCAmelCase__ : Tuple = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowercase_ ( ) -> None: lowerCAmelCase__ : int = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowercase_ ( __UpperCAmelCase = None ) -> logging.Logger: if name is None: lowerCAmelCase__ : Union[str, Any] = _get_library_name() return logging.getLogger(__UpperCAmelCase ) def lowercase_ ( ) -> int: return _get_library_root_logger().getEffectiveLevel() def lowercase_ ( __UpperCAmelCase ) -> None: _get_library_root_logger().setLevel(__UpperCAmelCase ) def lowercase_ ( ) -> int: return set_verbosity(__UpperCAmelCase ) def lowercase_ ( ) -> str: return set_verbosity(__UpperCAmelCase ) def lowercase_ ( ) -> List[str]: return set_verbosity(__UpperCAmelCase ) def lowercase_ ( ) -> int: return set_verbosity(__UpperCAmelCase ) def lowercase_ ( ) -> None: lowerCAmelCase__ : Optional[int] = False def lowercase_ ( ) -> None: lowerCAmelCase__ : str = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _lowerCamelCase : def __init__( self : Optional[int] , *UpperCamelCase : Optional[int] , **UpperCamelCase : List[str] ) -> Dict: # pylint: disable=unused-argument """simple docstring""" lowerCAmelCase__ : Dict = args[0] if args else None def __iter__( self : Dict ) -> Dict: """simple docstring""" return iter(self._iterator ) def __getattr__( self : str , UpperCamelCase : List[Any] ) -> Any: """simple docstring""" def empty_fn(*UpperCamelCase : Optional[int] , **UpperCamelCase : int ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Tuple ) -> Tuple: """simple docstring""" return self def __exit__( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" return _A = True class _lowerCamelCase : def __call__( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , UpperCamelCase : Any=False , **UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*UpperCamelCase , **UpperCamelCase ) else: return EmptyTqdm(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : Tuple , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Dict ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Tuple = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() _A = _tqdm_cls() def lowercase_ ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def lowercase_ ( ) -> Any: global _tqdm_active lowerCAmelCase__ : List[str] = True def lowercase_ ( ) -> Tuple: global _tqdm_active lowerCAmelCase__ : List[str] = False
700
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _A = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. _A = direct_transformers_import(PATH_TO_TRANSFORMERS) _A = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _A = re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") _A = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def lowercase_ ( __UpperCAmelCase ) -> str: lowerCAmelCase__ : Union[str, Any] = None # source code of `config_class` lowerCAmelCase__ : List[Any] = inspect.getsource(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = _re_checkpoint.findall(__UpperCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("""/""" ): lowerCAmelCase__ : Optional[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowerCAmelCase__ : Dict = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: lowerCAmelCase__ : Optional[Any] = ckpt_name break return checkpoint def lowercase_ ( ) -> Dict: lowerCAmelCase__ : Union[str, Any] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowerCAmelCase__ : Dict = get_checkpoint_from_config_class(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: lowerCAmelCase__ : int = """\n""".join(sorted(__UpperCAmelCase ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
507
0
def __snake_case ( lowerCAmelCase_ = 1_0_0_0_0_0_0 ) -> int: SCREAMING_SNAKE_CASE__ = set(range(3 , lowerCAmelCase_ , 2 ) ) primes.add(2 ) for p in range(3 , lowerCAmelCase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowerCAmelCase_ , lowerCAmelCase_ ) ) ) SCREAMING_SNAKE_CASE__ = [float(lowerCAmelCase_ ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCAmelCase_ , limit + 1 , lowerCAmelCase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'{solution() = }')
100
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer _UpperCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast _UpperCamelCase = TaTokenizerFast _UpperCamelCase = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys _UpperCamelCase = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
453
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __a : List[Any] = logging.get_logger(__name__) __a : Optional[Any] = """▁""" __a : Optional[Any] = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } __a : List[Any] = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } __a : Tuple = { """facebook/m2m100_418M""": 1_0_2_4, } # fmt: off __a : Union[str, Any] = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : List[Any] = VOCAB_FILES_NAMES __a : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Any = PRETRAINED_VOCAB_FILES_MAP __a : Tuple = ['''input_ids''', '''attention_mask'''] __a : List[int] = [] __a : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="m2m100" , lowerCAmelCase__ = None , lowerCAmelCase__=8 , **lowerCAmelCase__ , ) -> None: '''simple docstring''' __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs __lowercase = language_codes __lowercase = FAIRSEQ_LANGUAGE_CODES[language_codes] __lowercase = {lang_code: F"__{lang_code}__" for lang_code in fairseq_language_code} __lowercase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(lowerCAmelCase__ ) for lang_code in fairseq_language_code if self.get_lang_token(lowerCAmelCase__ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , language_codes=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=lowerCAmelCase__ , **lowerCAmelCase__ , ) __lowercase = vocab_file __lowercase = load_json(lowerCAmelCase__ ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = spm_file __lowercase = load_spm(lowerCAmelCase__ , self.sp_model_kwargs ) __lowercase = len(self.encoder ) __lowercase = { self.get_lang_token(lowerCAmelCase__ ): self.encoder_size + i for i, lang_code in enumerate(lowerCAmelCase__ ) } __lowercase = {lang_code: self.encoder_size + i for i, lang_code in enumerate(lowerCAmelCase__ )} __lowercase = {v: k for k, v in self.lang_token_to_id.items()} __lowercase = src_lang if src_lang is not None else '''en''' __lowercase = tgt_lang __lowercase = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __lowercase = num_madeup_words @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> None: '''simple docstring''' __lowercase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(lowerCAmelCase__ , self.encoder[self.unk_token] ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(lowerCAmelCase__ , self.unk_token ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' __lowercase = [] __lowercase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase__ ) + token __lowercase = [] else: current_sub_tokens.append(lowerCAmelCase__ ) out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __lowercase = [1] * len(self.prefix_tokens ) __lowercase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: '''simple docstring''' __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self , lowerCAmelCase__ ) -> None: '''simple docstring''' __lowercase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowercase = {} __lowercase = load_spm(self.spm_file , self.sp_model_kwargs ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' __lowercase = Path(lowerCAmelCase__ ) if not save_dir.is_dir(): raise OSError(F"{save_directory} should be a directory" ) __lowercase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) __lowercase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , lowerCAmelCase__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowerCAmelCase__ ) elif not os.path.isfile(self.spm_file ): with open(lowerCAmelCase__ , '''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (str(lowerCAmelCase__ ), str(lowerCAmelCase__ )) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ = "en" , lowerCAmelCase__ = None , lowerCAmelCase__ = "ro" , **lowerCAmelCase__ , ) -> BatchEncoding: '''simple docstring''' __lowercase = src_lang __lowercase = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __lowercase = src_lang __lowercase = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ ) __lowercase = self.get_lang_id(lowerCAmelCase__ ) __lowercase = tgt_lang_id return inputs def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> None: '''simple docstring''' __lowercase = self.get_lang_token(lowerCAmelCase__ ) __lowercase = self.lang_token_to_id[lang_token] __lowercase = [self.cur_lang_id] __lowercase = [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> None: '''simple docstring''' __lowercase = self.get_lang_token(lowerCAmelCase__ ) __lowercase = self.lang_token_to_id[lang_token] __lowercase = [self.cur_lang_id] __lowercase = [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' return self.lang_code_to_token[lang] def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' __lowercase = self.get_lang_token(lowerCAmelCase__ ) return self.lang_token_to_id[lang_token] def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = sentencepiece.SentencePieceProcessor(**lowercase ) spm.Load(str(lowercase ) ) return spm def UpperCAmelCase ( lowercase ): """simple docstring""" with open(lowercase , '''r''' ) as f: return json.load(lowercase ) def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" with open(lowercase , '''w''' ) as f: json.dump(lowercase , lowercase , indent=2 )
522
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __a : str = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __a : Union[str, Any] = 2_5_0_0_0_4 __a : Optional[int] = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class _UpperCamelCase ( _UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : str = MBartTokenizer __a : int = MBartTokenizerFast __a : List[Any] = True __a : int = True def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowercase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) __lowercase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowercase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowercase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __lowercase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __lowercase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __lowercase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __lowercase = tempfile.mkdtemp() __lowercase = tokenizer_r.save_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __lowercase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way __lowercase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=True __lowercase = tempfile.mkdtemp() __lowercase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) __lowercase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way __lowercase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=False __lowercase = tempfile.mkdtemp() __lowercase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) __lowercase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowercase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" __a : Optional[int] = '''facebook/mbart-large-en-ro''' __a : Any = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] __a : Optional[Any] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] __a : List[Any] = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, EN_CODE] @classmethod def _SCREAMING_SNAKE_CASE ( cls ) -> Any: '''simple docstring''' __lowercase = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __lowercase = 1 return cls def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) __lowercase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __lowercase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) __lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCAmelCase__ ) __lowercase = 10 __lowercase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_26, 25_00_01] ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = tempfile.mkdtemp() __lowercase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase__ ) __lowercase = MBartTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ ) @require_torch def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' ) __lowercase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __lowercase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __lowercase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' ) __lowercase = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' ) __lowercase = targets['''input_ids'''] __lowercase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 30_34, 2, 25_00_04]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
522
1
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed SCREAMING_SNAKE_CASE_ = '''true''' def lowercase (_lowerCAmelCase , _lowerCAmelCase=82 , _lowerCAmelCase=16 ): set_seed(42 ) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(_lowerCAmelCase ) __lowerCAmelCase = RegressionDataset(length=_lowerCAmelCase ) __lowerCAmelCase = DataLoader(_lowerCAmelCase , batch_size=_lowerCAmelCase ) model.to(accelerator.device ) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase ) return model, ddp_model, dataloader def lowercase (_lowerCAmelCase , _lowerCAmelCase=False ): __lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) __lowerCAmelCase = load_dataset("""glue""" , """mrpc""" , split="""validation""" ) def tokenize_function(_lowerCAmelCase ): __lowerCAmelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) __lowerCAmelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_lowerCAmelCase ): if use_longest: return tokenizer.pad(_lowerCAmelCase , padding="""longest""" , return_tensors="""pt""" ) return tokenizer.pad(_lowerCAmelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return DataLoader(_lowerCAmelCase , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=16 ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = Accelerator(dispatch_batches=_lowerCAmelCase , split_batches=_lowerCAmelCase ) __lowerCAmelCase = get_dataloader(_lowerCAmelCase , not dispatch_batches ) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" , return_dict=_lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(_lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(_lowerCAmelCase ) targs.append(_lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = torch.cat(_lowerCAmelCase ), torch.cat(_lowerCAmelCase ) return logits, targs def lowercase (_lowerCAmelCase , _lowerCAmelCase=82 , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=16 ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) assert ( len(_lowerCAmelCase ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_lowerCAmelCase )}""" def lowercase (_lowerCAmelCase = False , _lowerCAmelCase = False ): __lowerCAmelCase = evaluate.load("""glue""" , """mrpc""" ) __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(_lowerCAmelCase , _lowerCAmelCase ) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup["""no"""] model.to(_lowerCAmelCase ) model.eval() for batch in dataloader: batch.to(_lowerCAmelCase ) with torch.inference_mode(): __lowerCAmelCase = model(**_lowerCAmelCase ) __lowerCAmelCase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_lowerCAmelCase , references=batch["""labels"""] ) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**_lowerCAmelCase ) __lowerCAmelCase = outputs.logits.argmax(dim=-1 ) __lowerCAmelCase = batch["""labels"""] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_lowerCAmelCase , references=_lowerCAmelCase ) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def lowercase (): __lowerCAmelCase = Accelerator(split_batches=_lowerCAmelCase , dispatch_batches=_lowerCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(_lowerCAmelCase , _lowerCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=_lowerCAmelCase , dispatch_batches=_lowerCAmelCase ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(_lowerCAmelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) __lowerCAmelCase = Accelerator() test_torch_metrics(_lowerCAmelCase , 512 ) accelerator.state._reset_state() def lowercase (_lowerCAmelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
465
"""simple docstring""" import argparse import importlib from pathlib import Path # Test all the extensions added in the setup SCREAMING_SNAKE_CASE_ = [ '''kernels/rwkv/wkv_cuda.cu''', '''kernels/rwkv/wkv_op.cpp''', '''kernels/deformable_detr/ms_deform_attn.h''', '''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''', '''models/graphormer/algos_graphormer.pyx''', ] def lowercase (_lowerCAmelCase ): # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''') SCREAMING_SNAKE_CASE_ = parser.parse_args() if args.check_lib: SCREAMING_SNAKE_CASE_ = importlib.import_module('''transformers''') SCREAMING_SNAKE_CASE_ = Path(transformers_module.__file__).parent else: SCREAMING_SNAKE_CASE_ = Path.cwd() / '''build/lib/transformers''' if not test_custom_files_are_present(transformers_path): raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
465
1
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () a__ : List[str] = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). a__ : Optional[int] = [0, 2_5, 5_0] a__ : Tuple = [2_5, 5_0, 7_5] a__ : Optional[Any] = fuzz.membership.trimf(X, abca) a__ : Dict = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. a__ : Optional[Any] = np.ones(7_5) a__ : Dict = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) a__ : Optional[int] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) a__ : Optional[int] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) a__ : Optional[int] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) a__ : Tuple = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] a__ : Union[str, Any] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) a__ : str = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] a__ : str = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] a__ : Any = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
720
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowercase ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCamelCase ( self : str ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=a_ , ) def _UpperCamelCase ( self : Dict , a_ : Any , a_ : str ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )] def _UpperCamelCase ( self : Dict , a_ : List[str] , a_ : Optional[int] ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(a_ ) class lowercase ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCamelCase ( self : Any ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=a_ , ) def _UpperCamelCase ( self : Any , a_ : Optional[Any] , a_ : Optional[int] ): """simple docstring""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} ) ] def _UpperCamelCase ( self : List[Any] , a_ : Optional[Any] , a_ : int ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(a_ ) def snake_case (): '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] def snake_case (): '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] class lowercase ( UpperCAmelCase_ ): """simple docstring""" @require_beam def _UpperCamelCase ( self : str ): """simple docstring""" lowerCamelCase__ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase__ = DummyBeamDataset(cache_dir=a_ , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(a_ , builder.name , """default""" , """0.0.0""" , F'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) lowerCamelCase__ = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , a_ ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , a_ ) self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(a_ , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _UpperCamelCase ( self : Dict ): """simple docstring""" import apache_beam as beam lowerCamelCase__ = beam.io.parquetio.WriteToParquet lowerCamelCase__ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase__ = DummyBeamDataset(cache_dir=a_ , beam_runner="""DirectRunner""" ) with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock: lowerCamelCase__ = partial(a_ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( a_ , builder.name , """default""" , """0.0.0""" , F'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( a_ , builder.name , """default""" , """0.0.0""" , F'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) lowerCamelCase__ = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , a_ ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , a_ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) ) self.assertTrue( os.path.exists(os.path.join(a_ , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _UpperCamelCase ( self : Optional[int] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase__ = DummyBeamDataset(cache_dir=a_ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _UpperCamelCase ( self : str ): """simple docstring""" lowerCamelCase__ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase__ = NestedBeamDataset(cache_dir=a_ , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(a_ , builder.name , """default""" , """0.0.0""" , F'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) ) lowerCamelCase__ = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , a_ ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , a_ ) self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(a_ , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset
235
0
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __lowerCAmelCase = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ __lowerCAmelCase = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ __lowerCAmelCase = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def __lowercase ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ,id='token' ) ,id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' ,id='token' ) ,id='sequence' ) ,id='references' ), } ) ,codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] ,reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] ,) def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Tuple=4 ,_UpperCAmelCase : List[Any]=False ): _a : List[str] = compute_bleu( reference_corpus=lowerCamelCase_ ,translation_corpus=lowerCamelCase_ ,max_order=lowerCamelCase_ ,smooth=lowerCamelCase_ ) (_a) : List[Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
358
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowerCAmelCase : '''simple docstring''' def __init__( self: Any, lowerCamelCase_: Optional[Any], lowerCamelCase_: List[str]=13, lowerCamelCase_: Optional[Any]=7, lowerCamelCase_: Optional[Any]=True, lowerCamelCase_: Tuple=True, lowerCamelCase_: Any=False, lowerCamelCase_: Union[str, Any]=True, lowerCamelCase_: Optional[Any]=99, lowerCamelCase_: Tuple=32, lowerCamelCase_: Any=5, lowerCamelCase_: Tuple=4, lowerCamelCase_: List[Any]=37, lowerCamelCase_: Union[str, Any]="gelu", lowerCamelCase_: str=0.1, lowerCamelCase_: Union[str, Any]=0.1, lowerCamelCase_: Any=512, lowerCamelCase_: Union[str, Any]=16, lowerCamelCase_: Any=2, lowerCamelCase_: str=0.0_2, lowerCamelCase_: Union[str, Any]=3, lowerCamelCase_: List[str]=4, lowerCamelCase_: Tuple=None, ): lowercase__ : List[str] = parent lowercase__ : str = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : List[Any] = is_training lowercase__ : List[str] = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : str = use_labels lowercase__ : Optional[Any] = vocab_size lowercase__ : Dict = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : Tuple = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : List[Any] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : Optional[int] = initializer_range lowercase__ : str = num_labels lowercase__ : Optional[int] = num_choices lowercase__ : Dict = scope def snake_case__( self: Union[str, Any] ): lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ : List[Any] = None if self.use_input_mask: lowercase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Optional[Any] = None if self.use_token_type_ids: lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ : str = None lowercase__ : Union[str, Any] = None lowercase__ : Tuple = None if self.use_labels: lowercase__ : Tuple = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ : int = ids_tensor([self.batch_size], self.num_choices ) lowercase__ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self: Tuple ): return OpenLlamaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, use_stable_embedding=lowerCamelCase_, ) def snake_case__( self: Optional[int], lowerCamelCase_: Optional[int], lowerCamelCase_: List[Any], lowerCamelCase_: List[str], lowerCamelCase_: Optional[int], lowerCamelCase_: Dict, lowerCamelCase_: Optional[int], lowerCamelCase_: str ): lowercase__ : Union[str, Any] = OpenLlamaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowercase__ : Union[str, Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowercase__ : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self: str, lowerCamelCase_: Optional[Any], lowerCamelCase_: str, lowerCamelCase_: str, lowerCamelCase_: Optional[Any], lowerCamelCase_: Tuple, lowerCamelCase_: Optional[Any], lowerCamelCase_: List[str], lowerCamelCase_: Dict, lowerCamelCase_: Union[str, Any], ): lowercase__ : Tuple = True lowercase__ : int = OpenLlamaModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowercase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, encoder_hidden_states=lowerCamelCase_, encoder_attention_mask=lowerCamelCase_, ) lowercase__ : Optional[int] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, encoder_hidden_states=lowerCamelCase_, ) lowercase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self: List[Any], lowerCamelCase_: Optional[Any], lowerCamelCase_: Any, lowerCamelCase_: str, lowerCamelCase_: List[str], lowerCamelCase_: Any, lowerCamelCase_: Dict, lowerCamelCase_: int, lowerCamelCase_: Any, lowerCamelCase_: str, ): lowercase__ : Optional[Any] = OpenLlamaForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowercase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self: Tuple, lowerCamelCase_: str, lowerCamelCase_: Optional[Any], lowerCamelCase_: Optional[int], lowerCamelCase_: str, lowerCamelCase_: List[Any], lowerCamelCase_: List[Any], lowerCamelCase_: str, lowerCamelCase_: Optional[Any], lowerCamelCase_: Union[str, Any], ): lowercase__ : Optional[int] = True lowercase__ : Optional[int] = True lowercase__ : Tuple = OpenLlamaForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass lowercase__ : Any = model( lowerCamelCase_, attention_mask=lowerCamelCase_, encoder_hidden_states=lowerCamelCase_, encoder_attention_mask=lowerCamelCase_, use_cache=lowerCamelCase_, ) lowercase__ : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase__ : Optional[Any] = ids_tensor((self.batch_size, 3), config.vocab_size ) lowercase__ : str = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and lowercase__ : Tuple = torch.cat([input_ids, next_tokens], dim=-1 ) lowercase__ : List[str] = torch.cat([input_mask, next_mask], dim=-1 ) lowercase__ : int = model( lowerCamelCase_, attention_mask=lowerCamelCase_, encoder_hidden_states=lowerCamelCase_, encoder_attention_mask=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] lowercase__ : int = model( lowerCamelCase_, attention_mask=lowerCamelCase_, encoder_hidden_states=lowerCamelCase_, encoder_attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] # select random slice lowercase__ : Tuple = ids_tensor((1,), output_from_past.shape[-1] ).item() lowercase__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase__ : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1E-3 ) ) def snake_case__( self: Optional[Any] ): lowercase__ : Dict = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : List[str] = config_and_inputs lowercase__ : Any = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' _A = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) _A = (OpenLlamaForCausalLM,) if is_torch_available() else () _A = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) _A = False _A = False def snake_case__( self: Any ): lowercase__ : List[Any] = OpenLlamaModelTester(self ) lowercase__ : Dict = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=37 ) def snake_case__( self: Any ): self.config_tester.run_common_tests() def snake_case__( self: Dict ): lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def snake_case__( self: str ): lowercase__ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ : Dict = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def snake_case__( self: Any ): lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = 3 lowercase__ : Union[str, Any] = input_dict['input_ids'] lowercase__ : Union[str, Any] = input_ids.ne(1 ).to(lowerCamelCase_ ) lowercase__ : int = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) lowercase__ : Optional[Any] = OpenLlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowercase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__( self: Any ): lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = 3 lowercase__ : Optional[Any] = 'single_label_classification' lowercase__ : Union[str, Any] = input_dict['input_ids'] lowercase__ : str = input_ids.ne(1 ).to(lowerCamelCase_ ) lowercase__ : Any = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) lowercase__ : Dict = OpenLlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowercase__ : Optional[int] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__( self: Union[str, Any] ): lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = 3 lowercase__ : List[Any] = 'multi_label_classification' lowercase__ : Any = input_dict['input_ids'] lowercase__ : int = input_ids.ne(1 ).to(lowerCamelCase_ ) lowercase__ : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase__ : Optional[int] = OpenLlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowercase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def snake_case__( self: List[str] ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case__( self: Any, lowerCamelCase_: List[Any] ): lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[int] = ids_tensor([1, 10], config.vocab_size ) lowercase__ : Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase__ : str = OpenLlamaModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() lowercase__ : Union[str, Any] = original_model(lowerCamelCase_ ).last_hidden_state lowercase__ : List[str] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase__ : List[str] = {'type': scaling_type, 'factor': 1_0.0} lowercase__ : Union[str, Any] = OpenLlamaModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() lowercase__ : Dict = scaled_model(lowerCamelCase_ ).last_hidden_state lowercase__ : Union[str, Any] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1E-5 ) )
266
0
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=sys.maxsize ): """simple docstring""" lowercase = """bilinear""" lowercase = max_size lowercase = short_edge_length def __call__( self , __lowerCAmelCase ): """simple docstring""" lowercase = [] for img in imgs: lowercase , lowercase = img.shape[:2] # later: provide list and randomly choose index for resize lowercase = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowercase = size * 1.0 / min(__lowerCAmelCase , __lowerCAmelCase ) if h < w: lowercase , lowercase = size, scale * w else: lowercase , lowercase = scale * h, size if max(__lowerCAmelCase , __lowerCAmelCase ) > self.max_size: lowercase = self.max_size * 1.0 / max(__lowerCAmelCase , __lowerCAmelCase ) lowercase = newh * scale lowercase = neww * scale lowercase = int(neww + 0.5 ) lowercase = int(newh + 0.5 ) if img.dtype == np.uinta: lowercase = Image.fromarray(__lowerCAmelCase ) lowercase = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowercase = np.asarray(__lowerCAmelCase ) else: lowercase = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowercase = nn.functional.interpolate( __lowerCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=__lowerCAmelCase ).squeeze(0 ) img_augs.append(__lowerCAmelCase ) return img_augs class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowercase = cfg.INPUT.FORMAT lowercase = cfg.SIZE_DIVISIBILITY lowercase = cfg.PAD_VALUE lowercase = cfg.INPUT.MAX_SIZE_TEST lowercase = cfg.MODEL.DEVICE lowercase = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase = lambda __lowerCAmelCase : (x - self.pixel_mean) / self.pixel_std def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = tuple(max(__lowerCAmelCase ) for s in zip(*[img.shape for img in images] ) ) lowercase = [im.shape[-2:] for im in images] lowercase = [ nn.functional.pad( __lowerCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(__lowerCAmelCase , __lowerCAmelCase ) ] return torch.stack(__lowerCAmelCase ), torch.tensor(__lowerCAmelCase ) def __call__( self , __lowerCAmelCase , __lowerCAmelCase=False ): """simple docstring""" with torch.no_grad(): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = [images] if single_image: assert len(__lowerCAmelCase ) == 1 for i in range(len(__lowerCAmelCase ) ): if isinstance(images[i] , torch.Tensor ): images.insert(__lowerCAmelCase , images.pop(__lowerCAmelCase ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( __lowerCAmelCase , torch.as_tensor(img_tensorize(images.pop(__lowerCAmelCase ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowercase = torch.tensor([im.shape[:2] for im in images] ) lowercase = self.aug(__lowerCAmelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowercase = [self.normalizer(__lowerCAmelCase ) for x in images] # now pad them to do the following operations lowercase , lowercase = self.pad(__lowerCAmelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowercase = torch.true_divide(__lowerCAmelCase , __lowerCAmelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] ) -> Optional[Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple[int, int] ) -> List[Any]: '''simple docstring''' assert torch.isfinite(lowerCAmelCase__ ).all(), "Box tensor contains infinite or NaN!" lowercase , lowercase = box_size tensor[:, 0].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 1].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 2].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 3].clamp_(min=0 , max=lowerCAmelCase__ )
197
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( lowerCAmelCase__ :list[float] , lowerCAmelCase__ :list[float] ) -> float: '''simple docstring''' lowercase = sorted(numsa + numsa ) lowercase , lowercase = divmod(len(lowerCAmelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[Any] =[float(x) for x in input("""Enter the elements of first array: """).split()] __lowerCAmelCase : List[Any] =[float(x) for x in input("""Enter the elements of second array: """).split()] print(F"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
197
1
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCamelCase__ : Optional[Any] = open # noqa: we just need to have a builtin inside this module to test it properly
12
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowercase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( __lowercase): '''simple docstring''' def __init__( self :Dict , *a :Tuple , **a :List[Any] ) -> None: warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , a , ) super().__init__(*a , **a )
557
0
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# UpperCamelCase =[ # (stable-diffusion, HF Diffusers) ("time_embed.0.weight", "time_embedding.linear_1.weight"), ("time_embed.0.bias", "time_embedding.linear_1.bias"), ("time_embed.2.weight", "time_embedding.linear_2.weight"), ("time_embed.2.bias", "time_embedding.linear_2.bias"), ("input_blocks.0.0.weight", "conv_in.weight"), ("input_blocks.0.0.bias", "conv_in.bias"), ("out.0.weight", "conv_norm_out.weight"), ("out.0.bias", "conv_norm_out.bias"), ("out.2.weight", "conv_out.weight"), ("out.2.bias", "conv_out.bias"), ] UpperCamelCase =[ # (stable-diffusion, HF Diffusers) ("in_layers.0", "norm1"), ("in_layers.2", "conv1"), ("out_layers.0", "norm2"), ("out_layers.3", "conv2"), ("emb_layers.1", "time_emb_proj"), ("skip_connection", "conv_shortcut"), ] UpperCamelCase =[] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks UpperCamelCase =f"down_blocks.{i}.resnets.{j}." UpperCamelCase =f"input_blocks.{3*i + j + 1}.0." unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 UpperCamelCase =f"down_blocks.{i}.attentions.{j}." UpperCamelCase =f"input_blocks.{3*i + j + 1}.1." unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks UpperCamelCase =f"up_blocks.{i}.resnets.{j}." UpperCamelCase =f"output_blocks.{3*i + j}.0." unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 UpperCamelCase =f"up_blocks.{i}.attentions.{j}." UpperCamelCase =f"output_blocks.{3*i + j}.1." unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 UpperCamelCase =f"down_blocks.{i}.downsamplers.0.conv." UpperCamelCase =f"input_blocks.{3*(i+1)}.0.op." unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 UpperCamelCase =f"up_blocks.{i}.upsamplers.0." UpperCamelCase =f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) UpperCamelCase ="mid_block.attentions.0." UpperCamelCase ="middle_block.1." unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): UpperCamelCase =f"mid_block.resnets.{j}." UpperCamelCase =f"middle_block.{2*j}." unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def snake_case ( a_ : int ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : List[Any] = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: UpperCamelCase_ : Union[str, Any] = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: UpperCamelCase_ : List[Any] = v.replace(a_ , a_ ) UpperCamelCase_ : Optional[int] = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: UpperCamelCase_ : Dict = v.replace(a_ , a_ ) UpperCamelCase_ : List[Any] = v UpperCamelCase_ : Tuple = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# UpperCamelCase =[ # (stable-diffusion, HF Diffusers) ("nin_shortcut", "conv_shortcut"), ("norm_out", "conv_norm_out"), ("mid.attn_1.", "mid_block.attentions.0."), ] for i in range(4): # down_blocks have two resnets for j in range(2): UpperCamelCase =f"encoder.down_blocks.{i}.resnets.{j}." UpperCamelCase =f"encoder.down.{i}.block.{j}." vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: UpperCamelCase =f"down_blocks.{i}.downsamplers.0." UpperCamelCase =f"down.{i}.downsample." vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) UpperCamelCase =f"up_blocks.{i}.upsamplers.0." UpperCamelCase =f"up.{3-i}.upsample." vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): UpperCamelCase =f"decoder.up_blocks.{i}.resnets.{j}." UpperCamelCase =f"decoder.up.{3-i}.block.{j}." vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): UpperCamelCase =f"mid_block.resnets.{i}." UpperCamelCase =f"mid.block_{i+1}." vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) UpperCamelCase =[ # (stable-diffusion, HF Diffusers) ("norm.", "group_norm."), ("q.", "query."), ("k.", "key."), ("v.", "value."), ("proj_out.", "proj_attn."), ] def snake_case ( a_ : Optional[int] ) -> str: """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def snake_case ( a_ : int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Any = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: UpperCamelCase_ : str = v.replace(a_ , a_ ) UpperCamelCase_ : List[Any] = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: UpperCamelCase_ : Optional[Any] = v.replace(a_ , a_ ) UpperCamelCase_ : List[str] = v UpperCamelCase_ : Optional[Any] = {v: vae_state_dict[k] for k, v in mapping.items()} UpperCamelCase_ : List[str] = ["""q""", """k""", """v""", """proj_out"""] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"mid.attn_1.{weight_name}.weight" in k: print(f"Reshaping {k} for SD format" ) UpperCamelCase_ : Tuple = reshape_weight_for_sd(a_ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# UpperCamelCase =[ # (stable-diffusion, HF Diffusers) ("resblocks.", "text_model.encoder.layers."), ("ln_1", "layer_norm1"), ("ln_2", "layer_norm2"), (".c_fc.", ".fc1."), (".c_proj.", ".fc2."), (".attn", ".self_attn"), ("ln_final.", "transformer.text_model.final_layer_norm."), ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), ] UpperCamelCase ={re.escape(x[1]): x[0] for x in textenc_conversion_lst} UpperCamelCase =re.compile("|".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp UpperCamelCase ={"q": 0, "k": 1, "v": 2} def snake_case ( a_ : List[str] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = {} UpperCamelCase_ : Optional[int] = {} UpperCamelCase_ : List[str] = {} for k, v in text_enc_dict.items(): if ( k.endswith(""".self_attn.q_proj.weight""" ) or k.endswith(""".self_attn.k_proj.weight""" ) or k.endswith(""".self_attn.v_proj.weight""" ) ): UpperCamelCase_ : Optional[int] = k[: -len(""".q_proj.weight""" )] UpperCamelCase_ : Dict = k[-len("""q_proj.weight""" )] if k_pre not in capture_qkv_weight: UpperCamelCase_ : Union[str, Any] = [None, None, None] UpperCamelCase_ : str = v continue if ( k.endswith(""".self_attn.q_proj.bias""" ) or k.endswith(""".self_attn.k_proj.bias""" ) or k.endswith(""".self_attn.v_proj.bias""" ) ): UpperCamelCase_ : List[Any] = k[: -len(""".q_proj.bias""" )] UpperCamelCase_ : Any = k[-len("""q_proj.bias""" )] if k_pre not in capture_qkv_bias: UpperCamelCase_ : str = [None, None, None] UpperCamelCase_ : Dict = v continue UpperCamelCase_ : Optional[Any] = textenc_pattern.sub(lambda a_ : protected[re.escape(m.group(0 ) )] , a_ ) UpperCamelCase_ : Optional[Any] = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) UpperCamelCase_ : Dict = textenc_pattern.sub(lambda a_ : protected[re.escape(m.group(0 ) )] , a_ ) UpperCamelCase_ : Dict = torch.cat(a_ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) UpperCamelCase_ : Dict = textenc_pattern.sub(lambda a_ : protected[re.escape(m.group(0 ) )] , a_ ) UpperCamelCase_ : Tuple = torch.cat(a_ ) return new_state_dict def snake_case ( a_ : List[Any] ) -> int: """simple docstring""" return text_enc_dict if __name__ == "__main__": UpperCamelCase =argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--use_safetensors", action="store_true", help="Save weights use safetensors, default is ckpt." ) UpperCamelCase =parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors UpperCamelCase =osp.join(args.model_path, "unet", "diffusion_pytorch_model.safetensors") UpperCamelCase =osp.join(args.model_path, "vae", "diffusion_pytorch_model.safetensors") UpperCamelCase =osp.join(args.model_path, "text_encoder", "model.safetensors") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): UpperCamelCase =load_file(unet_path, device="cpu") else: UpperCamelCase =osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin") UpperCamelCase =torch.load(unet_path, map_location="cpu") if osp.exists(vae_path): UpperCamelCase =load_file(vae_path, device="cpu") else: UpperCamelCase =osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin") UpperCamelCase =torch.load(vae_path, map_location="cpu") if osp.exists(text_enc_path): UpperCamelCase =load_file(text_enc_path, device="cpu") else: UpperCamelCase =osp.join(args.model_path, "text_encoder", "pytorch_model.bin") UpperCamelCase =torch.load(text_enc_path, map_location="cpu") # Convert the UNet model UpperCamelCase =convert_unet_state_dict(unet_state_dict) UpperCamelCase ={"model.diffusion_model." + k: v for k, v in unet_state_dict.items()} # Convert the VAE model UpperCamelCase =convert_vae_state_dict(vae_state_dict) UpperCamelCase ={"first_stage_model." + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper UpperCamelCase ="text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm UpperCamelCase ={"transformer." + k: v for k, v in text_enc_dict.items()} UpperCamelCase =convert_text_enc_state_dict_vaa(text_enc_dict) UpperCamelCase ={"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()} else: UpperCamelCase =convert_text_enc_state_dict(text_enc_dict) UpperCamelCase ={"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint UpperCamelCase ={**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: UpperCamelCase ={k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: UpperCamelCase ={"state_dict": state_dict} torch.save(state_dict, args.checkpoint_path)
702
'''simple docstring''' import random def snake_case ( a_ : int , a_ : float , a_ : bool = False ) -> dict: """simple docstring""" UpperCamelCase_ : dict = {i: [] for i in range(a_ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(a_ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(a_ ): for j in range(i + 1 , a_ ): if random.random() < probability: graph[i].append(a_ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(a_ ) return graph def snake_case ( a_ : int ) -> dict: """simple docstring""" return { i: [j for j in range(a_ ) if i != j] for i in range(a_ ) } if __name__ == "__main__": import doctest doctest.testmod()
543
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=7 , lowerCamelCase_=3 , lowerCamelCase_=1_8 , lowerCamelCase_=3_0 , lowerCamelCase_=4_0_0 , lowerCamelCase_=True , lowerCamelCase_=3_2 , lowerCamelCase_=True , ) -> Union[str, Any]: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size_divisor UpperCamelCase = do_rescale def UpperCAmelCase__ ( self) -> Any: return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = GLPNImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = GLPNImageProcessingTester(self) @property def UpperCAmelCase__ ( self) -> str: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCamelCase_ , '''do_resize''')) self.assertTrue(hasattr(lowerCamelCase_ , '''size_divisor''')) self.assertTrue(hasattr(lowerCamelCase_ , '''resample''')) self.assertTrue(hasattr(lowerCamelCase_ , '''do_rescale''')) def UpperCAmelCase__ ( self) -> str: pass def UpperCAmelCase__ ( self) -> Optional[Any]: # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0) def UpperCAmelCase__ ( self) -> Optional[Any]: # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0) def UpperCAmelCase__ ( self) -> Optional[int]: # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0)
34
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A_ ( __a ): def __init__( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Optional[Any]=13 , snake_case__ : Dict=7 , snake_case__ : Union[str, Any]=True , snake_case__ : str=True , snake_case__ : Optional[int]=True , snake_case__ : Tuple=True , snake_case__ : Any=True , snake_case__ : Union[str, Any]=False , snake_case__ : Any=False , snake_case__ : Optional[int]=False , snake_case__ : int=2 , snake_case__ : str=99 , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=32 , snake_case__ : Any=5 , snake_case__ : str=4 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : str=5_12 , snake_case__ : Union[str, Any]=12 , snake_case__ : Any=2 , snake_case__ : Tuple=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : Tuple=4 , snake_case__ : Union[str, Any]="last" , snake_case__ : int=None , snake_case__ : Union[str, Any]=None , ): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_lengths lowercase = use_token_type_ids lowercase = use_labels lowercase = gelu_activation lowercase = sinusoidal_embeddings lowercase = causal lowercase = asm lowercase = n_langs lowercase = vocab_size lowercase = n_special lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = summary_type lowercase = use_proj lowercase = scope def SCREAMING_SNAKE_CASE__ ( self : int ): lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_input_lengths: lowercase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = ids_tensor([self.batch_size] , 2 ).float() lowercase = ids_tensor([self.batch_size] , self.num_choices ) lowercase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : List[Any] , ): lowercase = FlaubertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase = model(snake_case__ , lengths=snake_case__ , langs=snake_case__ ) lowercase = model(snake_case__ , langs=snake_case__ ) lowercase = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Dict , snake_case__ : Optional[int] , ): lowercase = FlaubertWithLMHeadModel(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase = model(snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : List[Any] , ): lowercase = FlaubertForQuestionAnsweringSimple(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase = model(snake_case__ ) lowercase = model(snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : str , ): lowercase = FlaubertForQuestionAnswering(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase = model(snake_case__ ) lowercase = model( snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , cls_index=snake_case__ , is_impossible=snake_case__ , p_mask=snake_case__ , ) lowercase = model( snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , cls_index=snake_case__ , is_impossible=snake_case__ , ) ((lowercase) , ) = result_with_labels.to_tuple() lowercase = model(snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ ) ((lowercase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case__ : int , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[str] , ): lowercase = FlaubertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase = model(snake_case__ ) lowercase = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : int , snake_case__ : Any , snake_case__ : int , ): lowercase = self.num_labels lowercase = FlaubertForTokenClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Tuple , ): lowercase = self.num_choices lowercase = FlaubertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class A_ ( __a , __a , unittest.TestCase ): _A :List[Any] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _A :Optional[Any] = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Any , snake_case__ : Optional[int] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : List[Any]=False ): lowercase = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowercase = FlaubertModelTester(self ) lowercase = ConfigTester(self , config_class=snake_case__ , emb_dim=37 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : str ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : int ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*snake_case__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = FlaubertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase = True lowercase = model_class(config=snake_case__ ) lowercase = self._prepare_for_class(snake_case__ , snake_case__ ) lowercase = torch.jit.trace( snake_case__ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(snake_case__ , os.path.join(snake_case__ , """traced_model.pt""" ) ) lowercase = torch.jit.load(os.path.join(snake_case__ , """traced_model.pt""" ) , map_location=snake_case__ ) loaded(inputs_dict["""input_ids"""].to(snake_case__ ) , inputs_dict["""attention_mask"""].to(snake_case__ ) ) @require_torch class A_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowercase = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): lowercase = model(snake_case__ )[0] lowercase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , snake_case__ ) lowercase = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) )
428
0
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def _a ( self : int ,_a : Optional[int]=0 ): '''simple docstring''' A_ : Any = np.random.RandomState(_a ) A_ : List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_a ) A_ : Union[str, Any] = self.get_dummy_inputs() A_ : List[Any] = pipe(**_a ).images A_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ : List[Any] = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Any ): '''simple docstring''' A_ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) A_ : Any = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=_a ) pipe.set_progress_bar_config(disable=_a ) A_ : Dict = self.get_dummy_inputs() A_ : Union[str, Any] = pipe(**_a ).images A_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ : int = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Dict ): '''simple docstring''' A_ : Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) A_ : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) A_ : Optional[int] = self.get_dummy_inputs() A_ : Optional[int] = pipe(**_a ).images A_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ : int = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) A_ : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) A_ : Dict = self.get_dummy_inputs() A_ : Union[str, Any] = pipe(**_a ).images A_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ : Dict = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[Any] ): '''simple docstring''' A_ : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) A_ : Tuple = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) A_ : Union[str, Any] = self.get_dummy_inputs() A_ : Any = pipe(**_a ).images A_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ : Tuple = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[Any] ): '''simple docstring''' A_ : Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) A_ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) A_ : Tuple = self.get_dummy_inputs() A_ : int = pipe(**_a ).images A_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ : Union[str, Any] = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_a ) A_ : str = self.get_dummy_inputs() A_ : List[str] = 3 * [inputs["""prompt"""]] # forward A_ : Optional[Any] = pipe(**_a ) A_ : Any = output.images[0, -3:, -3:, -1] A_ : str = self.get_dummy_inputs() A_ : Tuple = 3 * [inputs.pop("""prompt""" )] A_ : List[Any] = pipe.tokenizer( _a ,padding="""max_length""" ,max_length=pipe.tokenizer.model_max_length ,truncation=_a ,return_tensors="""np""" ,) A_ : Union[str, Any] = text_inputs["""input_ids"""] A_ : Tuple = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] A_ : Optional[int] = prompt_embeds # forward A_ : int = pipe(**_a ) A_ : Union[str, Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : Dict ): '''simple docstring''' A_ : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_a ) A_ : Tuple = self.get_dummy_inputs() A_ : Union[str, Any] = 3 * ["""this is a negative prompt"""] A_ : Any = negative_prompt A_ : Optional[Any] = 3 * [inputs["""prompt"""]] # forward A_ : Tuple = pipe(**_a ) A_ : Any = output.images[0, -3:, -3:, -1] A_ : List[Any] = self.get_dummy_inputs() A_ : List[str] = 3 * [inputs.pop("""prompt""" )] A_ : List[Any] = [] for p in [prompt, negative_prompt]: A_ : int = pipe.tokenizer( _a ,padding="""max_length""" ,max_length=pipe.tokenizer.model_max_length ,truncation=_a ,return_tensors="""np""" ,) A_ : Tuple = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) A_ , A_ : Union[str, Any] = embeds # forward A_ : List[Any] = pipe(**_a ) A_ : str = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def _a ( self : Tuple ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Any ): '''simple docstring''' A_ : Union[str, Any] = ort.SessionOptions() A_ : int = False return options def _a ( self : Any ): '''simple docstring''' A_ : Tuple = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" ,revision="""onnx""" ,safety_checker=_a ,feature_extractor=_a ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) sd_pipe.set_progress_bar_config(disable=_a ) A_ : Optional[int] = """A painting of a squirrel eating a burger""" np.random.seed(0 ) A_ : Dict = sd_pipe([prompt] ,guidance_scale=6.0 ,num_inference_steps=10 ,output_type="""np""" ) A_ : Tuple = output.images A_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ : Tuple = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Optional[int] ): '''simple docstring''' A_ : Dict = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,subfolder="""scheduler""" ,revision="""onnx""" ) A_ : int = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,scheduler=_a ,safety_checker=_a ,feature_extractor=_a ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) sd_pipe.set_progress_bar_config(disable=_a ) A_ : Dict = """open neural network exchange""" A_ : Optional[int] = np.random.RandomState(0 ) A_ : Union[str, Any] = sd_pipe([prompt] ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=_a ,output_type="""np""" ) A_ : Tuple = output.images A_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ : str = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Any ): '''simple docstring''' A_ : str = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,subfolder="""scheduler""" ,revision="""onnx""" ) A_ : List[str] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,scheduler=_a ,safety_checker=_a ,feature_extractor=_a ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) sd_pipe.set_progress_bar_config(disable=_a ) A_ : Optional[int] = """open neural network exchange""" A_ : Optional[Any] = np.random.RandomState(0 ) A_ : int = sd_pipe([prompt] ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=_a ,output_type="""np""" ) A_ : str = output.images A_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ : str = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Any ): '''simple docstring''' A_ : int = 0 def test_callback_fn(_a : int ,_a : int ,_a : np.ndarray ) -> None: A_ : Any = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) A_ : Union[str, Any] = latents[0, -3:, -3:, -1] A_ : str = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) A_ : Any = latents[0, -3:, -3:, -1] A_ : int = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 A_ : int = False A_ : int = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,safety_checker=_a ,feature_extractor=_a ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=_a ) A_ : List[str] = """Andromeda galaxy in a bottle""" A_ : List[Any] = np.random.RandomState(0 ) pipe( prompt=_a ,num_inference_steps=5 ,guidance_scale=7.5 ,generator=_a ,callback=_a ,callback_steps=1 ,) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Dict ): '''simple docstring''' A_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,safety_checker=_a ,feature_extractor=_a ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) assert isinstance(_a ,_a ) assert pipe.safety_checker is None A_ : List[str] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_a ) A_ : Tuple = OnnxStableDiffusionPipeline.from_pretrained(_a ) # sanity check that the pipeline still works assert pipe.safety_checker is None A_ : int = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None
27
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( lowerCamelCase : dict , lowerCamelCase : str): A_ , A_ : List[Any] = set(lowerCamelCase), [start] while stack: A_ : Optional[Any] = stack.pop() explored.add(lowerCamelCase) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v]): if adj not in explored: stack.append(lowerCamelCase) return explored __magic_name__ = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
27
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Optional[Any] =logging.get_logger(__name__) class __UpperCAmelCase ( __a ): __A : int = ['pixel_values'] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PIL.Image.BICUBIC , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) lowerCAmelCase_ = size if size is not None else {'''height''': 256, '''width''': 256} lowerCAmelCase_ = get_size_dict(_lowerCamelCase ) lowerCAmelCase_ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowerCAmelCase_ = get_size_dict(_lowerCamelCase , param_name='''crop_size''' ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = resample lowerCAmelCase_ = do_center_crop lowerCAmelCase_ = crop_size lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PIL.Image.BICUBIC , _lowerCamelCase = None , **_lowerCamelCase , ): lowerCAmelCase_ = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( _lowerCamelCase , size=(size['''height'''], size['''width''']) , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): lowerCAmelCase_ = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_lowerCamelCase , size=(size['''height'''], size['''width''']) , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(_lowerCamelCase ) lowerCAmelCase_ = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ = get_size_dict(_lowerCamelCase , param_name='''crop_size''' ) lowerCAmelCase_ = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_center_crop: lowerCAmelCase_ = [self.center_crop(image=_lowerCamelCase , size=_lowerCamelCase ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] lowerCAmelCase_ = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
274
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def snake_case_ ( __snake_case : Tuple=None , __snake_case : int=None) -> int: return field(default_factory=lambda: default , metadata=__snake_case) @dataclass class __UpperCAmelCase : __A : str = field( metadata={'help': 'The csv file to plot.'} , ) __A : bool = field( default=__a , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) __A : bool = field( default=__a , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) __A : bool = field( default=__a , metadata={'help': 'Disable logarithmic scale when plotting'} , ) __A : bool = field( default=__a , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) __A : Optional[str] = field( default=__a , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) __A : Optional[List[str]] = list_field( default=__a , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def snake_case_ ( __snake_case : Optional[Any]) -> Dict: try: int(__snake_case) return True except ValueError: return False def snake_case_ ( __snake_case : Dict) -> int: try: float(__snake_case) return True except ValueError: return False class __UpperCAmelCase : def __init__( self , _lowerCamelCase ): lowerCAmelCase_ = args lowerCAmelCase_ = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: lowerCAmelCase_ = csv.DictReader(_lowerCamelCase ) for row in reader: lowerCAmelCase_ = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None lowerCAmelCase_ = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None lowerCAmelCase_ = float(row['''result'''] ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ ,lowerCAmelCase_ = plt.subplots() lowerCAmelCase_ = '''Time usage''' if self.args.is_time else '''Memory usage''' lowerCAmelCase_ = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): lowerCAmelCase_ = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) lowerCAmelCase_ = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) lowerCAmelCase_ = self.result_dict[model_name]['''result'''] ((lowerCAmelCase_) ,(lowerCAmelCase_)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) lowerCAmelCase_ = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: lowerCAmelCase_ = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=_lowerCamelCase , ) else: lowerCAmelCase_ = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((lowerCAmelCase_) ,(lowerCAmelCase_)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) lowerCAmelCase_ = np.asarray(_lowerCamelCase , _lowerCamelCase )[: len(_lowerCamelCase )] plt.scatter( _lowerCamelCase , _lowerCamelCase , label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(_lowerCamelCase , _lowerCamelCase , '''--''' ) title_str += F''' {label_model_name} vs.''' lowerCAmelCase_ = title_str[:-4] lowerCAmelCase_ = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(_lowerCamelCase ) plt.xlabel(_lowerCamelCase ) plt.ylabel(_lowerCamelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def snake_case_ ( ) -> Tuple: lowerCAmelCase_ = HfArgumentParser(__snake_case) lowerCAmelCase_ = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ = Plot(args=__snake_case) plot.plot() if __name__ == "__main__": main()
274
1
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class UpperCamelCase ( unittest.TestCase ): """simple docstring""" snake_case = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING snake_case = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def A( self : int ,_SCREAMING_SNAKE_CASE : Any ,_SCREAMING_SNAKE_CASE : List[Any] ,_SCREAMING_SNAKE_CASE : Tuple ) -> Dict: '''simple docstring''' A = AudioClassificationPipeline(model=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ) # test with a raw waveform A = np.zeros((3_4_0_0_0,) ) A = np.zeros((1_4_0_0_0,) ) return audio_classifier, [audioa, audio] def A( self : int ,_SCREAMING_SNAKE_CASE : Tuple ,_SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]: '''simple docstring''' A , A = examples A = audio_classifier(_SCREAMING_SNAKE_CASE ) # by default a model is initialized with num_labels=2 self.assertEqual( _SCREAMING_SNAKE_CASE ,[ {'score': ANY(_SCREAMING_SNAKE_CASE ), 'label': ANY(_SCREAMING_SNAKE_CASE )}, {'score': ANY(_SCREAMING_SNAKE_CASE ), 'label': ANY(_SCREAMING_SNAKE_CASE )}, ] ,) A = audio_classifier(_SCREAMING_SNAKE_CASE ,top_k=1 ) self.assertEqual( _SCREAMING_SNAKE_CASE ,[ {'score': ANY(_SCREAMING_SNAKE_CASE ), 'label': ANY(_SCREAMING_SNAKE_CASE )}, ] ,) self.run_torchaudio(_SCREAMING_SNAKE_CASE ) @require_torchaudio def A( self : Optional[int] ,_SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: '''simple docstring''' import datasets # test with a local file A = datasets.load_dataset('hf-internal-testing/librispeech_asr_dummy' ,'clean' ,split='validation' ) A = dataset[0]['audio']['array'] A = audio_classifier(_SCREAMING_SNAKE_CASE ) self.assertEqual( _SCREAMING_SNAKE_CASE ,[ {'score': ANY(_SCREAMING_SNAKE_CASE ), 'label': ANY(_SCREAMING_SNAKE_CASE )}, {'score': ANY(_SCREAMING_SNAKE_CASE ), 'label': ANY(_SCREAMING_SNAKE_CASE )}, ] ,) @require_torch def A( self : int ) -> str: '''simple docstring''' A = 'anton-l/wav2vec2-random-tiny-classifier' A = pipeline('audio-classification' ,model=_SCREAMING_SNAKE_CASE ) A = np.ones((8_0_0_0,) ) A = audio_classifier(_SCREAMING_SNAKE_CASE ,top_k=4 ) A = [ {'score': 0.0842, 'label': 'no'}, {'score': 0.0838, 'label': 'up'}, {'score': 0.0837, 'label': 'go'}, {'score': 0.0834, 'label': 'right'}, ] A = [ {'score': 0.0845, 'label': 'stop'}, {'score': 0.0844, 'label': 'on'}, {'score': 0.0841, 'label': 'right'}, {'score': 0.0834, 'label': 'left'}, ] self.assertIn(nested_simplify(_SCREAMING_SNAKE_CASE ,decimals=4 ) ,[EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) A = {'array': np.ones((8_0_0_0,) ), 'sampling_rate': audio_classifier.feature_extractor.sampling_rate} A = audio_classifier(_SCREAMING_SNAKE_CASE ,top_k=4 ) self.assertIn(nested_simplify(_SCREAMING_SNAKE_CASE ,decimals=4 ) ,[EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def A( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' import datasets A = 'superb/wav2vec2-base-superb-ks' A = pipeline('audio-classification' ,model=_SCREAMING_SNAKE_CASE ) A = datasets.load_dataset('anton-l/superb_dummy' ,'ks' ,split='test' ) A = np.array(dataset[3]['speech'] ,dtype=np.floataa ) A = audio_classifier(_SCREAMING_SNAKE_CASE ,top_k=4 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ,decimals=3 ) ,[ {'score': 0.981, 'label': 'go'}, {'score': 0.007, 'label': 'up'}, {'score': 0.006, 'label': '_unknown_'}, {'score': 0.001, 'label': 'down'}, ] ,) @require_tf @unittest.skip('Audio classification is not implemented for TF' ) def A( self : Any ) -> int: '''simple docstring''' pass
110
from math import factorial class UpperCamelCase : """simple docstring""" def __init__( self : Any ,_SCREAMING_SNAKE_CASE : List[Any] ,_SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: '''simple docstring''' A = real if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): A = [1] * rank else: A = rank def __repr__( self : Any ) -> Optional[Any]: '''simple docstring''' return ( f'{self.real}+' f'{"+".join(str(_SCREAMING_SNAKE_CASE )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def A( self : Optional[Any] ) -> Tuple: '''simple docstring''' A = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real ,_SCREAMING_SNAKE_CASE ) def __add__( self : Optional[Any] ,_SCREAMING_SNAKE_CASE : int ) -> Any: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): return Dual(self.real + other ,self.duals ) A = self.duals.copy() A = other.duals.copy() if len(_SCREAMING_SNAKE_CASE ) > len(_SCREAMING_SNAKE_CASE ): o_dual.extend([1] * (len(_SCREAMING_SNAKE_CASE ) - len(_SCREAMING_SNAKE_CASE )) ) elif len(_SCREAMING_SNAKE_CASE ) < len(_SCREAMING_SNAKE_CASE ): s_dual.extend([1] * (len(_SCREAMING_SNAKE_CASE ) - len(_SCREAMING_SNAKE_CASE )) ) A = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real ,_SCREAMING_SNAKE_CASE ) snake_case = __add__ def __sub__( self : Tuple ,_SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]: '''simple docstring''' return self + other * -1 def __mul__( self : Any ,_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): A = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other ,_SCREAMING_SNAKE_CASE ) A = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real ,_SCREAMING_SNAKE_CASE ) snake_case = __mul__ def __truediv__( self : Union[str, Any] ,_SCREAMING_SNAKE_CASE : int ) -> List[str]: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): A = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other ,_SCREAMING_SNAKE_CASE ) raise ValueError def __floordiv__( self : Any ,_SCREAMING_SNAKE_CASE : Any ) -> Dict: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): A = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other ,_SCREAMING_SNAKE_CASE ) raise ValueError def __pow__( self : int ,_SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: '''simple docstring''' if n < 0 or isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self A = self for _ in range(n - 1 ): x *= self return x def snake_case ( UpperCAmelCase : Optional[int], UpperCAmelCase : List[Any], UpperCAmelCase : int ): if not callable(UpperCAmelCase ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(UpperCAmelCase, (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(UpperCAmelCase, UpperCAmelCase ): raise ValueError('differentiate() requires an int as input for order' ) A = Dual(UpperCAmelCase, 1 ) A = func(UpperCAmelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() def snake_case ( UpperCAmelCase : int ): return y**2 * y**4 print(differentiate(f, 9, 2))
110
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure)
169
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
169
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case : Tuple = logging.get_logger(__name__) _snake_case : Optional[int] = {'vocab_file': 'sentencepiece.model'} _snake_case : Dict = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } _snake_case : Optional[Any] = { 'google/rembert': 2_56, } class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, _a, _a=False, _a=True, _a=True, _a="[CLS]", _a="[SEP]", _a="[UNK]", _a="[SEP]", _a="[PAD]", _a="[CLS]", _a="[MASK]", **_a, ) -> Dict: super().__init__( do_lower_case=_a, remove_space=_a, keep_accents=_a, bos_token=_a, eos_token=_a, unk_token=_a, sep_token=_a, pad_token=_a, cls_token=_a, mask_token=_a, **_a, ) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = remove_space __SCREAMING_SNAKE_CASE = keep_accents __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor() self.sp_model.Load(_a ) @property def __lowerCAmelCase ( self ) -> Optional[Any]: return len(self.sp_model ) def __lowerCAmelCase ( self ) -> Dict: __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self, _a ) -> Dict: __SCREAMING_SNAKE_CASE = d __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self, _a, _a=False ) -> int: __SCREAMING_SNAKE_CASE = self.sp_model.EncodeAsPieces(_a ) return pieces def __lowerCAmelCase ( self, _a ) -> Optional[int]: return self.sp_model.PieceToId(_a ) def __lowerCAmelCase ( self, _a ) -> Tuple: return self.sp_model.IdToPiece(_a ) def __lowerCAmelCase ( self, _a ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.sp_model.decode_pieces(_a ) return out_string def __lowerCAmelCase ( self, _a, _a = None ) -> List[int]: __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self, _a, _a = None, _a = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] def __lowerCAmelCase ( self, _a, _a = None ) -> List[int]: __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self, _a, _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error("Vocabulary path ({}) should be a directory".format(_a ) ) return __SCREAMING_SNAKE_CASE = os.path.join( _a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file, _a ) return (out_vocab_file,)
214
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _A ( __snake_case :int ) -> Optional[int]: """simple docstring""" if ( (cp >= 0x4E_00 and cp <= 0x9F_FF) or (cp >= 0x34_00 and cp <= 0x4D_BF) # or (cp >= 0x2_00_00 and cp <= 0x2_A6_DF) # or (cp >= 0x2_A7_00 and cp <= 0x2_B7_3F) # or (cp >= 0x2_B7_40 and cp <= 0x2_B8_1F) # or (cp >= 0x2_B8_20 and cp <= 0x2_CE_AF) # or (cp >= 0xF9_00 and cp <= 0xFA_FF) or (cp >= 0x2_F8_00 and cp <= 0x2_FA_1F) # ): # return True return False def _A ( __snake_case :str ) -> int: """simple docstring""" for char in word: __SCREAMING_SNAKE_CASE = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def _A ( __snake_case :List[str] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = set() for token in tokens: __SCREAMING_SNAKE_CASE = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) __SCREAMING_SNAKE_CASE = list(__snake_case ) return word_list def _A ( __snake_case :List[str] , __snake_case :set() ) -> Any: """simple docstring""" if not chinese_word_set: return bert_tokens __SCREAMING_SNAKE_CASE = max([len(__snake_case ) for w in chinese_word_set] ) __SCREAMING_SNAKE_CASE = bert_tokens __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, len(__snake_case ) while start < end: __SCREAMING_SNAKE_CASE = True if is_chinese(bert_word[start] ): __SCREAMING_SNAKE_CASE = min(end - start , __snake_case ) for i in range(__snake_case , 1 , -1 ): __SCREAMING_SNAKE_CASE = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __SCREAMING_SNAKE_CASE = "##" + bert_word[j] __SCREAMING_SNAKE_CASE = start + i __SCREAMING_SNAKE_CASE = False break if single_word: start += 1 return bert_word def _A ( __snake_case :List[str] , __snake_case :LTP , __snake_case :BertTokenizer ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for i in range(0 , len(__snake_case ) , 100 ): __SCREAMING_SNAKE_CASE = ltp_tokenizer.seg(lines[i : i + 100] )[0] __SCREAMING_SNAKE_CASE = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) __SCREAMING_SNAKE_CASE = [] for i in range(0 , len(__snake_case ) , 100 ): __SCREAMING_SNAKE_CASE = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__snake_case , truncation=__snake_case , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__snake_case ) == len(__snake_case ) __SCREAMING_SNAKE_CASE = [] for input_ids, chinese_word in zip(__snake_case , __snake_case ): __SCREAMING_SNAKE_CASE = [] for id in input_ids: __SCREAMING_SNAKE_CASE = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) __SCREAMING_SNAKE_CASE = add_sub_symbol(__snake_case , __snake_case ) __SCREAMING_SNAKE_CASE = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": __SCREAMING_SNAKE_CASE = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def _A ( __snake_case :Tuple ) -> Any: """simple docstring""" with open(args.file_name , "r" , encoding="utf-8" ) as f: __SCREAMING_SNAKE_CASE = f.readlines() __SCREAMING_SNAKE_CASE = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __SCREAMING_SNAKE_CASE = LTP(args.ltp ) # faster in GPU device __SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained(args.bert ) __SCREAMING_SNAKE_CASE = prepare_ref(__snake_case , __snake_case , __snake_case ) with open(args.save_path , "w" , encoding="utf-8" ) as f: __SCREAMING_SNAKE_CASE = [json.dumps(__snake_case ) + "\n" for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": _snake_case : List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') _snake_case : Union[str, Any] = parser.parse_args() main(args)
214
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp _UpperCamelCase = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } _UpperCamelCase = { '''RUCAIBox/mvp''': 1024, } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] __SCREAMING_SNAKE_CASE = MvpTokenizer def __init__(self , __a=None , __a=None , __a=None , __a="replace" , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a=False , __a=True , **__a , ) -> Union[str, Any]: """simple docstring""" super().__init__( __a , __a , tokenizer_file=__a , errors=__a , bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , unk_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , trim_offsets=__a , **__a , ) UpperCAmelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __a ) != add_prefix_space: UpperCAmelCase__ = getattr(__a , pre_tok_state.pop('type' ) ) UpperCAmelCase__ = add_prefix_space UpperCAmelCase__ = pre_tok_class(**__a ) UpperCAmelCase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase__ = 'post_processor' UpperCAmelCase__ = getattr(self.backend_tokenizer , __a , __a ) if tokenizer_component_instance: UpperCAmelCase__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase__ = tuple(state['sep'] ) if "cls" in state: UpperCAmelCase__ = tuple(state['cls'] ) UpperCAmelCase__ = False if state.get('add_prefix_space' , __a ) != add_prefix_space: UpperCAmelCase__ = add_prefix_space UpperCAmelCase__ = True if state.get('trim_offsets' , __a ) != trim_offsets: UpperCAmelCase__ = trim_offsets UpperCAmelCase__ = True if changes_to_apply: UpperCAmelCase__ = getattr(__a , state.pop('type' ) ) UpperCAmelCase__ = component_class(**__a ) setattr(self.backend_tokenizer , __a , __a ) @property def UpperCamelCase__ (self ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase__ (self , __a ) -> Dict: """simple docstring""" UpperCAmelCase__ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else value UpperCAmelCase__ = value def UpperCamelCase__ (self , *__a , **__a ) -> BatchEncoding: """simple docstring""" UpperCAmelCase__ = kwargs.get('is_split_into_words' , __a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*__a , **__a ) def UpperCamelCase__ (self , *__a , **__a ) -> BatchEncoding: """simple docstring""" UpperCAmelCase__ = kwargs.get('is_split_into_words' , __a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.' ) return super()._encode_plus(*__a , **__a ) def UpperCamelCase__ (self , __a , __a = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase__ = self._tokenizer.model.save(__a , name=__a ) return tuple(__a ) def UpperCamelCase__ (self , __a , __a=None ) -> int: """simple docstring""" UpperCAmelCase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase__ (self , __a , __a = None ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
146
from __future__ import annotations import numpy as np def UpperCamelCase_( snake_case__: np.ndarray ) -> tuple[np.ndarray, np.ndarray]: UpperCAmelCase__ , UpperCAmelCase__ = np.shape(snake_case__ ) if rows != columns: UpperCAmelCase__ = ( '\'table\' has to be of square shaped array but got a ' f"{rows}x{columns} array:\n{table}" ) raise ValueError(snake_case__ ) UpperCAmelCase__ = np.zeros((rows, columns) ) UpperCAmelCase__ = np.zeros((rows, columns) ) for i in range(snake_case__ ): for j in range(snake_case__ ): UpperCAmelCase__ = sum(lower[i][k] * upper[k][j] for k in range(snake_case__ ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) UpperCAmelCase__ = (table[i][j] - total) / upper[j][j] UpperCAmelCase__ = 1 for j in range(snake_case__ , snake_case__ ): UpperCAmelCase__ = sum(lower[i][k] * upper[k][j] for k in range(snake_case__ ) ) UpperCAmelCase__ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
146
1
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class A__ ( A__ ): """simple docstring""" _lowercase = 'MCTCTFeatureExtractor' _lowercase = 'AutoTokenizer' def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ): super().__init__(lowerCamelCase__ , lowerCamelCase__ ) a__ : int = self.feature_extractor a__ : Any = False def __call__( self : str , *lowerCamelCase__ : Optional[Any] , **lowerCamelCase__ : List[Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCamelCase__ , **lowerCamelCase__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) a__ : Optional[Any] = kwargs.pop("raw_speech" ) else: a__ : int = kwargs.pop("audio" , lowerCamelCase__ ) a__ : Dict = kwargs.pop("sampling_rate" , lowerCamelCase__ ) a__ : List[str] = kwargs.pop("text" , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: a__ : Optional[int] = args[0] a__ : List[str] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: a__ : Dict = self.feature_extractor(lowerCamelCase__ , *lowerCamelCase__ , sampling_rate=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None: a__ : str = self.tokenizer(lowerCamelCase__ , **lowerCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: a__ : Union[str, Any] = encodings["input_ids"] return inputs def _UpperCamelCase( self : str , *lowerCamelCase__ : Dict , **lowerCamelCase__ : str ): return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : str , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Optional[Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*lowerCamelCase__ , **lowerCamelCase__ ) a__ : Any = kwargs.pop("input_features" , lowerCamelCase__ ) a__ : Any = kwargs.pop("labels" , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: a__ : Optional[int] = args[0] a__ : Any = args[1:] if input_features is not None: a__ : str = self.feature_extractor.pad(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) if labels is not None: a__ : Dict = self.tokenizer.pad(lowerCamelCase__ , **lowerCamelCase__ ) if labels is None: return input_features elif input_features is None: return labels else: a__ : List[str] = labels["input_ids"] return input_features def _UpperCamelCase( self : List[Any] , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Any ): return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @contextmanager def _UpperCamelCase( self : Optional[Any] ): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) a__ : str = True a__ : List[Any] = self.tokenizer yield a__ : Any = self.feature_extractor a__ : List[str] = False
151
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def UpperCamelCase_ ( __a , __a , __a , __a ) -> List[str]: a__ : str = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a__ : Any = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } a__ : Any = f'''{src_lang}-{tgt_lang}''' a__ : List[str] = f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=__a , exist_ok=__a ) a__ : Union[str, Any] = os.path.join(__a , "README.md" ) print(f'''Generating {path}''' ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(__a ) # make sure we are under the root of the project UpperCamelCase : Optional[Any] = Path(__file__).resolve().parent.parent.parent UpperCamelCase : List[str] = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase : Union[str, Any] = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
151
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
59
import operator as op def lowerCAmelCase_ ( __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Optional[Any] =[] lowerCamelCase__: Tuple =lambda __a , __a : int(x / y ) # noqa: E731 integer division operation lowerCamelCase__: Tuple ={ "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(12 ) , "Stack" , sep=" | " ) print("-" * (30 + len(__a )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__a ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(12 ) , ",".join(__a ) , sep=" | " ) else: lowerCamelCase__: List[Any] =stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(12 ) , ",".join(__a ) , sep=" | " ) lowerCamelCase__: Optional[Any] =stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(12 ) , ",".join(__a ) , sep=" | " ) stack.append( str(opr[x](int(__a ) , int(__a ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(12 ) , ",".join(__a ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": __A = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", solve(Postfix))
59
1
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a__ : @staticmethod def __UpperCamelCase ( *_A : List[Any],**_A : int ): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class a__ ( unittest.TestCase ): A = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def __UpperCamelCase ( self : Union[str, Any],_A : Dict,_A : int,_A : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = pipeline("visual-question-answering",model="hf-internal-testing/tiny-vilt-random-vqa" ) SCREAMING_SNAKE_CASE_ : Dict = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def __UpperCamelCase ( self : Optional[Any],_A : List[str],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = vqa_pipeline(_lowerCAmelCase,top_k=1 ) self.assertEqual( _lowerCAmelCase,[ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ],) @require_torch def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = pipeline("visual-question-answering",model="hf-internal-testing/tiny-vilt-random-vqa" ) SCREAMING_SNAKE_CASE_ : str = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE_ : List[Any] = "How many cats are there?" SCREAMING_SNAKE_CASE_ : List[Any] = vqa_pipeline(image=_lowerCAmelCase,question="How many cats are there?",top_k=2 ) self.assertEqual( _lowerCAmelCase,[{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) SCREAMING_SNAKE_CASE_ : List[str] = vqa_pipeline({"image": image, "question": question},top_k=2 ) self.assertEqual( _lowerCAmelCase,[{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = pipeline("visual-question-answering",model="dandelin/vilt-b32-finetuned-vqa" ) SCREAMING_SNAKE_CASE_ : str = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE_ : Tuple = "How many cats are there?" SCREAMING_SNAKE_CASE_ : Any = vqa_pipeline(image=_lowerCAmelCase,question=_lowerCAmelCase,top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase,decimals=4 ),[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) SCREAMING_SNAKE_CASE_ : List[Any] = vqa_pipeline({"image": image, "question": question},top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase,decimals=4 ),[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}],top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase,decimals=4 ),[[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2,) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def __UpperCamelCase ( self : str ): """simple docstring""" pass
709
from typing import Any import numpy as np def _snake_case ( lowerCAmelCase : np.ndarray ): """simple docstring""" return np.array_equal(lowerCAmelCase , matrix.conjugate().T ) def _snake_case ( lowerCAmelCase : np.ndarray , lowerCAmelCase : np.ndarray ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = v.conjugate().T SCREAMING_SNAKE_CASE_ : int = v_star.dot(lowerCAmelCase ) assert isinstance(lowerCAmelCase , np.ndarray ) return (v_star_dot.dot(lowerCAmelCase )) / (v_star.dot(lowerCAmelCase )) def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) SCREAMING_SNAKE_CASE_ : Dict = np.array([[1], [2], [3]] ) assert is_hermitian(lowerCAmelCase ), f'{a} is not hermitian.' print(rayleigh_quotient(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : int = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowerCAmelCase ), f'{a} is not hermitian.' assert rayleigh_quotient(lowerCAmelCase , lowerCAmelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
316
0
from __future__ import annotations import requests lowerCAmelCase_ = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def snake_case( __magic_name__ , __magic_name__ = 1 , __magic_name__ = "new" , __magic_name__ = None ) -> dict: '''simple docstring''' lowercase : List[str] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__magic_name__ ) - valid_terms ) ): lowercase : List[str] = F"""Invalid search term: {invalid_search_terms}""" raise ValueError(__magic_name__ ) lowercase : str = requests.get( F"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 4_29: raise requests.HTTPError lowercase : Optional[int] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__magic_name__ )} lowercase : Optional[Any] = {} for id_ in range(__magic_name__ ): lowercase : Optional[Any] = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
217
from __future__ import annotations def snake_case( __magic_name__ , __magic_name__ ) -> list[list[int]]: '''simple docstring''' lowercase : list[list[int]] = [] lowercase : list[int] = [] lowercase : List[str] = 0 lowercase : Any = sum(__magic_name__ ) create_state_space_tree(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) return result def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> None: '''simple docstring''' if sum(__magic_name__ ) > max_sum or (remaining_nums_sum + sum(__magic_name__ )) < max_sum: return if sum(__magic_name__ ) == max_sum: result.append(__magic_name__ ) return for index in range(__magic_name__ , len(__magic_name__ ) ): create_state_space_tree( __magic_name__ , __magic_name__ , index + 1 , [*path, nums[index]] , __magic_name__ , remaining_nums_sum - nums[index] , ) lowerCAmelCase_ = [3, 34, 4, 12, 5, 2] lowerCAmelCase_ = 9 lowerCAmelCase_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
217
1
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __lowerCAmelCase( lowerCAmelCase__ ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : str=0.01 , SCREAMING_SNAKE_CASE : Dict=1_000 ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Dict = p_stop SCREAMING_SNAKE_CASE_ :List[Any] = max_length def __iter__( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Tuple = 0 SCREAMING_SNAKE_CASE_ :Optional[int] = False while not stop and count < self.max_length: yield count count += 1 SCREAMING_SNAKE_CASE_ :Tuple = random.random() < self.p_stop class __lowerCAmelCase( unittest.TestCase ): def _lowercase ( self : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : Tuple=True ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[Any] = [ BatchSamplerShard(SCREAMING_SNAKE_CASE , 2 , SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) for i in range(2 ) ] SCREAMING_SNAKE_CASE_ :List[str] = [list(SCREAMING_SNAKE_CASE ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(SCREAMING_SNAKE_CASE ) for shard in batch_sampler_shards] , [len(SCREAMING_SNAKE_CASE ) for e in expected] ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _lowercase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ :str = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE_ :int = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ :Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ :Tuple = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :int = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ :Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :int = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[Any] = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _lowercase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[int] = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[str] = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE_ :Any = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE_ :Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ :Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :str = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[str] = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) def _lowercase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[int] = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE_ :str = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ :Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :str = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ :Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ :Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Any = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) def _lowercase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE_ :Tuple = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE_ :Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :int = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ :List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Tuple = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :str = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :str = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) def _lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Dict = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] SCREAMING_SNAKE_CASE_ :int = [BatchSamplerShard(SCREAMING_SNAKE_CASE , 2 , SCREAMING_SNAKE_CASE , even_batches=SCREAMING_SNAKE_CASE ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : List[str]=2 , SCREAMING_SNAKE_CASE : Optional[Any]=False ): """simple docstring""" random.seed(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :int = list(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :str = [ IterableDatasetShard( SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , drop_last=SCREAMING_SNAKE_CASE , num_processes=SCREAMING_SNAKE_CASE , process_index=SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE , ) for i in range(SCREAMING_SNAKE_CASE ) ] SCREAMING_SNAKE_CASE_ :Union[str, Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(SCREAMING_SNAKE_CASE ) iterable_dataset_lists.append(list(SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ :Optional[int] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size SCREAMING_SNAKE_CASE_ :Optional[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) ) self.assertTrue(len(SCREAMING_SNAKE_CASE ) % shard_batch_size == 0 ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = [] for idx in range(0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(SCREAMING_SNAKE_CASE ) < len(SCREAMING_SNAKE_CASE ): reference += reference self.assertListEqual(SCREAMING_SNAKE_CASE , reference[: len(SCREAMING_SNAKE_CASE )] ) def _lowercase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ :List[str] = 42 SCREAMING_SNAKE_CASE_ :List[str] = RandomIterableDataset() self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) # Edge case with a very small dataset SCREAMING_SNAKE_CASE_ :List[str] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE , split_batches=SCREAMING_SNAKE_CASE ) def _lowercase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Tuple = BatchSampler(range(16 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Dict = SkipBatchSampler(SCREAMING_SNAKE_CASE , 2 ) self.assertListEqual(list(SCREAMING_SNAKE_CASE ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[Any] = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) SCREAMING_SNAKE_CASE_ :Any = skip_first_batches(SCREAMING_SNAKE_CASE , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ :List[Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase ( self : List[str] ): """simple docstring""" Accelerator() SCREAMING_SNAKE_CASE_ :Dict = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
705
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class __lowerCAmelCase( lowerCAmelCase__ ): __snake_case : List[str] = 'xlm-roberta' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : List[str]=30_522 , SCREAMING_SNAKE_CASE : List[str]=768 , SCREAMING_SNAKE_CASE : List[str]=12 , SCREAMING_SNAKE_CASE : str=12 , SCREAMING_SNAKE_CASE : Optional[Any]=3_072 , SCREAMING_SNAKE_CASE : int="gelu" , SCREAMING_SNAKE_CASE : str=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]=512 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : str=0.02 , SCREAMING_SNAKE_CASE : List[str]=1E-12 , SCREAMING_SNAKE_CASE : List[str]=1 , SCREAMING_SNAKE_CASE : Any=0 , SCREAMING_SNAKE_CASE : Optional[int]=2 , SCREAMING_SNAKE_CASE : Union[str, Any]="absolute" , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Dict=None , **SCREAMING_SNAKE_CASE : int , ): """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[Any] = vocab_size SCREAMING_SNAKE_CASE_ :int = hidden_size SCREAMING_SNAKE_CASE_ :Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ :Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ :List[Any] = hidden_act SCREAMING_SNAKE_CASE_ :Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ :Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE_ :Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ :List[str] = max_position_embeddings SCREAMING_SNAKE_CASE_ :Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE_ :Any = initializer_range SCREAMING_SNAKE_CASE_ :List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ :Any = position_embedding_type SCREAMING_SNAKE_CASE_ :List[Any] = use_cache SCREAMING_SNAKE_CASE_ :int = classifier_dropout class __lowerCAmelCase( lowerCAmelCase__ ): @property def _lowercase ( self : Optional[int] ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ :str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ :Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
233
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a__ : Optional[Any] = 1_6 a__ : Tuple = 3_2 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ = 16 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("bert-base-cased" ) __SCREAMING_SNAKE_CASE = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) __SCREAMING_SNAKE_CASE = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __SCREAMING_SNAKE_CASE = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. __SCREAMING_SNAKE_CASE = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __SCREAMING_SNAKE_CASE = 16 elif accelerator.mixed_precision != "no": __SCREAMING_SNAKE_CASE = 8 else: __SCREAMING_SNAKE_CASE = None return tokenizer.pad( lowerCAmelCase_ , padding="longest" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="pt" , ) # Instantiate dataloaders. __SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["train"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a__ : Tuple = mocked_dataloaders # noqa: F811 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCAmelCase_ ) == "1": __SCREAMING_SNAKE_CASE = 2 # Initialize accelerator __SCREAMING_SNAKE_CASE = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __SCREAMING_SNAKE_CASE = config["lr"] __SCREAMING_SNAKE_CASE = int(config["num_epochs"] ) __SCREAMING_SNAKE_CASE = int(config["seed"] ) __SCREAMING_SNAKE_CASE = int(config["batch_size"] ) __SCREAMING_SNAKE_CASE = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation __SCREAMING_SNAKE_CASE = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __SCREAMING_SNAKE_CASE = batch_size // MAX_GPU_BATCH_SIZE __SCREAMING_SNAKE_CASE = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __SCREAMING_SNAKE_CASE = model.to(accelerator.device ) # Instantiate optimizer __SCREAMING_SNAKE_CASE = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler __SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = outputs.loss __SCREAMING_SNAKE_CASE = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __SCREAMING_SNAKE_CASE = 0 for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.gather((predictions, batch["labels"]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowerCAmelCase_ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __SCREAMING_SNAKE_CASE = predictions[: len(eval_dataloader.dataset ) - samples_seen] __SCREAMING_SNAKE_CASE = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) __SCREAMING_SNAKE_CASE = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowerCAmelCase_ ) def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
682
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[int] = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Optional[int] = "vivit" def __init__( self : Dict , UpperCAmelCase__ : Dict=2_2_4 , UpperCAmelCase__ : List[Any]=3_2 , UpperCAmelCase__ : str=[2, 1_6, 1_6] , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : str=7_6_8 , UpperCAmelCase__ : Dict=1_2 , UpperCAmelCase__ : Optional[int]=1_2 , UpperCAmelCase__ : Any=3_0_7_2 , UpperCAmelCase__ : Optional[int]="gelu_fast" , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Optional[int]=0.02 , UpperCAmelCase__ : str=1E-06 , UpperCAmelCase__ : List[Any]=True , **UpperCAmelCase__ : Any , ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_frames __SCREAMING_SNAKE_CASE = tubelet_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = qkv_bias super().__init__(**UpperCAmelCase__ )
682
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = KandinskyInpaintPipeline _UpperCamelCase = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] _UpperCamelCase = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] _UpperCamelCase = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _UpperCamelCase = False @property def UpperCamelCase_ ( self ): return 32 @property def UpperCamelCase_ ( self ): return 32 @property def UpperCamelCase_ ( self ): return self.time_input_dim @property def UpperCamelCase_ ( self ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self ): return 1_00 @property def UpperCamelCase_ ( self ): lowerCamelCase__ = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def UpperCamelCase_ ( self ): torch.manual_seed(0 ) lowerCamelCase__ = MCLIPConfig( numDims=self.cross_attention_dim ,transformerDimensions=self.text_embedder_hidden_size ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=10_05 ,) lowerCamelCase__ = MultilingualCLIP(_lowerCAmelCase ) lowerCamelCase__ = text_encoder.eval() return text_encoder @property def UpperCamelCase_ ( self ): torch.manual_seed(0 ) lowerCamelCase__ = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowerCamelCase__ = UNetaDConditionModel(**_lowerCAmelCase ) return model @property def UpperCamelCase_ ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase_ ( self ): torch.manual_seed(0 ) lowerCamelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase_ ( self ): lowerCamelCase__ = self.dummy_text_encoder lowerCamelCase__ = self.dummy_tokenizer lowerCamelCase__ = self.dummy_unet lowerCamelCase__ = self.dummy_movq lowerCamelCase__ = DDIMScheduler( num_train_timesteps=10_00 ,beta_schedule="""linear""" ,beta_start=0.0_0085 ,beta_end=0.012 ,clip_sample=_lowerCAmelCase ,set_alpha_to_one=_lowerCAmelCase ,steps_offset=1 ,prediction_type="""epsilon""" ,thresholding=_lowerCAmelCase ,) lowerCamelCase__ = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=0 ): lowerCamelCase__ = floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) lowerCamelCase__ = floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(seed + 1 ) ).to(_lowerCAmelCase ) # create init_image lowerCamelCase__ = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) lowerCamelCase__ = image.cpu().permute(0 ,2 ,3 ,1 )[0] lowerCamelCase__ = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask lowerCamelCase__ = np.ones((64, 64) ,dtype=np.floataa ) lowerCamelCase__ = 0 if str(_lowerCAmelCase ).startswith("""mps""" ): lowerCamelCase__ = torch.manual_seed(_lowerCAmelCase ) else: lowerCamelCase__ = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) lowerCamelCase__ = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def UpperCamelCase_ ( self ): lowerCamelCase__ = """cpu""" lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**_lowerCAmelCase ) lowerCamelCase__ = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCamelCase__ = pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) lowerCamelCase__ = output.images lowerCamelCase__ = pipe( **self.get_dummy_inputs(_lowerCAmelCase ) ,return_dict=_lowerCAmelCase ,)[0] lowerCamelCase__ = image[0, -3:, -3:, -1] lowerCamelCase__ = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) lowerCamelCase__ = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def UpperCamelCase_ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ): lowerCamelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowerCamelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowerCamelCase__ = np.ones((7_68, 7_68) ,dtype=np.floataa ) lowerCamelCase__ = 0 lowerCamelCase__ = """a hat""" lowerCamelCase__ = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) lowerCamelCase__ = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" ,torch_dtype=torch.floataa ) lowerCamelCase__ = pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCamelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ = pipe_prior( _lowerCAmelCase ,generator=_lowerCAmelCase ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple() lowerCamelCase__ = pipeline( _lowerCAmelCase ,image=_lowerCAmelCase ,mask_image=_lowerCAmelCase ,image_embeds=_lowerCAmelCase ,negative_image_embeds=_lowerCAmelCase ,generator=_lowerCAmelCase ,num_inference_steps=1_00 ,height=7_68 ,width=7_68 ,output_type="""np""" ,) lowerCamelCase__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowerCAmelCase ,_lowerCAmelCase )
9
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = BlipImageProcessor() lowerCamelCase__ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowerCamelCase__ = BlipProcessor(_lowerCAmelCase ,_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).tokenizer def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).image_processor def UpperCamelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): lowerCamelCase__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self ): lowerCamelCase__ = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) lowerCamelCase__ = self.get_image_processor(do_normalize=_lowerCAmelCase ,padding_value=1.0 ) lowerCamelCase__ = BlipProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_lowerCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" ) lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = processor(text=_lowerCAmelCase ) lowerCamelCase__ = tokenizer(_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ = processor.batch_decode(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
9
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase = 42 _UpperCAmelCase = None # Automatically constructed _UpperCAmelCase = "dict" _UpperCAmelCase = None _UpperCAmelCase = field(default="""Translation""" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ): """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCamelCase__ ( self ): """simple docstring""" from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None # Automatically constructed _UpperCAmelCase = "dict" _UpperCAmelCase = None _UpperCAmelCase = field(default="""TranslationVariableLanguages""" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = sorted(set(self.languages ) ) if self.languages else None SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(self.languages ) if self.languages else None def __call__( self ): """simple docstring""" return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = set(self.languages ) if self.languages and set(lowerCAmelCase__ ) - lang_set: raise ValueError( F'''Some languages in example ({', '.join(sorted(set(lowerCAmelCase__ ) - lang_set ) )}) are not in valid set ({', '.join(lowerCAmelCase__ )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. SCREAMING_SNAKE_CASE_ : Dict = [] for lang, text in translation_dict.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = zip(*sorted(lowerCAmelCase__ ) ) return {"language": languages, "translation": translations} def UpperCamelCase__ ( self ): """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
101
"""simple docstring""" import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase__ ( snake_case__, unittest.TestCase ): _UpperCAmelCase :Dict = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Any=0 ): lowerCamelCase_ : Tuple =np.random.RandomState(snake_case__ ) lowerCamelCase_ : Union[str, Any] ={ "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : str =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : List[str] =self.get_dummy_inputs() lowerCamelCase_ : List[str] =pipe(**snake_case__ ).images lowerCamelCase_ : Dict =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Dict =np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : Optional[Any] =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : int =PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : List[Any] =self.get_dummy_inputs() lowerCamelCase_ : Union[str, Any] =pipe(**snake_case__ ).images lowerCamelCase_ : Tuple =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Union[str, Any] =np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : Optional[int] =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : int =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : int =self.get_dummy_inputs() lowerCamelCase_ : Optional[Any] =pipe(**snake_case__ ).images lowerCamelCase_ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Any =np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : List[Any] =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : str =EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Dict =self.get_dummy_inputs() lowerCamelCase_ : Dict =pipe(**snake_case__ ).images lowerCamelCase_ : Tuple =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Tuple =np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : int =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : Optional[Any] =EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Dict =self.get_dummy_inputs() lowerCamelCase_ : str =pipe(**snake_case__ ).images lowerCamelCase_ : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Optional[int] =np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : Any =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : Union[str, Any] =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Optional[int] =self.get_dummy_inputs() lowerCamelCase_ : Tuple =pipe(**snake_case__ ).images lowerCamelCase_ : List[str] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : List[Any] =np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : int =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Union[str, Any] =self.get_dummy_inputs() lowerCamelCase_ : Optional[Any] =3 * [inputs["prompt"]] # forward lowerCamelCase_ : Optional[int] =pipe(**snake_case__ ) lowerCamelCase_ : Dict =output.images[0, -3:, -3:, -1] lowerCamelCase_ : Any =self.get_dummy_inputs() lowerCamelCase_ : Dict =3 * [inputs.pop("prompt" )] lowerCamelCase_ : Union[str, Any] =pipe.tokenizer( snake_case__ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors="np" , ) lowerCamelCase_ : Any =text_inputs["input_ids"] lowerCamelCase_ : Dict =pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] lowerCamelCase_ : Union[str, Any] =prompt_embeds # forward lowerCamelCase_ : Tuple =pipe(**snake_case__ ) lowerCamelCase_ : List[str] =output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : List[str] =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : List[Any] =self.get_dummy_inputs() lowerCamelCase_ : Dict =3 * ["this is a negative prompt"] lowerCamelCase_ : Tuple =negative_prompt lowerCamelCase_ : List[str] =3 * [inputs["prompt"]] # forward lowerCamelCase_ : Optional[Any] =pipe(**snake_case__ ) lowerCamelCase_ : Any =output.images[0, -3:, -3:, -1] lowerCamelCase_ : str =self.get_dummy_inputs() lowerCamelCase_ : int =3 * [inputs.pop("prompt" )] lowerCamelCase_ : List[Any] =[] for p in [prompt, negative_prompt]: lowerCamelCase_ : Tuple =pipe.tokenizer( snake_case__ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors="np" , ) lowerCamelCase_ : Dict =text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) lowerCamelCase_ , lowerCamelCase_ : int =embeds # forward lowerCamelCase_ : str =pipe(**snake_case__ ) lowerCamelCase_ : Any =output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class lowercase__ ( unittest.TestCase ): @property def UpperCAmelCase__ ( self : int ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : List[str] =ort.SessionOptions() lowerCamelCase_ : List[Any] =False return options def UpperCAmelCase__ ( self : Tuple ): # using the PNDM scheduler by default lowerCamelCase_ : Optional[Any] =OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : List[Any] ="A painting of a squirrel eating a burger" np.random.seed(0 ) lowerCamelCase_ : Tuple =sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np" ) lowerCamelCase_ : Union[str, Any] =output.images lowerCamelCase_ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : List[str] =np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : List[Any] =DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) lowerCamelCase_ : List[str] =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : int ="open neural network exchange" lowerCamelCase_ : List[Any] =np.random.RandomState(0 ) lowerCamelCase_ : str =sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type="np" ) lowerCamelCase_ : Optional[int] =output.images lowerCamelCase_ : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : Any =np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : str =LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) lowerCamelCase_ : Any =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Union[str, Any] ="open neural network exchange" lowerCamelCase_ : str =np.random.RandomState(0 ) lowerCamelCase_ : Optional[int] =sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type="np" ) lowerCamelCase_ : Dict =output.images lowerCamelCase_ : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : Dict =np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : Any =0 def test_callback_fn(snake_case__ : int , snake_case__ : int , snake_case__ : np.ndarray ) -> None: lowerCamelCase_ : Optional[int] =True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) lowerCamelCase_ : List[str] =latents[0, -3:, -3:, -1] lowerCamelCase_ : Union[str, Any] =np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) lowerCamelCase_ : Optional[Any] =latents[0, -3:, -3:, -1] lowerCamelCase_ : List[Any] =np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 lowerCamelCase_ : Any =False lowerCamelCase_ : int =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Dict ="Andromeda galaxy in a bottle" lowerCamelCase_ : Union[str, Any] =np.random.RandomState(0 ) pipe( prompt=snake_case__ , num_inference_steps=5 , guidance_scale=7.5 , generator=snake_case__ , callback=snake_case__ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : List[str] =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(snake_case__ , snake_case__ ) assert pipe.safety_checker is None lowerCamelCase_ : Tuple =pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case__ ) lowerCamelCase_ : str =OnnxStableDiffusionPipeline.from_pretrained(snake_case__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCamelCase_ : Any =pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None
153
0
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCamelCase = get_tests_dir("""fixtures""") UpperCamelCase = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") UpperCamelCase = get_tests_dir("""fixtures/dummy-config.json""") class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ) -> Optional[Any]: A__ = 0 def snake_case__ ( self ) -> List[Any]: A__ = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Optional[Any]: A__ = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: A__ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally A__ = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ ).to_dict() config_dict.pop("feature_extractor_type" ) A__ = WavaVecaFeatureExtractor(**SCREAMING_SNAKE_CASE__ ) # save in new folder model_config.save_pretrained(SCREAMING_SNAKE_CASE__ ) config.save_pretrained(SCREAMING_SNAKE_CASE__ ) A__ = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ ) # make sure private variable is not incorrectly saved A__ = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Optional[int]: A__ = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Optional[int]: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , "bert-base is not a local folder and is not a valid model identifier" ): A__ = AutoFeatureExtractor.from_pretrained("bert-base" ) def snake_case__ ( self ) -> int: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): A__ = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ , revision="aaaaaa" ) def snake_case__ ( self ) -> Optional[Any]: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): A__ = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" ) def snake_case__ ( self ) -> Any: with self.assertRaises(SCREAMING_SNAKE_CASE__ ): A__ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE__ ): A__ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=SCREAMING_SNAKE_CASE__ ) A__ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) A__ = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) def snake_case__ ( self ) -> int: try: AutoConfig.register("custom" , SCREAMING_SNAKE_CASE__ ) AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) A__ = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def snake_case__ ( self ) -> Tuple: class UpperCamelCase__ ( __UpperCAmelCase ): """simple docstring""" A__ : int = True try: AutoConfig.register("custom" , SCREAMING_SNAKE_CASE__ ) AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # If remote code is not set, the default is to use local A__ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. A__ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub A__ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(not hasattr(SCREAMING_SNAKE_CASE__ , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
717
"""simple docstring""" from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_lowerCAmelCase ) class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> str: super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) requires_backends(self , "decord" ) self.check_model_type(SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ) -> Optional[int]: A__ = {} if frame_sampling_rate is not None: A__ = frame_sampling_rate if num_frames is not None: A__ = num_frames A__ = {} if top_k is not None: A__ = top_k return preprocess_params, {}, postprocess_params def __call__( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: return super().__call__(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=1 ) -> Dict: if num_frames is None: A__ = self.model.config.num_frames if video.startswith("http://" ) or video.startswith("https://" ): A__ = BytesIO(requests.get(SCREAMING_SNAKE_CASE__ ).content ) A__ = VideoReader(SCREAMING_SNAKE_CASE__ ) videoreader.seek(0 ) A__ = 0 A__ = num_frames * frame_sampling_rate - 1 A__ = np.linspace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num=SCREAMING_SNAKE_CASE__ , dtype=np.intaa ) A__ = videoreader.get_batch(SCREAMING_SNAKE_CASE__ ).asnumpy() A__ = list(SCREAMING_SNAKE_CASE__ ) A__ = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors=self.framework ) return model_inputs def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> List[str]: A__ = self.model(**SCREAMING_SNAKE_CASE__ ) return model_outputs def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=5 ) -> Dict: if top_k > self.model.config.num_labels: A__ = self.model.config.num_labels if self.framework == "pt": A__ = model_outputs.logits.softmax(-1 )[0] A__ , A__ = probs.topk(SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) A__ = scores.tolist() A__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )]
562
0
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = F'''{sampling_rate}''' SCREAMING_SNAKE_CASE_ : str = '1' SCREAMING_SNAKE_CASE_ : Optional[Any] = 'f32le' SCREAMING_SNAKE_CASE_ : str = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(A__, stdin=subprocess.PIPE, stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE_ : Optional[int] = ffmpeg_process.communicate(A__ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error SCREAMING_SNAKE_CASE_ : Tuple = output_stream[0] SCREAMING_SNAKE_CASE_ : str = np.frombuffer(A__, np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def a__ ( A__, A__, A__ = "f32le", ): SCREAMING_SNAKE_CASE_ : int = F'''{sampling_rate}''' SCREAMING_SNAKE_CASE_ : Any = '1' if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE_ : Tuple = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE_ : Optional[int] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) SCREAMING_SNAKE_CASE_ : List[str] = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE_ : Any = 'alsa' SCREAMING_SNAKE_CASE_ : Tuple = 'default' elif system == "Darwin": SCREAMING_SNAKE_CASE_ : List[str] = 'avfoundation' SCREAMING_SNAKE_CASE_ : Dict = ':0' elif system == "Windows": SCREAMING_SNAKE_CASE_ : List[str] = 'dshow' SCREAMING_SNAKE_CASE_ : Optional[Any] = 'default' SCREAMING_SNAKE_CASE_ : List[Any] = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] SCREAMING_SNAKE_CASE_ : List[Any] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE_ : List[str] = _ffmpeg_stream(A__, A__ ) for item in iterator: yield item def a__ ( A__, A__, A__ = None, A__ = None, A__ = "f32le", ): if stream_chunk_s is not None: SCREAMING_SNAKE_CASE_ : int = stream_chunk_s else: SCREAMING_SNAKE_CASE_ : Any = chunk_length_s SCREAMING_SNAKE_CASE_ : Union[str, Any] = ffmpeg_microphone(A__, A__, format_for_conversion=A__ ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE_ : List[Any] = np.intaa SCREAMING_SNAKE_CASE_ : List[str] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE_ : str = np.floataa SCREAMING_SNAKE_CASE_ : Optional[Any] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: SCREAMING_SNAKE_CASE_ : Any = chunk_length_s / 6 SCREAMING_SNAKE_CASE_ : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(A__, (int, float) ): SCREAMING_SNAKE_CASE_ : Dict = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE_ : Optional[int] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE_ : Any = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE_ : Any = datetime.datetime.now() SCREAMING_SNAKE_CASE_ : Optional[Any] = datetime.timedelta(seconds=A__ ) for item in chunk_bytes_iter(A__, A__, stride=(stride_left, stride_right), stream=A__ ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.frombuffer(item['raw'], dtype=A__ ) SCREAMING_SNAKE_CASE_ : Tuple = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) SCREAMING_SNAKE_CASE_ : str = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 1_0 * delta: # We're late !! SKIP continue yield item def a__ ( A__, A__, A__, A__ = False ): SCREAMING_SNAKE_CASE_ : str = B'' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(A__ ) < chunk_len: SCREAMING_SNAKE_CASE_ : List[Any] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(A__ ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE_ : Optional[int] = (_stride_left, stride_right) SCREAMING_SNAKE_CASE_ : int = {'raw': acc[:chunk_len], 'stride': stride} if stream: SCREAMING_SNAKE_CASE_ : Dict = False yield item SCREAMING_SNAKE_CASE_ : int = stride_left SCREAMING_SNAKE_CASE_ : Any = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(A__ ) > stride_left: SCREAMING_SNAKE_CASE_ : int = {'raw': acc, 'stride': (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE_ : Optional[int] = False yield item def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Tuple = 2**2_4 # 16Mo try: with subprocess.Popen(A__, stdout=subprocess.PIPE, bufsize=A__ ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE_ : str = ffmpeg_process.stdout.read(A__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
101
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def snake_case_ ( __snake_case : Union[str, Any] , __snake_case : Union[str, Any]=False) -> Optional[int]: lowerCAmelCase_ = OmegaConf.load(__snake_case) if display: print(yaml.dump(OmegaConf.to_container(__snake_case))) return config def snake_case_ ( __snake_case : Any , __snake_case : Optional[int]=None , __snake_case : str=None) -> str: if conf_path is None: lowerCAmelCase_ = '''./model_checkpoints/vqgan_only.yaml''' lowerCAmelCase_ = load_config(__snake_case , display=__snake_case) lowerCAmelCase_ = VQModel(**config.model.params) if ckpt_path is None: lowerCAmelCase_ = '''./model_checkpoints/vqgan_only.pt''' lowerCAmelCase_ = torch.load(__snake_case , map_location=__snake_case) if ".ckpt" in ckpt_path: lowerCAmelCase_ = sd['''state_dict'''] model.load_state_dict(__snake_case , strict=__snake_case) model.to(__snake_case) del sd return model def snake_case_ ( __snake_case : Union[str, Any] , __snake_case : str) -> Optional[int]: lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = model.encode(__snake_case) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''') lowerCAmelCase_ = model.decode(__snake_case) return xrec def snake_case_ ( __snake_case : int , __snake_case : List[Any]=False) -> Union[str, Any]: lowerCAmelCase_ ,lowerCAmelCase_ = string.rsplit('''.''' , 1) if reload: lowerCAmelCase_ = importlib.import_module(__snake_case) importlib.reload(__snake_case) return getattr(importlib.import_module(__snake_case , package=__snake_case) , cls) def snake_case_ ( __snake_case : Tuple) -> Union[str, Any]: if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''') return get_obj_from_str(config['''target'''])(**config.get('''params''' , {})) def snake_case_ ( __snake_case : Optional[int] , __snake_case : Any , __snake_case : Optional[int]=True , __snake_case : Any=True) -> List[str]: lowerCAmelCase_ = instantiate_from_config(__snake_case) if sd is not None: model.load_state_dict(__snake_case) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def snake_case_ ( __snake_case : Any , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : str) -> Any: # load the specified checkpoint if ckpt: lowerCAmelCase_ = torch.load(__snake_case , map_location='''cpu''') lowerCAmelCase_ = pl_sd['''global_step'''] print(F'''loaded model from global step {global_step}.''') else: lowerCAmelCase_ = {'''state_dict''': None} lowerCAmelCase_ = None lowerCAmelCase_ = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=__snake_case , eval_mode=__snake_case)['''model'''] return model, global_step
274
0
"""simple docstring""" def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: while a != 0: _snake_case , _snake_case = b % a, a return b def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: if gcd(lowerCAmelCase_ , lowerCAmelCase_ ) != 1: _snake_case = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(lowerCAmelCase_ ) _snake_case , _snake_case , _snake_case = 1, 0, a _snake_case , _snake_case , _snake_case = 0, 1, m while va != 0: _snake_case = ua // va _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
404
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Any = '''time_series_transformer''' A__ : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : str = "student_t" , __lowerCamelCase : str = "nll" , __lowerCamelCase : int = 1 , __lowerCamelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowerCamelCase : Optional[Union[str, bool]] = "mean" , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : int = 3_2 , __lowerCamelCase : int = 3_2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : bool = True , __lowerCamelCase : str = "gelu" , __lowerCamelCase : int = 6_4 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : int = 1_0_0 , __lowerCamelCase : float = 0.0_2 , __lowerCamelCase : Optional[Any]=True , **__lowerCamelCase : List[Any] , ): """simple docstring""" # time series specific configuration _snake_case = prediction_length _snake_case = context_length or prediction_length _snake_case = distribution_output _snake_case = loss _snake_case = input_size _snake_case = num_time_features _snake_case = lags_sequence _snake_case = scaling _snake_case = num_dynamic_real_features _snake_case = num_static_real_features _snake_case = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__lowerCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) _snake_case = cardinality else: _snake_case = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__lowerCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) _snake_case = embedding_dimension else: _snake_case = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _snake_case = num_parallel_samples # Transformer architecture configuration _snake_case = input_size * len(__lowerCamelCase ) + self._number_of_features _snake_case = d_model _snake_case = encoder_attention_heads _snake_case = decoder_attention_heads _snake_case = encoder_ffn_dim _snake_case = decoder_ffn_dim _snake_case = encoder_layers _snake_case = decoder_layers _snake_case = dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = encoder_layerdrop _snake_case = decoder_layerdrop _snake_case = activation_function _snake_case = init_std _snake_case = use_cache super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def __UpperCAmelCase ( self : Dict ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
404
1
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __SCREAMING_SNAKE_CASE ="\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __SCREAMING_SNAKE_CASE ="\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" __SCREAMING_SNAKE_CASE ="\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def _UpperCAmelCase ( self ) -> int: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' ,id='sequence' ) ,id='references' ), } ) ,codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] ,reference_urls=[ 'https://github.com/m-popovic/chrF', ] ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = CHRF.CHAR_ORDER ,__UpperCamelCase = CHRF.WORD_ORDER ,__UpperCamelCase = CHRF.BETA ,__UpperCamelCase = False ,__UpperCamelCase = False ,__UpperCamelCase = False ,) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = len(references[0] ) if any(len(__UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowercase_ : Union[str, Any] = [[refs[i] for refs in references] for i in range(__UpperCamelCase )] lowercase_ : List[Any] = CHRF(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Optional[int] = sb_chrf.corpus_score(__UpperCamelCase ,__UpperCamelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
425
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : str = 0 @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowercase_ : Tuple = AutoTokenizer.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,(BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__UpperCamelCase ) ,0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowercase_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,(GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__UpperCamelCase ) ,0 ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Tuple = AutoTokenizer.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Dict = AutoTokenizer.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,(RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,20 ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : str = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) # Check that tokenizer_type ≠ model_type lowercase_ : List[str] = AutoTokenizer.from_pretrained(__UpperCamelCase ,config=__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' ,os.path.join(__UpperCamelCase ,'vocab.txt' ) ) lowercase_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ,tokenizer_type='bert' ,use_fast=__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' ,os.path.join(__UpperCamelCase ,'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt' ,os.path.join(__UpperCamelCase ,'merges.txt' ) ) lowercase_ : Optional[int] = AutoTokenizer.from_pretrained(__UpperCamelCase ,tokenizer_type='gpt2' ,use_fast=__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) @require_tokenizers def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' ,os.path.join(__UpperCamelCase ,'vocab.txt' ) ) lowercase_ : str = AutoTokenizer.from_pretrained(__UpperCamelCase ,tokenizer_type='bert' ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' ,os.path.join(__UpperCamelCase ,'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt' ,os.path.join(__UpperCamelCase ,'merges.txt' ) ) lowercase_ : Dict = AutoTokenizer.from_pretrained(__UpperCamelCase ,tokenizer_type='gpt2' ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' with pytest.raises(__UpperCamelCase ): AutoTokenizer.from_pretrained('./' ,tokenizer_type='xxx' ) @require_tokenizers def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowercase_ : Optional[Any] = tokenizer_class.from_pretrained('wietsedv/bert-base-dutch-cased' ) self.assertIsInstance(__UpperCamelCase ,(BertTokenizer, BertTokenizerFast) ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case ,__UpperCamelCase ) else: self.assertEqual(tokenizer.do_lower_case ,__UpperCamelCase ) self.assertEqual(tokenizer.model_max_length ,512 ) @require_tokenizers def _UpperCAmelCase ( self ) -> int: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __UpperCamelCase ,'julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier' ,): lowercase_ : Optional[Any] = tokenizer_class.from_pretrained('julien-c/herlolip-not-exists' ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Any = TOKENIZER_MAPPING.values() lowercase_ : Union[str, Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__UpperCamelCase ) @require_tokenizers def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' ,use_fast=__UpperCamelCase ) ,__UpperCamelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' ) ,__UpperCamelCase ) @require_tokenizers def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : str = AutoTokenizer.from_pretrained('distilbert-base-uncased' ,do_lower_case=__UpperCamelCase ) lowercase_ : Optional[int] = 'Hello, world. How are you?' lowercase_ : Optional[int] = tokenizer.tokenize(__UpperCamelCase ) self.assertEqual('[UNK]' ,tokens[0] ) lowercase_ : List[Any] = AutoTokenizer.from_pretrained('microsoft/mpnet-base' ,do_lower_case=__UpperCamelCase ) lowercase_ : Tuple = tokenizer.tokenize(__UpperCamelCase ) self.assertEqual('[UNK]' ,tokens[0] ) @require_tokenizers def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[Any] = AutoTokenizer.from_pretrained('robot-test/dummy-tokenizer-fast-with-model-config' ) self.assertEqual(type(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(tokenizer.model_max_length ,512 ) self.assertEqual(tokenizer.vocab_size ,3_0000 ) self.assertEqual(tokenizer.unk_token ,'[UNK]' ) self.assertEqual(tokenizer.padding_side ,'right' ) self.assertEqual(tokenizer.truncation_side ,'right' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = AutoTokenizer.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,(BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCamelCase ) lowercase_ : List[str] = AutoTokenizer.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size ,12 ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[str] = AutoTokenizer.from_pretrained('ctrl' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Union[str, Any] = get_tokenizer_config('bert-base-cased' ) lowercase_ : Union[str, Any] = config.pop('_commit_hash' ,__UpperCamelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__UpperCamelCase ,{'do_lower_case': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowercase_ : Any = get_tokenizer_config(__UpperCamelCase ) self.assertDictEqual(__UpperCamelCase ,{} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowercase_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCamelCase ) lowercase_ : int = get_tokenizer_config(__UpperCamelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['tokenizer_class'] ,'BertTokenizer' ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' try: AutoConfig.register('custom' ,__UpperCamelCase ) AutoTokenizer.register(__UpperCamelCase ,slow_tokenizer_class=__UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCamelCase ): AutoTokenizer.register(__UpperCamelCase ,slow_tokenizer_class=__UpperCamelCase ) lowercase_ : List[str] = CustomTokenizer.from_pretrained(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCamelCase ) lowercase_ : Tuple = AutoTokenizer.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' try: AutoConfig.register('custom' ,__UpperCamelCase ) # Can register in two steps AutoTokenizer.register(__UpperCamelCase ,slow_tokenizer_class=__UpperCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, None) ) AutoTokenizer.register(__UpperCamelCase ,fast_tokenizer_class=__UpperCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __UpperCamelCase ,slow_tokenizer_class=__UpperCamelCase ,fast_tokenizer_class=__UpperCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCamelCase ): AutoTokenizer.register(__UpperCamelCase ,fast_tokenizer_class=__UpperCamelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : List[str] = BertTokenizerFast.from_pretrained(__UpperCamelCase ) bert_tokenizer.save_pretrained(__UpperCamelCase ) lowercase_ : Dict = CustomTokenizerFast.from_pretrained(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCamelCase ) lowercase_ : Any = AutoTokenizer.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Any = AutoTokenizer.from_pretrained(__UpperCamelCase ,use_fast=__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase ,__UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' with self.assertRaises(__UpperCamelCase ): lowercase_ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__UpperCamelCase ): lowercase_ : Tuple = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' ,trust_remote_code=__UpperCamelCase ) lowercase_ : int = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ,trust_remote_code=__UpperCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCamelCase ) lowercase_ : int = AutoTokenizer.from_pretrained(__UpperCamelCase ,trust_remote_code=__UpperCamelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizerFast' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'NewTokenizerFast' ) # Test we can also load the slow version lowercase_ : int = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' ,trust_remote_code=__UpperCamelCase ,use_fast=__UpperCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizer' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCamelCase ) lowercase_ : Optional[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ,trust_remote_code=__UpperCamelCase ,use_fast=__UpperCamelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'NewTokenizer' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizer' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'NewTokenizer' ) @require_tokenizers def _UpperCAmelCase ( self ) -> str: '''simple docstring''' class UpperCamelCase ( lowercase_ ): lowercase = False class UpperCamelCase ( lowercase_ ): lowercase = NewTokenizer lowercase = False try: AutoConfig.register('custom' ,__UpperCamelCase ) AutoTokenizer.register(__UpperCamelCase ,slow_tokenizer_class=__UpperCamelCase ) AutoTokenizer.register(__UpperCamelCase ,fast_tokenizer_class=__UpperCamelCase ) # If remote code is not set, the default is to use local lowercase_ : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase_ : str = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ,use_fast=__UpperCamelCase ) self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowercase_ : List[str] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' ,trust_remote_code=__UpperCamelCase ) self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase_ : Optional[int] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' ,trust_remote_code=__UpperCamelCase ,use_fast=__UpperCamelCase ) self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowercase_ : Optional[Any] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' ,trust_remote_code=__UpperCamelCase ) self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizerFast' ) self.assertTrue(tokenizer.special_attribute_present ) lowercase_ : Optional[int] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' ,trust_remote_code=__UpperCamelCase ,use_fast=__UpperCamelCase ) self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizer' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : List[str] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' ,trust_remote_code=__UpperCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizerFast' ) # Test we can also load the slow version lowercase_ : Tuple = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' ,trust_remote_code=__UpperCamelCase ,use_fast=__UpperCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ ,'NewTokenizer' ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' with self.assertRaisesRegex( __UpperCamelCase ,'bert-base is not a local folder and is not a valid model identifier' ): lowercase_ : List[Any] = AutoTokenizer.from_pretrained('bert-base' ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' with self.assertRaisesRegex( __UpperCamelCase ,r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowercase_ : Optional[int] = AutoTokenizer.from_pretrained(__UpperCamelCase ,revision='aaaaaa' ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowercase_ : List[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
425
1
"""simple docstring""" from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) _A = 2_9_9_7_9_2_4_5_8 # Symbols _A , _A , _A , _A = symbols('ct x y z') def UpperCAmelCase ( a_ ): '''simple docstring''' if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def UpperCAmelCase ( a_ ): '''simple docstring''' return 1 / sqrt(1 - beta(a_ ) ** 2 ) def UpperCAmelCase ( a_ ): '''simple docstring''' return np.array( [ [gamma(a_ ), -gamma(a_ ) * beta(a_ ), 0, 0], [-gamma(a_ ) * beta(a_ ), gamma(a_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def UpperCAmelCase ( a_, a_ = None ): '''simple docstring''' if event is None: lowerCamelCase : Union[str, Any] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(a_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: _A = transform(2_9_9_7_9_2_4_5) print('Example of four vector: ') print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values _A = {ct: c, x: 1, y: 1, z: 1} _A = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
133
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class _lowercase ( __UpperCAmelCase ): lowercase_ = 'swin2sr' lowercase_ = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , UpperCAmelCase_=64 , UpperCAmelCase_=1 , UpperCAmelCase_=3 , UpperCAmelCase_=180 , UpperCAmelCase_=[6, 6, 6, 6, 6, 6] , UpperCAmelCase_=[6, 6, 6, 6, 6, 6] , UpperCAmelCase_=8 , UpperCAmelCase_=2.0 , UpperCAmelCase_=True , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.1 , UpperCAmelCase_="gelu" , UpperCAmelCase_=False , UpperCAmelCase_=0.02 , UpperCAmelCase_=1E-5 , UpperCAmelCase_=2 , UpperCAmelCase_=1.0 , UpperCAmelCase_="1conv" , UpperCAmelCase_="pixelshuffle" , **UpperCAmelCase_ , ) -> Union[str, Any]: super().__init__(**UpperCAmelCase_ ) lowerCamelCase : int = image_size lowerCamelCase : Tuple = patch_size lowerCamelCase : Union[str, Any] = num_channels lowerCamelCase : List[Any] = embed_dim lowerCamelCase : int = depths lowerCamelCase : Any = len(UpperCAmelCase_ ) lowerCamelCase : Tuple = num_heads lowerCamelCase : Optional[int] = window_size lowerCamelCase : str = mlp_ratio lowerCamelCase : Tuple = qkv_bias lowerCamelCase : Optional[Any] = hidden_dropout_prob lowerCamelCase : Dict = attention_probs_dropout_prob lowerCamelCase : Optional[Any] = drop_path_rate lowerCamelCase : Optional[int] = hidden_act lowerCamelCase : str = use_absolute_embeddings lowerCamelCase : Dict = layer_norm_eps lowerCamelCase : Dict = initializer_range lowerCamelCase : Optional[int] = upscale lowerCamelCase : List[Any] = img_range lowerCamelCase : Optional[Any] = resi_connection lowerCamelCase : Union[str, Any] = upsampler
133
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowercase = logging.get_logger(__name__) class _UpperCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase__ = '''maskformer-swin''' UpperCamelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , a__=2_2_4 , a__=4 , a__=3 , a__=9_6 , a__=[2, 2, 6, 2] , a__=[3, 6, 1_2, 2_4] , a__=7 , a__=4.0 , a__=True , a__=0.0 , a__=0.0 , a__=0.1 , a__="gelu" , a__=False , a__=0.0_2 , a__=1e-5 , a__=None , a__=None , **a__ , ): super().__init__(**__A) A__ = image_size A__ = patch_size A__ = num_channels A__ = embed_dim A__ = depths A__ = len(__A) A__ = num_heads A__ = window_size A__ = mlp_ratio A__ = qkv_bias A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = drop_path_rate A__ = hidden_act A__ = use_absolute_embeddings A__ = layer_norm_eps A__ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A__ = int(embed_dim * 2 ** (len(__A) - 1)) A__ = ["stem"] + [F"stage{idx}" for idx in range(1 , len(__A) + 1)] A__ = get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names)
632
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __lowerCamelCase : List[str] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ __lowerCamelCase : Tuple = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ __lowerCamelCase : List[Any] = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _lowercase ( self : Union[str, Any] , __A : List[str] , __A : Any , __A : Tuple=None , __A : int=None , __A : Any=None , __A : Dict=None , __A : Optional[Any]="auto" , __A : Any=-1 , __A : Tuple=0.9 , __A : Tuple=5 , __A : int=5_0_0 , __A : Any="gpt2-large" , __A : List[str]=-1 , __A : List[Any]=1_0_2_4 , __A : int=2_5 , __A : Dict=5 , __A : Any=True , __A : str=2_5 , ): snake_case__ : Dict = compute_mauve( p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , ) return out
297
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase_ = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
707
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class A : '''simple docstring''' A__ = None A__ = False A__ = False A__ = False A__ = None A__ = None A__ = False A__ = False A__ = False A__ = True A__ = None A__ = 1 A__ = None A__ = False A__ = None A__ = None def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" return self.__class__(**{k: copy.deepcopy(lowerCamelCase__ ) for k, v in self.__dict__.items()} )
15
'''simple docstring''' def __snake_case ( _UpperCAmelCase : int, _UpperCAmelCase : str): UpperCamelCase = '''''' for i in table: res += inp[i - 1] return res def __snake_case ( _UpperCAmelCase : Dict): return data[1:] + data[0] def __snake_case ( _UpperCAmelCase : Dict, _UpperCAmelCase : str): UpperCamelCase = '''''' for i in range(len(_UpperCAmelCase)): if a[i] == b[i]: res += "0" else: res += "1" return res def __snake_case ( _UpperCAmelCase : List[str], _UpperCAmelCase : Dict): UpperCamelCase = int('''0b''' + data[0] + data[-1], 2) UpperCamelCase = int('''0b''' + data[1:3], 2) return bin(s[row][col])[2:] def __snake_case ( _UpperCAmelCase : Dict, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : List[str], _UpperCAmelCase : Optional[int]): UpperCamelCase = message[:4] UpperCamelCase = message[4:] UpperCamelCase = apply_table(_UpperCAmelCase, _UpperCAmelCase) UpperCamelCase = xor(_UpperCAmelCase, _UpperCAmelCase) UpperCamelCase = apply_sbox(_UpperCAmelCase, temp[:4]) # noqa: E741 UpperCamelCase = apply_sbox(_UpperCAmelCase, temp[4:]) UpperCamelCase = '''0''' * (2 - len(_UpperCAmelCase)) + l # noqa: E741 UpperCamelCase = '''0''' * (2 - len(_UpperCAmelCase)) + r UpperCamelCase = apply_table(l + r, _UpperCAmelCase) UpperCamelCase = xor(_UpperCAmelCase, _UpperCAmelCase) return temp + right if __name__ == "__main__": snake_case_ : List[Any] = input('Enter 10 bit key: ') snake_case_ : Union[str, Any] = input('Enter 8 bit message: ') snake_case_ : List[Any] = [6, 3, 7, 4, 8, 5, 10, 9] snake_case_ : Dict = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] snake_case_ : Tuple = [2, 4, 3, 1] snake_case_ : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] snake_case_ : Optional[int] = [4, 1, 3, 5, 7, 2, 8, 6] snake_case_ : str = [4, 1, 2, 3, 2, 3, 4, 1] snake_case_ : Optional[int] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] snake_case_ : int = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation snake_case_ : Union[str, Any] = apply_table(key, paa_table) snake_case_ : Optional[int] = temp[:5] snake_case_ : str = temp[5:] snake_case_ : str = left_shift(left) snake_case_ : Dict = left_shift(right) snake_case_ : List[Any] = apply_table(left + right, pa_table) snake_case_ : Union[str, Any] = left_shift(left) snake_case_ : Union[str, Any] = left_shift(right) snake_case_ : str = left_shift(left) snake_case_ : Tuple = left_shift(right) snake_case_ : List[str] = apply_table(left + right, pa_table) # encryption snake_case_ : Any = apply_table(message, IP) snake_case_ : Union[str, Any] = function(expansion, sa, sa, keya, temp) snake_case_ : int = temp[4:] + temp[:4] snake_case_ : List[str] = function(expansion, sa, sa, keya, temp) snake_case_ : Dict = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption snake_case_ : List[Any] = apply_table(CT, IP) snake_case_ : int = function(expansion, sa, sa, keya, temp) snake_case_ : List[Any] = temp[4:] + temp[:4] snake_case_ : int = function(expansion, sa, sa, keya, temp) snake_case_ : Tuple = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
212
0
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self: str ) -> List[str]: snake_case_ :Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , """tf_padding""" ) ) self.parent.assertTrue(hasattr(snake_case , """depth_multiplier""" ) ) class lowerCamelCase : '''simple docstring''' def __init__( self: List[Any] , snake_case: Dict , snake_case: Dict=13 , snake_case: List[Any]=3 , snake_case: List[Any]=32 , snake_case: Dict=0.2_5 , snake_case: Tuple=8 , snake_case: List[Any]=8 , snake_case: Optional[int]=6 , snake_case: str=32 , snake_case: Dict=True , snake_case: Optional[Any]=True , snake_case: Optional[Any]=True , snake_case: Optional[Any]="relu6" , snake_case: int=1_280 , snake_case: str=0.1 , snake_case: Any=0.0_2 , snake_case: Dict=True , snake_case: Optional[Any]=True , snake_case: Union[str, Any]=10 , snake_case: Dict=None , ) -> Union[str, Any]: snake_case_ :int = parent snake_case_ :Any = batch_size snake_case_ :str = num_channels snake_case_ :List[Any] = image_size snake_case_ :Any = depth_multiplier snake_case_ :Optional[Any] = depth_divisible_by snake_case_ :str = min_depth snake_case_ :Dict = expand_ratio snake_case_ :Optional[int] = tf_padding snake_case_ :Union[str, Any] = output_stride snake_case_ :str = first_layer_is_expansion snake_case_ :List[Any] = finegrained_output snake_case_ :List[str] = hidden_act snake_case_ :Any = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) snake_case_ :Dict = classifier_dropout_prob snake_case_ :Dict = use_labels snake_case_ :str = is_training snake_case_ :Union[str, Any] = num_labels snake_case_ :str = initializer_range snake_case_ :List[str] = scope def lowerCAmelCase_ ( self: List[str] ) -> Dict: snake_case_ :Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ :int = None snake_case_ :List[str] = None if self.use_labels: snake_case_ :List[str] = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ :Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case_ :Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase_ ( self: Dict ) -> int: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self: Any , snake_case: List[str] , snake_case: Optional[Any] , snake_case: str , snake_case: str ) -> List[str]: snake_case_ :int = MobileNetVaModel(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ :Any = model(snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase_ ( self: Dict , snake_case: Dict , snake_case: Tuple , snake_case: Dict , snake_case: int ) -> str: snake_case_ :List[str] = self.num_labels snake_case_ :Optional[Any] = MobileNetVaForImageClassification(snake_case ) model.to(snake_case ) model.eval() snake_case_ :List[str] = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self: List[Any] , snake_case: Union[str, Any] , snake_case: List[Any] , snake_case: Tuple , snake_case: Any ) -> Optional[Any]: snake_case_ :Tuple = self.num_labels snake_case_ :Optional[Any] = MobileNetVaForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() snake_case_ :List[str] = model(snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case_ :Optional[Any] = model(snake_case , labels=snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase_ ( self: Optional[Any] ) -> List[Any]: snake_case_ :Tuple = self.prepare_config_and_inputs() snake_case_ :int = config_and_inputs snake_case_ :List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Tuple = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Any = False _A : Any = False _A : Tuple = False _A : Optional[Any] = False def lowerCAmelCase_ ( self: Optional[int] ) -> Union[str, Any]: snake_case_ :Optional[Any] = MobileNetVaModelTester(self ) snake_case_ :Optional[Any] = MobileNetVaConfigTester(self , config_class=snake_case , has_text_modality=snake_case ) def lowerCAmelCase_ ( self: List[str] ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase_ ( self: Tuple ) -> List[str]: pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase_ ( self: Optional[int] ) -> Union[str, Any]: pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase_ ( self: str ) -> Optional[int]: pass def lowerCAmelCase_ ( self: List[Any] ) -> List[str]: snake_case_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ :Optional[Any] = model_class(snake_case ) snake_case_ :List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ :int = [*signature.parameters.keys()] snake_case_ :int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCAmelCase_ ( self: Tuple ) -> Any: snake_case_ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCAmelCase_ ( self: Tuple ) -> Optional[int]: def check_hidden_states_output(snake_case: Any , snake_case: List[str] , snake_case: Optional[int] ): snake_case_ :Optional[Any] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): snake_case_ :Union[str, Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) snake_case_ :Optional[Any] = outputs.hidden_states snake_case_ :int = 16 self.assertEqual(len(snake_case ) , snake_case ) snake_case_ :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ :Tuple = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ :List[Any] = True check_hidden_states_output(snake_case , snake_case , snake_case ) def lowerCAmelCase_ ( self: int ) -> Union[str, Any]: snake_case_ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> Tuple: snake_case_ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) @slow def lowerCAmelCase_ ( self: Any ) -> int: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ :Union[str, Any] = MobileNetVaModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def A_ ( ): '''simple docstring''' snake_case_ :Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self: Any ) -> Any: return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self: int ) -> Tuple: snake_case_ :List[Any] = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(snake_case ) snake_case_ :List[Any] = self.default_image_processor snake_case_ :List[str] = prepare_img() snake_case_ :Optional[Any] = image_processor(images=snake_case , return_tensors="""pt""" ).to(snake_case ) # forward pass with torch.no_grad(): snake_case_ :List[str] = model(**snake_case ) # verify the logits snake_case_ :Optional[int] = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , snake_case ) snake_case_ :int = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) ) @slow def lowerCAmelCase_ ( self: Tuple ) -> Dict: snake_case_ :List[str] = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) snake_case_ :Optional[int] = model.to(snake_case ) snake_case_ :Optional[int] = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) snake_case_ :str = prepare_img() snake_case_ :Union[str, Any] = image_processor(images=snake_case , return_tensors="""pt""" ).to(snake_case ) # forward pass with torch.no_grad(): snake_case_ :Optional[int] = model(**snake_case ) snake_case_ :Optional[Any] = outputs.logits # verify the logits snake_case_ :List[str] = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , snake_case ) snake_case_ :Optional[int] = torch.tensor( [ [[17.5_790, 17.7_581, 18.3_355], [18.3_257, 18.4_230, 18.8_973], [18.6_169, 18.8_650, 19.2_187]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ] , device=snake_case , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case , atol=1E-4 ) )
703
"""simple docstring""" import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging __a = logging.get_logger(__name__) class lowerCamelCase : '''simple docstring''' _A : Union[str, Any] = None @experimental def A_ ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ): '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) return _map_with_joblib(_lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) def A_ ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ): '''simple docstring''' snake_case_ :List[str] = num_proc if num_proc <= len(_lowercase ) else len(_lowercase ) snake_case_ :int = [] # We organize the splits ourselve (contiguous splits) for index in range(_lowercase ): snake_case_ :List[str] = len(_lowercase ) // num_proc snake_case_ :Any = len(_lowercase ) % num_proc snake_case_ :Optional[int] = div * index + min(_lowercase, _lowercase ) snake_case_ :Union[str, Any] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(_lowercase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f"""Error dividing inputs iterable among processes. """ f"""Total number of objects {len(_lowercase )}, """ f"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( f"""Spawning {num_proc} processes for {len(_lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) snake_case_, snake_case_ :Optional[int] = None, None if not disable_tqdm: snake_case_, snake_case_ :List[str] = (RLock(),), tqdm.set_lock with Pool(_lowercase, initargs=_lowercase, initializer=_lowercase ) as pool: snake_case_ :Optional[Any] = pool.map(_lowercase, _lowercase ) logger.info(f"""Finished {num_proc} processes""" ) snake_case_ :Optional[int] = [obj for proc_res in mapped for obj in proc_res] logger.info(f"""Unpacked {len(_lowercase )} objects""" ) return mapped def A_ ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ): '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=_lowercase ): return joblib.Parallel()( joblib.delayed(_lowercase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Dict = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: snake_case_ :Optional[int] = None
310
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
def _lowerCamelCase ( SCREAMING_SNAKE_CASE = 100 ): '''simple docstring''' A_ = 0 A_ = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'{solution() = }')
203
0
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
363
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _UpperCamelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' try: with open(SCREAMING_SNAKE_CASE , '''rb''' ) as flax_state_f: __lowerCamelCase : int =from_bytes(SCREAMING_SNAKE_CASE , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights __lowerCamelCase : str =flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE ) ).values() if any(SCREAMING_SNAKE_CASE ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) __lowerCamelCase : List[str] =jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE ) __lowerCamelCase : int ='''''' __lowerCamelCase : List[str] =flatten_dict(SCREAMING_SNAKE_CASE , sep='''.''' ) __lowerCamelCase : List[str] =pt_model.state_dict() # keep track of unexpected & missing keys __lowerCamelCase : Union[str, Any] =[] __lowerCamelCase : int =set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __lowerCamelCase : Tuple =flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __lowerCamelCase : Optional[int] =flax_key_tuple_array[:-1] + ['''weight'''] __lowerCamelCase : Union[str, Any] =jnp.transpose(SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __lowerCamelCase : Optional[Any] =flax_key_tuple_array[:-1] + ['''weight'''] __lowerCamelCase : Dict =flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __lowerCamelCase : str =flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE ): __lowerCamelCase : Union[str, Any] =( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) __lowerCamelCase : Optional[int] ='''.'''.join(SCREAMING_SNAKE_CASE ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict __lowerCamelCase : Tuple =np.asarray(SCREAMING_SNAKE_CASE ) if not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) else flax_tensor __lowerCamelCase : Any =torch.from_numpy(SCREAMING_SNAKE_CASE ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE ) # re-transform missing_keys to list __lowerCamelCase : Optional[Any] =list(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) return pt_model
363
1
"""simple docstring""" def lowercase__ ( snake_case_ :str ): __UpperCAmelCase = hex_num.strip() if not hex_num: raise ValueError('''No value was passed to the function''' ) __UpperCAmelCase = hex_num[0] == '''-''' if is_negative: __UpperCAmelCase = hex_num[1:] try: __UpperCAmelCase = int(snake_case_ , 16 ) except ValueError: raise ValueError('''Invalid value was passed to the function''' ) __UpperCAmelCase = '''''' while int_num > 0: __UpperCAmelCase = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('''-''' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
49
"""simple docstring""" def lowercase__ ( snake_case_ :dict ): __UpperCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __UpperCAmelCase = set() return any( node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for node in graph ) def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ): visited.add(snake_case_ ) rec_stk.add(snake_case_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(snake_case_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
49
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __snake_case ( a , a ): UpperCAmelCase__ : Optional[Any] = '''pixel_values''' UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Tuple = TimmBackboneConfig def __init__( self : Tuple , _snake_case : List[str] , **_snake_case : Optional[Any]): """simple docstring""" requires_backends(self , '''timm''') super().__init__(_snake_case) UpperCAmelCase_ = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''') if config.backbone not in timm.list_models(): raise ValueError(F"""backbone {config.backbone} is not supported by timm.""") if hasattr(_snake_case , '''out_features''') and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''') UpperCAmelCase_ = getattr(_snake_case , '''use_pretrained_backbone''' , _snake_case) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''') # We just take the final layer by default. This matches the default for the transformers models. UpperCAmelCase_ = config.out_indices if getattr(_snake_case , '''out_indices''' , _snake_case) is not None else (-1,) UpperCAmelCase_ = timm.create_model( config.backbone , pretrained=_snake_case , features_only=config.features_only , in_chans=config.num_channels , out_indices=_snake_case , **_snake_case , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. UpperCAmelCase_ = self._backbone.return_layers UpperCAmelCase_ = {layer['''module''']: str(_snake_case) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(_snake_case) @classmethod def lowerCamelCase ( cls : Union[str, Any] , _snake_case : int , *_snake_case : List[Any] , **_snake_case : Dict): """simple docstring""" requires_backends(cls , ['''vision''', '''timm''']) from ...models.timm_backbone import TimmBackboneConfig UpperCAmelCase_ = kwargs.pop('''config''' , TimmBackboneConfig()) UpperCAmelCase_ = kwargs.pop('''use_timm_backbone''' , _snake_case) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''') UpperCAmelCase_ = kwargs.pop('''num_channels''' , config.num_channels) UpperCAmelCase_ = kwargs.pop('''features_only''' , config.features_only) UpperCAmelCase_ = kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone) UpperCAmelCase_ = kwargs.pop('''out_indices''' , config.out_indices) UpperCAmelCase_ = TimmBackboneConfig( backbone=_snake_case , num_channels=_snake_case , features_only=_snake_case , use_pretrained_backbone=_snake_case , out_indices=_snake_case , ) return super()._from_config(_snake_case , **_snake_case) def lowerCamelCase ( self : Union[str, Any] , _snake_case : Dict): """simple docstring""" pass def lowerCamelCase ( self : Any , _snake_case : Optional[int] , _snake_case : str=None , _snake_case : Optional[int]=None , _snake_case : Optional[int]=None , **_snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''') if output_hidden_states: # We modify the return layers to include all the stages of the backbone UpperCAmelCase_ = self._all_layers UpperCAmelCase_ = self._backbone(_snake_case , **_snake_case) UpperCAmelCase_ = self._return_layers UpperCAmelCase_ = tuple(hidden_states[i] for i in self.out_indices) else: UpperCAmelCase_ = self._backbone(_snake_case , **_snake_case) UpperCAmelCase_ = None UpperCAmelCase_ = tuple(_snake_case) UpperCAmelCase_ = tuple(_snake_case) if hidden_states is not None else None if not return_dict: UpperCAmelCase_ = (feature_maps,) if output_hidden_states: UpperCAmelCase_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=_snake_case , hidden_states=_snake_case , attentions=_snake_case)
169
def A (__A : int ) -> bool: """simple docstring""" if not isinstance(__A , __A ): UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer""" raise TypeError(__A ) if number < 0: return False UpperCAmelCase_ = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
169
1
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) a : Optional[int] = logging.getLogger() def _UpperCamelCase ( _A , _A ) -> Any: """simple docstring""" _UpperCAmelCase = """\n""".join(_A ) Path(_A ).open("""w""" ).writelines(_A ) a : Any = '''patrickvonplaten/t5-tiny-random''' a : Union[str, Any] = '''sshleifer/bart-tiny-random''' a : Tuple = '''sshleifer/tiny-mbart''' a : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class a_ ( _UpperCAmelCase ): def _snake_case ( self : List[str] , __UpperCamelCase : str ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" _UpperCAmelCase = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() _UpperCAmelCase = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""] _dump_articles(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" ) _UpperCAmelCase = """translation_en_to_de""" if model == T5_TINY else """summarization""" _UpperCAmelCase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(__UpperCamelCase , """argv""" , __UpperCamelCase ): run_generate() assert Path(__UpperCamelCase ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self : Optional[int] ) ->Dict: '''simple docstring''' self.run_eval_tester(__UpperCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self : List[Any] , __UpperCamelCase : List[str] ) ->Optional[int]: '''simple docstring''' self.run_eval_tester(__UpperCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self : List[str] , __UpperCamelCase : int ) ->Any: '''simple docstring''' _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" _UpperCAmelCase = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() _UpperCAmelCase = { """en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""], """de""": [ """Maschinelles Lernen ist großartig, oder?""", """Ich esse gerne Bananen""", """Morgen ist wieder ein toller Tag!""", ], } _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) _UpperCAmelCase = str(tmp_dir / """scores.json""" ) _UpperCAmelCase = str(tmp_dir / """val.target""" ) _dump_articles(__UpperCamelCase , text["""en"""] ) _dump_articles(__UpperCamelCase , text["""de"""] ) _UpperCAmelCase = """translation_en_to_de""" if model == T5_TINY else """summarization""" _UpperCAmelCase = f""" run_eval_search.py {model} {str(__UpperCamelCase )} {str(__UpperCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] ) with patch.object(__UpperCamelCase , """argv""" , __UpperCamelCase ): with CaptureStdout() as cs: run_search() _UpperCAmelCase = [""" num_beams | length_penalty""", model, """Best score args"""] _UpperCAmelCase = ["""Info"""] if "translation" in task: expected_strings.append("""bleu""" ) else: expected_strings.extend(__UpperCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(__UpperCamelCase ).exists() os.remove(Path(__UpperCamelCase ) )
555
"""simple docstring""" import warnings from functools import wraps from typing import Callable def _UpperCamelCase ( _A ) -> Callable: """simple docstring""" @wraps(_A ) def _inner_fn(*_A , **_A ): warnings.warn( (F"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , _A , ) return fn(*_A , **_A ) return _inner_fn
555
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __a : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __a : Any = TaTokenizerFast __a : Any = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Any = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Union[str, Any] = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Any = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __a : int = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
522
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(lowercase , lowercase , bias=lowercase ) __lowercase = emb.weight.data return lin_layer def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = torch.load(lowercase , map_location='''cpu''' ) __lowercase = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] __lowercase = mam_aaa['''model'''] remove_ignore_keys_(lowercase ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MaMaaaConfig( vocab_size=lowercase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , ) __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MaMaaaForConditionalGeneration(lowercase ) model.model.load_state_dict(lowercase , strict=lowercase ) __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") __a : Union[str, Any] = parser.parse_args() __a : List[str] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
522
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowerCamelCase__ ( a ): # vision encoder if "img_encoder.pos_embed" in name: __snake_case = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: __snake_case = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: __snake_case = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: __snake_case = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: __snake_case = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: __snake_case = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: __snake_case = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: __snake_case = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: __snake_case = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: __snake_case = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: __snake_case = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: __snake_case = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: __snake_case = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: __snake_case = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: __snake_case = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: __snake_case = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: __snake_case = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: __snake_case = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: __snake_case = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: __snake_case = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: __snake_case = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: __snake_case = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: __snake_case = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: __snake_case = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def lowerCamelCase__ ( a , a ): for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(a ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __snake_case = key.split('.' ) __snake_case , __snake_case = int(key_split[2] ), int(key_split[4] ) __snake_case = config.vision_config.hidden_size if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] else: __snake_case = val[:dim] __snake_case = val[dim : dim * 2] __snake_case = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __snake_case = key.split('.' ) __snake_case = int(key_split[3] ) __snake_case = config.text_config.hidden_size if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[ dim : dim * 2, : ] __snake_case = val[-dim:, :] else: __snake_case = val[:dim] __snake_case = val[dim : dim * 2] __snake_case = val[-dim:] else: __snake_case = rename_key(a ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __snake_case = val.squeeze_() else: __snake_case = val return orig_state_dict def lowerCamelCase__ ( ): __snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' __snake_case = Image.open(requests.get(a , stream=a ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( a , a , a="groupvit-gcc-yfcc" , a=False ): __snake_case = GroupViTConfig() __snake_case = GroupViTModel(a ).eval() __snake_case = torch.load(a , map_location='cpu' )['model'] __snake_case = convert_state_dict(a , a ) __snake_case , __snake_case = model.load_state_dict(a , strict=a ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(a ) == 0) # verify result __snake_case = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) __snake_case = prepare_img() __snake_case = processor(text=['a photo of a cat', 'a photo of a dog'] , images=a , padding=a , return_tensors='pt' ) with torch.no_grad(): __snake_case = model(**a ) if model_name == "groupvit-gcc-yfcc": __snake_case = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": __snake_case = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , a , atol=1E-3 ) processor.save_pretrained(a ) model.save_pretrained(a ) print('Successfully saved processor and model to' , a ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(a , organization='nielsr' ) model.push_to_hub(a , organization='nielsr' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _lowercase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
356
1
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __lowerCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple ) -> Any: return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __lowerCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : int="attention" ) -> Dict: __lowerCAmelCase =__lowerCAmelCase =np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) __lowerCAmelCase =k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __lowerCAmelCase =np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) __lowerCAmelCase =o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __lowerCAmelCase =np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) __lowerCAmelCase =q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __lowerCAmelCase =np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) __lowerCAmelCase =v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __lowerCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple=False ) -> List[Any]: if split_mlp_wi: __lowerCAmelCase =params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] __lowerCAmelCase =params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] __lowerCAmelCase =(wi_a, wi_a) else: __lowerCAmelCase =params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] __lowerCAmelCase =params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __lowerCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ) -> List[Any]: return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __lowerCAmelCase ( __lowerCamelCase : dict , *, __lowerCamelCase : int , __lowerCamelCase : bool , __lowerCamelCase : bool = False ) -> Optional[Any]: __lowerCAmelCase =traverse_util.flatten_dict(variables["""target"""] ) __lowerCAmelCase ={"""/""".join(__lowerCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __lowerCAmelCase ="""encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , __lowerCamelCase ) __lowerCAmelCase =collections.OrderedDict() # Shared embeddings. __lowerCAmelCase =old["""token_embedder/embedding"""] # Encoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). __lowerCAmelCase =tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , """encoder""" , """pre_attention_layer_norm""" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase =tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , """encoder""" , """attention""" ) __lowerCAmelCase =layer_norm __lowerCAmelCase =k.T __lowerCAmelCase =o.T __lowerCAmelCase =q.T __lowerCAmelCase =v.T # Block i, layer 1 (MLP). __lowerCAmelCase =tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , """encoder""" , """pre_mlp_layer_norm""" ) __lowerCAmelCase , __lowerCAmelCase =tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , """encoder""" , __lowerCamelCase ) __lowerCAmelCase =layer_norm if split_mlp_wi: __lowerCAmelCase =wi[0].T __lowerCAmelCase =wi[1].T else: __lowerCAmelCase =wi.T __lowerCAmelCase =wo.T if scalable_attention: # convert the rel_embedding of each layer __lowerCAmelCase =tax_relpos_bias_lookup( __lowerCamelCase , __lowerCamelCase , """encoder""" ).T __lowerCAmelCase =old["""encoder/encoder_norm/scale"""] if not scalable_attention: __lowerCAmelCase =tax_relpos_bias_lookup( __lowerCamelCase , 0 , """encoder""" ).T __lowerCAmelCase =tax_relpos_bias_lookup( __lowerCamelCase , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). __lowerCAmelCase =tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , """decoder""" , """pre_self_attention_layer_norm""" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase =tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , """decoder""" , """self_attention""" ) __lowerCAmelCase =layer_norm __lowerCAmelCase =k.T __lowerCAmelCase =o.T __lowerCAmelCase =q.T __lowerCAmelCase =v.T # Block i, layer 1 (Cross Attention). __lowerCAmelCase =tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , """decoder""" , """pre_cross_attention_layer_norm""" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase =tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , """decoder""" , """encoder_decoder_attention""" ) __lowerCAmelCase =layer_norm __lowerCAmelCase =k.T __lowerCAmelCase =o.T __lowerCAmelCase =q.T __lowerCAmelCase =v.T # Block i, layer 2 (MLP). __lowerCAmelCase =tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , """decoder""" , """pre_mlp_layer_norm""" ) __lowerCAmelCase , __lowerCAmelCase =tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , """decoder""" , __lowerCamelCase ) __lowerCAmelCase =layer_norm if split_mlp_wi: __lowerCAmelCase =wi[0].T __lowerCAmelCase =wi[1].T else: __lowerCAmelCase =wi.T __lowerCAmelCase =wo.T if scalable_attention: # convert the rel_embedding of each layer __lowerCAmelCase =tax_relpos_bias_lookup(__lowerCamelCase , __lowerCamelCase , """decoder""" ).T __lowerCAmelCase =old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __lowerCAmelCase =old["""decoder/logits_dense/kernel"""].T return new def __lowerCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : bool ) -> str: __lowerCAmelCase =collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __lowerCAmelCase =state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __lowerCAmelCase =state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) __lowerCAmelCase =state_dict["""shared.weight"""] return state_dict def __lowerCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ) -> Any: __lowerCAmelCase =checkpoints.load_tax_checkpoint(__lowerCamelCase ) __lowerCAmelCase =convert_tax_to_pytorch( __lowerCamelCase , num_layers=config.num_layers , is_encoder_only=__lowerCamelCase , scalable_attention=__lowerCamelCase ) __lowerCAmelCase =make_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) def __lowerCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , ) -> List[str]: __lowerCAmelCase =MTaConfig.from_json_file(__lowerCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __lowerCAmelCase =UMTaEncoderModel(__lowerCamelCase ) else: __lowerCAmelCase =UMTaForConditionalGeneration(__lowerCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__lowerCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowerCamelCase ) print("""Done""" ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) lowercase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
456
import os from typing import Dict, List, Tuple, TypeVar, Union lowercase_ = TypeVar('''T''') lowercase_ = Union[List[T], Tuple[T, ...]] lowercase_ = Union[T, List[T], Dict[str, T]] lowercase_ = Union[str, bytes, os.PathLike]
456
1
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Optional[Any]=30 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Tuple=3 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : str=5 , _UpperCAmelCase : int=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : str=10 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : int=None , ): """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ = (image_size // patch_size) ** 2 UpperCAmelCase__ = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = ViTMSNModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = self.type_sequence_label_size UpperCAmelCase__ = ViTMSNForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ = 1 UpperCAmelCase__ = ViTMSNForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () lowerCAmelCase_ : Any = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ : int = False lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : int = False lowerCAmelCase_ : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = ViTMSNModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = ViTMSNModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" torch.manual_seed(2 ) UpperCAmelCase__ = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_UpperCAmelCase ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase__ = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
603
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = { 'configuration_mobilenet_v2': [ 'MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileNetV2Config', 'MobileNetV2OnnxConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['MobileNetV2FeatureExtractor'] UpperCAmelCase_ = ['MobileNetV2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileNetV2ForImageClassification', 'MobileNetV2ForSemanticSegmentation', 'MobileNetV2Model', 'MobileNetV2PreTrainedModel', 'load_tf_weights_in_mobilenet_v2', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
603
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer snake_case = logging.get_logger(__name__) snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} snake_case = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } snake_case = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } snake_case = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class __A ( snake_case__ ): '''simple docstring''' a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_INIT_CONFIGURATION a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = SqueezeBertTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ): super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) _lowerCAmelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _snake_case ) != do_lower_case or normalizer_state.get("strip_accents" , _snake_case ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _snake_case ) != tokenize_chinese_chars ): _lowerCAmelCase : Tuple = getattr(_snake_case , normalizer_state.pop("type" ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[Any] = strip_accents _lowerCAmelCase : Optional[int] = tokenize_chinese_chars _lowerCAmelCase : Optional[Any] = normalizer_class(**_snake_case ) _lowerCAmelCase : Any = do_lower_case def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case=None ): _lowerCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case = None ): _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case = None ): _lowerCAmelCase : Any = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
587
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
587
1
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = torch.exp(_A ) snake_case_ = torch.sum(_A , dim=1 ) # sum of exp(x_i) snake_case_ = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(_A ) - B / A class UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , __lowercase : List[Any] ): """simple docstring""" super().__init__() snake_case_ = config.output_attentions snake_case_ = config.output_hidden_states snake_case_ = nn.ModuleList([BertLayer(__lowercase ) for _ in range(config.num_hidden_layers )] ) snake_case_ = nn.ModuleList([BertHighway(__lowercase ) for _ in range(config.num_hidden_layers )] ) snake_case_ = [-1 for _ in range(config.num_hidden_layers )] def snake_case__ ( self : Union[str, Any] , __lowercase : Optional[int] ): """simple docstring""" if (type(__lowercase ) is float) or (type(__lowercase ) is int): for i in range(len(self.early_exit_entropy ) ): snake_case_ = x else: snake_case_ = x def snake_case__ ( self : int , __lowercase : Tuple ): """simple docstring""" snake_case_ = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def snake_case__ ( self : List[Any] , __lowercase : List[str] , __lowercase : List[Any]=None , __lowercase : Optional[int]=None , __lowercase : Optional[Any]=None , __lowercase : List[str]=None , ): """simple docstring""" snake_case_ = () snake_case_ = () snake_case_ = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: snake_case_ = all_hidden_states + (hidden_states,) snake_case_ = layer_module( __lowercase , __lowercase , head_mask[i] , __lowercase , __lowercase ) snake_case_ = layer_outputs[0] if self.output_attentions: snake_case_ = all_attentions + (layer_outputs[1],) snake_case_ = (hidden_states,) if self.output_hidden_states: snake_case_ = current_outputs + (all_hidden_states,) if self.output_attentions: snake_case_ = current_outputs + (all_attentions,) snake_case_ = self.highway[i](__lowercase ) # logits, pooled_output if not self.training: snake_case_ = highway_exit[0] snake_case_ = entropy(__lowercase ) snake_case_ = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy snake_case_ = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: snake_case_ = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(__lowercase , i + 1 ) else: snake_case_ = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: snake_case_ = all_hidden_states + (hidden_states,) snake_case_ = (hidden_states,) if self.output_hidden_states: snake_case_ = outputs + (all_hidden_states,) if self.output_attentions: snake_case_ = outputs + (all_attentions,) snake_case_ = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , UpperCAmelCase__ , ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowercase : List[Any] ): """simple docstring""" super().__init__(__lowercase ) snake_case_ = config snake_case_ = BertEmbeddings(__lowercase ) snake_case_ = DeeBertEncoder(__lowercase ) snake_case_ = BertPooler(__lowercase ) self.init_weights() def snake_case__ ( self : Tuple ): """simple docstring""" self.encoder.init_highway_pooler(self.pooler ) def snake_case__ ( self : Tuple ): """simple docstring""" return self.embeddings.word_embeddings def snake_case__ ( self : Optional[int] , __lowercase : Any ): """simple docstring""" snake_case_ = value def snake_case__ ( self : List[Any] , __lowercase : Optional[int] ): """simple docstring""" for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(__lowercase ) @add_start_docstrings_to_model_forward(__lowercase ) def snake_case__ ( self : List[str] , __lowercase : List[str]=None , __lowercase : int=None , __lowercase : Tuple=None , __lowercase : Dict=None , __lowercase : str=None , __lowercase : Tuple=None , __lowercase : List[Any]=None , __lowercase : List[str]=None , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: snake_case_ = input_ids.size() elif inputs_embeds is not None: snake_case_ = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) snake_case_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: snake_case_ = torch.ones(__lowercase , device=__lowercase ) if encoder_attention_mask is None: snake_case_ = torch.ones(__lowercase , device=__lowercase ) if token_type_ids is None: snake_case_ = torch.zeros(__lowercase , dtype=torch.long , device=__lowercase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. snake_case_ = self.get_extended_attention_mask(__lowercase , __lowercase , __lowercase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: snake_case_ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: snake_case_ = encoder_attention_mask[:, None, None, :] snake_case_ = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility snake_case_ = (1.0 - encoder_extended_attention_mask) * -1_0000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] snake_case_ = self.get_head_mask(__lowercase , self.config.num_hidden_layers ) snake_case_ = self.embeddings( input_ids=__lowercase , position_ids=__lowercase , token_type_ids=__lowercase , inputs_embeds=__lowercase ) snake_case_ = self.encoder( __lowercase , attention_mask=__lowercase , head_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , ) snake_case_ = encoder_outputs[0] snake_case_ = self.pooler(__lowercase ) snake_case_ = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Dict , __lowercase : Tuple , __lowercase : List[Any] ): """simple docstring""" snake_case_ = message snake_case_ = exit_layer # start from 1! class UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , __lowercase : Optional[int] ): """simple docstring""" super().__init__() snake_case_ = BertPooler(__lowercase ) snake_case_ = nn.Dropout(config.hidden_dropout_prob ) snake_case_ = nn.Linear(config.hidden_size , config.num_labels ) def snake_case__ ( self : List[str] , __lowercase : str ): """simple docstring""" snake_case_ = encoder_outputs[0] snake_case_ = self.pooler(__lowercase ) # "return" pooler_output # BertModel snake_case_ = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification snake_case_ = bmodel_output[1] snake_case_ = self.dropout(__lowercase ) snake_case_ = self.classifier(__lowercase ) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. ''' , UpperCAmelCase__ , ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowercase : Union[str, Any] ): """simple docstring""" super().__init__(__lowercase ) snake_case_ = config.num_labels snake_case_ = config.num_hidden_layers snake_case_ = DeeBertModel(__lowercase ) snake_case_ = nn.Dropout(config.hidden_dropout_prob ) snake_case_ = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(__lowercase ) def snake_case__ ( self : Optional[int] , __lowercase : List[Any]=None , __lowercase : Dict=None , __lowercase : Optional[Any]=None , __lowercase : Optional[int]=None , __lowercase : List[Any]=None , __lowercase : Tuple=None , __lowercase : List[str]=None , __lowercase : int=-1 , __lowercase : Tuple=False , ): """simple docstring""" snake_case_ = self.num_layers try: snake_case_ = self.bert( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , position_ids=__lowercase , head_mask=__lowercase , inputs_embeds=__lowercase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits snake_case_ = outputs[1] snake_case_ = self.dropout(__lowercase ) snake_case_ = self.classifier(__lowercase ) snake_case_ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case_ = e.message snake_case_ = e.exit_layer snake_case_ = outputs[0] if not self.training: snake_case_ = entropy(__lowercase ) snake_case_ = [] snake_case_ = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case_ = MSELoss() snake_case_ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ = CrossEntropyLoss() snake_case_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case_ = [] for highway_exit in outputs[-1]: snake_case_ = highway_exit[0] if not self.training: highway_logits_all.append(__lowercase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case_ = MSELoss() snake_case_ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ = CrossEntropyLoss() snake_case_ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__lowercase ) if train_highway: snake_case_ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case_ = (loss,) + outputs if not self.training: snake_case_ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case_ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
376
def lowerCamelCase__ ( ): '''simple docstring''' for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = 1 snake_case_ = 2 while i * i <= n: snake_case_ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCamelCase__ ( ): '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(_A ) > 500 ) if __name__ == "__main__": print(solution())
376
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowercase : Any = logging.get_logger(__name__) def lowerCamelCase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : int=False ): lowerCamelCase_ = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase_ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def lowerCamelCase_ ( _lowerCamelCase : Any , _lowerCamelCase : Tuple , _lowerCamelCase : int=False ): for i in range(config.num_hidden_layers ): if base_model: lowerCamelCase_ = "" else: lowerCamelCase_ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase_ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( _lowerCamelCase : List[Any] ): lowerCamelCase_ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : int ): lowerCamelCase_ = dct.pop(_lowerCamelCase ) lowerCamelCase_ = val def lowerCamelCase_ ( ): lowerCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : Optional[int]=False ): lowerCamelCase_ = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=_lowerCamelCase , ) lowerCamelCase_ = ViTHybridConfig(backbone_config=_lowerCamelCase , image_size=3_8_4 , num_labels=1_0_0_0 ) lowerCamelCase_ = False # load original model from timm lowerCamelCase_ = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase_ = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) lowerCamelCase_ = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase_ = "huggingface/label-files" lowerCamelCase_ = "imagenet-1k-id2label.json" lowerCamelCase_ = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ = {int(_lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase_ = ViTHybridModel(_lowerCamelCase ).eval() else: lowerCamelCase_ = ViTHybridForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # create image processor lowerCamelCase_ = create_transform(**resolve_data_config({} , model=_lowerCamelCase ) ) lowerCamelCase_ = transform.transforms lowerCamelCase_ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } lowerCamelCase_ = ViTHybridImageProcessor( do_resize=_lowerCamelCase , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCamelCase , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=_lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = transform(_lowerCamelCase ).unsqueeze(0 ) lowerCamelCase_ = processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) # verify logits with torch.no_grad(): lowerCamelCase_ = model(_lowerCamelCase ) lowerCamelCase_ = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: lowerCamelCase_ = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1E-3 ) else: lowerCamelCase_ = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(F"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(F"""ybelkada/{vit_name}""" ) processor.push_to_hub(F"""ybelkada/{vit_name}""" ) if __name__ == "__main__": __lowercase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) __lowercase : Tuple = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
720
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class lowerCAmelCase : """simple docstring""" def __init__( self , UpperCamelCase__ ) -> str: '''simple docstring''' lowerCamelCase_ = str(id_ ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = [] lowerCamelCase_ = {} # {vertex:distance} def __lt__( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return self.key < other.key def __repr__( self ) -> Union[str, Any]: '''simple docstring''' return self.id def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' self.neighbors.append(UpperCamelCase__ ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' lowerCamelCase_ = weight def lowerCamelCase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : Dict ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _lowerCamelCase ) graph[b - 1].add_edge(graph[a - 1] , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase : list , _lowerCamelCase : Vertex ): lowerCamelCase_ = [] for u in graph: lowerCamelCase_ = math.inf lowerCamelCase_ = None lowerCamelCase_ = 0 lowerCamelCase_ = graph[:] while q: lowerCamelCase_ = min(_lowerCamelCase ) q.remove(_lowerCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowerCamelCase_ = u lowerCamelCase_ = u.edges[v.id] for i in range(1 , len(_lowerCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowerCamelCase_ ( _lowerCamelCase : list , _lowerCamelCase : Vertex ): for u in graph: lowerCamelCase_ = math.inf lowerCamelCase_ = None lowerCamelCase_ = 0 lowerCamelCase_ = list(_lowerCamelCase ) hq.heapify(_lowerCamelCase ) while h: lowerCamelCase_ = hq.heappop(_lowerCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowerCamelCase_ = u lowerCamelCase_ = u.edges[v.id] hq.heapify(_lowerCamelCase ) for i in range(1 , len(_lowerCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowerCamelCase_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
66
0
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowerCAmelCase ( __lowerCAmelCase): __lowercase : List[Any] = '''umt5''' __lowercase : Union[str, Any] = ['''past_key_values'''] def __init__( self , __SCREAMING_SNAKE_CASE=25_0112 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=1024 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=128 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1E-6 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE="gated-gelu" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="T5Tokenizer" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: '''simple docstring''' super().__init__( is_encoder_decoder=__SCREAMING_SNAKE_CASE , tokenizer_class=__SCREAMING_SNAKE_CASE , tie_word_embeddings=__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __snake_case = vocab_size __snake_case = d_model __snake_case = d_kv __snake_case = d_ff __snake_case = num_layers __snake_case = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __snake_case = num_heads __snake_case = relative_attention_num_buckets __snake_case = relative_attention_max_distance __snake_case = dropout_rate __snake_case = layer_norm_epsilon __snake_case = initializer_factor __snake_case = feed_forward_proj __snake_case = use_cache __snake_case = self.feed_forward_proj.split('''-''' ) __snake_case = act_info[-1] __snake_case = act_info[0] == '''gated''' if len(__SCREAMING_SNAKE_CASE ) > 1 and act_info[0] != "gated" or len(__SCREAMING_SNAKE_CASE ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) if feed_forward_proj == "gated-gelu": __snake_case = '''gelu_new''' @property def lowerCAmelCase ( self ) -> int: '''simple docstring''' return self.d_model @property def lowerCAmelCase ( self ) -> Any: '''simple docstring''' return self.num_heads @property def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' return self.num_layers class lowerCAmelCase ( __lowerCAmelCase): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __snake_case = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: __snake_case = '''past_encoder_sequence + sequence''' __snake_case = {0: '''batch'''} __snake_case = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __snake_case = {0: '''batch''', 1: '''decoder_sequence'''} __snake_case = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def lowerCAmelCase ( self ) -> int: '''simple docstring''' return 13 @property def lowerCAmelCase ( self ) -> float: '''simple docstring''' return 5E-4
24
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : str): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file A_ : int = TapasConfig.from_json_file(lowerCamelCase) # set absolute/relative position embeddings parameter A_ : List[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": A_ : Optional[int] = TapasForQuestionAnswering(config=lowerCamelCase) elif task == "WTQ": # run_task_main.py hparams A_ : Tuple = 4 A_ : Optional[Any] = True # hparam_utils.py hparams A_ : Any = 0.66_4694 A_ : str = 0.20_7951 A_ : Any = 0.12_1194 A_ : str = True A_ : Dict = True A_ : int = False A_ : int = 0.035_2513 A_ : Tuple = TapasForQuestionAnswering(config=lowerCamelCase) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams A_ : int = 4 A_ : Union[str, Any] = False # hparam_utils.py hparams A_ : Dict = 36.4519 A_ : List[Any] = 0.90_3421 A_ : Any = 222.088 A_ : Optional[Any] = True A_ : Optional[int] = True A_ : Optional[Any] = True A_ : Optional[int] = 0.76_3141 A_ : Any = TapasForQuestionAnswering(config=lowerCamelCase) elif task == "TABFACT": A_ : Any = TapasForSequenceClassification(config=lowerCamelCase) elif task == "MLM": A_ : List[Any] = TapasForMaskedLM(config=lowerCamelCase) elif task == "INTERMEDIATE_PRETRAINING": A_ : Union[str, Any] = TapasModel(config=lowerCamelCase) else: raise ValueError(F'Task {task} not supported.') print(F'Building PyTorch model from configuration: {config}') # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCamelCase , lowerCamelCase , lowerCamelCase) # Save pytorch-model (weights and configuration) print(F'Save PyTorch model to {pytorch_dump_path}') model.save_pretrained(lowerCamelCase) # Save tokenizer files print(F'Save tokenizer files to {pytorch_dump_path}') A_ : Optional[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512) tokenizer.save_pretrained(lowerCamelCase) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
665
0
"""simple docstring""" import doctest from collections import deque import numpy as np class lowerCamelCase : '''simple docstring''' def __init__( self: List[Any] ) -> None: snake_case_ :Union[str, Any] = [2, 1, 2, -1] snake_case_ :Optional[int] = [1, 2, 3, 4] def lowerCAmelCase_ ( self: List[str] ) -> list[float]: snake_case_ :Tuple = len(self.first_signal ) snake_case_ :Union[str, Any] = len(self.second_signal ) snake_case_ :Dict = max(snake_case , snake_case ) # create a zero matrix of max_length x max_length snake_case_ :Union[str, Any] = [[0] * max_length for i in range(snake_case )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(snake_case ): snake_case_ :List[Any] = deque(self.second_signal ) rotated_signal.rotate(snake_case ) for j, item in enumerate(snake_case ): matrix[i][j] += item # multiply the matrix with the first signal snake_case_ :Any = np.matmul(np.transpose(snake_case ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(snake_case , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
715
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva __a = "" __a = "" __a = "" __a = 1 # (0 is vertical, 1 is horizontal) def A_ ( ): '''simple docstring''' snake_case_, snake_case_ :Optional[Any] = get_dataset(_lowercase, _lowercase ) print("""Processing...""" ) snake_case_, snake_case_, snake_case_ :str = update_image_and_anno(_lowercase, _lowercase, _lowercase ) for index, image in enumerate(_lowercase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' snake_case_ :str = random_chars(32 ) snake_case_ :Optional[Any] = paths[index].split(os.sep )[-1].rsplit(""".""", 1 )[0] snake_case_ :List[str] = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""", _lowercase, [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(_lowercase )} with {file_name}""" ) snake_case_ :int = [] for anno in new_annos[index]: snake_case_ :Union[str, Any] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(_lowercase ) with open(f"""/{file_root}.txt""", """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Dict = [] snake_case_ :List[Any] = [] for label_file in glob.glob(os.path.join(_lowercase, """*.txt""" ) ): snake_case_ :List[str] = label_file.split(os.sep )[-1].rsplit(""".""", 1 )[0] with open(_lowercase ) as in_file: snake_case_ :Any = in_file.readlines() snake_case_ :Any = os.path.join(_lowercase, f"""{label_name}.jpg""" ) snake_case_ :int = [] for obj_list in obj_lists: snake_case_ :List[Any] = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_lowercase ) labels.append(_lowercase ) return img_paths, labels def A_ ( _lowercase, _lowercase, _lowercase = 1 ): '''simple docstring''' snake_case_ :Union[str, Any] = [] snake_case_ :Optional[int] = [] snake_case_ :Any = [] for idx in range(len(_lowercase ) ): snake_case_ :Union[str, Any] = [] snake_case_ :List[Any] = img_list[idx] path_list.append(_lowercase ) snake_case_ :List[str] = anno_list[idx] snake_case_ :Optional[Any] = cva.imread(_lowercase ) if flip_type == 1: snake_case_ :Optional[Any] = cva.flip(_lowercase, _lowercase ) for bbox in img_annos: snake_case_ :str = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: snake_case_ :List[str] = cva.flip(_lowercase, _lowercase ) for bbox in img_annos: snake_case_ :Optional[Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_lowercase ) new_imgs_list.append(_lowercase ) return new_imgs_list, new_annos_lists, path_list def A_ ( _lowercase = 32 ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" snake_case_ :Any = ascii_lowercase + digits return "".join(random.choice(_lowercase ) for _ in range(_lowercase ) ) if __name__ == "__main__": main() print("DONE ✅")
310
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def A ( __UpperCamelCase ) -> Tuple: A__ = FileLock(str(tmpdir / 'foo.lock' ) ) A__ = FileLock(str(tmpdir / 'foo.lock' ) ) A__ = 0.01 with locka.acquire(): with pytest.raises(__UpperCamelCase ): A__ = time.time() locka.acquire(__UpperCamelCase ) assert time.time() - _start > timeout def A ( __UpperCamelCase ) -> Tuple: A__ = 'a' * 1_000 + '.lock' A__ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__UpperCamelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 A__ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__UpperCamelCase ): locka.acquire(0 )
9
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def A ( __UpperCamelCase ) -> Union[str, Any]: if hor == 128: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 64, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A__ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A__ = model.state_dict() A__ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65_536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> List[str]: A__ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65_536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A__ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A__ = model A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
9
1
"""simple docstring""" import functools def __lowerCAmelCase( __UpperCAmelCase ,__UpperCAmelCase ): """simple docstring""" if not isinstance(__UpperCAmelCase ,__UpperCAmelCase ) or not all(isinstance(__UpperCAmelCase ,__UpperCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__UpperCAmelCase ) != 3 or not all(isinstance(__UpperCAmelCase ,__UpperCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__UpperCAmelCase ) == 0: return 0 if min(__UpperCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__UpperCAmelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) _lowercase : List[Any] = set(__UpperCAmelCase ) @functools.cache def dynamic_programming(__UpperCAmelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) ,costs[1] + dynamic_programming(index + 7 ) ,costs[2] + dynamic_programming(index + 30 ) ,) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
283
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" if not isinstance(__UpperCAmelCase ,__UpperCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) _lowercase : Optional[Any] = precision _lowercase : Dict = ceil(precision / 14 ) _lowercase : int = 426_880 * Decimal(10_005 ).sqrt() _lowercase : Optional[Any] = 1 _lowercase : Union[str, Any] = 13_591_409 _lowercase : Optional[int] = Decimal(__UpperCAmelCase ) for k in range(1 ,__UpperCAmelCase ): _lowercase : List[str] = factorial(6 * k ) // (factorial(3 * k ) * factorial(__UpperCAmelCase ) ** 3) linear_term += 545_140_134 exponential_term *= -262_537_412_640_768_000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": SCREAMING_SNAKE_CASE = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
283
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowerCamelCase ( snake_case_ ): a__: Union[str, Any] = 'trocr' a__: Optional[Any] = ['past_key_values'] a__: Union[str, Any] = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self , UpperCAmelCase=5_0265 , UpperCAmelCase=1024 , UpperCAmelCase=12 , UpperCAmelCase=16 , UpperCAmelCase=4096 , UpperCAmelCase="gelu" , UpperCAmelCase=512 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=2 , UpperCAmelCase=0.0_2 , UpperCAmelCase=0.0 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , **UpperCAmelCase , ): lowerCamelCase_ = vocab_size lowerCamelCase_ = d_model lowerCamelCase_ = decoder_layers lowerCamelCase_ = decoder_attention_heads lowerCamelCase_ = decoder_ffn_dim lowerCamelCase_ = activation_function lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = init_std lowerCamelCase_ = decoder_layerdrop lowerCamelCase_ = use_cache lowerCamelCase_ = scale_embedding lowerCamelCase_ = use_learned_position_embeddings lowerCamelCase_ = layernorm_embedding super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , decoder_start_token_id=_a , **_a , )
29
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase__ : int = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ): warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
0
from string import ascii_lowercase, ascii_uppercase def _snake_case (__lowercase): if not sentence: return "" UpperCamelCase_ = dict(zip(__lowercase , __lowercase)) return lower_to_upper.get(sentence[0] , sentence[0]) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
618
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) snake_case__ : Optional[int] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv']) def _snake_case (__lowercase , __lowercase): inspect_dataset(__lowercase , __lowercase) UpperCamelCase_ = path + '.py' assert script_name in os.listdir(__lowercase) assert "__pycache__" not in os.listdir(__lowercase) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning') @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning') @pytest.mark.parametrize('path' , ['accuracy']) def _snake_case (__lowercase , __lowercase): inspect_metric(__lowercase , __lowercase) UpperCamelCase_ = path + '.py' assert script_name in os.listdir(__lowercase) assert "__pycache__" not in os.listdir(__lowercase) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = get_dataset_config_info(__lowercase , config_name=__lowercase) assert info.config_name == config_name assert list(info.splits.keys()) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _snake_case (__lowercase , __lowercase , __lowercase): with pytest.raises(__lowercase): get_dataset_config_info(__lowercase , config_name=__lowercase) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = get_dataset_config_names(__lowercase) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = get_dataset_infos(__lowercase) assert list(infos.keys()) == expected_configs UpperCamelCase_ = expected_configs[0] assert expected_config in infos UpperCamelCase_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = get_dataset_infos(__lowercase) assert expected_config in infos UpperCamelCase_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _snake_case (__lowercase , __lowercase , __lowercase): with pytest.raises(__lowercase): get_dataset_split_names(__lowercase , config_name=__lowercase)
618
1
from math import factorial UpperCamelCase = {str(digit): factorial(digit) for digit in range(10)} def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('Parameter number must be int' ) if number < 0: raise ValueError('Parameter number must be greater than or equal to 0' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE = 60 , SCREAMING_SNAKE_CASE = 1_000_000 ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('Parameters chain_length and number_limit must be int' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( 'Parameters chain_length and number_limit must be greater than 0' ) # the counter for the chains with the exact desired length _lowercase : Tuple = 0 # the cached sizes of the previous chains _lowercase : dict[int, int] = {} for start_chain_element in range(1 , SCREAMING_SNAKE_CASE ): # The temporary set will contain the elements of the chain _lowercase : Dict = set() _lowercase : Union[str, Any] = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. _lowercase : Tuple = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(SCREAMING_SNAKE_CASE ) chain_set_length += 1 _lowercase : int = digit_factorial_sum(SCREAMING_SNAKE_CASE ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] _lowercase : str = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
66
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Dict = LayoutLMTokenizer _UpperCamelCase : Union[str, Any] = LayoutLMTokenizerFast _UpperCamelCase : int = True _UpperCamelCase : Tuple = True def __a ( self ): super().setUp() _lowercase : Union[str, Any] = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _lowercase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __a ( self , **_lowerCAmelCase ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase : str = 'UNwant\u00E9d,running' _lowercase : List[Any] = 'unwanted, running' return input_text, output_text def __a ( self ): _lowercase : Dict = self.tokenizer_class(self.vocab_file ) _lowercase : Dict = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_lowerCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [7, 4, 5, 1_0, 8, 9] ) def __a ( self ): pass
66
1
"""simple docstring""" def _a ( UpperCAmelCase__ ) -> Union[str, Any]: if not head: return True # split the list to two parts __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = head.next, head while fast and fast.next: __SCREAMING_SNAKE_CASE = fast.next.next __SCREAMING_SNAKE_CASE = slow.next __SCREAMING_SNAKE_CASE = slow.next __SCREAMING_SNAKE_CASE = None # Don't forget here! But forget still works! # reverse the second part __SCREAMING_SNAKE_CASE = None while second: __SCREAMING_SNAKE_CASE = second.next __SCREAMING_SNAKE_CASE = node __SCREAMING_SNAKE_CASE = second __SCREAMING_SNAKE_CASE = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False __SCREAMING_SNAKE_CASE = node.next __SCREAMING_SNAKE_CASE = head.next return True def _a ( UpperCAmelCase__ ) -> Tuple: if not head or not head.next: return True # 1. Get the midpoint (slow) __SCREAMING_SNAKE_CASE = __SCREAMING_SNAKE_CASE = __SCREAMING_SNAKE_CASE = head while fast and fast.next: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = fast.next.next, slow.next # 2. Push the second half into the stack __SCREAMING_SNAKE_CASE = [slow.val] while slow.next: __SCREAMING_SNAKE_CASE = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False __SCREAMING_SNAKE_CASE = cur.next return True def _a ( UpperCAmelCase__ ) -> Any: if not head or not head.next: return True __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 while head: if head.val in d: d[head.val].append(lowercase__ ) else: __SCREAMING_SNAKE_CASE = [pos] __SCREAMING_SNAKE_CASE = head.next pos += 1 __SCREAMING_SNAKE_CASE = pos - 1 __SCREAMING_SNAKE_CASE = 0 for v in d.values(): if len(lowercase__ ) % 2 != 0: middle += 1 else: __SCREAMING_SNAKE_CASE = 0 for i in range(0 , len(lowercase__ ) ): if v[i] + v[len(lowercase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
702
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class A__( __magic_name__ , unittest.TestCase ): lowerCAmelCase = XLMRobertaTokenizer lowerCAmelCase = XLMRobertaTokenizerFast lowerCAmelCase = True lowerCAmelCase = True def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = '''<pad>''' __SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _a ( self : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_02 ) def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def _a ( self : int ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _a ( self : int ) -> Tuple: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @cached_property def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__SCREAMING_SNAKE_CASE , f.name ) __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer(f.name , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pickle.dumps(__SCREAMING_SNAKE_CASE ) pickle.loads(__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = '''I was born in 92000, and this is falsé.''' __SCREAMING_SNAKE_CASE = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _a ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = '''Hello World!''' __SCREAMING_SNAKE_CASE = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __SCREAMING_SNAKE_CASE = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
690
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case ( UpperCamelCase_ ): lowercase_ = ['image_processor', 'tokenizer'] lowercase_ = 'BlipImageProcessor' lowercase_ = 'AutoTokenizer' def __init__( self : Optional[int] , a_ : Union[str, Any] , a_ : List[Any] )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = False super().__init__(a_ , a_ ) SCREAMING_SNAKE_CASE__ : List[str] = self.image_processor def __call__( self : List[Any] , a_ : ImageInput = None , a_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a_ : bool = True , a_ : Union[bool, str, PaddingStrategy] = False , a_ : Union[bool, str, TruncationStrategy] = None , a_ : Optional[int] = None , a_ : int = 0 , a_ : Optional[int] = None , a_ : Optional[bool] = None , a_ : bool = False , a_ : bool = False , a_ : bool = False , a_ : bool = False , a_ : bool = False , a_ : bool = True , a_ : Optional[Union[str, TensorType]] = None , **a_ : int , )-> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: SCREAMING_SNAKE_CASE__ : int = self.tokenizer SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer( text=a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ , max_length=a_ , stride=a_ , pad_to_multiple_of=a_ , return_attention_mask=a_ , return_overflowing_tokens=a_ , return_special_tokens_mask=a_ , return_offsets_mapping=a_ , return_token_type_ids=a_ , return_length=a_ , verbose=a_ , return_tensors=a_ , **a_ , ) return text_encoding # add pixel_values SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor(a_ , return_tensors=a_ ) if text is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer( text=a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ , max_length=a_ , stride=a_ , pad_to_multiple_of=a_ , return_attention_mask=a_ , return_overflowing_tokens=a_ , return_special_tokens_mask=a_ , return_offsets_mapping=a_ , return_token_type_ids=a_ , return_length=a_ , verbose=a_ , return_tensors=a_ , **a_ , ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(a_ ) return encoding_image_processor def __lowercase( self : Any , *a_ : Tuple , **a_ : Tuple )-> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*a_ , **a_ ) def __lowercase( self : List[Any] , *a_ : Any , **a_ : Dict )-> int: """simple docstring""" return self.tokenizer.decode(*a_ , **a_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __lowercase( self : Tuple )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
85
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : List[str] = tempfile.mkdtemp() __UpperCamelCase : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] __UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __UpperCamelCase : Optional[Any] = { "do_resize": True, "size": {"height": 2_24, "width": 2_24}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], "do_convert_rgb": True, } __UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , __UpperCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self , **__UpperCamelCase ) -> Dict: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self , **__UpperCamelCase ) -> Any: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self , **__UpperCamelCase ) -> Dict: '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' __UpperCamelCase : Optional[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __UpperCamelCase : Dict = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' __UpperCamelCase : str = self.get_tokenizer() __UpperCamelCase : Union[str, Any] = self.get_rust_tokenizer() __UpperCamelCase : Any = self.get_image_processor() __UpperCamelCase : str = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) __UpperCamelCase : Optional[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCamelCase ) __UpperCamelCase : Union[str, Any] = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) __UpperCamelCase : Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCamelCase ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Any = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase : Optional[Any] = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" ) __UpperCamelCase : Tuple = self.get_image_processor(do_normalize=__UpperCamelCase ) __UpperCamelCase : List[Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=__UpperCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCamelCase ) def __lowerCamelCase ( self ) -> str: '''simple docstring''' __UpperCamelCase : List[str] = self.get_image_processor() __UpperCamelCase : List[str] = self.get_tokenizer() __UpperCamelCase : Tuple = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : Optional[Any] = self.prepare_image_inputs() __UpperCamelCase : List[str] = image_processor(__UpperCamelCase , return_tensors="np" ) __UpperCamelCase : List[Any] = processor(images=__UpperCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = self.get_image_processor() __UpperCamelCase : Union[str, Any] = self.get_tokenizer() __UpperCamelCase : int = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : int = "Alexandra,T-shirt的价格是15便士。" __UpperCamelCase : int = processor(text=__UpperCamelCase ) __UpperCamelCase : int = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : List[str] = self.get_image_processor() __UpperCamelCase : List[str] = self.get_tokenizer() __UpperCamelCase : Optional[int] = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : str = "Alexandra,T-shirt的价格是15便士。" __UpperCamelCase : List[Any] = self.prepare_image_inputs() __UpperCamelCase : Union[str, Any] = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' __UpperCamelCase : Tuple = self.get_image_processor() __UpperCamelCase : Any = self.get_tokenizer() __UpperCamelCase : Dict = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase : str = processor.batch_decode(__UpperCamelCase ) __UpperCamelCase : Dict = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Optional[int] = self.get_image_processor() __UpperCamelCase : Tuple = self.get_tokenizer() __UpperCamelCase : Dict = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : Tuple = "Alexandra,T-shirt的价格是15便士。" __UpperCamelCase : Optional[int] = self.prepare_image_inputs() __UpperCamelCase : Tuple = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
327
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) _A : str = { '''configuration_speecht5''': [ '''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''', '''SpeechT5Config''', '''SpeechT5HifiGanConfig''', ], '''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''], '''processing_speecht5''': ['''SpeechT5Processor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[Any] = ['''SpeechT5Tokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[Any] = [ '''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SpeechT5ForSpeechToText''', '''SpeechT5ForSpeechToSpeech''', '''SpeechT5ForTextToSpeech''', '''SpeechT5Model''', '''SpeechT5PreTrainedModel''', '''SpeechT5HifiGan''', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys _A : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
330
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _A : List[str] = logging.get_logger(__name__) _A : Optional[Any] = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) _A : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def UpperCamelCase_ ( snake_case_ : str ) -> Dict: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: __lowerCAmelCase = model_type_to_module_name(snake_case_ ) __lowerCAmelCase = importlib.import_module(f""".{module_name}""" , """transformers.models""" ) try: return getattr(snake_case_ , snake_case_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(snake_case_ , """__name__""" , snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __lowerCAmelCase = importlib.import_module("""transformers""" ) if hasattr(snake_case_ , snake_case_ ): return getattr(snake_case_ , snake_case_ ) return None def UpperCamelCase_ ( snake_case_ : Union[str, os.PathLike] , snake_case_ : Optional[Union[str, os.PathLike]] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : Optional[Dict[str, str]] = None , snake_case_ : Optional[Union[bool, str]] = None , snake_case_ : Optional[str] = None , snake_case_ : bool = False , **snake_case_ : Any , ) -> int: '''simple docstring''' __lowerCAmelCase = get_file_from_repo( snake_case_ , snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , resume_download=snake_case_ , proxies=snake_case_ , use_auth_token=snake_case_ , revision=snake_case_ , local_files_only=snake_case_ , ) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(snake_case_ , encoding="""utf-8""" ) as reader: return json.load(snake_case_ ) class _lowercase : '''simple docstring''' def __init__( self : List[str] ) -> int: raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(SCREAMING_SNAKE_CASE__ ) def a ( cls : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Any]: __lowerCAmelCase = kwargs.pop("""config""" , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = kwargs.pop("""trust_remote_code""" , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = FeatureExtractionMixin.get_feature_extractor_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = config_dict.get("""feature_extractor_type""" , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): __lowerCAmelCase = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # It could be in `config.feature_extractor_type`` __lowerCAmelCase = getattr(SCREAMING_SNAKE_CASE__ , """feature_extractor_type""" , SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: __lowerCAmelCase = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: __lowerCAmelCase = feature_extractor_class_from_name(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = feature_extractor_auto_map is not None __lowerCAmelCase = feature_extractor_class is not None or type(SCREAMING_SNAKE_CASE__ ) in FEATURE_EXTRACTOR_MAPPING __lowerCAmelCase = resolve_trust_remote_code( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if has_remote_code and trust_remote_code: __lowerCAmelCase = get_class_from_dynamic_module( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = kwargs.pop("""code_revision""" , SCREAMING_SNAKE_CASE__ ) if os.path.isdir(SCREAMING_SNAKE_CASE__ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(SCREAMING_SNAKE_CASE__ ) in FEATURE_EXTRACTOR_MAPPING: __lowerCAmelCase = FEATURE_EXTRACTOR_MAPPING[type(SCREAMING_SNAKE_CASE__ )] return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) raise ValueError( f"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ f"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def a ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: FEATURE_EXTRACTOR_MAPPING.register(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
330
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class __UpperCAmelCase (_snake_case ): '''simple docstring''' _UpperCamelCase : Tuple = 'realm' def __init__( self , snake_case_=30_522 , snake_case_=768 , snake_case_=128 , snake_case_=12 , snake_case_=12 , snake_case_=8 , snake_case_=3_072 , snake_case_="gelu_new" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=256 , snake_case_=10 , snake_case_=1E-3 , snake_case_=5 , snake_case_=320 , snake_case_=13_353_718 , snake_case_=5_000 , snake_case_=1 , snake_case_=0 , snake_case_=2 , **snake_case_ , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) # Common config A__ : List[str] = vocab_size A__ : Optional[Any] = max_position_embeddings A__ : int = hidden_size A__ : Any = retriever_proj_size A__ : str = num_hidden_layers A__ : Optional[Any] = num_attention_heads A__ : Dict = num_candidates A__ : int = intermediate_size A__ : Optional[int] = hidden_act A__ : Any = hidden_dropout_prob A__ : Dict = attention_probs_dropout_prob A__ : Optional[int] = initializer_range A__ : str = type_vocab_size A__ : Any = layer_norm_eps # Reader config A__ : Union[str, Any] = span_hidden_size A__ : Union[str, Any] = max_span_width A__ : List[Any] = reader_layer_norm_eps A__ : List[str] = reader_beam_size A__ : Optional[int] = reader_seq_len # Retrieval config A__ : Tuple = num_block_records A__ : Any = searcher_beam_size
363
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase ( _snake_case ): UpperCAmelCase = ["image_processor", "tokenizer"] UpperCAmelCase = "OwlViTImageProcessor" UpperCAmelCase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : str ): UpperCAmelCase__ :int = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowerCamelCase , ) UpperCAmelCase__ :Union[str, Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase__ :List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowerCamelCase , __lowerCamelCase ) def __call__( self : int , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : str="max_length" , __lowerCamelCase : Any="np" , **__lowerCamelCase : Tuple ): if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(__lowerCamelCase , __lowerCamelCase ) or (isinstance(__lowerCamelCase , __lowerCamelCase ) and not isinstance(text[0] , __lowerCamelCase )): UpperCAmelCase__ :Any = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase )] elif isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(text[0] , __lowerCamelCase ): UpperCAmelCase__ :Tuple = [] # Maximum number of queries across batch UpperCAmelCase__ :List[str] = max([len(__lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__lowerCamelCase ) != max_num_queries: UpperCAmelCase__ :str = t + [''' '''] * (max_num_queries - len(__lowerCamelCase )) UpperCAmelCase__ :Tuple = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) encodings.append(__lowerCamelCase ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": UpperCAmelCase__ :List[Any] = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) UpperCAmelCase__ :Any = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase__ :List[Any] = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) UpperCAmelCase__ :Union[str, Any] = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase__ :Any = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) UpperCAmelCase__ :List[str] = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase__ :Optional[Any] = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) UpperCAmelCase__ :int = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) UpperCAmelCase__ :List[Any] = BatchEncoding() UpperCAmelCase__ :Union[str, Any] = input_ids UpperCAmelCase__ :Dict = attention_mask if query_images is not None: UpperCAmelCase__ :Tuple = BatchEncoding() UpperCAmelCase__ :int = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ).pixel_values UpperCAmelCase__ :Optional[int] = query_pixel_values if images is not None: UpperCAmelCase__ :str = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if text is not None and images is not None: UpperCAmelCase__ :Dict = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase__ :Tuple = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase ) , tensor_type=__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : int , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : int ): return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Dict , *__lowerCamelCase : Any , **__lowerCamelCase : Tuple ): return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , *__lowerCamelCase : Tuple , **__lowerCamelCase : str ): return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : int , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ): return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Dict ): return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowerCamelCase , ) return self.image_processor_class @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __lowerCamelCase , ) return self.image_processor
467
0
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def UpperCAmelCase ( snake_case : Tuple , snake_case : Tuple , snake_case : List[str] ): _lowerCAmelCase:Union[str, Any] = WavaVecaForSequenceClassification.from_pretrained(snake_case , config=snake_case ) _lowerCAmelCase:int = downstream_dict['''projector.weight'''] _lowerCAmelCase:List[str] = downstream_dict['''projector.bias'''] _lowerCAmelCase:List[Any] = downstream_dict['''model.post_net.linear.weight'''] _lowerCAmelCase:Dict = downstream_dict['''model.post_net.linear.bias'''] return model def UpperCAmelCase ( snake_case : Optional[int] , snake_case : Tuple , snake_case : int ): _lowerCAmelCase:Any = WavaVecaForAudioFrameClassification.from_pretrained(snake_case , config=snake_case ) _lowerCAmelCase:Dict = downstream_dict['''model.linear.weight'''] _lowerCAmelCase:Union[str, Any] = downstream_dict['''model.linear.bias'''] return model def UpperCAmelCase ( snake_case : Optional[int] , snake_case : Tuple , snake_case : Union[str, Any] ): _lowerCAmelCase:Union[str, Any] = WavaVecaForXVector.from_pretrained(snake_case , config=snake_case ) _lowerCAmelCase:Tuple = downstream_dict['''connector.weight'''] _lowerCAmelCase:str = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _lowerCAmelCase:int = downstream_dict[ F'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] _lowerCAmelCase:Optional[int] = downstream_dict[F'model.framelevel_feature_extractor.module.{i}.kernel.bias'] _lowerCAmelCase:List[Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] _lowerCAmelCase:int = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] _lowerCAmelCase:List[str] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] _lowerCAmelCase:Optional[Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] _lowerCAmelCase:List[Any] = downstream_dict['''objective.W'''] return model @torch.no_grad() def UpperCAmelCase ( snake_case : List[Any] , snake_case : Tuple , snake_case : int , snake_case : Optional[Any] ): _lowerCAmelCase:Optional[int] = torch.load(snake_case , map_location='''cpu''' ) _lowerCAmelCase:str = checkpoint['''Downstream'''] _lowerCAmelCase:Union[str, Any] = WavaVecaConfig.from_pretrained(snake_case ) _lowerCAmelCase:Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( snake_case , return_attention_mask=snake_case , do_normalize=snake_case ) _lowerCAmelCase:Tuple = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): _lowerCAmelCase:Optional[int] = convert_classification(snake_case , snake_case , snake_case ) elif arch.endswith('''ForAudioFrameClassification''' ): _lowerCAmelCase:Union[str, Any] = convert_diarization(snake_case , snake_case , snake_case ) elif arch.endswith('''ForXVector''' ): _lowerCAmelCase:int = convert_xvector(snake_case , snake_case , snake_case ) else: raise NotImplementedError(F'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: _lowerCAmelCase:Tuple = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(snake_case ) hf_model.save_pretrained(snake_case ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') UpperCamelCase__ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
439
"""simple docstring""" def UpperCAmelCase ( snake_case : int , snake_case : int ): return x if y == 0 else greatest_common_divisor(snake_case , x % y ) def UpperCAmelCase ( snake_case : int , snake_case : int ): return (x * y) // greatest_common_divisor(snake_case , snake_case ) def UpperCAmelCase ( snake_case : int = 20 ): _lowerCAmelCase:List[Any] = 1 for i in range(1 , n + 1 ): _lowerCAmelCase:List[str] = lcm(snake_case , snake_case ) return g if __name__ == "__main__": print(F"{solution() = }")
439
1
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> float: """simple docstring""" return round(float(moles / volume ) * nfactor ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> float: """simple docstring""" return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> float: """simple docstring""" return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> float: """simple docstring""" return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
60
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class __lowerCAmelCase ( _a ): lowerCamelCase_ : Optional[Any] = '''encoder-decoder''' lowerCamelCase_ : Optional[Any] = True def __init__(self , **__magic_name__ ) -> Optional[int]: '''simple docstring''' super().__init__(**__magic_name__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" snake_case_ : Any = kwargs.pop('''encoder''' ) snake_case_ : Tuple = encoder_config.pop('''model_type''' ) snake_case_ : Union[str, Any] = kwargs.pop('''decoder''' ) snake_case_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig snake_case_ : Optional[int] = AutoConfig.for_model(__magic_name__ , **__magic_name__ ) snake_case_ : List[str] = AutoConfig.for_model(__magic_name__ , **__magic_name__ ) snake_case_ : Any = True @classmethod def lowerCamelCase (cls , __magic_name__ , __magic_name__ , **__magic_name__ ) -> PretrainedConfig: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) snake_case_ : Tuple = True snake_case_ : Optional[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__magic_name__ ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : str = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.encoder.to_dict() snake_case_ : Dict = self.decoder.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
60
1
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) class _UpperCamelCase ( __UpperCAmelCase): '''simple docstring''' def a__ ( self , a_ , a_ , a_=None , a_=None ) -> int: lowercase : str = self.layer[current_layer](a_ , a_ , head_mask[current_layer] ) lowercase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( '''The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.''' , __UpperCAmelCase , ) class _UpperCamelCase ( __UpperCAmelCase): '''simple docstring''' def __init__( self , a_ ) -> Optional[int]: super().__init__(a_ ) lowercase : str = BertEncoderWithPabee(a_ ) self.init_weights() lowercase : Tuple = 0 lowercase : Tuple = 0 lowercase : Dict = 0 lowercase : List[Any] = 0 def a__ ( self , a_ ) -> Union[str, Any]: lowercase : Any = threshold def a__ ( self , a_ ) -> List[str]: lowercase : Dict = patience def a__ ( self ) -> Dict: lowercase : Dict = 0 lowercase : Optional[Any] = 0 def a__ ( self ) -> str: lowercase : Optional[int] = self.inference_layers_num / self.inference_instances_num lowercase : Optional[int] = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(a_ ) @add_start_docstrings_to_model_forward(a_ ) def a__ ( self , a_=None , a_=None , a_=None , a_=None , a_=None , a_=None , a_=None , a_=None , a_=None , a_=None , a_=False , ) -> Tuple: if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: lowercase : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: lowercase : Optional[Any] = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) lowercase : List[str] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase : str = torch.ones(a_ , device=a_ ) if token_type_ids is None: lowercase : Optional[Any] = torch.zeros(a_ , dtype=torch.long , device=a_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase : List[Any] = self.get_extended_attention_mask(a_ , a_ , a_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowercase , lowercase , lowercase : List[Any] = encoder_hidden_states.size() lowercase : Optional[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowercase : str = torch.ones(a_ , device=a_ ) lowercase : str = self.invert_attention_mask(a_ ) else: lowercase : Any = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase : Tuple = self.get_head_mask(a_ , self.config.num_hidden_layers ) lowercase : Dict = self.embeddings( input_ids=a_ , position_ids=a_ , token_type_ids=a_ , inputs_embeds=a_ ) lowercase : Any = embedding_output if self.training: lowercase : Union[str, Any] = [] for i in range(self.config.num_hidden_layers ): lowercase : List[str] = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) lowercase : Optional[Any] = self.pooler(a_ ) lowercase : str = output_layers[i](output_dropout(a_ ) ) res.append(a_ ) elif self.patience == 0: # Use all layers for inference lowercase : Optional[int] = self.encoder( a_ , attention_mask=a_ , head_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) lowercase : Any = self.pooler(encoder_outputs[0] ) lowercase : Tuple = [output_layers[self.config.num_hidden_layers - 1](a_ )] else: lowercase : Optional[Any] = 0 lowercase : List[str] = None lowercase : List[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowercase : str = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) lowercase : Optional[int] = self.pooler(a_ ) lowercase : Optional[Any] = output_layers[i](a_ ) if regression: lowercase : str = logits.detach() if patient_result is not None: lowercase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowercase : Optional[Any] = 0 else: lowercase : Dict = logits.detach().argmax(dim=1 ) if patient_result is not None: lowercase : Union[str, Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(a_ ) ): patient_counter += 1 else: lowercase : List[Any] = 0 lowercase : List[str] = logits if patient_counter == self.patience: break lowercase : List[Any] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( '''Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ''' , __UpperCAmelCase , ) class _UpperCamelCase ( __UpperCAmelCase): '''simple docstring''' def __init__( self , a_ ) -> int: super().__init__(a_ ) lowercase : str = config.num_labels lowercase : List[str] = BertModelWithPabee(a_ ) lowercase : Union[str, Any] = nn.Dropout(config.hidden_dropout_prob ) lowercase : Dict = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(a_ ) def a__ ( self , a_=None , a_=None , a_=None , a_=None , a_=None , a_=None , a_=None , ) -> Any: lowercase : List[Any] = self.bert( input_ids=a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowercase : List[str] = (logits[-1],) if labels is not None: lowercase : Union[str, Any] = None lowercase : Any = 0 for ix, logits_item in enumerate(a_ ): if self.num_labels == 1: # We are doing regression lowercase : List[Any] = MSELoss() lowercase : Optional[Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowercase : int = CrossEntropyLoss() lowercase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowercase : int = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowercase : str = (total_loss / total_weights,) + outputs return outputs
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
425
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : str = {'vocab_file': 'spiece.model'} lowerCamelCase : int = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Any=False , UpperCamelCase : Dict=True , UpperCamelCase : int=False , UpperCamelCase : Optional[Any]="<s>" , UpperCamelCase : Union[str, Any]="</s>" , UpperCamelCase : Optional[int]="<unk>" , UpperCamelCase : List[Any]="<sep>" , UpperCamelCase : Dict="<pad>" , UpperCamelCase : int="<cls>" , UpperCamelCase : int="<mask>" , UpperCamelCase : str=["<eop>", "<eod>"] , UpperCamelCase : Optional[Dict[str, Any]] = None , **UpperCamelCase : Dict , ): '''simple docstring''' lowercase__ = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase , remove_space=UpperCamelCase , keep_accents=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , additional_special_tokens=UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase , ) lowercase__ = 3 lowercase__ = do_lower_case lowercase__ = remove_space lowercase__ = keep_accents lowercase__ = vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) lowercase__ = jieba lowercase__ = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCamelCase__ (self : List[str] ): '''simple docstring''' return len(self.sp_model ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__(self : Dict , UpperCamelCase : int ): '''simple docstring''' lowercase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Dict ): '''simple docstring''' if self.remove_space: lowercase__ = ''' '''.join(inputs.strip().split() ) else: lowercase__ = inputs lowercase__ = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: lowercase__ = unicodedata.normalize('''NFKD''' , UpperCamelCase ) lowercase__ = ''''''.join([c for c in outputs if not unicodedata.combining(UpperCamelCase )] ) if self.do_lower_case: lowercase__ = outputs.lower() return outputs def UpperCamelCase__ (self : List[Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = self.preprocess_text(UpperCamelCase ) lowercase__ = self.sp_model.encode(UpperCamelCase , out_type=UpperCamelCase ) lowercase__ = [] for piece in pieces: if len(UpperCamelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): lowercase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCamelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowercase__ = cur_pieces[1:] else: lowercase__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCamelCase ) else: new_pieces.append(UpperCamelCase ) return new_pieces def UpperCamelCase__ (self : int , UpperCamelCase : str ): '''simple docstring''' return self.sp_model.PieceToId(UpperCamelCase ) def UpperCamelCase__ (self : str , UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.sp_model.IdToPiece(UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = ''''''.join(UpperCamelCase ).replace(UpperCamelCase , ''' ''' ).strip() return out_string def UpperCamelCase__ (self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) if token_ids_a is not None: return ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1, 1] return ([0] * len(UpperCamelCase )) + [1, 1] def UpperCamelCase__ (self : str , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCamelCase__ (self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase__ = os.path.join( UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase , '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (out_vocab_file,) def UpperCamelCase__ (self : List[str] , *UpperCamelCase : List[Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = super()._decode(*UpperCamelCase , **UpperCamelCase ) lowercase__ = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
460
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off lowerCamelCase : Dict = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] lowerCamelCase : str = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = """whisper""" lowerCAmelCase__ : Dict = ["""past_key_values"""] lowerCAmelCase__ : Optional[int] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self : int , UpperCamelCase : Optional[int]=51865 , UpperCamelCase : Any=80 , UpperCamelCase : Dict=6 , UpperCamelCase : str=4 , UpperCamelCase : Optional[Any]=6 , UpperCamelCase : List[Any]=4 , UpperCamelCase : Tuple=1536 , UpperCamelCase : Dict=1536 , UpperCamelCase : Any=0.0 , UpperCamelCase : Any=0.0 , UpperCamelCase : int=50257 , UpperCamelCase : List[str]=True , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]="gelu" , UpperCamelCase : Dict=256 , UpperCamelCase : Optional[int]=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Dict=0.02 , UpperCamelCase : List[Any]=False , UpperCamelCase : int=1500 , UpperCamelCase : List[str]=448 , UpperCamelCase : int=50256 , UpperCamelCase : Optional[int]=50256 , UpperCamelCase : Optional[Any]=50256 , UpperCamelCase : Any=None , UpperCamelCase : Tuple=[220, 50256] , UpperCamelCase : Optional[Any]=False , UpperCamelCase : int=256 , UpperCamelCase : Optional[int]=False , UpperCamelCase : int=0.05 , UpperCamelCase : List[Any]=10 , UpperCamelCase : Optional[int]=2 , UpperCamelCase : Optional[int]=0.0 , UpperCamelCase : Dict=10 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : Union[str, Any]=7 , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = num_mel_bins lowercase__ = d_model lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = encoder_ffn_dim lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = max_source_positions lowercase__ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowercase__ = classifier_proj_size lowercase__ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ = apply_spec_augment lowercase__ = mask_time_prob lowercase__ = mask_time_length lowercase__ = mask_time_min_masks lowercase__ = mask_feature_prob lowercase__ = mask_feature_length lowercase__ = mask_feature_min_masks lowercase__ = median_filter_width super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , suppress_tokens=UpperCamelCase , begin_suppress_tokens=UpperCamelCase , **UpperCamelCase , ) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' @property def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: lowercase__ = {0: '''batch'''} else: lowercase__ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase , direction='''inputs''' ) return common_inputs def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCamelCase : int = -1 , UpperCamelCase : int = -1 , UpperCamelCase : bool = False , UpperCamelCase : Optional["TensorType"] = None , UpperCamelCase : int = 22050 , UpperCamelCase : float = 5.0 , UpperCamelCase : int = 220 , ): '''simple docstring''' lowercase__ = OrderedDict() lowercase__ = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=UpperCamelCase , framework=UpperCamelCase , sampling_rate=UpperCamelCase , time_duration=UpperCamelCase , frequency=UpperCamelCase , ) lowercase__ = encoder_inputs['''input_features'''].shape[2] lowercase__ = encoder_sequence_length // 2 if self.use_past else seq_length lowercase__ = super().generate_dummy_inputs( preprocessor.tokenizer , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowercase__ = encoder_inputs.pop('''input_features''' ) lowercase__ = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: lowercase__ = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return 1E-3
460
1
from math import factorial def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> float: """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) A : str = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! A : List[Any] = float(factorial(_lowerCAmelCase ) ) coefficient /= factorial(_lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.75))
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE_:Optional[int] = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Tuple = ["""DeiTFeatureExtractor"""] SCREAMING_SNAKE_CASE_:Tuple = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Any = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:List[str] = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_:List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
520
0