code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """mobilenet_v2""" def __init__( self , __lowerCamelCase=3 , __lowerCamelCase=224 , __lowerCamelCase=1.0 , __lowerCamelCase=8 , __lowerCamelCase=8 , __lowerCamelCase=6 , __lowerCamelCase=32 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase="relu6" , __lowerCamelCase=True , __lowerCamelCase=0.8 , __lowerCamelCase=0.0_2 , __lowerCamelCase=0.0_0_1 , __lowerCamelCase=255 , **__lowerCamelCase , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) __A : Any = num_channels __A : Tuple = image_size __A : Tuple = depth_multiplier __A : int = depth_divisible_by __A : Optional[Any] = min_depth __A : Dict = expand_ratio __A : Optional[Any] = output_stride __A : Tuple = first_layer_is_expansion __A : Tuple = finegrained_output __A : List[Any] = hidden_act __A : List[Any] = tf_padding __A : List[Any] = classifier_dropout_prob __A : Tuple = initializer_range __A : Any = layer_norm_eps __A : Union[str, Any] = semantic_loss_ignore_index class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse("""1.11""" ) @property def UpperCamelCase__( self ): '''simple docstring''' return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def UpperCamelCase__( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def UpperCamelCase__( self ): '''simple docstring''' return 1e-4
177
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """unispeech""" def __init__( self , __lowerCamelCase=32 , __lowerCamelCase=768 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=3072 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase="group" , __lowerCamelCase="gelu" , __lowerCamelCase=(512, 512, 512, 512, 512, 512, 512) , __lowerCamelCase=(5, 2, 2, 2, 2, 2, 2) , __lowerCamelCase=(10, 3, 3, 3, 3, 2, 2) , __lowerCamelCase=False , __lowerCamelCase=128 , __lowerCamelCase=16 , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.0_5 , __lowerCamelCase=10 , __lowerCamelCase=2 , __lowerCamelCase=0.0 , __lowerCamelCase=10 , __lowerCamelCase=0 , __lowerCamelCase=320 , __lowerCamelCase=2 , __lowerCamelCase=0.1 , __lowerCamelCase=100 , __lowerCamelCase=256 , __lowerCamelCase=256 , __lowerCamelCase=0.1 , __lowerCamelCase="mean" , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=256 , __lowerCamelCase=80 , __lowerCamelCase=0 , __lowerCamelCase=1 , __lowerCamelCase=2 , __lowerCamelCase=0.5 , **__lowerCamelCase , ): '''simple docstring''' super().__init__(**__lowerCamelCase , pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase ) __A : Dict = hidden_size __A : Dict = feat_extract_norm __A : int = feat_extract_activation __A : Dict = list(__lowerCamelCase ) __A : str = list(__lowerCamelCase ) __A : Dict = list(__lowerCamelCase ) __A : str = conv_bias __A : Optional[int] = num_conv_pos_embeddings __A : int = num_conv_pos_embedding_groups __A : Union[str, Any] = len(self.conv_dim ) __A : List[str] = num_hidden_layers __A : Dict = intermediate_size __A : List[str] = hidden_act __A : int = num_attention_heads __A : str = hidden_dropout __A : str = attention_dropout __A : Optional[Any] = activation_dropout __A : Optional[int] = feat_proj_dropout __A : Optional[Any] = final_dropout __A : List[Any] = layerdrop __A : Any = layer_norm_eps __A : str = initializer_range __A : List[str] = num_ctc_classes __A : Dict = vocab_size __A : Dict = do_stable_layer_norm __A : Union[str, Any] = use_weighted_layer_sum __A : Tuple = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : List[Any] = apply_spec_augment __A : str = mask_time_prob __A : Dict = mask_time_length __A : List[str] = mask_time_min_masks __A : Union[str, Any] = mask_feature_prob __A : Tuple = mask_feature_length __A : Any = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __A : int = num_codevectors_per_group __A : Any = num_codevector_groups __A : Optional[Any] = contrastive_logits_temperature __A : Dict = feat_quantizer_dropout __A : Tuple = num_negatives __A : List[str] = codevector_dim __A : str = proj_codevector_dim __A : Union[str, Any] = diversity_loss_weight # ctc loss __A : Tuple = ctc_loss_reduction __A : Optional[int] = ctc_zero_infinity # pretraining loss __A : str = replace_prob @property def UpperCamelCase__( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
177
1
def lowercase__( A ): if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) snake_case__ : Optional[int] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 snake_case__ : Union[str, Any] = 1 if upper_limit > 0: snake_case__ : Optional[int] = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(A ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: lowerCamelCase : Dict = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
303
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class snake_case__ ( UpperCamelCase_ ): _lowerCAmelCase ='xmod' def __init__( self : Any , _lowerCamelCase : Any=3_0_5_2_2 , _lowerCamelCase : int=7_6_8 , _lowerCamelCase : Union[str, Any]=1_2 , _lowerCamelCase : Any=1_2 , _lowerCamelCase : int=3_0_7_2 , _lowerCamelCase : Any="gelu" , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : List[Any]=5_1_2 , _lowerCamelCase : List[str]=2 , _lowerCamelCase : Dict=0.02 , _lowerCamelCase : List[str]=1E-12 , _lowerCamelCase : List[Any]=1 , _lowerCamelCase : Tuple=0 , _lowerCamelCase : Union[str, Any]=2 , _lowerCamelCase : str="absolute" , _lowerCamelCase : int=True , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : int=False , _lowerCamelCase : List[str]=2 , _lowerCamelCase : List[str]=False , _lowerCamelCase : List[str]=True , _lowerCamelCase : Tuple=True , _lowerCamelCase : Dict=("en_XX",) , _lowerCamelCase : Tuple=None , **_lowerCamelCase : List[str] , ): super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) snake_case__ : List[str] = vocab_size snake_case__ : List[str] = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : Optional[int] = num_attention_heads snake_case__ : Tuple = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : Dict = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : Any = max_position_embeddings snake_case__ : List[Any] = type_vocab_size snake_case__ : List[str] = initializer_range snake_case__ : str = layer_norm_eps snake_case__ : Optional[int] = position_embedding_type snake_case__ : Tuple = use_cache snake_case__ : Dict = classifier_dropout snake_case__ : Any = pre_norm snake_case__ : str = adapter_reduction_factor snake_case__ : Any = adapter_layer_norm snake_case__ : Optional[int] = adapter_reuse_layer_norm snake_case__ : List[Any] = ln_before_adapter snake_case__ : Dict = list(_lowerCamelCase ) snake_case__ : Union[str, Any] = default_language class snake_case__ ( UpperCamelCase_ ): @property def UpperCAmelCase__ ( self : Optional[Any] ): if self.task == "multiple-choice": snake_case__ : Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case__ : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
303
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Dict = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class a ( a__ ): snake_case__ = '''markuplm''' def __init__( self , _snake_case=3_05_22 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case=0 , _snake_case=2 , _snake_case=2_56 , _snake_case=10_24 , _snake_case=2_16 , _snake_case=10_01 , _snake_case=32 , _snake_case=50 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case , ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = classifier_dropout # additional properties lowerCAmelCase = max_depth lowerCAmelCase = max_xpath_tag_unit_embeddings lowerCAmelCase = max_xpath_subs_unit_embeddings lowerCAmelCase = tag_pad_id lowerCAmelCase = subs_pad_id lowerCAmelCase = xpath_unit_hidden_size
4
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __lowerCAmelCase ( lowercase : Optional[int] ) -> Tuple: """simple docstring""" snake_case : Optional[Any] = SwinConfig() snake_case : Union[str, Any] = swin_name.split("_" ) snake_case : str = name_split[1] snake_case : Tuple = int(name_split[4] ) snake_case : str = int(name_split[3][-1] ) if model_size == "tiny": snake_case : str = 96 snake_case : List[Any] = (2, 2, 6, 2) snake_case : Union[str, Any] = (3, 6, 12, 24) elif model_size == "small": snake_case : int = 96 snake_case : Optional[Any] = (2, 2, 18, 2) snake_case : Any = (3, 6, 12, 24) elif model_size == "base": snake_case : List[str] = 128 snake_case : int = (2, 2, 18, 2) snake_case : Any = (4, 8, 16, 32) else: snake_case : List[str] = 192 snake_case : str = (2, 2, 18, 2) snake_case : Any = (6, 12, 24, 48) if "in22k" in swin_name: snake_case : List[Any] = 2_1841 else: snake_case : str = 1000 snake_case : Any = "huggingface/label-files" snake_case : str = "imagenet-1k-id2label.json" snake_case : Optional[int] = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) snake_case : List[Any] = {int(lowercase ): v for k, v in idalabel.items()} snake_case : Optional[int] = idalabel snake_case : Optional[int] = {v: k for k, v in idalabel.items()} snake_case : Tuple = img_size snake_case : Any = num_classes snake_case : str = embed_dim snake_case : Any = depths snake_case : Dict = num_heads snake_case : List[Any] = window_size return config def __lowerCAmelCase ( lowercase : Optional[Any] ) -> Any: """simple docstring""" if "patch_embed.proj" in name: snake_case : int = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: snake_case : Union[str, Any] = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: snake_case : Optional[Any] = "encoder." + name if "attn.proj" in name: snake_case : List[Any] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: snake_case : List[str] = name.replace("attn" , "attention.self" ) if "norm1" in name: snake_case : List[str] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: snake_case : Optional[int] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: snake_case : int = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: snake_case : Tuple = name.replace("mlp.fc2" , "output.dense" ) if name == "norm.weight": snake_case : Optional[int] = "layernorm.weight" if name == "norm.bias": snake_case : Tuple = "layernorm.bias" if "head" in name: snake_case : Any = name.replace("head" , "classifier" ) else: snake_case : Tuple = "swin." + name return name def __lowerCAmelCase ( lowercase : List[Any] , lowercase : List[Any] ) -> Any: """simple docstring""" for key in orig_state_dict.copy().keys(): snake_case : int = orig_state_dict.pop(lowercase ) if "mask" in key: continue elif "qkv" in key: snake_case : List[Any] = key.split("." ) snake_case : Dict = int(key_split[1] ) snake_case : Dict = int(key_split[3] ) snake_case : str = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case : Dict = val[:dim, :] snake_case : Tuple = val[ dim : dim * 2, : ] snake_case : List[str] = val[-dim:, :] else: snake_case : Dict = val[ :dim ] snake_case : List[str] = val[ dim : dim * 2 ] snake_case : Union[str, Any] = val[ -dim: ] else: snake_case : Any = val return orig_state_dict def __lowerCAmelCase ( lowercase : Tuple , lowercase : Any ) -> Dict: """simple docstring""" snake_case : str = timm.create_model(lowercase , pretrained=lowercase ) timm_model.eval() snake_case : int = get_swin_config(lowercase ) snake_case : Optional[int] = SwinForImageClassification(lowercase ) model.eval() snake_case : int = convert_state_dict(timm_model.state_dict() , lowercase ) model.load_state_dict(lowercase ) snake_case : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case : Tuple = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_" , "-" ) ) ) snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) snake_case : Dict = image_processor(images=lowercase , return_tensors="pt" ) snake_case : str = timm_model(inputs["pixel_values"] ) snake_case : Tuple = model(**lowercase ).logits assert torch.allclose(lowercase , lowercase , atol=1e-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) __snake_case = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
178
0
from math import pow def UpperCamelCase ( _A : int , _A : int , _A : int , _A : int , _A : int , )-> tuple[int, int]: """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count A__ = int(pow(_A , _A ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n A__ , A__ = backtrack( _A , _A , current_number + 1 , _A , _A ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. A__ , A__ = backtrack( _A , _A , current_number + 1 , _A , _A ) return current_sum, solutions_count def UpperCamelCase ( _A : int , _A : int )-> int: """simple docstring""" if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( "Invalid input\n" "needed_sum must be between 1 and 1000, power between 2 and 10." ) return backtrack(_A , _A , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
232
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
232
1
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) class _snake_case : def __init__( self ) -> str: '''simple docstring''' snake_case_ = False def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ ) -> Optional[int]: '''simple docstring''' if not self.initialized: snake_case_ = RagRetriever( a__ , question_encoder_tokenizer=a__ , generator_tokenizer=a__ , index=a__ , init_retrieval=a__ , ) snake_case_ = True def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' self.retriever.index.init_index() def lowerCAmelCase__ ( self , a__ , a__ ) -> List[str]: '''simple docstring''' snake_case_ , snake_case_ = self.retriever._main_retrieve(a__ , a__ ) return doc_ids, retrieved_doc_embeds class _snake_case ( lowercase_ ): def __init__( self , a__ , a__ , a__ , a__ , a__=None ) -> int: '''simple docstring''' if index is not None and index.is_initialized() and len(a__ ) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( a__ , question_encoder_tokenizer=a__ , generator_tokenizer=a__ , index=a__ , init_retrieval=a__ , ) snake_case_ = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(a__ , a__ , a__ , a__ ) for worker in self.retrieval_workers ] ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' logger.info("initializing retrieval" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def lowerCAmelCase__ ( self , a__ , a__ ) -> Union[str, Any]: '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. snake_case_ = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] snake_case_ , snake_case_ = ray.get(random_worker.retrieve.remote(a__ , a__ ) ) else: snake_case_ , snake_case_ = self._main_retrieve(a__ , a__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(a__ ) @classmethod def lowerCAmelCase__ ( cls , a__ , a__=None , **a__ ) -> Tuple: '''simple docstring''' return super(a__ , cls ).get_tokenizers(a__ , a__ , **a__ ) @classmethod def lowerCAmelCase__ ( cls , a__ , a__ , a__=None , **a__ ) -> Any: '''simple docstring''' snake_case_ = kwargs.pop("config" , a__ ) or RagConfig.from_pretrained(a__ , **a__ ) snake_case_ = RagTokenizer.from_pretrained(a__ , config=a__ ) snake_case_ = rag_tokenizer.question_encoder snake_case_ = rag_tokenizer.generator if indexed_dataset is not None: snake_case_ = "custom" snake_case_ = CustomHFIndex(config.retrieval_vector_size , a__ ) else: snake_case_ = cls._build_index(a__ ) return cls( a__ , question_encoder_tokenizer=a__ , generator_tokenizer=a__ , retrieval_workers=a__ , index=a__ , )
400
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = mock.Mock() snake_case_ = 500 snake_case_ = {} snake_case_ = HTTPError snake_case_ = {} # Download this model to make sure it's in the cache. snake_case_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=a__ ) as mock_head: snake_case_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = mock.Mock() snake_case_ = 500 snake_case_ = {} snake_case_ = HTTPError snake_case_ = {} # Download this model to make sure it's in the cache. snake_case_ = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=a__ ) as mock_head: snake_case_ = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' try: snake_case_ = tempfile.mktemp() with open(a__ , "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , a__ ) snake_case_ = AlbertTokenizer.from_pretrained(a__ ) finally: os.remove(a__ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" , "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , a__ ) snake_case_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowerCAmelCase__ ( cls ) -> List[str]: '''simple docstring''' snake_case_ = TOKEN HfFolder.save_token(a__ ) @classmethod def lowerCAmelCase__ ( cls ) -> Any: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(a__ , "vocab.txt" ) with open(a__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case_ = BertTokenizer(a__ ) tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token ) snake_case_ = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(a__ , repo_id="test-tokenizer" , push_to_hub=a__ , use_auth_token=self._token ) snake_case_ = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(a__ , "vocab.txt" ) with open(a__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case_ = BertTokenizer(a__ ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token ) snake_case_ = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( a__ , repo_id="valid_org/test-tokenizer-org" , push_to_hub=a__ , use_auth_token=self._token ) snake_case_ = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(a__ , "vocab.txt" ) with open(a__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case_ = CustomTokenizer(a__ ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) snake_case_ = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=a__ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(a__ , "vocab.txt" ) with open(a__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case_ = BertTokenizerFast.from_pretrained(a__ ) bert_tokenizer.save_pretrained(a__ ) snake_case_ = CustomTokenizerFast.from_pretrained(a__ ) tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) snake_case_ = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=a__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" ) snake_case_ = AutoTokenizer.from_pretrained( F'{USER}/test-dynamic-tokenizer' , use_fast=a__ , trust_remote_code=a__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) , ["A", "BC"] ) self.assertEqual(trie.split("BCA" ) , ["BC", "A"] ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) , ["AB", "C"] ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = Trie() snake_case_ = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(a__ , ["AB", "C"] )
400
1
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Dict = len(lowercase_ ) // 2 # choose the middle 3 elements _UpperCamelCase : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
51
"""simple docstring""" lowerCamelCase__ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCamelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCamelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
51
1
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" return round(float(moles / volume ) * nfactor ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
26
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput A : Any = 'scheduler_config.json' class __A( a ): snake_case_ = 1 snake_case_ = 2 snake_case_ = 3 snake_case_ = 4 snake_case_ = 5 @dataclass class __A( a ): snake_case_ = 42 class __A: snake_case_ = SCHEDULER_CONFIG_NAME snake_case_ = ['''dtype'''] snake_case_ = [] snake_case_ = True @classmethod def SCREAMING_SNAKE_CASE_ ( cls , _snake_case = None , _snake_case = None , _snake_case=False , **_snake_case , ) -> List[Any]: '''simple docstring''' __a , __a = cls.load_config( pretrained_model_name_or_path=_snake_case , subfolder=_snake_case , return_unused_kwargs=_snake_case , **_snake_case , ) __a , __a = cls.from_config(_snake_case , return_unused_kwargs=_snake_case , **_snake_case ) if hasattr(_snake_case , '''create_state''' ) and getattr(_snake_case , '''has_state''' , _snake_case ): __a = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = False , **_snake_case ) -> List[Any]: '''simple docstring''' self.save_config(save_directory=_snake_case , push_to_hub=_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' return self._get_compatibles() @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Any: '''simple docstring''' __a = list(set([cls.__name__] + cls._compatibles ) ) __a = importlib.import_module(__name__.split('''.''' )[0] ) __a = [ getattr(_snake_case , _snake_case ) for c in compatible_classes_str if hasattr(_snake_case , _snake_case ) ] return compatible_classes def __lowerCAmelCase ( a__ , a__ ) -> jnp.ndarray: assert len(a__ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(a__ ) - x.ndim) ) , a__ ) def __lowerCAmelCase ( a__ , a__=0.999 , a__=jnp.floataa ) -> jnp.ndarray: def alpha_bar(a__ ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 __a = [] for i in range(a__ ): __a = i / num_diffusion_timesteps __a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(a__ ) / alpha_bar(a__ ) , a__ ) ) return jnp.array(a__ , dtype=a__ ) @flax.struct.dataclass class __A: snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 @classmethod def SCREAMING_SNAKE_CASE_ ( cls , _snake_case ) -> int: '''simple docstring''' __a = scheduler.config if config.trained_betas is not None: __a = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __a = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __a = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __a = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) __a = 1.0 - betas __a = jnp.cumprod(_snake_case , axis=0 ) return cls( alphas=_snake_case , betas=_snake_case , alphas_cumprod=_snake_case , ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> Dict: __a = state.alphas_cumprod __a = alphas_cumprod[timesteps] ** 0.5 __a = sqrt_alpha_prod.flatten() __a = broadcast_to_shape_from_left(a__ , original_samples.shape ) __a = (1 - alphas_cumprod[timesteps]) ** 0.5 __a = sqrt_one_minus_alpha_prod.flatten() __a = broadcast_to_shape_from_left(a__ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> int: __a , __a = get_sqrt_alpha_prod(a__ , a__ , a__ , a__ ) __a = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> Union[str, Any]: __a , __a = get_sqrt_alpha_prod(a__ , a__ , a__ , a__ ) __a = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
219
0
"""simple docstring""" from math import pi def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
194
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
194
1
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __magic_name__ ( unittest.TestCase ): def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'hf-internal-testing/tiny-random-t5' _lowerCAmelCase = AutoTokenizer.from_pretrained(__magic_name__ ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ) _lowerCAmelCase = tokenizer('This is me' , return_tensors='pt' ) _lowerCAmelCase = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) _lowerCAmelCase = model.generate(**__magic_name__ ) _lowerCAmelCase = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__magic_name__ ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) _lowerCAmelCase = model_reloaded.generate(**__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ ) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'hf-internal-testing/tiny-random-t5' _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(__magic_name__ ) _lowerCAmelCase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__magic_name__ ): model.save_pretrained(__magic_name__ ) _lowerCAmelCase = model.reverse_bettertransformer() model.save_pretrained(__magic_name__ )
589
"""simple docstring""" from string import ascii_uppercase a__ : Any = {char: i for i, char in enumerate(ascii_uppercase)} a__ : str = dict(enumerate(ascii_uppercase)) def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = len(__lowerCamelCase ) _lowerCAmelCase = 0 while True: if x == i: _lowerCAmelCase = 0 if len(__lowerCamelCase ) == len(__lowerCamelCase ): break key += key[i] i += 1 return key def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = '' _lowerCAmelCase = 0 for letter in message: if letter == " ": cipher_text += " " else: _lowerCAmelCase = (dicta[letter] - dicta[key_new[i]]) % 2_6 i += 1 cipher_text += dicta[x] return cipher_text def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = '' _lowerCAmelCase = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: _lowerCAmelCase = (dicta[letter] + dicta[key_new[i]] + 2_6) % 2_6 i += 1 or_txt += dicta[x] return or_txt def A__ ( ): """simple docstring""" _lowerCAmelCase = 'THE GERMAN ATTACK' _lowerCAmelCase = 'SECRET' _lowerCAmelCase = generate_key(__lowerCamelCase, __lowerCamelCase ) _lowerCAmelCase = cipher_text(__lowerCamelCase, __lowerCamelCase ) print(F'''Encrypted Text = {s}''' ) print(F'''Original Text = {original_text(__lowerCamelCase, __lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
589
1
"""simple docstring""" # Imports import numpy as np class _A : """simple docstring""" def __init__( self : Union[str, Any] , __UpperCAmelCase : Any=None , __UpperCAmelCase : str=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None): self.set_matricies(red=__UpperCAmelCase , green=__UpperCAmelCase , blue=__UpperCAmelCase , red_edge=__UpperCAmelCase , nir=__UpperCAmelCase) def __snake_case ( self : Optional[Any] , __UpperCAmelCase : int=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Optional[Any]=None): if red is not None: a : List[Any] = red if green is not None: a : Union[str, Any] = green if blue is not None: a : Dict = blue if red_edge is not None: a : List[Any] = red_edge if nir is not None: a : Tuple = nir return True def __snake_case ( self : str , __UpperCAmelCase : Optional[Any]="" , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Tuple=None): self.set_matricies(red=__UpperCAmelCase , green=__UpperCAmelCase , blue=__UpperCAmelCase , red_edge=__UpperCAmelCase , nir=__UpperCAmelCase) a : Any = { "ARVI2": self.arvaa, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!") return False def __snake_case ( self : Any): return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def __snake_case ( self : List[Any]): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def __snake_case ( self : Dict): return self.nir * (self.red / (self.green**2)) def __snake_case ( self : str): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def __snake_case ( self : int): return (self.nir - self.red) / (self.nir + self.red) def __snake_case ( self : Union[str, Any]): return (self.nir - self.blue) / (self.nir + self.blue) def __snake_case ( self : Union[str, Any]): return (self.redEdge - self.red) / (self.redEdge + self.red) def __snake_case ( self : Optional[int]): return (self.nir - self.green) / (self.nir + self.green) def __snake_case ( self : List[str]): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def __snake_case ( self : Tuple): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def __snake_case ( self : Optional[Any]): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def __snake_case ( self : Any): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def __snake_case ( self : str , __UpperCAmelCase : Union[str, Any]=0.08 , __UpperCAmelCase : Union[str, Any]=1.22 , __UpperCAmelCase : Any=0.03): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def __snake_case ( self : Union[str, Any]): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def __snake_case ( self : List[str]): return (self.nir / self.green) - 1 def __snake_case ( self : int): return (self.nir / self.redEdge) - 1 def __snake_case ( self : Any): return (self.red - self.blue) / self.red def __snake_case ( self : Tuple): a : List[str] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def __snake_case ( self : Optional[Any]): return self.nir - self.green def __snake_case ( self : List[Any]): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def __snake_case ( self : Union[str, Any]): a : str = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def __snake_case ( self : Optional[Any] , __UpperCAmelCase : List[Any]=0.16): return (self.nir - self.green) / (self.nir + self.green + y) def __snake_case ( self : Dict , __UpperCAmelCase : Optional[Any]=0.5): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def __snake_case ( self : str): return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def __snake_case ( self : List[Any] , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : str=None): return (self.nir - b) / (a * self.red) def __snake_case ( self : str): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def __snake_case ( self : int): return (self.red + self.green + self.blue) / 30.5 def __snake_case ( self : Optional[int]): return self.nir / self.red def __snake_case ( self : Any): return (self.rvi() - 1) / (self.rvi() + 1) def __snake_case ( self : str): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def __snake_case ( self : Union[str, Any]): return self.green / (self.nir + self.red + self.green) def __snake_case ( self : Optional[Any]): return self.nir / (self.nir + self.red + self.green) def __snake_case ( self : str): return self.red / (self.nir + self.red + self.green) def __snake_case ( self : int): return (self.green - self.red) / (self.green + self.red) def __snake_case ( self : Dict): return (self.red - self.green) / (self.red + self.green) def __snake_case ( self : List[str]): a : Union[str, Any] = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) a : List[Any] = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def __snake_case ( self : List[Any]): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def __snake_case ( self : str): return self.nir / self.red def __snake_case ( self : Optional[Any]): return (self.ndvi() + 0.5) ** (1 / 2) def __snake_case ( self : Dict): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
135
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class _A ( _a ): """simple docstring""" UpperCAmelCase : List[Any] = """speech_to_text""" UpperCAmelCase : str = ["""past_key_values"""] UpperCAmelCase : Any = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : int , __UpperCAmelCase : List[Any]=10000 , __UpperCAmelCase : Any=12 , __UpperCAmelCase : Optional[Any]=2048 , __UpperCAmelCase : int=4 , __UpperCAmelCase : Dict=6 , __UpperCAmelCase : Optional[int]=2048 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : List[Any]=0.0 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : List[str]="relu" , __UpperCAmelCase : Union[str, Any]=256 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : List[str]=0.0 , __UpperCAmelCase : int=0.0 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Optional[Any]=1 , __UpperCAmelCase : int=0 , __UpperCAmelCase : List[Any]=2 , __UpperCAmelCase : Optional[int]=6000 , __UpperCAmelCase : List[str]=1024 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : List[Any]=(5, 5) , __UpperCAmelCase : Union[str, Any]=1024 , __UpperCAmelCase : str=80 , __UpperCAmelCase : str=1 , **__UpperCAmelCase : str , ): a : Optional[Any] = vocab_size a : Any = d_model a : List[Any] = encoder_ffn_dim a : List[Any] = encoder_layers a : List[str] = encoder_attention_heads a : Union[str, Any] = decoder_ffn_dim a : int = decoder_layers a : Any = decoder_attention_heads a : Tuple = dropout a : Any = attention_dropout a : str = activation_dropout a : Union[str, Any] = activation_function a : List[Any] = init_std a : List[Any] = encoder_layerdrop a : str = decoder_layerdrop a : str = use_cache a : List[str] = encoder_layers a : Dict = scale_embedding # scale factor will be sqrt(d_model) if True a : List[Any] = max_source_positions a : Optional[Any] = max_target_positions a : Tuple = num_conv_layers a : Optional[Any] = list(__UpperCAmelCase) a : int = conv_channels a : Dict = input_feat_per_channel a : str = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` " f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''') super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
135
1
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def a__ ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : bool = True, UpperCamelCase_ : float = math.inf, UpperCamelCase_ : float = -math.inf, UpperCamelCase_ : float = math.inf, UpperCamelCase_ : float = -math.inf, UpperCamelCase_ : bool = False, UpperCamelCase_ : float = 100, UpperCamelCase_ : float = 0.01, UpperCamelCase_ : float = 1, ): UpperCAmelCase__ :List[str] = False UpperCAmelCase__ :Union[str, Any] = search_prob UpperCAmelCase__ :Any = start_temperate UpperCAmelCase__ :List[Any] = [] UpperCAmelCase__ :List[str] = 0 UpperCAmelCase__ :str = None while not search_end: UpperCAmelCase__ :Tuple = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase__ :Optional[int] = current_state scores.append(UpperCamelCase_ ) iterations += 1 UpperCAmelCase__ :Union[str, Any] = None UpperCAmelCase__ :Optional[Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase__ :List[str] = random.randint(0, len(UpperCamelCase_ ) - 1 ) # picking a random neighbor UpperCAmelCase__ :Dict = neighbors.pop(UpperCamelCase_ ) UpperCAmelCase__ :Any = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase__ :Tuple = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase__ :Optional[int] = picked_neighbor else: UpperCAmelCase__ :Optional[int] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase__ :List[Any] = picked_neighbor UpperCAmelCase__ :Tuple = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase__ :str = True else: UpperCAmelCase__ :int = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(UpperCamelCase_ ), UpperCamelCase_ ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def a__ ( UpperCamelCase_ : Any, UpperCamelCase_ : Dict ): return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) __lowerCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __lowerCamelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) __lowerCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __lowerCamelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def a__ ( UpperCamelCase_ : int, UpperCamelCase_ : List[Any] ): return (3 * x**2) - (6 * y) __lowerCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __lowerCamelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' ) __lowerCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __lowerCamelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' )
467
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __lowerCamelCase = logging.get_logger(__name__) def a__ ( ): # Get the sagemaker specific mp parameters from smp_options variable. UpperCAmelCase__ :Any = os.getenv('''SM_HP_MP_PARAMETERS''', '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCAmelCase__ :Any = json.loads(UpperCamelCase_ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCAmelCase__ :Optional[Any] = os.getenv('''SM_FRAMEWORK_PARAMS''', '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCAmelCase__ :str = json.loads(UpperCamelCase_ ) if not mpi_options.get('''sagemaker_mpi_enabled''', UpperCamelCase_ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class UpperCAmelCase ( _snake_case ): UpperCAmelCase = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' , __lowerCamelCase , ) @cached_property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: UpperCAmelCase__ :Union[str, Any] = torch.device('''cpu''' ) UpperCAmelCase__ :Dict = 0 elif is_sagemaker_model_parallel_available(): UpperCAmelCase__ :Dict = smp.local_rank() UpperCAmelCase__ :List[str] = torch.device('''cuda''' , __lowerCamelCase ) UpperCAmelCase__ :Optional[int] = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta ) UpperCAmelCase__ :int = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) UpperCAmelCase__ :int = torch.device('''cuda''' , self.local_rank ) UpperCAmelCase__ :Union[str, Any] = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCAmelCase__ :str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCAmelCase__ :str = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta ) UpperCAmelCase__ :str = torch.device('''cuda''' , self.local_rank ) UpperCAmelCase__ :Union[str, Any] = 1 if device.type == "cuda": torch.cuda.set_device(__lowerCamelCase ) return device @property def __SCREAMING_SNAKE_CASE ( self : List[str] ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __SCREAMING_SNAKE_CASE ( self : Dict ): return not is_sagemaker_model_parallel_available() @property def __SCREAMING_SNAKE_CASE ( self : int ): return False
467
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __lowerCamelCase ( _snake_case ): a_: List[Any] = 'gpt_neo' a_: Tuple = ['past_key_values'] a_: Optional[int] = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : List[Any] , lowerCamelCase_ : Optional[Any]=5_0257 , lowerCamelCase_ : List[str]=2048 , lowerCamelCase_ : Optional[int]=2048 , lowerCamelCase_ : Optional[Any]=24 , lowerCamelCase_ : str=[[["global", "local"], 12]] , lowerCamelCase_ : int=16 , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Optional[Any]=256 , lowerCamelCase_ : Union[str, Any]="gelu_new" , lowerCamelCase_ : List[str]=0.0 , lowerCamelCase_ : List[Any]=0.0 , lowerCamelCase_ : int=0.0 , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Tuple=1e-5 , lowerCamelCase_ : Optional[int]=0.02 , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Dict=5_0256 , lowerCamelCase_ : Tuple=5_0256 , **lowerCamelCase_ : Optional[Any] , ): _lowerCAmelCase =vocab_size _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =hidden_size _lowerCAmelCase =num_layers _lowerCAmelCase =num_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =window_size _lowerCAmelCase =activation_function _lowerCAmelCase =resid_dropout _lowerCAmelCase =embed_dropout _lowerCAmelCase =attention_dropout _lowerCAmelCase =classifier_dropout _lowerCAmelCase =layer_norm_epsilon _lowerCAmelCase =initializer_range _lowerCAmelCase =use_cache _lowerCAmelCase =bos_token_id _lowerCAmelCase =eos_token_id _lowerCAmelCase =attention_types _lowerCAmelCase =self.expand_attention_types_params(lowerCamelCase_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ F"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " F"`config.num_layers = {self.num_layers}`. " """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] ): _lowerCAmelCase =[] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def snake_case_ ( lowercase__ : Tuple , lowercase__ : int , lowercase__ : List[str] , lowercase__ : List[Any] ): '''simple docstring''' import torch _lowerCAmelCase =input.size() _lowerCAmelCase =len(__UpperCAmelCase ) _lowerCAmelCase =shape[dimension] _lowerCAmelCase =torch.arange(0 , __UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =torch.div(sizedim - size , __UpperCAmelCase , rounding_mode="""floor""" ) + 1 _lowerCAmelCase =torch.arange(__UpperCAmelCase ) + low_indices[:min_length][:, None] _lowerCAmelCase =[slice(__UpperCAmelCase )] * rank _lowerCAmelCase =indices _lowerCAmelCase =input[s] _lowerCAmelCase =list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__UpperCAmelCase ) def snake_case_ ( lowercase__ : Optional[int] , lowercase__ : Optional[int] ): '''simple docstring''' import torch _lowerCAmelCase =torch.arange(1 , __UpperCAmelCase ) _lowerCAmelCase =torch.remainder(__UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =remainders == 0 _lowerCAmelCase =candidates[divisor_indices] _lowerCAmelCase =torch.max(__UpperCAmelCase ) return largest_divisor, torch.div(__UpperCAmelCase , __UpperCAmelCase , rounding_mode="""floor""" ) class __lowerCamelCase ( _snake_case ): @property def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction="""inputs""" ) _lowerCAmelCase ={0: """batch""", 1: """past_sequence + sequence"""} else: _lowerCAmelCase ={0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCAmelCase__ ( self : Union[str, Any] ): return self._config.num_heads def lowerCAmelCase__ ( self : str , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[TensorType] = None , ): _lowerCAmelCase =super(lowerCamelCase_ , self ).generate_dummy_inputs( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) # We need to order the input in the way they appears in the forward() _lowerCAmelCase =OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _lowerCAmelCase , _lowerCAmelCase =common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _lowerCAmelCase =seqlen + 2 _lowerCAmelCase =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCAmelCase =[ (torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) for _ in range(self.num_layers ) ] _lowerCAmelCase =common_inputs["""attention_mask"""] if self.use_past: _lowerCAmelCase =ordered_inputs["""attention_mask"""].dtype _lowerCAmelCase =torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowerCamelCase_ , lowerCamelCase_ , dtype=lowerCamelCase_ )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase__ ( self : Any ): return 13
713
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( lowercase__ : Optional[int] , lowercase__ : Any , lowercase__ : Dict , lowercase__ : int ): '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def snake_case_ ( lowercase__ : int , lowercase__ : int , lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Any=True ): '''simple docstring''' model.train() _lowerCAmelCase =model(lowercase__ ) _lowerCAmelCase =F.mse_loss(lowercase__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowercase__ ) def snake_case_ ( lowercase__ : Dict , lowercase__ : List[str]=False ): '''simple docstring''' set_seed(42 ) _lowerCAmelCase =RegressionModel() _lowerCAmelCase =deepcopy(lowercase__ ) _lowerCAmelCase =RegressionDataset(length=80 ) _lowerCAmelCase =DataLoader(lowercase__ , batch_size=16 ) model.to(accelerator.device ) if sched: _lowerCAmelCase =AdamW(params=model.parameters() , lr=1e-3 ) _lowerCAmelCase =AdamW(params=ddp_model.parameters() , lr=1e-3 ) _lowerCAmelCase =LambdaLR(lowercase__ , lr_lambda=lambda lowercase__ : epoch**0.6_5 ) _lowerCAmelCase =LambdaLR(lowercase__ , lr_lambda=lambda lowercase__ : epoch**0.6_5 ) # Make a copy of `model` if sched: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =accelerator.prepare(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: _lowerCAmelCase , _lowerCAmelCase =accelerator.prepare(lowercase__ , lowercase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( lowercase__ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =get_training_setup(lowercase__ ) # Use a single batch _lowerCAmelCase , _lowerCAmelCase =next(iter(lowercase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _lowerCAmelCase , _lowerCAmelCase =accelerator.gather((ddp_input, ddp_target) ) _lowerCAmelCase , _lowerCAmelCase =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowercase__ ): step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: # Sync grads step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) _lowerCAmelCase =ddp_input[torch.randperm(len(lowercase__ ) )] def snake_case_ ( lowercase__ : List[str] ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =get_training_setup(lowercase__ ) # Use a single batch _lowerCAmelCase , _lowerCAmelCase =next(iter(lowercase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _lowerCAmelCase , _lowerCAmelCase =accelerator.gather((ddp_input, ddp_target) ) _lowerCAmelCase , _lowerCAmelCase =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowercase__ ): step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: # Sync grads step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) _lowerCAmelCase =ddp_input[torch.randperm(len(lowercase__ ) )] def snake_case_ ( lowercase__ : Optional[Any]=False , lowercase__ : List[str]=False ): '''simple docstring''' _lowerCAmelCase =Accelerator( split_batches=lowercase__ , dispatch_batches=lowercase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =get_training_setup(lowercase__ ) for iteration, batch in enumerate(lowercase__ ): _lowerCAmelCase , _lowerCAmelCase =batch.values() # Gather the distributed inputs and targs for the base model _lowerCAmelCase , _lowerCAmelCase =accelerator.gather((ddp_input, ddp_target) ) _lowerCAmelCase , _lowerCAmelCase =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowercase__ ): step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowercase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) _lowerCAmelCase =ddp_input[torch.randperm(len(lowercase__ ) )] GradientState._reset_state() def snake_case_ ( lowercase__ : int=False , lowercase__ : Dict=False ): '''simple docstring''' _lowerCAmelCase =Accelerator( split_batches=lowercase__ , dispatch_batches=lowercase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =get_training_setup(lowercase__ , lowercase__ ) for iteration, batch in enumerate(lowercase__ ): _lowerCAmelCase , _lowerCAmelCase =batch.values() # Gather the distributed inputs and targs for the base model _lowerCAmelCase , _lowerCAmelCase =accelerator.gather((ddp_input, ddp_target) ) _lowerCAmelCase , _lowerCAmelCase =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowercase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowercase__ ): step_model(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" _lowerCAmelCase =(((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowercase__ )) if accelerator.num_processes > 1: check_model_parameters(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def snake_case_ ( ): '''simple docstring''' _lowerCAmelCase =Accelerator() _lowerCAmelCase =RegressionDataset(length=80 ) _lowerCAmelCase =DataLoader(lowercase__ , batch_size=16 ) _lowerCAmelCase =RegressionDataset(length=96 ) _lowerCAmelCase =DataLoader(lowercase__ , batch_size=16 ) _lowerCAmelCase , _lowerCAmelCase =accelerator.prepare(lowercase__ , lowercase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowercase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowercase__ ) if iteration < len(lowercase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowercase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowercase__ ) if batch_num < len(lowercase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): '''simple docstring''' _lowerCAmelCase =Accelerator() _lowerCAmelCase =accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(lowercase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(lowercase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(lowercase__ , lowercase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(lowercase__ , lowercase__ ) def snake_case_ ( lowercase__ : Tuple ): '''simple docstring''' main() if __name__ == "__main__": main()
149
0
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case :List[str] =random.Random() if is_torch_available(): import torch def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=1.0 , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : List[str]=None ) -> Optional[Any]: '''simple docstring''' if rng is None: A = global_rng A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Any , __UpperCamelCase : Tuple , __UpperCamelCase : str=7 , __UpperCamelCase : Any=400 , __UpperCamelCase : int=2_000 , __UpperCamelCase : Optional[Any]=1 , __UpperCamelCase : Tuple=0.0 , __UpperCamelCase : Dict=16_000 , __UpperCamelCase : Any=True , __UpperCamelCase : List[str]=True , ) -> Union[str, Any]: A = parent A = batch_size A = min_seq_length A = max_seq_length A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A = feature_size A = padding_value A = sampling_rate A = return_attention_mask A = do_normalize def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCamelCase ( self : Dict , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : List[Any]=False ) -> str: def _flatten(__UpperCamelCase : Dict ): return list(itertools.chain(*UpperCamelCase_ ) ) if equal_length: A = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size A = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A = [np.asarray(UpperCamelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase__ ( lowercase_ , unittest.TestCase ): A_ : Tuple = ASTFeatureExtractor def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: A = ASTFeatureExtractionTester(self ) def __UpperCamelCase ( self : List[str] ) -> str: A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] A = [np.asarray(UpperCamelCase_ ) for speech_input in speech_inputs] # Test not batched input A = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values A = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3 ) ) # Test batched A = feat_extract(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors='np' ).input_values A = feat_extract(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A = [floats_list((1, x) )[0] for x in (800, 800, 800)] A = np.asarray(UpperCamelCase_ ) A = feat_extract(UpperCamelCase_ , return_tensors='np' ).input_values A = feat_extract(UpperCamelCase_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3 ) ) @require_torch def __UpperCamelCase ( self : List[str] ) -> Tuple: import torch A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A = np.random.rand(100 ).astype(np.floataa ) A = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) A = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __UpperCamelCase ( self : List[str] , __UpperCamelCase : Union[str, Any] ) -> Dict: from datasets import load_dataset A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech A = ds.sort('id' ).select(range(UpperCamelCase_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def __UpperCamelCase ( self : Dict ) -> Optional[int]: A = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on A = self._load_datasamples(1 ) A = ASTFeatureExtractor() A = feature_extractor(UpperCamelCase_ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , UpperCamelCase_ , atol=1e-4 ) )
106
def _SCREAMING_SNAKE_CASE ( __lowercase : str ) -> str: """simple docstring""" __A = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _SCREAMING_SNAKE_CASE ( __lowercase : str ) -> dict[str, str]: """simple docstring""" __A = [chr(i + 6_5 ) for i in range(2_6 )] # Remove duplicate characters from key __A = remove_duplicates(key.upper() ) __A = len(__lowercase ) # First fill cipher with key characters __A = {alphabet[i]: char for i, char in enumerate(__lowercase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__lowercase ) , 2_6 ): __A = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __A = alphabet[i - offset] __A = char return cipher_alphabet def _SCREAMING_SNAKE_CASE ( __lowercase : str , __lowercase : dict[str, str] ) -> str: """simple docstring""" return "".join(cipher_map.get(__lowercase , __lowercase ) for ch in message.upper() ) def _SCREAMING_SNAKE_CASE ( __lowercase : str , __lowercase : dict[str, str] ) -> str: """simple docstring""" __A = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__lowercase , __lowercase ) for ch in message.upper() ) def _SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" __A = input("""Enter message to encode or decode: """ ).strip() __A = input("""Enter keyword: """ ).strip() __A = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __A = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __A = create_cipher_map(__lowercase ) print(func(__lowercase , __lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
637
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
703
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Optional[int] =FunnelTokenizer UpperCamelCase__ : Any =FunnelTokenizerFast UpperCamelCase__ : List[Any] =True UpperCamelCase__ : Any =True def __lowercase ( self ): """simple docstring""" super().setUp() __UpperCamelCase : str =[ '<unk>', '<cls>', '<sep>', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __UpperCamelCase : str =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __lowercase ( self , **lowerCamelCase__ ): """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def __lowercase ( self , **lowerCamelCase__ ): """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[int] ='UNwant\u00E9d,running' __UpperCamelCase : Optional[Any] ='unwanted, running' return input_text, output_text def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.tokenizer_class(self.vocab_file ) __UpperCamelCase : List[Any] =tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowerCamelCase__ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [7, 4, 5, 10, 8, 9] ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: __UpperCamelCase : str =tokenizer('UNwant\u00E9d,running' ) __UpperCamelCase : str =len(inputs['input_ids'] ) - 1 self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len ) __UpperCamelCase : List[Any] =tokenizer('UNwant\u00E9d,running' , 'UNwant\u00E9d,running' ) self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len + [1] * sentence_len )
154
0
"""simple docstring""" from __future__ import annotations import time snake_case = list[tuple[int, int]] snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCAmelCase : def __init__( self : Any , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Node | None ): """simple docstring""" _snake_case = pos_x _snake_case = pos_y _snake_case = (pos_y, pos_x) _snake_case = goal_x _snake_case = goal_y _snake_case = parent class UpperCAmelCase : def __init__( self : List[str] , __lowerCamelCase : tuple[int, int] , __lowerCamelCase : tuple[int, int] ): """simple docstring""" _snake_case = Node(start[1] , start[0] , goal[1] , goal[0] , __lowerCamelCase ) _snake_case = Node(goal[1] , goal[0] , goal[1] , goal[0] , __lowerCamelCase ) _snake_case = [self.start] _snake_case = False def __UpperCAmelCase ( self : int ): """simple docstring""" while self.node_queue: _snake_case = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _snake_case = True return self.retrace_path(__lowerCamelCase ) _snake_case = self.get_successors(__lowerCamelCase ) for node in successors: self.node_queue.append(__lowerCamelCase ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self : str , __lowerCamelCase : Node ): """simple docstring""" _snake_case = [] for action in delta: _snake_case = parent.pos_x + action[1] _snake_case = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__lowerCamelCase , __lowerCamelCase , self.target.pos_y , self.target.pos_x , __lowerCamelCase ) ) return successors def __UpperCAmelCase ( self : str , __lowerCamelCase : Node | None ): """simple docstring""" _snake_case = node _snake_case = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _snake_case = current_node.parent path.reverse() return path class UpperCAmelCase : def __init__( self : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" _snake_case = BreadthFirstSearch(__lowerCamelCase , __lowerCamelCase ) _snake_case = BreadthFirstSearch(__lowerCamelCase , __lowerCamelCase ) _snake_case = False def __UpperCAmelCase ( self : List[str] ): """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _snake_case = self.fwd_bfs.node_queue.pop(0 ) _snake_case = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _snake_case = True return self.retrace_bidirectional_path( __lowerCamelCase , __lowerCamelCase ) _snake_case = current_bwd_node _snake_case = current_fwd_node _snake_case = { self.fwd_bfs: self.fwd_bfs.get_successors(__lowerCamelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(__lowerCamelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__lowerCamelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Node , __lowerCamelCase : Node ): """simple docstring""" _snake_case = self.fwd_bfs.retrace_path(__lowerCamelCase ) _snake_case = self.bwd_bfs.retrace_path(__lowerCamelCase ) bwd_path.pop() bwd_path.reverse() _snake_case = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() snake_case = (0, 0) snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) snake_case = time.time() snake_case = BreadthFirstSearch(init, goal) snake_case = bfs.search() snake_case = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) snake_case = time.time() snake_case = BidirectionalBreadthFirstSearch(init, goal) snake_case = bd_bfs.search() snake_case = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
103
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger(__name__) _lowerCAmelCase: Tuple = torch.device('cpu') def _lowercase( ): a__ ='http://images.cocodataset.org/val2017/000000039769.jpg' a__ =Image.open(requests.get(__a , stream=__a ).raw ) return im def _lowercase( __a : Optional[Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _lowercase( __a : int , __a : int , __a : Optional[Any] ): a__ =dct.pop(__a ) a__ =val def _lowercase( __a : Optional[Any] ): a__ =[] for k in state_dict.keys(): a__ =k if ".pwconv" in k: a__ =k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a__ =k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a__ =k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a__ =k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a__ =k_new.split('.' ) if ls[2].isdigit(): a__ ='swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a__ =k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _lowercase( __a : Union[str, Any] , __a : int , __a : str ): a__ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ =1000 a__ ='huggingface/label-files' a__ ='imagenet-1k-id2label.json' a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ =[3, 3, 6, 4] a__ =[48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a__ =[3, 3, 9, 6] a__ =[48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a__ =[4, 3, 10, 5] a__ =[48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a__ =[4, 4, 12, 6] a__ =[64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a__ =torch.hub.load_state_dict_from_url(__a , map_location='cpu' , check_hash=__a ) else: a__ =torch.load(__a , map_location='cpu' ) a__ =checkpoint a__ =create_rename_keys(__a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__a , __a , __a ) # load HuggingFace model a__ =SwiftFormerForImageClassification(__a ).eval() hf_model.load_state_dict(__a ) # prepare test inputs a__ =prepare_img() a__ =ViTImageProcessor.from_pretrained('preprocessor_config' ) a__ =processor(images=__a , return_tensors='pt' ) # compare outputs from both models a__ =get_expected_output(__a ) a__ =hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __a , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _lowerCAmelCase: Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
20
0
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCamelCase_ ( ): lowerCamelCase__ = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]") lowerCamelCase__ = parser.add_subparsers(help="transformers-cli command helpers") # Register commands ConvertCommand.register_subcommand(lowercase__) DownloadCommand.register_subcommand(lowercase__) EnvironmentCommand.register_subcommand(lowercase__) RunCommand.register_subcommand(lowercase__) ServeCommand.register_subcommand(lowercase__) UserCommands.register_subcommand(lowercase__) AddNewModelCommand.register_subcommand(lowercase__) AddNewModelLikeCommand.register_subcommand(lowercase__) LfsCommands.register_subcommand(lowercase__) PTtoTFCommand.register_subcommand(lowercase__) # Let's go lowerCamelCase__ = parser.parse_args() if not hasattr(lowercase__ , "func"): parser.print_help() exit(1) # Run lowerCamelCase__ = args.func(lowercase__) service.run() if __name__ == "__main__": main()
187
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Tuple = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase ( _lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = "mobilenet_v1" def __init__( self : Union[str, Any] , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Any=224 , __lowerCamelCase : Tuple=1.0 , __lowerCamelCase : Optional[int]=8 , __lowerCamelCase : str="relu6" , __lowerCamelCase : Any=True , __lowerCamelCase : Union[str, Any]=0.9_9_9 , __lowerCamelCase : List[Any]=0.0_2 , __lowerCamelCase : str=0.0_0_1 , **__lowerCamelCase : str , ) -> Dict: '''simple docstring''' super().__init__(**__lowerCamelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCamelCase__ = num_channels lowerCamelCase__ = image_size lowerCamelCase__ = depth_multiplier lowerCamelCase__ = min_depth lowerCamelCase__ = hidden_act lowerCamelCase__ = tf_padding lowerCamelCase__ = classifier_dropout_prob lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps class lowercase ( _lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = version.parse("1.11" ) @property def a__ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def a__ ( self : List[Any] ) -> float: '''simple docstring''' return 1E-4
187
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCAmelCase__ : int =argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) lowerCAmelCase__ : List[Any] =parser.parse_args() lowerCAmelCase__ : Dict =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCAmelCase__ : Any =CLIPImageProcessor() lowerCAmelCase__ : Tuple =CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') lowerCAmelCase__ : List[Any] =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
101
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
0
def __lowerCamelCase(UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 1_0_0_0 ): SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 0 for divide_by_number in range(UpperCAmelCase__ , digit + 1 ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = divide_by_number else: has_been_divided.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
721
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : List[Any] = '''▁''' _lowerCamelCase : Optional[int] = {'''vocab_file''': '''prophetnet.tokenizer'''} _lowerCamelCase : str = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } _lowerCamelCase : Optional[Any] = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } _lowerCamelCase : Optional[Any] = { '''microsoft/xprophetnet-large-wiki100-cased''': 5_12, } def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = collections.OrderedDict() with open(UpperCAmelCase__ , "r" , encoding="utf-8" ) as reader: SCREAMING_SNAKE_CASE = reader.readlines() for index, token in enumerate(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = token.rstrip("\n" ) SCREAMING_SNAKE_CASE = index return vocab class lowercase ( a ): lowercase__ : Optional[int] = VOCAB_FILES_NAMES lowercase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Any = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : str="[SEP]" , _UpperCamelCase : str="[SEP]" , _UpperCamelCase : Dict="[SEP]" , _UpperCamelCase : Tuple="[UNK]" , _UpperCamelCase : Dict="[PAD]" , _UpperCamelCase : Any="[CLS]" , _UpperCamelCase : Optional[Any]="[MASK]" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , sep_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab SCREAMING_SNAKE_CASE = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): SCREAMING_SNAKE_CASE = F"[unused{i}]" SCREAMING_SNAKE_CASE = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(_UpperCamelCase ) def __getstate__( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self : List[Any] , _UpperCamelCase : Union[str, Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __snake_case( self : Dict , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def __snake_case( self : str , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __snake_case( self : Dict ) -> Optional[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def __snake_case( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __snake_case( self : Union[str, Any] , _UpperCamelCase : str ) -> str: '''simple docstring''' return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def __snake_case( self : Optional[Any] , _UpperCamelCase : List[Any] ) -> List[str]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __snake_case( self : str , _UpperCamelCase : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __snake_case( self : List[str] , _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = "".join(_UpperCamelCase ).replace(_UpperCamelCase , " " ).strip() return out_string def __snake_case( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_UpperCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( _UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , "wb" ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def __snake_case( self : Optional[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
647
0
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _snake_case = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , ) -> Tuple: __UpperCamelCase = [file for file in os.listdir(_SCREAMING_SNAKE_CASE ) if os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )] if identifier is not None: __UpperCamelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for n_ in n_identifier: __UpperCamelCase = [file for file in files if n_ not in file] else: __UpperCamelCase = [file for file in files if n_identifier not in file] __UpperCamelCase = ignore_files or [] ignore_files.append('__init__.py' ) __UpperCamelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , _SCREAMING_SNAKE_CASE ) if only_modules: __UpperCamelCase = file.split('.' )[0] try: __UpperCamelCase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = doctest.DocTestSuite(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = unittest.TextTestRunner().run(_SCREAMING_SNAKE_CASE ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f"""{module_identifier} is not a module.""" ) else: __UpperCamelCase = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __lowercase( self ) -> List[str]: __UpperCamelCase = Path('src/transformers' ) __UpperCamelCase = 'modeling' __UpperCamelCase = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(_SCREAMING_SNAKE_CASE , identifier=_SCREAMING_SNAKE_CASE , ignore_files=_SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> Optional[Any]: __UpperCamelCase = Path('src/transformers' ) __UpperCamelCase = 'tokenization' self.analyze_directory(_SCREAMING_SNAKE_CASE , identifier=_SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> List[str]: __UpperCamelCase = Path('src/transformers' ) __UpperCamelCase = 'configuration' self.analyze_directory(_SCREAMING_SNAKE_CASE , identifier=_SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> Tuple: __UpperCamelCase = Path('src/transformers' ) __UpperCamelCase = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(_SCREAMING_SNAKE_CASE , n_identifier=_SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> List[Any]: __UpperCamelCase = Path('docs/source' ) __UpperCamelCase = ['favicon.ico'] self.analyze_directory(_SCREAMING_SNAKE_CASE , ignore_files=_SCREAMING_SNAKE_CASE , only_modules=_SCREAMING_SNAKE_CASE )
383
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = BarthezTokenizer UpperCAmelCase__ = BarthezTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = True def __lowercase( self ) -> Union[str, Any]: super().setUp() __UpperCamelCase = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = tokenizer def __lowercase( self ) -> Union[str, Any]: __UpperCamelCase = '<pad>' __UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> Optional[Any]: __UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 101_122 ) def __lowercase( self ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 101_122 ) @require_torch def __lowercase( self ) -> Optional[Any]: __UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __UpperCamelCase = [0, 57, 3_018, 70_307, 91, 2] __UpperCamelCase = self.tokenizer( _SCREAMING_SNAKE_CASE , max_length=len(_SCREAMING_SNAKE_CASE ) , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) __UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> int: if not self.test_rust_tokenizer: return __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = self.get_rust_tokenizer() __UpperCamelCase = 'I was born in 92000, and this is falsé.' __UpperCamelCase = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = self.get_rust_tokenizer() __UpperCamelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowercase( self ) -> List[str]: # fmt: off __UpperCamelCase = {'input_ids': [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __UpperCamelCase = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=_SCREAMING_SNAKE_CASE , )
383
1
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) snake_case__ : Tuple = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = {} state_dict.pop("pixel_mean" , _lowerCamelCase ) state_dict.pop("pixel_std" , _lowerCamelCase ) __lowercase = r""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*""" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __lowercase = key.replace(_lowerCamelCase , _lowerCamelCase ) if re.match(_lowerCamelCase , _lowerCamelCase ): __lowercase = int(re.match(_lowerCamelCase , _lowerCamelCase ).group(2 ) ) if layer_nb == 0: __lowercase = key.replace("layers.0" , "proj_in" ) elif layer_nb == 1: __lowercase = key.replace("layers.1" , "layers.0" ) elif layer_nb == 2: __lowercase = key.replace("layers.2" , "proj_out" ) __lowercase = value __lowercase = model_state_dict[ """prompt_encoder.shared_embedding.positional_embedding""" ] return model_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="ybelkada/segment-anything" ): __lowercase = hf_hub_download(_lowerCamelCase , F"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: __lowercase = SamConfig() elif "sam_vit_l" in model_name: __lowercase = SamVisionConfig( hidden_size=1_0_2_4 , num_hidden_layers=2_4 , num_attention_heads=1_6 , global_attn_indexes=[5, 1_1, 1_7, 2_3] , ) __lowercase = SamConfig( vision_config=_lowerCamelCase , ) elif "sam_vit_h" in model_name: __lowercase = SamVisionConfig( hidden_size=1_2_8_0 , num_hidden_layers=3_2 , num_attention_heads=1_6 , global_attn_indexes=[7, 1_5, 2_3, 3_1] , ) __lowercase = SamConfig( vision_config=_lowerCamelCase , ) __lowercase = torch.load(_lowerCamelCase , map_location="cpu" ) __lowercase = replace_keys(_lowerCamelCase ) __lowercase = SamImageProcessor() __lowercase = SamProcessor(image_processor=_lowerCamelCase ) __lowercase = SamModel(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) __lowercase = hf_model.to("cuda" ) __lowercase = """https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png""" __lowercase = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("RGB" ) __lowercase = [[[4_0_0, 6_5_0]]] __lowercase = [[1]] __lowercase = processor(images=np.array(_lowerCamelCase ) , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): __lowercase = hf_model(**_lowerCamelCase ) __lowercase = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 __lowercase = processor( images=np.array(_lowerCamelCase ) , input_points=_lowerCamelCase , input_labels=_lowerCamelCase , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): __lowercase = hf_model(**_lowerCamelCase ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 __lowercase = ((7_5, 2_7_5, 1_7_2_5, 8_5_0),) __lowercase = processor(images=np.array(_lowerCamelCase ) , input_boxes=_lowerCamelCase , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): __lowercase = hf_model(**_lowerCamelCase ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. __lowercase = [[[4_0_0, 6_5_0], [8_0_0, 6_5_0]]] __lowercase = [[1, 1]] __lowercase = processor( images=np.array(_lowerCamelCase ) , input_points=_lowerCamelCase , input_labels=_lowerCamelCase , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): __lowercase = hf_model(**_lowerCamelCase ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() snake_case__ : List[Any] = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) snake_case__ : Optional[int] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
719
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : int = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
563
import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) UpperCAmelCase : Union[str, Any] = logging.getLogger(__name__) if __name__ == "__main__": UpperCAmelCase : str = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=30522, type=int) UpperCAmelCase : str = parser.parse_args() logger.info(F"""Loading data from {args.data_file}""") with open(args.data_file, """rb""") as fp: UpperCAmelCase : Union[str, Any] = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") UpperCAmelCase : List[str] = Counter() for tk_ids in data: counter.update(tk_ids) UpperCAmelCase : Tuple = [0] * args.vocab_size for k, v in counter.items(): UpperCAmelCase : Optional[int] = v logger.info(F"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
563
1
import json import sys def __UpperCamelCase ( _A : Any , _A : Any ) ->Optional[Any]: """simple docstring""" with open(_A , encoding="""utf-8""" ) as f: lowerCamelCase_ =json.load(_A ) lowerCamelCase_ =["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(_A ): lowerCamelCase_ =results[benchmark_name] lowerCamelCase_ =benchmark_name.split("""/""" )[-1] output_md.append(f'### Benchmark: {benchmark_file_name}' ) lowerCamelCase_ ="""| metric |""" lowerCamelCase_ ="""|--------|""" lowerCamelCase_ ="""| new / old (diff) |""" for metric_name in sorted(_A ): lowerCamelCase_ =benchmark_res[metric_name] lowerCamelCase_ =metric_vals["""new"""] lowerCamelCase_ =metric_vals.get("""old""" , _A ) lowerCamelCase_ =metric_vals.get("""diff""" , _A ) lowerCamelCase_ =f' {new_val:f}' if isinstance(_A , (int, float) ) else """None""" if old_val is not None: val_str += f' / {old_val:f}' if isinstance(_A , (int, float) ) else "None" if dif_val is not None: val_str += f' ({dif_val:f})' if isinstance(_A , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(_A , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(_A ) ) if __name__ == "__main__": __A : Dict = sys.argv[1] __A : Dict = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
75
def __UpperCamelCase ( _A : str , _A : int ) ->str: """simple docstring""" lowerCamelCase_ =[[] for _ in range(_A )] lowerCamelCase_ =key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1 or len(_A ) <= key: return input_string for position, character in enumerate(_A ): lowerCamelCase_ =position % (lowest * 2) # puts it in bounds lowerCamelCase_ =min(_A , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(_A ) lowerCamelCase_ =["""""".join(_A ) for row in temp_grid] lowerCamelCase_ ="""""".join(_A ) return output_string def __UpperCamelCase ( _A : str , _A : int ) ->str: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1: return input_string lowerCamelCase_ =[[] for _ in range(_A )] # generates template for position in range(len(_A ) ): lowerCamelCase_ =position % (lowest * 2) # puts it in bounds lowerCamelCase_ =min(_A , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) lowerCamelCase_ =0 for row in temp_grid: # fills in the characters lowerCamelCase_ =input_string[counter : counter + len(_A )] grid.append(list(_A ) ) counter += len(_A ) lowerCamelCase_ ="""""" # reads as zigzag for position in range(len(_A ) ): lowerCamelCase_ =position % (lowest * 2) # puts it in bounds lowerCamelCase_ =min(_A , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __UpperCamelCase ( _A : str ) ->dict[int, str]: """simple docstring""" lowerCamelCase_ ={} for key_guess in range(1 , len(_A ) ): # tries every key lowerCamelCase_ =decrypt(_A , _A ) return results if __name__ == "__main__": import doctest doctest.testmod()
75
1
"""simple docstring""" from typing import Any class a__ : def __init__( self : List[str] , UpperCamelCase_ : Any): """simple docstring""" __UpperCAmelCase : str = data __UpperCAmelCase : Optional[Any] = None class a__ : def __init__( self : Any): """simple docstring""" __UpperCAmelCase : Optional[int] = None def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.head while temp is not None: print(temp.data , end=" ") __UpperCAmelCase : Tuple = temp.next print() def a_ ( self : int , UpperCamelCase_ : Any): """simple docstring""" __UpperCAmelCase : List[str] = Node(UpperCamelCase_) __UpperCAmelCase : str = self.head __UpperCAmelCase : Optional[int] = new_node def a_ ( self : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str): """simple docstring""" if node_data_a == node_data_a: return else: __UpperCAmelCase : int = self.head while node_a is not None and node_a.data != node_data_a: __UpperCAmelCase : Tuple = node_a.next __UpperCAmelCase : List[Any] = self.head while node_a is not None and node_a.data != node_data_a: __UpperCAmelCase : Optional[Any] = node_a.next if node_a is None or node_a is None: return __UpperCAmelCase , __UpperCAmelCase : Any = node_a.data, node_a.data if __name__ == "__main__": A = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
77
'''simple docstring''' def UpperCAmelCase ( UpperCAmelCase__ : int = 50): lowerCamelCase : List[Any] = [1] * (length + 1) for row_length in range(length + 1): for tile_length in range(2 , 5): for tile_start in range(row_length - tile_length + 1): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
320
0
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: List[str] = '''laion/clap-htsat-unfused''' _UpperCamelCase: Optional[Any] = tempfile.mkdtemp() def lowerCAmelCase ( self : Optional[int] , **_lowercase : Dict ): """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint , **_lowercase ) def lowerCAmelCase ( self : Tuple , **_lowercase : List[Any] ): """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint , **_lowercase ) def lowerCAmelCase ( self : Dict ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : List[Any] ): """simple docstring""" _UpperCamelCase: Optional[int] = self.get_tokenizer() _UpperCamelCase: Any = self.get_feature_extractor() _UpperCamelCase: Dict = ClapProcessor(tokenizer=_lowercase , feature_extractor=_lowercase ) processor.save_pretrained(self.tmpdirname ) _UpperCamelCase: List[str] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowercase ) def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: Optional[int] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _UpperCamelCase: Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _UpperCamelCase: Any = self.get_feature_extractor(do_normalize=_lowercase , padding_value=1.0 ) _UpperCamelCase: Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowercase ) def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: Dict = self.get_feature_extractor() _UpperCamelCase: int = self.get_tokenizer() _UpperCamelCase: str = ClapProcessor(tokenizer=_lowercase , feature_extractor=_lowercase ) _UpperCamelCase: Any = floats_list((3, 1_000) ) _UpperCamelCase: Any = feature_extractor(_lowercase , return_tensors='''np''' ) _UpperCamelCase: Tuple = processor(audios=_lowercase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Dict ): """simple docstring""" _UpperCamelCase: Optional[Any] = self.get_feature_extractor() _UpperCamelCase: Optional[int] = self.get_tokenizer() _UpperCamelCase: Optional[int] = ClapProcessor(tokenizer=_lowercase , feature_extractor=_lowercase ) _UpperCamelCase: List[Any] = '''This is a test string''' _UpperCamelCase: int = processor(text=_lowercase ) _UpperCamelCase: Optional[int] = tokenizer(_lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: int = self.get_feature_extractor() _UpperCamelCase: Tuple = self.get_tokenizer() _UpperCamelCase: Any = ClapProcessor(tokenizer=_lowercase , feature_extractor=_lowercase ) _UpperCamelCase: Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCamelCase: int = processor.batch_decode(_lowercase ) _UpperCamelCase: List[Any] = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def lowerCAmelCase ( self : Dict ): """simple docstring""" _UpperCamelCase: List[Any] = self.get_feature_extractor() _UpperCamelCase: List[str] = self.get_tokenizer() _UpperCamelCase: List[Any] = ClapProcessor(tokenizer=_lowercase , feature_extractor=_lowercase ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , )
264
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase_ ( lowercase: ndarray ) -> float: '''simple docstring''' return np.dot(lowercase , lowercase ) class __magic_name__ : """simple docstring""" def __init__( self : int , *, _lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ): """simple docstring""" _UpperCamelCase: int = regularization _UpperCamelCase: Optional[int] = gamma if kernel == "linear": _UpperCamelCase: Optional[Any] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) _UpperCamelCase: Optional[Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: _UpperCamelCase: Optional[int] = f"""Unknown kernel: {kernel}""" raise ValueError(_lowercase ) def lowerCAmelCase ( self : Union[str, Any] , _lowercase : ndarray , _lowercase : ndarray ): """simple docstring""" return np.dot(_lowercase , _lowercase ) def lowerCAmelCase ( self : str , _lowercase : ndarray , _lowercase : ndarray ): """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowerCAmelCase ( self : str , _lowercase : list[ndarray] , _lowercase : ndarray ): """simple docstring""" _UpperCamelCase: List[str] = observations _UpperCamelCase: Optional[int] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((_UpperCamelCase) , ): Any = np.shape(_lowercase ) def to_minimize(_lowercase : ndarray ) -> float: _UpperCamelCase: Optional[int] = 0 ((_UpperCamelCase) , ): str = np.shape(_lowercase ) for i in range(_lowercase ): for j in range(_lowercase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowercase ) _UpperCamelCase: Optional[Any] = LinearConstraint(_lowercase , 0 , 0 ) _UpperCamelCase: Optional[int] = Bounds(0 , self.regularization ) _UpperCamelCase: Dict = minimize( _lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x _UpperCamelCase: Union[str, Any] = l_star # calculating mean offset of separation plane to points _UpperCamelCase: List[str] = 0 for i in range(_lowercase ): for j in range(_lowercase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) _UpperCamelCase: str = s / n def lowerCAmelCase ( self : Optional[Any] , _lowercase : ndarray ): """simple docstring""" _UpperCamelCase: Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowercase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
264
1
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Tuple = logging.get_logger() # the current default level is logging.WARNING __A : int = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : int = logging.get_verbosity() __A : Any = logging.get_logger("transformers.models.bart.tokenization_bart" ) __A : Dict = "Testing 1, 2, 3" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(lowerCamelCase ) as cl: logger.warning(lowerCamelCase ) self.assertEqual(cl.out , msg + "\n" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(lowerCamelCase ) as cl: logger.warning(lowerCamelCase ) self.assertEqual(cl.out , "" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(lowerCamelCase ) as cl: logger.warning(lowerCamelCase ) self.assertEqual(cl.out , msg + "\n" ) # restore to the original level logging.set_verbosity(lowerCamelCase ) @mockenv(TRANSFORMERS_VERBOSITY="error" ) def lowerCAmelCase__ ( self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() # this action activates the env var __A : List[str] = logging.get_logger("transformers.models.bart.tokenization_bart" ) __A : Tuple = os.getenv("TRANSFORMERS_VERBOSITY" , lowerCamelCase ) __A : int = logging.log_levels[env_level_str] __A : Union[str, Any] = logging.get_verbosity() self.assertEqual( lowerCamelCase , lowerCamelCase , f"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}" , ) # restore to the original level __A : Tuple = "" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error" ) def lowerCAmelCase__ ( self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() __A : Dict = logging.logging.getLogger() with CaptureLogger(lowerCamelCase ) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart" ) self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error" , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() __A : List[Any] = logging.get_logger("transformers.models.bart.tokenization_bart" ) __A : Tuple = "Testing 1, 2, 3" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ): # nothing should be logged as env var disables this method with CaptureLogger(lowerCamelCase ) as cl: logger.warning_advice(lowerCamelCase ) self.assertEqual(cl.out , "" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(lowerCamelCase ) as cl: logger.warning_advice(lowerCamelCase ) self.assertEqual(cl.out , msg + "\n" ) def _lowercase (): '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
111
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=30 , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=10 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=0.6 , lowerCamelCase=None , ): '''simple docstring''' __A : Tuple = parent __A : Union[str, Any] = batch_size __A : List[Any] = image_size __A : Union[str, Any] = patch_size __A : List[Any] = num_channels __A : Optional[Any] = is_training __A : str = use_labels __A : Tuple = hidden_size __A : int = num_hidden_layers __A : Dict = num_attention_heads __A : List[Any] = intermediate_size __A : Tuple = hidden_act __A : Tuple = hidden_dropout_prob __A : str = attention_probs_dropout_prob __A : Optional[Any] = type_sequence_label_size __A : Union[str, Any] = initializer_range __A : Optional[Any] = mask_ratio __A : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __A : Optional[int] = (image_size // patch_size) ** 2 __A : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A : Tuple = None if self.use_labels: __A : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = ViTMAEModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : List[Any] = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __A : str = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : Optional[Any] = model(lowerCamelCase ) __A : List[str] = (self.image_size // self.patch_size) ** 2 __A : List[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __A : List[str] = 1 __A : str = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A : int = model(lowerCamelCase ) __A : Union[str, Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : List[str] = self.prepare_config_and_inputs() __A ,__A ,__A : List[Any] = config_and_inputs __A : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCamelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Union[str, Any] = ViTMAEModelTester(self ) __A : Tuple = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' __A ,__A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __A : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : int = model_class(lowerCamelCase ) __A : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : Optional[Any] = [*signature.parameters.keys()] __A : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' np.random.seed(2 ) __A : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __A : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __A : Optional[Any] = torch.from_numpy(lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __A : int = pt_noise super().check_pt_tf_models(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : int = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __A : Tuple = outputs[0].cpu().numpy() __A : List[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase ) __A : List[Any] = model_class.from_pretrained(lowerCamelCase ) model.to(lowerCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __A : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) # Make sure we don't have nans __A : List[Any] = after_outputs[0].cpu().numpy() __A : List[str] = 0 __A : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @slow def lowerCAmelCase__ ( self ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = ViTMAEModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _lowercase (): '''simple docstring''' __A : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase__ ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self ): '''simple docstring''' np.random.seed(2 ) __A : Dict = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(lowerCamelCase ) __A : str = self.default_image_processor __A : List[Any] = prepare_img() __A : Union[str, Any] = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __A : Optional[Any] = ViTMAEConfig() __A : List[str] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __A : Any = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __A : str = model(**lowerCamelCase , noise=torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase ) ) # verify the logits __A : Union[str, Any] = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __A : int = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase ) , atol=1E-4 ) )
111
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : List[Any] , snake_case__ : Any=False ): A = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): A = 'segformer.encoder.' + key if key.startswith('backbone' ): A = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 A = key[key.find('patch_embed' ) + len('patch_embed' )] A = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(lowercase__ )-1}' ) if "norm" in key: A = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 A = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] A = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(lowercase__ )-1}' ) if "layer_norm1" in key: A = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: A = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 A = key[key.find('block' ) + len('block' )] A = key.replace(F'block{idx}' , F'block.{int(lowercase__ )-1}' ) if "attn.q" in key: A = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: A = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: A = key.replace('attn' , 'attention.self' ) if "fc1" in key: A = key.replace('fc1' , 'dense1' ) if "fc2" in key: A = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: A = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: A = key.replace('linear_fuse.conv' , 'linear_fuse' ) A = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 A = key[key.find('linear_c' ) + len('linear_c' )] A = key.replace(F'linear_c{idx}' , F'linear_c.{int(lowercase__ )-1}' ) if key.startswith('head' ): A = key.replace('head' , 'classifier' ) A = value return new_state_dict def _snake_case ( snake_case__ : Dict , snake_case__ : List[str] ): for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) A = state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) A = state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict A = kv_weight[ : config.hidden_sizes[i], : ] A = kv_bias[: config.hidden_sizes[i]] A = kv_weight[ config.hidden_sizes[i] :, : ] A = kv_bias[ config.hidden_sizes[i] : ] def _snake_case ( ): A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return image @torch.no_grad() def _snake_case ( snake_case__ : List[str] , snake_case__ : int , snake_case__ : Optional[int] ): A = SegformerConfig() A = False # set attributes based on model_name A = 'huggingface/label-files' if "segformer" in model_name: A = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: A = 150 A = 'ade20k-id2label.json' A = (1, 150, 128, 128) elif "city" in model_name: A = 19 A = 'cityscapes-id2label.json' A = (1, 19, 128, 128) else: raise ValueError(F'Model {model_name} not supported' ) elif "mit" in model_name: A = True A = model_name[4:6] A = 1000 A = 'imagenet-1k-id2label.json' A = (1, 1000) else: raise ValueError(F'Model {model_name} not supported' ) # set config attributes A = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) A = {int(lowercase__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": A = [64, 128, 320, 512] A = 256 elif size == "b2": A = [64, 128, 320, 512] A = 768 A = [3, 4, 6, 3] elif size == "b3": A = [64, 128, 320, 512] A = 768 A = [3, 4, 18, 3] elif size == "b4": A = [64, 128, 320, 512] A = 768 A = [3, 8, 27, 3] elif size == "b5": A = [64, 128, 320, 512] A = 768 A = [3, 6, 40, 3] else: raise ValueError(F'Size {size} not supported' ) # load image processor (only resize + normalize) A = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase__ , align=lowercase__ , do_random_crop=lowercase__ ) # prepare image A = prepare_img() A = image_processor(images=lowercase__ , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict if encoder_only: A = torch.load(lowercase__ , map_location=torch.device('cpu' ) ) else: A = torch.load(lowercase__ , map_location=torch.device('cpu' ) )['state_dict'] # rename keys A = rename_keys(lowercase__ , encoder_only=lowercase__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(lowercase__ , lowercase__ ) # create HuggingFace model and load state dict if encoder_only: A = False A = SegformerForImageClassification(lowercase__ ) else: A = SegformerForSemanticSegmentation(lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() # forward pass A = model(lowercase__ ) A = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": A = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": A = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": A = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": A = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": A = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": A = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": A = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": A = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": A = torch.tensor( [ [ [-1.13_72e01, -1.27_87e01, -1.34_77e01], [-1.25_36e01, -1.41_94e01, -1.44_09e01], [-1.32_17e01, -1.48_88e01, -1.53_27e01], ], [ [-1.47_91e01, -1.71_22e01, -1.82_77e01], [-1.71_63e01, -1.91_92e01, -1.95_33e01], [-1.78_97e01, -1.99_91e01, -2.03_15e01], ], [ [7.67_23e-01, 4.19_21e-01, -7.78_78e-02], [4.77_72e-01, 9.55_57e-03, -2.80_82e-01], [3.60_32e-01, -2.48_26e-01, -5.11_68e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": A = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": A = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": A = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": A = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": A = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": A = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: A = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , lowercase__ , atol=1e-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowercase = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
718
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int ,A_ : Tuple ,A_ : str=7 ,A_ : Tuple=3 ,A_ : List[Any]=18 ,A_ : List[str]=30 ,A_ : Optional[Any]=400 ,A_ : Any=True ,A_ : Optional[Any]=None ,A_ : List[str]=True ,) -> str: A = size if size is not None else {'height': 18, 'width': 18} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = do_normalize def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = ImageGPTImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ ,'clusters' ) ) self.assertTrue(hasattr(A_ ,'do_resize' ) ) self.assertTrue(hasattr(A_ ,'size' ) ) self.assertTrue(hasattr(A_ ,'do_normalize' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: A = self.image_processing_class(**self.image_processor_dict ) A = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,obj[key] ) ) else: self.assertEqual(obj[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A = os.path.join(A_ ,'image_processor.json' ) image_processor_first.to_json_file(A_ ) A = self.image_processing_class.from_json_file(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(A_ ) A = self.image_processing_class.from_pretrained(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: pass def _snake_case ( ): A = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) A = Image.open(dataset[4]['file'] ) A = Image.open(dataset[5]['file'] ) A = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> int: A = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) A = prepare_images() # test non-batched A = image_processing(images[0] ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1024) ) A = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,A_ ) # test batched A = image_processing(A_ ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1024) ) A = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,A_ )
22
0
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration _lowercase : List[str] =5_0000 _lowercase : str =5000 _lowercase , _lowercase : List[str] =os.path.split(__file__) _lowercase : Union[str, Any] =os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): lowerCamelCase_ : Tuple = dataset[i] @get_duration def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ): lowerCamelCase_ : Tuple = dataset[i : i + batch_size] @get_duration def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): lowerCamelCase_ : Tuple = dataset[i] @get_duration def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(0 ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ : Optional[int] = dataset[i : i + batch_size] def _SCREAMING_SNAKE_CASE ( ): lowerCamelCase_ : Any = {'num examples': SPEED_TEST_N_EXAMPLES} lowerCamelCase_ : Optional[Any] = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_00}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10_00}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10_00}), ] lowerCamelCase_ : Optional[Any] = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_00}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10_00}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10_00}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) lowerCamelCase_ : List[Any] = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) lowerCamelCase_ : Union[str, Any] = generate_example_dataset( os.path.join(lowerCAmelCase__ ,'dataset.arrow' ) ,lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes={'list': (1_00,)} ,) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ ,str(lowerCAmelCase__ ) ) lowerCamelCase_ : Optional[int] = func(lowerCAmelCase__ ,**lowerCAmelCase__ ) print('shuffling dataset' ) lowerCamelCase_ : int = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' ,func.__name__ ,str(lowerCAmelCase__ ) ) lowerCamelCase_ : Optional[Any] = func( lowerCAmelCase__ ,**lowerCAmelCase__ ) with open(lowerCAmelCase__ ,'wb' ) as f: f.write(json.dumps(lowerCAmelCase__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
364
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowercase : Union[str, Any] =logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.14.0""", """To fix: pip install -r examples/pytorch/audio-classification/requirements.txt""") def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = 1_60_00 ): lowerCamelCase_ : List[str] = int(round(sample_rate * max_length ) ) if len(lowerCAmelCase__ ) <= sample_length: return wav lowerCamelCase_ : int = randint(0 ,len(lowerCAmelCase__ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCamelCase_ : _a : Optional[str] = field(default=snake_case__ , metadata={'help': 'Name of a dataset from the datasets package'} ) _a : Optional[str] = field( default=snake_case__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _a : Optional[str] = field( default=snake_case__ , metadata={'help': 'A file containing the training audio paths and labels.'} ) _a : Optional[str] = field( default=snake_case__ , metadata={'help': 'A file containing the validation audio paths and labels.'} ) _a : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _a : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _a : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) _a : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} ) _a : Optional[int] = field( default=snake_case__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _a : Optional[int] = field( default=snake_case__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _a : float = field( default=2_0 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCamelCase_ : _a : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _a : Optional[str] = field( default=snake_case__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _a : Optional[str] = field( default=snake_case__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} ) _a : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _a : Optional[str] = field( default=snake_case__ , metadata={'help': 'Name or path of preprocessor config.'} ) _a : bool = field( default=snake_case__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} ) _a : bool = field( default=snake_case__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} ) _a : bool = field( default=snake_case__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _a : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) _a : bool = field( default=snake_case__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def __a ( self : Optional[int] ): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( 'The argument `--freeze_feature_extractor` is deprecated and ' 'will be removed in a future version. Use `--freeze_feature_encoder`' 'instead. Setting `freeze_feature_encoder==True`.' , lowerCamelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( 'The argument `--freeze_feature_extractor` is deprecated and ' 'should not be used in combination with `--freeze_feature_encoder`.' 'Only make use of `--freeze_feature_encoder`.' ) def _SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_audio_classification' ,lowerCAmelCase__ ,lowerCAmelCase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' ,datefmt='%m/%d/%Y %H:%M:%S' ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ : List[str] = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowerCamelCase_ : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to train from scratch.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset and prepare it for the audio classification task. lowerCamelCase_ : Optional[int] = DatasetDict() lowerCamelCase_ : Dict = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.train_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCamelCase_ : List[str] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.eval_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " 'Make sure to set `--audio_column_name` to the correct audio column - one of ' F"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " 'Make sure to set `--label_column_name` to the correct text column - one of ' F"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowerCamelCase_ : Dict = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path ,return_attention_mask=model_args.attention_mask ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowerCamelCase_ : Optional[Any] = raw_datasets.cast_column( data_args.audio_column_name ,datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowerCamelCase_ : Optional[int] = feature_extractor.model_input_names[0] def train_transforms(lowerCAmelCase__ ): lowerCamelCase_ : Optional[int] = [] for audio in batch[data_args.audio_column_name]: lowerCamelCase_ : Union[str, Any] = random_subsample( audio['array'] ,max_length=data_args.max_length_seconds ,sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowerCAmelCase__ ) lowerCamelCase_ : int = feature_extractor(lowerCAmelCase__ ,sampling_rate=feature_extractor.sampling_rate ) lowerCamelCase_ : Optional[Any] = {model_input_name: inputs.get(lowerCAmelCase__ )} lowerCamelCase_ : Any = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowerCAmelCase__ ): lowerCamelCase_ : Dict = [audio['array'] for audio in batch[data_args.audio_column_name]] lowerCamelCase_ : Optional[Any] = feature_extractor(lowerCAmelCase__ ,sampling_rate=feature_extractor.sampling_rate ) lowerCamelCase_ : Optional[int] = {model_input_name: inputs.get(lowerCAmelCase__ )} lowerCamelCase_ : Tuple = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowerCamelCase_ : Optional[int] = raw_datasets['train'].features[data_args.label_column_name].names lowerCamelCase_ , lowerCamelCase_ : Optional[int] = {}, {} for i, label in enumerate(lowerCAmelCase__ ): lowerCamelCase_ : List[Any] = str(lowerCAmelCase__ ) lowerCamelCase_ : Union[str, Any] = label # Load the accuracy metric from the datasets package lowerCamelCase_ : Tuple = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ ): lowerCamelCase_ : Tuple = np.argmax(eval_pred.predictions ,axis=1 ) return metric.compute(predictions=lowerCAmelCase__ ,references=eval_pred.label_ids ) lowerCamelCase_ : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path ,num_labels=len(lowerCAmelCase__ ) ,labelaid=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,finetuning_task='audio-classification' ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCamelCase_ : Optional[int] = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('.ckpt' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase_ : List[Any] = ( raw_datasets['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowerCAmelCase__ ,output_all_columns=lowerCAmelCase__ ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase_ : List[str] = ( raw_datasets['eval'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowerCAmelCase__ ,output_all_columns=lowerCAmelCase__ ) # Initialize our trainer lowerCamelCase_ : str = Trainer( model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=raw_datasets['train'] if training_args.do_train else None ,eval_dataset=raw_datasets['eval'] if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,) # Training if training_args.do_train: lowerCamelCase_ : List[Any] = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ : Dict = last_checkpoint lowerCamelCase_ : Optional[int] = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() trainer.log_metrics('train' ,train_result.metrics ) trainer.save_metrics('train' ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase_ : str = trainer.evaluate() trainer.log_metrics('eval' ,lowerCAmelCase__ ) trainer.save_metrics('eval' ,lowerCAmelCase__ ) # Write model card and (optionally) push to hub lowerCamelCase_ : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'audio-classification', 'dataset': data_args.dataset_name, 'tags': ['audio-classification'], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) if __name__ == "__main__": main()
364
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase__ = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase_ ( lowerCamelCase__ ): lowerCAmelCase__ = ['pixel_values'] def __init__( self : Dict , _A : str = True , _A : str = None , _A : Optional[int] = PILImageResampling.BICUBIC , _A : List[Any] = True , _A : Tuple = None , _A : str = True , _A : Tuple = 1 / 255 , _A : List[Any] = True , _A : str = None , _A : int = None , _A : Optional[Any] = True , **_A : Dict , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = size if size is not None else {'''shortest_edge''': 224} UpperCAmelCase__ : Union[str, Any] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) UpperCAmelCase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase__ : Optional[int] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase , param_name='''crop_size''' ) UpperCAmelCase__ : Optional[int] = do_resize UpperCAmelCase__ : Any = size UpperCAmelCase__ : int = resample UpperCAmelCase__ : Dict = do_center_crop UpperCAmelCase__ : str = crop_size UpperCAmelCase__ : Dict = do_rescale UpperCAmelCase__ : Optional[Any] = rescale_factor UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase__ : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase__ : int = do_convert_rgb def lowercase_ ( self : Optional[int] , _A : Tuple , _A : Dict , _A : Optional[int] = PILImageResampling.BICUBIC , _A : Union[str, Any] = None , **_A : Any , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase__ : Optional[int] = get_resize_output_image_size(__lowerCamelCase , size=size['''shortest_edge'''] , default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowercase_ ( self : List[Any] , _A : Optional[Any] , _A : Any , _A : List[str] = None , **_A : List[Any] , ): '''simple docstring''' UpperCAmelCase__ : List[Any] = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__lowerCamelCase , size=(size['''height'''], size['''width''']) , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowercase_ ( self : Optional[Any] , _A : Optional[int] , _A : str , _A : Optional[int] = None , **_A : Any , ): '''simple docstring''' return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowercase_ ( self : Optional[Any] , _A : Optional[int] , _A : Dict , _A : Dict , _A : Any = None , **_A : Dict , ): '''simple docstring''' return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowercase_ ( self : int , _A : List[Any] , _A : int = None , _A : Any = None , _A : str = None , _A : Optional[Any] = None , _A : int = None , _A : List[str] = None , _A : Optional[int] = None , _A : Tuple = None , _A : Union[str, Any] = None , _A : Optional[int] = None , _A : int = None , _A : List[str] = None , _A : List[Any] = ChannelDimension.FIRST , **_A : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : Tuple = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : Tuple = size if size is not None else self.size UpperCAmelCase__ : Any = get_size_dict(__lowerCamelCase , param_name='''size''' , default_to_square=__lowerCamelCase ) UpperCAmelCase__ : Tuple = resample if resample is not None else self.resample UpperCAmelCase__ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : str = get_size_dict(__lowerCamelCase , param_name='''crop_size''' , default_to_square=__lowerCamelCase ) UpperCAmelCase__ : Dict = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : List[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : Dict = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : int = image_std if image_std is not None else self.image_std UpperCAmelCase__ : Dict = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase__ : Optional[int] = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase__ : Union[str, Any] = [convert_to_rgb(__lowerCamelCase ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase__ : Any = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: UpperCAmelCase__ : str = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_center_crop: UpperCAmelCase__ : Dict = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images] if do_rescale: UpperCAmelCase__ : Union[str, Any] = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: UpperCAmelCase__ : Optional[Any] = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] UpperCAmelCase__ : List[Any] = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] UpperCAmelCase__ : Optional[int] = {'''pixel_values''': images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
702
'''simple docstring''' from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None ) -> None: if start is None: UpperCAmelCase__ : List[Any] = 0 if end is None: UpperCAmelCase__ : Optional[int] = len(lowerCAmelCase__ ) - 1 if start >= end: return UpperCAmelCase__ : List[Any] = (start + end) // 2 slowsort(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) slowsort(lowerCAmelCase__ , mid + 1 , lowerCAmelCase__ ) if sequence[end] < sequence[mid]: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = sequence[mid], sequence[end] slowsort(lowerCAmelCase__ , lowerCAmelCase__ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
312
0
'''simple docstring''' import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 A__ : str =0b1_0_1_1_0_0_1_1_1_1_1_0_1_1_0_0_1_0_0_1_0_0_0_0_0_1_1_1_1_0_1_1_1_0_1_1_0_0_0_1_1_0_0_1_1_1_1_0 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 A__ : Any =[int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class UpperCAmelCase : def __init__( self : Union[str, Any] ) -> int: _lowerCAmelCase = WATERMARK_BITS _lowerCAmelCase = WatermarkEncoder() self.encoder.set_watermark("""bits""" , self.watermark ) def lowercase__ ( self : Dict , __snake_case : torch.FloatTensor ) -> Dict: # can't encode images that are smaller than 256 if images.shape[-1] < 2_56: return images _lowerCAmelCase = (2_55 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _lowerCAmelCase = [self.encoder.encode(__snake_case , """dwtDct""" ) for image in images] _lowerCAmelCase = torch.from_numpy(np.array(__snake_case ) ).permute(0 , 3 , 1 , 2 ) _lowerCAmelCase = torch.clamp(2 * (images / 2_55 - 0.5) , min=-1.0 , max=1.0 ) return images
207
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( snake_case_ , unittest.TestCase ): _lowercase: List[str] = DebertaTokenizer _lowercase: Union[str, Any] = True _lowercase: Union[str, Any] = DebertaTokenizerFast def lowercase__ ( self : Any ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] _lowerCAmelCase = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) _lowerCAmelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase = {"""unk_token""": """[UNK]"""} _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__snake_case ) ) def lowercase__ ( self : List[str] , **__snake_case : Any ) -> Dict: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def lowercase__ ( self : Dict , __snake_case : Dict ) -> Optional[Any]: _lowerCAmelCase = """lower newer""" _lowerCAmelCase = """lower newer""" return input_text, output_text def lowercase__ ( self : Union[str, Any] ) -> List[str]: _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = """lower newer""" _lowerCAmelCase = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) _lowerCAmelCase = tokens + [tokenizer.unk_token] _lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = tokenizer("""Hello""" , """World""" ) _lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , __snake_case ) @slow def lowercase__ ( self : int ) -> Union[str, Any]: _lowerCAmelCase = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) _lowerCAmelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=__snake_case ) _lowerCAmelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__snake_case ) _lowerCAmelCase = tokenizer.encode( """sequence builders""" , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) _lowerCAmelCase = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__snake_case ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowercase__ ( self : Any ) -> str: _lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: _lowerCAmelCase = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) _lowerCAmelCase = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] _lowerCAmelCase = tokenizer(__snake_case , padding=__snake_case ) _lowerCAmelCase = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding["""input_ids"""]] # fmt: off _lowerCAmelCase = { """input_ids""": [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on _lowerCAmelCase = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
207
1
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def is_in_circle(_SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ) -> bool: _UpperCAmelCase = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase = proportion * 4 print(f'The estimated value of pi is {pi_estimate}' ) print(f'The numpy value of pi is {pi}' ) print(f'The total error is {abs(pi - pi_estimate )}' ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Callable[[float], float] , _SCREAMING_SNAKE_CASE : float = 0.0 , _SCREAMING_SNAKE_CASE : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) * (max_value - min_value) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 0.0 , _SCREAMING_SNAKE_CASE : float = 1.0 ): '''simple docstring''' def identity_function(_SCREAMING_SNAKE_CASE : float ) -> float: return x _UpperCAmelCase = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {expected_value}' ) print(f'Total error is {abs(estimated_value - expected_value )}' ) print('''******************''' ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def function_to_integrate(_SCREAMING_SNAKE_CASE : float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {pi}' ) print(f'Total error is {abs(estimated_value - pi )}' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
95
"""simple docstring""" import operator def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : list | None = None ): '''simple docstring''' _UpperCAmelCase = operator.lt if reverse else operator.gt _UpperCAmelCase = solution or [] if not arr: return solution _UpperCAmelCase = [arr.pop(0 )] for i, item in enumerate(_SCREAMING_SNAKE_CASE ): if _operator(_SCREAMING_SNAKE_CASE , sublist[-1] ): sublist.append(_SCREAMING_SNAKE_CASE ) arr.pop(_SCREAMING_SNAKE_CASE ) # merging sublist into solution list if not solution: solution.extend(_SCREAMING_SNAKE_CASE ) else: while sublist: _UpperCAmelCase = sublist.pop(0 ) for i, xx in enumerate(_SCREAMING_SNAKE_CASE ): if not _operator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): solution.insert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) break else: solution.append(_SCREAMING_SNAKE_CASE ) strand_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
95
1
def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" if collection == []: return [] # get some information about the collection A_ = len(__UpperCamelCase ) A_ = max(__UpperCamelCase ) A_ = min(__UpperCamelCase ) # create the counting array A_ = coll_max + 1 - coll_min A_ = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 ,__UpperCamelCase ): A_ = counting_arr[i] + counting_arr[i - 1] # create the output collection A_ = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 ,__UpperCamelCase ) ): A_ = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" return "".join([chr(__UpperCamelCase ) for i in counting_sort([ord(__UpperCamelCase ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" __a :Tuple = input('Enter numbers separated by a comma:\n').strip() __a :Dict = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
86
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __a :Optional[Any] = 'true' def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : List[Any]=82 ,__UpperCamelCase : Dict=16 ): """simple docstring""" set_seed(42 ) A_ = RegressionModel() A_ = deepcopy(__UpperCamelCase ) A_ = RegressionDataset(length=__UpperCamelCase ) A_ = DataLoader(__UpperCamelCase ,batch_size=__UpperCamelCase ) model.to(accelerator.device ) A_ , A_ = accelerator.prepare(__UpperCamelCase ,__UpperCamelCase ) return model, ddp_model, dataloader def __snake_case ( __UpperCamelCase : Accelerator ,__UpperCamelCase : Dict=False ): """simple docstring""" A_ = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) A_ = load_dataset("glue" ,"mrpc" ,split="validation" ) def tokenize_function(__UpperCamelCase : Optional[Any] ): A_ = tokenizer(examples["sentence1"] ,examples["sentence2"] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ) return outputs with accelerator.main_process_first(): A_ = dataset.map( __UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=["idx", "sentence1", "sentence2"] ,) A_ = tokenized_datasets.rename_column("label" ,"labels" ) def collate_fn(__UpperCamelCase : Union[str, Any] ): if use_longest: return tokenizer.pad(__UpperCamelCase ,padding="longest" ,return_tensors="pt" ) return tokenizer.pad(__UpperCamelCase ,padding="max_length" ,max_length=128 ,return_tensors="pt" ) return DataLoader(__UpperCamelCase ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=16 ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : str ): """simple docstring""" A_ = Accelerator(dispatch_batches=__UpperCamelCase ,split_batches=__UpperCamelCase ) A_ = get_dataloader(__UpperCamelCase ,not dispatch_batches ) A_ = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" ,return_dict=__UpperCamelCase ) A_ , A_ = accelerator.prepare(__UpperCamelCase ,__UpperCamelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : int ,__UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = [] for batch in dataloader: A_ , A_ = batch.values() with torch.no_grad(): A_ = model(__UpperCamelCase ) A_ , A_ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) A_ , A_ = [], [] for logit, targ in logits_and_targets: logits.append(__UpperCamelCase ) targs.append(__UpperCamelCase ) A_ , A_ = torch.cat(__UpperCamelCase ), torch.cat(__UpperCamelCase ) return logits, targs def __snake_case ( __UpperCamelCase : Accelerator ,__UpperCamelCase : Dict=82 ,__UpperCamelCase : List[Any]=False ,__UpperCamelCase : Dict=False ,__UpperCamelCase : Optional[int]=16 ): """simple docstring""" A_ , A_ , A_ = get_basic_setup(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) A_ , A_ = generate_predictions(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) assert ( len(__UpperCamelCase ) == num_samples ), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__UpperCamelCase )}''' def __snake_case ( __UpperCamelCase : bool = False ,__UpperCamelCase : bool = False ): """simple docstring""" A_ = evaluate.load("glue" ,"mrpc" ) A_ , A_ = get_mrpc_setup(__UpperCamelCase ,__UpperCamelCase ) # First do baseline A_ , A_ , A_ = setup["no"] model.to(__UpperCamelCase ) model.eval() for batch in dataloader: batch.to(__UpperCamelCase ) with torch.inference_mode(): A_ = model(**__UpperCamelCase ) A_ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__UpperCamelCase ,references=batch["labels"] ) A_ = metric.compute() # Then do distributed A_ , A_ , A_ = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): A_ = model(**__UpperCamelCase ) A_ = outputs.logits.argmax(dim=-1 ) A_ = batch["labels"] A_ , A_ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__UpperCamelCase ,references=__UpperCamelCase ) A_ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] ,distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def __snake_case ( ): """simple docstring""" A_ = Accelerator(split_batches=__UpperCamelCase ,dispatch_batches=__UpperCamelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__UpperCamelCase ,__UpperCamelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: A_ = Accelerator(split_batches=__UpperCamelCase ,dispatch_batches=__UpperCamelCase ) if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__UpperCamelCase ,99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) A_ = Accelerator() test_torch_metrics(__UpperCamelCase ,512 ) accelerator.state._reset_state() def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" main() if __name__ == "__main__": main()
86
1
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __SCREAMING_SNAKE_CASE ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : str , UpperCAmelCase__ : bool = False , ): '''simple docstring''' super().__init__() lowercase : Tuple =nn.Embedding(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : List[str] =nn.Embedding(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : Dict =False lowercase : Optional[Any] =nn.Dropout(p=UpperCAmelCase__ ) lowercase : Optional[Any] =TaConfig( vocab_size=UpperCAmelCase__ , d_model=UpperCAmelCase__ , num_heads=UpperCAmelCase__ , d_kv=UpperCAmelCase__ , d_ff=UpperCAmelCase__ , dropout_rate=UpperCAmelCase__ , feed_forward_proj=UpperCAmelCase__ , is_decoder=UpperCAmelCase__ , is_encoder_decoder=UpperCAmelCase__ , ) lowercase : Optional[int] =nn.ModuleList() for lyr_num in range(UpperCAmelCase__ ): lowercase : int =TaBlock(UpperCAmelCase__ ) self.encoders.append(UpperCAmelCase__ ) lowercase : Optional[Any] =TaLayerNorm(UpperCAmelCase__ ) lowercase : Tuple =nn.Dropout(p=UpperCAmelCase__ ) def lowerCamelCase_ ( self : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict ): '''simple docstring''' lowercase : Union[str, Any] =self.token_embedder(UpperCAmelCase__ ) lowercase : Union[str, Any] =encoder_input_tokens.shape[1] lowercase : Union[str, Any] =torch.arange(UpperCAmelCase__ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCAmelCase__ ) lowercase : List[str] =self.dropout_pre(UpperCAmelCase__ ) # inverted the attention mask lowercase : List[Any] =encoder_input_tokens.size() lowercase : Dict =self.get_extended_attention_mask(UpperCAmelCase__ , UpperCAmelCase__ ) for lyr in self.encoders: lowercase : Dict =lyr(UpperCAmelCase__ , UpperCAmelCase__ )[0] lowercase : int =self.layer_norm(UpperCAmelCase__ ) return self.dropout_post(UpperCAmelCase__ ), encoder_inputs_mask
714
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str=13 , UpperCAmelCase__ : Optional[Any]=7 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Dict=99 , UpperCAmelCase__ : str=32 , UpperCAmelCase__ : Optional[Any]=5 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : List[Any]=37 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Optional[Any]=512 , UpperCAmelCase__ : Any=16 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : int=4 , ): '''simple docstring''' lowercase : int =parent lowercase : List[str] =batch_size lowercase : str =seq_length lowercase : Optional[Any] =is_training lowercase : Union[str, Any] =use_attention_mask lowercase : Optional[Any] =use_token_type_ids lowercase : Tuple =use_labels lowercase : List[str] =vocab_size lowercase : List[str] =hidden_size lowercase : Tuple =num_hidden_layers lowercase : Any =num_attention_heads lowercase : List[str] =intermediate_size lowercase : Optional[Any] =hidden_act lowercase : Dict =hidden_dropout_prob lowercase : List[Any] =attention_probs_dropout_prob lowercase : Optional[Any] =max_position_embeddings lowercase : Tuple =type_vocab_size lowercase : Optional[int] =type_sequence_label_size lowercase : Optional[Any] =initializer_range lowercase : Optional[int] =num_choices def lowerCamelCase_ ( self : str ): '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Union[str, Any] =None if self.use_attention_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Tuple =None if self.use_token_type_ids: lowercase : str =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : int =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowercase : List[Any] =self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase : str =config_and_inputs lowercase : Optional[Any] ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : List[str] =self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase : Any =config_and_inputs lowercase : List[str] =True lowercase : Optional[Any] =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase : str =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ): lowerCamelCase_ = True lowerCamelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : str =FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase : Optional[int] =model_class_name.from_pretrained('''roberta-base''' , from_pt=UpperCAmelCase__ ) lowercase : List[Any] =model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase__ )
88
0
import math import qiskit def _SCREAMING_SNAKE_CASE ( lowercase : int = 1 , lowercase : int = 1 , lowercase : int = 1 ): '''simple docstring''' if ( isinstance(lowercase , lowercase ) or isinstance(lowercase , lowercase ) or isinstance(lowercase , lowercase ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(lowercase ) != input_a) or (math.floor(lowercase ) != input_a) or (math.floor(lowercase ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers lowerCamelCase_ = qiskit.QuantumRegister(4 , 'qr' ) lowerCamelCase_ = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries lowerCamelCase_ = [input_a, input_a, carry_in] lowerCamelCase_ = qiskit.QuantumCircuit(lowercase , lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , lowercase ) # measure the last two qbits lowerCamelCase_ = qiskit.Aer.get_backend('aer_simulator' ) lowerCamelCase_ = qiskit.execute(lowercase , lowercase , shots=10_00 ) return job.result().get_counts(lowercase ) if __name__ == "__main__": print(F"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
70
"""simple docstring""" def lowercase (_snake_case ) -> int: '''simple docstring''' __UpperCamelCase = len(_snake_case ) __UpperCamelCase = len(matrix[0] ) __UpperCamelCase = min(_snake_case ,_snake_case ) for row in range(_snake_case ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 ,_snake_case ): __UpperCamelCase = matrix[col][row] / matrix[row][row] for i in range(_snake_case ,_snake_case ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __UpperCamelCase = True for i in range(row + 1 ,_snake_case ): if matrix[i][row] != 0: __UpperCamelCase , __UpperCamelCase = matrix[i], matrix[row] __UpperCamelCase = False break if reduce: rank -= 1 for i in range(_snake_case ): __UpperCamelCase = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
505
0
"""simple docstring""" class SCREAMING_SNAKE_CASE__ : def __init__( self : str , SCREAMING_SNAKE_CASE_ : str = "" , SCREAMING_SNAKE_CASE_ : bool = False ): # Mapping from the first character of the prefix of the node lowerCamelCase__ = {} # A node will be a leaf if the tree contains its word lowerCamelCase__ = is_leaf lowerCamelCase__ = prefix def __UpperCAmelCase ( self : int , SCREAMING_SNAKE_CASE_ : str ): lowerCamelCase__ = 0 for q, w in zip(self.prefix , SCREAMING_SNAKE_CASE_ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCAmelCase ( self : str , SCREAMING_SNAKE_CASE_ : list[str] ): for word in words: self.insert(SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE_ : str ): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowerCamelCase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCamelCase__ = RadixNode(prefix=SCREAMING_SNAKE_CASE_ , is_leaf=SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase__ = self.nodes[word[0]] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = incoming_node.match( SCREAMING_SNAKE_CASE_ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE_ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCamelCase__ = remaining_prefix lowerCamelCase__ = self.nodes[matching_string[0]] lowerCamelCase__ = RadixNode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = aux_node if remaining_word == "": lowerCamelCase__ = True else: self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE_ : str ): lowerCamelCase__ = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE_ ) if not incoming_node: return False else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = incoming_node.match( SCREAMING_SNAKE_CASE_ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE_ : str ): lowerCamelCase__ = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE_ ) if not incoming_node: return False else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = incoming_node.match( SCREAMING_SNAKE_CASE_ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(SCREAMING_SNAKE_CASE_ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCamelCase__ = list(self.nodes.values() )[0] lowerCamelCase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowerCamelCase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCamelCase__ = False # If there is 1 edge, we merge it with its child else: lowerCamelCase__ = list(incoming_node.nodes.values() )[0] lowerCamelCase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCamelCase__ = merging_node.nodes return True def __UpperCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int = 0 ): if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def _A ( ): """simple docstring""" lowerCamelCase__ = """banana bananas bandana band apple all beast""".split() lowerCamelCase__ = RadixNode() root.insert_many(__lowercase ) assert all(root.find(__lowercase ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def _A ( ): """simple docstring""" assert test_trie() def _A ( ): """simple docstring""" lowerCamelCase__ = RadixNode() lowerCamelCase__ = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(__lowercase ) print("""Words:""" , __lowercase ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
258
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __magic_name__ = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
258
1
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Union[str, Any] ) -> List[Any]: a__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__snake_case ,'embed_dim' ) ) self.parent.assertTrue(hasattr(__snake_case ,'num_heads' ) ) class snake_case_ : def __init__( self :Any ,__snake_case :int ,__snake_case :int=13 ,__snake_case :str=64 ,__snake_case :Optional[Any]=3 ,__snake_case :Tuple=[16, 48, 96] ,__snake_case :Optional[int]=[1, 3, 6] ,__snake_case :Tuple=[1, 2, 10] ,__snake_case :Tuple=[7, 3, 3] ,__snake_case :Optional[int]=[4, 2, 2] ,__snake_case :List[str]=[2, 1, 1] ,__snake_case :str=[2, 2, 2] ,__snake_case :List[str]=[False, False, True] ,__snake_case :Any=[0.0, 0.0, 0.0] ,__snake_case :Union[str, Any]=0.02 ,__snake_case :int=1E-12 ,__snake_case :Optional[int]=True ,__snake_case :Union[str, Any]=True ,__snake_case :Any=2 ,) -> List[Any]: a__ = parent a__ = batch_size a__ = image_size a__ = patch_sizes a__ = patch_stride a__ = patch_padding a__ = is_training a__ = use_labels a__ = num_labels a__ = num_channels a__ = embed_dim a__ = num_heads a__ = stride_kv a__ = depth a__ = cls_token a__ = attention_drop_rate a__ = initializer_range a__ = layer_norm_eps def lowerCamelCase__( self :Union[str, Any] ) -> Optional[int]: a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: # create a random int32 tensor of given shape a__ = ids_tensor([self.batch_size] ,self.num_labels ) a__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__( self :str ) -> Tuple: return CvtConfig( image_size=self.image_size ,num_labels=self.num_labels ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,num_heads=self.num_heads ,patch_sizes=self.patch_sizes ,patch_padding=self.patch_padding ,patch_stride=self.patch_stride ,stride_kv=self.stride_kv ,depth=self.depth ,cls_token=self.cls_token ,attention_drop_rate=self.attention_drop_rate ,initializer_range=self.initializer_range ,) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :List[str] ,__snake_case :Dict ) -> Any: a__ = TFCvtModel(config=__snake_case ) a__ = model(__snake_case ,training=__snake_case ) a__ = (self.image_size, self.image_size) a__ , a__ = image_size[0], image_size[1] for i in range(len(self.depth ) ): a__ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) a__ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.embed_dim[-1], height, width) ) def lowerCamelCase__( self :int ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Optional[Any] ) -> Union[str, Any]: a__ = self.num_labels a__ = TFCvtForImageClassification(__snake_case ) a__ = model(__snake_case ,labels=__snake_case ,training=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCamelCase__( self :Tuple ) -> Any: a__ = self.prepare_config_and_inputs() a__ , a__ , a__ = config_and_inputs a__ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () UpperCAmelCase__ : List[str] = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Any = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : int = False def lowerCamelCase__( self :Optional[int] ) -> Optional[Any]: a__ = TFCvtModelTester(self ) a__ = TFCvtConfigTester(self ,config_class=__snake_case ,has_text_modality=__snake_case ,hidden_size=37 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='Cvt does not output attentions' ) def lowerCamelCase__( self :Tuple ) -> str: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowerCamelCase__( self :Any ) -> Dict: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowerCamelCase__( self :Any ) -> int: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 ,reason='TF does not support backprop for grouped convolutions on CPU.' ,) def lowerCamelCase__( self :Union[str, Any] ) -> int: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 ,reason='TF does not support backprop for grouped convolutions on CPU.' ,) @slow def lowerCamelCase__( self :Optional[int] ) -> Optional[int]: super().test_keras_fit() @unittest.skip(reason='Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8' ) def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: a__ = tf.keras.mixed_precision.Policy('mixed_float16' ) tf.keras.mixed_precision.set_global_policy(__snake_case ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('float32' ) def lowerCamelCase__( self :int ) -> Union[str, Any]: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__snake_case ) a__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__snake_case ) def lowerCamelCase__( self :Optional[int] ) -> Optional[int]: def check_hidden_states_output(__snake_case :int ,__snake_case :int ,__snake_case :List[str] ): a__ = model_class(__snake_case ) a__ = model(**self._prepare_for_class(__snake_case ,__snake_case ) ) a__ = outputs.hidden_states a__ = len(self.model_tester.depth ) self.assertEqual(len(__snake_case ) ,__snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) ,[ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] ,) a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = True check_hidden_states_output(__snake_case ,__snake_case ,__snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ = True check_hidden_states_output(__snake_case ,__snake_case ,__snake_case ) def lowerCamelCase__( self :Optional[int] ) -> List[Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowerCamelCase__( self :List[str] ) -> Optional[Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def lowerCamelCase__( self :Any ) -> Any: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = TFCvtModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def __lowercase ( ): a__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class snake_case_ (unittest.TestCase ): @cached_property def lowerCamelCase__( self :str ) -> Optional[int]: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase__( self :Any ) -> Any: a__ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=__snake_case ,return_tensors='tf' ) # forward pass a__ = model(**__snake_case ) # verify the logits a__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,__snake_case ) a__ = tf.constant([0.92_85, 0.90_15, -0.31_50] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,__snake_case ,atol=1E-4 ) )
335
import numpy as np def __lowercase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : float ): return np.where(vector > 0 , __lowerCAmelCase , (alpha * (np.exp(__lowerCAmelCase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
335
1
import os import sys import unittest __magic_name__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __magic_name__ = os.path.join(git_repo_path, '''src''', '''transformers''') __magic_name__ = ''' {0} = None ''' __magic_name__ = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) ''' __magic_name__ = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' class a__ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self :Optional[Any] ): lowercase = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(lowercase__ ) lowercase = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(lowercase__ , 'tokenizers' ) lowercase = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(lowercase__ , 'tensorflow_text' ) lowercase = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(lowercase__ , 'sentencepiece_and_tokenizers' ) lowercase = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(lowercase__ , 'sentencepiece_and_tensorflow_text' ) lowercase = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(lowercase__ , 'sentencepiece_and_tokenizers_and_vision' ) def __UpperCAmelCase ( self :Optional[int] ): lowercase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , lowercase__ ) self.assertIn('tensorflow_text' , lowercase__ ) self.assertIn('sentencepiece_and_tokenizers' , lowercase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def __UpperCAmelCase ( self :Optional[int] ): lowercase = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(lowercase__ , '\nCONSTANT = None\n' ) lowercase = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( lowercase__ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) lowercase = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' lowercase = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(lowercase__ , lowercase__ ) def __UpperCAmelCase ( self :Optional[Any] ): lowercase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' lowercase = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , lowercase__ )
314
from queue import PriorityQueue from typing import Any import numpy as np def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue lowercase = cst_fwd.get(_UpperCAmelCase , np.inf ) lowercase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowercase = new_cost_f lowercase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowercase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowercase = -1 lowercase = set() lowercase = set() lowercase = {source: 0} lowercase = {destination: 0} lowercase = {source: None} lowercase = {destination: None} lowercase = PriorityQueue() lowercase = PriorityQueue() lowercase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowercase , lowercase = queue_forward.get() visited_forward.add(_UpperCAmelCase ) lowercase , lowercase = queue_backward.get() visited_backward.add(_UpperCAmelCase ) lowercase = pass_and_relaxation( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) lowercase = pass_and_relaxation( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowercase = shortest_distance return shortest_path_distance __magic_name__ = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __magic_name__ = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
314
1
def __SCREAMING_SNAKE_CASE ( a__ : str ) -> bool: if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) __A : Optional[int] = sorted(string.lower() ) return len(a__ ) == len(set(a__ ) ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('''Enter a string ''').strip() UpperCAmelCase_ : Tuple = is_isogram(input_str) print(f"""{input_str} is {"an" if isogram else "not an"} isogram.""")
17
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' if "model" in orig_key: UpperCAmelCase_ : Optional[int] = orig_key.replace('model.' , '' ) if "norm1" in orig_key: UpperCAmelCase_ : Optional[Any] = orig_key.replace('norm1' , 'attention.output.LayerNorm' ) if "norm2" in orig_key: UpperCAmelCase_ : List[str] = orig_key.replace('norm2' , 'output.LayerNorm' ) if "norm" in orig_key: UpperCAmelCase_ : Dict = orig_key.replace('norm' , 'LayerNorm' ) if "transformer" in orig_key: UpperCAmelCase_ : Any = orig_key.split('.' )[0].split('_' )[-1] UpperCAmelCase_ : Optional[Any] = orig_key.replace(F"transformer_{layer_num}" , F"encoder.layer.{layer_num}" ) if "mha.attn" in orig_key: UpperCAmelCase_ : List[str] = orig_key.replace('mha.attn' , 'attention.self' ) if "mha" in orig_key: UpperCAmelCase_ : Union[str, Any] = orig_key.replace('mha' , 'attention' ) if "W_q" in orig_key: UpperCAmelCase_ : Any = orig_key.replace('W_q' , 'self.query' ) if "W_k" in orig_key: UpperCAmelCase_ : Tuple = orig_key.replace('W_k' , 'self.key' ) if "W_v" in orig_key: UpperCAmelCase_ : List[str] = orig_key.replace('W_v' , 'self.value' ) if "ff1" in orig_key: UpperCAmelCase_ : str = orig_key.replace('ff1' , 'intermediate.dense' ) if "ff2" in orig_key: UpperCAmelCase_ : Dict = orig_key.replace('ff2' , 'output.dense' ) if "ff" in orig_key: UpperCAmelCase_ : Optional[int] = orig_key.replace('ff' , 'output.dense' ) if "mlm_class" in orig_key: UpperCAmelCase_ : Optional[Any] = orig_key.replace('mlm.mlm_class' , 'cls.predictions.decoder' ) if "mlm" in orig_key: UpperCAmelCase_ : Union[str, Any] = orig_key.replace('mlm' , 'cls.predictions.transform' ) if "cls" not in orig_key: UpperCAmelCase_ : List[Any] = 'yoso.' + orig_key return orig_key def lowercase__ ( __snake_case : str , __snake_case : int ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ : Any = orig_state_dict.pop(__snake_case ) if ("pooler" in key) or ("sen_class" in key): continue else: UpperCAmelCase_ : Union[str, Any] = val UpperCAmelCase_ : List[Any] = orig_state_dict['cls.predictions.decoder.bias'] UpperCAmelCase_ : Tuple = torch.arange(__snake_case ).expand((1, -1) ) + 2 return orig_state_dict def lowercase__ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = torch.load(__snake_case , map_location='cpu' )['model_state_dict'] UpperCAmelCase_ : Dict = YosoConfig.from_json_file(__snake_case ) UpperCAmelCase_ : str = YosoForMaskedLM(__snake_case ) UpperCAmelCase_ : Dict = convert_checkpoint_helper(config.max_position_embeddings , __snake_case ) print(model.load_state_dict(__snake_case ) ) model.eval() model.save_pretrained(__snake_case ) print(F"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCAmelCase = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
406
0
"""simple docstring""" import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) -> int: """simple docstring""" _lowerCAmelCase = parent def __lowerCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" return {} def __snake_case ( ): """simple docstring""" _lowerCAmelCase = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' _lowerCAmelCase = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class _SCREAMING_SNAKE_CASE ( __a , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None def __lowerCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = MarkupLMFeatureExtractionTester(self ) @property def __lowerCamelCase ( self : Dict ) -> Dict: """simple docstring""" return self.feature_extract_tester.prepare_feat_extract_dict() def __lowerCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _lowerCAmelCase = self.feature_extraction_class() # Test not batched input _lowerCAmelCase = get_html_strings()[0] _lowerCAmelCase = feature_extractor(lowerCAmelCase_ ) # fmt: off _lowerCAmelCase = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] _lowerCAmelCase = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , lowerCAmelCase_ ) self.assertEqual(encoding.xpaths , lowerCAmelCase_ ) # Test batched _lowerCAmelCase = get_html_strings() _lowerCAmelCase = feature_extractor(lowerCAmelCase_ ) # fmt: off _lowerCAmelCase = expected_nodes + [['My First Heading', 'My first paragraph.']] _lowerCAmelCase = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCAmelCase_ ) self.assertEqual(encoding.xpaths , lowerCAmelCase_ )
719
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE: list[int] ): """simple docstring""" _lowerCAmelCase = [] if len(SCREAMING_SNAKE_CASE ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = nums.pop(0 ) _lowerCAmelCase = permute(SCREAMING_SNAKE_CASE ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE ) result.extend(SCREAMING_SNAKE_CASE ) nums.append(SCREAMING_SNAKE_CASE ) return result def __snake_case ( SCREAMING_SNAKE_CASE: Any ): """simple docstring""" def backtrack(SCREAMING_SNAKE_CASE: Tuple ): if start == len(SCREAMING_SNAKE_CASE ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase , _lowerCAmelCase = nums[i], nums[start] backtrack(start + 1 ) _lowerCAmelCase , _lowerCAmelCase = nums[i], nums[start] # backtrack _lowerCAmelCase = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function _snake_case = permutea([1, 2, 3]) print(res) doctest.testmod()
491
0
from math import ceil def __snake_case ( __UpperCamelCase : int = 1001 ): """simple docstring""" A_ = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): A_ = 2 * i + 1 A_ = 2 * i A_ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __a :Union[str, Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
86
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) a = ['model.decoder.embed_positions.weights'] def UpperCAmelCase_ ( UpperCAmelCase__ ): if "emb" in name: lowercase_ = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: lowercase_ = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: lowercase_ = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: lowercase_ = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: lowercase_ = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: lowercase_ = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: lowercase_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: lowercase_ = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: lowercase_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: lowercase_ = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: lowercase_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = list(state_dict.keys() ) lowercase_ = {} for key in keys: lowercase_ = state_dict.pop(UpperCAmelCase__ ) lowercase_ = rename_keys(UpperCAmelCase__ ) if "in_proj_weight" in key: # split fused qkv proj lowercase_ = val[:hidden_size, :] lowercase_ = val[hidden_size : 2 * hidden_size, :] lowercase_ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: lowercase_ = val else: lowercase_ = val return state_dict, enc_dec_proj_state_dict def UpperCAmelCase_ ( UpperCAmelCase__ ): if checkpoint == "small": # default config values lowercase_ = 1_0_2_4 lowercase_ = 2_4 lowercase_ = 1_6 elif checkpoint == "medium": lowercase_ = 1_5_3_6 lowercase_ = 4_8 lowercase_ = 2_4 elif checkpoint == "large": lowercase_ = 2_0_4_8 lowercase_ = 4_8 lowercase_ = 3_2 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) lowercase_ = MusicgenDecoderConfig( hidden_size=UpperCAmelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCAmelCase__ , num_attention_heads=UpperCAmelCase__ , ) return config @torch.no_grad() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="cpu" ): lowercase_ = MusicGen.get_pretrained(UpperCAmelCase__ , device=UpperCAmelCase__ ) lowercase_ = decoder_config_from_checkpoint(UpperCAmelCase__ ) lowercase_ = fairseq_model.lm.state_dict() lowercase_ , lowercase_ = rename_state_dict( UpperCAmelCase__ , hidden_size=decoder_config.hidden_size ) lowercase_ = TaEncoderModel.from_pretrained("""t5-base""" ) lowercase_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) lowercase_ = MusicgenForCausalLM(UpperCAmelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection lowercase_ , lowercase_ = decoder.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(UpperCAmelCase__ ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model lowercase_ = MusicgenForConditionalGeneration(text_encoder=UpperCAmelCase__ , audio_encoder=UpperCAmelCase__ , decoder=UpperCAmelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCAmelCase__ ) # check we can do a forward pass lowercase_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) lowercase_ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): lowercase_ = model(input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ ).logits if logits.shape != (8, 1, 2_0_4_8): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor lowercase_ = AutoTokenizer.from_pretrained("""t5-base""" ) lowercase_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) lowercase_ = MusicgenProcessor(feature_extractor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ ) # set the appropriate bos/pad token ids lowercase_ = 2_0_4_8 lowercase_ = 2_0_4_8 # set other default generation config params lowercase_ = int(3_0 * audio_encoder.config.frame_rate ) lowercase_ = True lowercase_ = 3.0 if pytorch_dump_folder is not None: Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(UpperCAmelCase__ ) processor.push_to_hub(UpperCAmelCase__ ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) a = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
412
0
from collections import deque from .hash_table import HashTable class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ): super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(UpperCAmelCase__ ) lowercase = self.values[key] def SCREAMING_SNAKE_CASE__ ( self ): return ( sum(self.charge_factor - len(UpperCAmelCase__ ) for slot in self.values ) / self.size_table * self.charge_factor ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(UpperCAmelCase__ ) == 0 ): return key return super()._collision_resolution(UpperCAmelCase__ , UpperCAmelCase__ )
721
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = [[] for _ in range(__SCREAMING_SNAKE_CASE )] lowercase = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(__SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(__SCREAMING_SNAKE_CASE ): lowercase = position % (lowest * 2) # puts it in bounds lowercase = min(__SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(__SCREAMING_SNAKE_CASE ) lowercase = [''.join(__SCREAMING_SNAKE_CASE ) for row in temp_grid] lowercase = ''.join(__SCREAMING_SNAKE_CASE ) return output_string def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = [] lowercase = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string lowercase = [[] for _ in range(__SCREAMING_SNAKE_CASE )] # generates template for position in range(len(__SCREAMING_SNAKE_CASE ) ): lowercase = position % (lowest * 2) # puts it in bounds lowercase = min(__SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) lowercase = 0 for row in temp_grid: # fills in the characters lowercase = input_string[counter : counter + len(__SCREAMING_SNAKE_CASE )] grid.append(list(__SCREAMING_SNAKE_CASE ) ) counter += len(__SCREAMING_SNAKE_CASE ) lowercase = '' # reads as zigzag for position in range(len(__SCREAMING_SNAKE_CASE ) ): lowercase = position % (lowest * 2) # puts it in bounds lowercase = min(__SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = {} for key_guess in range(1 , len(__SCREAMING_SNAKE_CASE ) ): # tries every key lowercase = decrypt(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
565
0
"""simple docstring""" from cva import destroyAllWindows, imread, imshow, waitKey def __magic_name__ ( UpperCamelCase : int ) -> int: a__ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__A ): for j in range(__A ): a__ = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image a : str = imread('image_data/lena.jpg', 1) # convert to its negative a : Tuple = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
273
'''simple docstring''' import operator as op def lowerCAmelCase_ ( __A : int ): '''simple docstring''' snake_case: List[Any] = [] snake_case: Optional[Any] = lambda __A , __A : int(x / y ) # noqa: E731 integer division operation snake_case: Dict = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__A )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__A ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__A ) , sep=' | ' ) else: snake_case: Tuple = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__A ) , sep=' | ' ) snake_case: Any = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__A ) , sep=' | ' ) stack.append( str(opr[x](int(__A ) , int(__A ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__A ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": __UpperCAmelCase = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", solve(Postfix))
329
0
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( UpperCamelCase_ ): __a = ["image_processor", "tokenizer"] __a = "FlavaImageProcessor" __a = ("BertTokenizer", "BertTokenizerFast") def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__: List[Any]= None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) SCREAMING_SNAKE_CASE__: Optional[Any]= kwargs.pop('''feature_extractor''' ) SCREAMING_SNAKE_CASE__: str= image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Union[str, Any]= self.image_processor def __call__( self , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = 0 , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = True , lowerCAmelCase = None , **lowerCAmelCase , ) -> List[Any]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: SCREAMING_SNAKE_CASE__: Any= self.tokenizer( text=lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , stride=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_token_type_ids=lowerCAmelCase , return_attention_mask=lowerCAmelCase , return_overflowing_tokens=lowerCAmelCase , return_special_tokens_mask=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , return_length=lowerCAmelCase , verbose=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase , ) if images is not None: SCREAMING_SNAKE_CASE__: Tuple= self.image_processor( lowerCAmelCase , return_image_mask=lowerCAmelCase , return_codebook_pixels=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase , ) if text is not None and images is not None: encoding.update(lowerCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def UpperCamelCase_ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> Dict: return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def UpperCamelCase_ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> Any: return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: List[str]= self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__: str= self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase_ ( self ) -> Union[str, Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def UpperCamelCase_ ( self ) -> Optional[Any]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
107
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _lowerCamelCase ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> str: SCREAMING_SNAKE_CASE__: List[Any]= [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase ) ) def UpperCamelCase_ ( self ) -> int: SCREAMING_SNAKE_CASE__: List[str]= [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase ) ) def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: Optional[int]= [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase ) ) def UpperCamelCase_ ( self ) -> Dict: SCREAMING_SNAKE_CASE__: str= [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase ) ) def UpperCamelCase_ ( self ) -> str: SCREAMING_SNAKE_CASE__: List[str]= [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase ) ) def UpperCamelCase_ ( self ) -> List[str]: SCREAMING_SNAKE_CASE__: Optional[int]= [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE__: Any= '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def UpperCamelCase_ ( self ) -> Any: SCREAMING_SNAKE_CASE__: List[str]= [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE__: Dict= '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def UpperCamelCase_ ( self ) -> Dict: # pass variant but use the non-variant filenames SCREAMING_SNAKE_CASE__: List[str]= [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] SCREAMING_SNAKE_CASE__: Union[str, Any]= '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def UpperCamelCase_ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE__: Dict= [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] SCREAMING_SNAKE_CASE__: List[Any]= '''fp16''' self.assertFalse(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def UpperCamelCase_ ( self ) -> List[str]: SCREAMING_SNAKE_CASE__: int= [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE__: Any= '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def UpperCamelCase_ ( self ) -> Optional[Any]: # pass variant but use the non-variant filenames SCREAMING_SNAKE_CASE__: Optional[int]= [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] SCREAMING_SNAKE_CASE__: str= '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def UpperCamelCase_ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Tuple= [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE__: str= '''fp16''' self.assertFalse(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) )
107
1
from __future__ import annotations from collections.abc import Callable def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = 100, ): SCREAMING_SNAKE_CASE__ =x_start SCREAMING_SNAKE_CASE__ =fnc(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ =0.0 for _ in range(__UpperCamelCase ): # Approximates small segments of curve as linear and solve # for trapezoidal area SCREAMING_SNAKE_CASE__ =(x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE__ =fnc(__UpperCamelCase ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step SCREAMING_SNAKE_CASE__ =xa SCREAMING_SNAKE_CASE__ =fxa return area if __name__ == "__main__": def UpperCAmelCase_ ( __UpperCamelCase ): return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowerCamelCase_ = 10 while i <= 100000: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
151
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () lowerCamelCase_ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). lowerCamelCase_ = [0, 25, 50] lowerCamelCase_ = [25, 50, 75] lowerCamelCase_ = fuzz.membership.trimf(X, abca) lowerCamelCase_ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. lowerCamelCase_ = np.ones(75) lowerCamelCase_ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) lowerCamelCase_ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) lowerCamelCase_ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) lowerCamelCase_ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) lowerCamelCase_ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] lowerCamelCase_ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) lowerCamelCase_ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] lowerCamelCase_ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] lowerCamelCase_ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("Young") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("Middle aged") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("union") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("intersection") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("complement_a") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("difference a/b") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("alg_sum") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("alg_product") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("bdd_sum") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("bdd_difference") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
151
1
import pprint import requests _lowercase : Tuple = "https://zenquotes.io/api" def _lowerCAmelCase ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _lowerCAmelCase ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": _lowercase : Optional[Any] = random_quotes() pprint.pprint(response)
546
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _UpperCamelCase : """simple docstring""" @property def _UpperCAmelCase ( self ) -> Any: return self.get_dummy_input() @property def _UpperCAmelCase ( self ) -> Union[str, Any]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' ) def _UpperCAmelCase ( self , a__=True , a__=False , a__=False , a__=False , ) -> Optional[Any]: A = 4 A = 32 A = (32, 32) A = torch.manual_seed(0 ) A = torch.device(a__ ) A = (batch_size, num_channels) + sizes A = randn_tensor(a__ , generator=a__ , device=a__ ) A = {"""hidden_states""": hidden_states} if include_temb: A = 128 A = randn_tensor((batch_size, temb_channels) , generator=a__ , device=a__ ) if include_res_hidden_states_tuple: A = torch.manual_seed(1 ) A = (randn_tensor(a__ , generator=a__ , device=a__ ),) if include_encoder_hidden_states: A = floats_tensor((batch_size, 32, 32) ).to(a__ ) if include_skip_sample: A = randn_tensor(((batch_size, 3) + sizes) , generator=a__ , device=a__ ) return dummy_input def _UpperCAmelCase ( self ) -> int: A = { """in_channels""": 32, """out_channels""": 32, """temb_channels""": 128, } if self.block_type == "up": A = 32 if self.block_type == "mid": init_dict.pop("""out_channels""" ) A = self.dummy_input return init_dict, inputs_dict def _UpperCAmelCase ( self , a__ ) -> Optional[int]: A , A = self.prepare_init_args_and_inputs_for_common() A = self.block_class(**a__ ) unet_block.to(a__ ) unet_block.eval() with torch.no_grad(): A = unet_block(**a__ ) if isinstance(a__ , a__ ): A = output[0] self.assertEqual(output.shape , self.output_shape ) A = output[0, -1, -3:, -3:] A = torch.tensor(a__ ).to(a__ ) assert torch_all_close(output_slice.flatten() , a__ , atol=5e-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def _UpperCAmelCase ( self ) -> str: A , A = self.prepare_init_args_and_inputs_for_common() A = self.block_class(**a__ ) model.to(a__ ) model.train() A = model(**a__ ) if isinstance(a__ , a__ ): A = output[0] A = torch.device(a__ ) A = randn_tensor(output.shape , device=a__ ) A = torch.nn.functional.mse_loss(a__ , a__ ) loss.backward()
546
1
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""", datefmt="""%Y-%m-%d %H:%M:%S""", level=os.environ.get("""LOGLEVEL""", """INFO""").upper(), stream=sys.stdout, ) lowerCamelCase__ : Optional[int] = logging.getLogger(__name__) lowerCamelCase__ : int = {"""facebook/bart-base""": BartForConditionalGeneration} lowerCamelCase__ : List[Any] = {"""facebook/bart-base""": BartTokenizer} def UpperCamelCase ( ) -> Dict: '''simple docstring''' lowercase__ : Union[str, Any] = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=lowercase_ , default=lowercase_ , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=lowercase_ , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=lowercase_ , default=lowercase_ , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=lowercase_ , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase_ , ) parser.add_argument( """--config_name""" , type=lowercase_ , default=lowercase_ , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=lowercase_ , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=lowercase_ , default=lowercase_ , help="""Where to store the final ONNX file.""" ) lowercase__ : str = parser.parse_args() return args def UpperCamelCase ( lowercase_ , lowercase_="cpu" ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = model_dict[model_name].from_pretrained(lowercase_ ).to(lowercase_ ) lowercase__ : Tuple = tokenizer_dict[model_name].from_pretrained(lowercase_ ) if model_name in ["facebook/bart-base"]: lowercase__ : Optional[Any] = 0 lowercase__ : Optional[int] = None lowercase__ : List[Any] = 0 return huggingface_model, tokenizer def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' model.eval() lowercase__ : int = None lowercase__ : Any = torch.jit.script(BARTBeamSearchGenerator(lowercase_ ) ) with torch.no_grad(): lowercase__ : Union[str, Any] = """My friends are cool but they eat too many carbs.""" lowercase__ : Dict = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors="""pt""" ).to(model.device ) lowercase__ : Optional[int] = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=lowercase_ , max_length=lowercase_ , early_stopping=lowercase_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( lowercase_ , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , lowercase_ , opset_version=14 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=lowercase_ , ) logger.info("""Model exported to {}""".format(lowercase_ ) ) lowercase__ : str = remove_dup_initializers(os.path.abspath(lowercase_ ) ) logger.info("""Deduplicated and optimized model written to {}""".format(lowercase_ ) ) lowercase__ : Optional[Any] = onnxruntime.InferenceSession(lowercase_ ) lowercase__ : Optional[int] = ort_sess.run( lowercase_ , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(lowercase_ ), """max_length""": np.array(lowercase_ ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def UpperCamelCase ( ) -> Optional[int]: '''simple docstring''' lowercase__ : Dict = parse_args() lowercase__ : List[Any] = 5 lowercase__ : Any = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() lowercase__ : Optional[Any] = torch.device(args.device ) lowercase__ , lowercase__ : str = load_model_tokenizer(args.model_name_or_path , lowercase_ ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(lowercase_ ) if args.max_length: lowercase__ : List[Any] = args.max_length if args.num_beams: lowercase__ : List[Any] = args.num_beams if args.output_file_path: lowercase__ : str = args.output_file_path else: lowercase__ : int = """BART.onnx""" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": main()
12
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'torchsde'] def __init__( self : Tuple , *_A : Any , **_A : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''torchsde'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : Tuple , **_A : Tuple ): '''simple docstring''' requires_backends(cls , ['''torch''', '''torchsde'''] ) @classmethod def lowercase_ ( cls : List[str] , *_A : Optional[int] , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''torchsde'''] )
75
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A__ : def __init__( self : List[Any] , _a : Union[str, Any] , _a : List[str]=3 , _a : Any=32 , _a : List[str]=3 , _a : List[str]=10 , _a : int=[8, 16, 32, 64] , _a : Union[str, Any]=[1, 1, 2, 1] , _a : Optional[int]=True , _a : List[str]=True , _a : Tuple="relu" , _a : int=3 , _a : int=None , _a : Dict=["stage2", "stage3", "stage4"] , _a : str=[2, 3, 4] , _a : Dict=1 , ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =embeddings_size _SCREAMING_SNAKE_CASE =hidden_sizes _SCREAMING_SNAKE_CASE =depths _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =num_labels _SCREAMING_SNAKE_CASE =scope _SCREAMING_SNAKE_CASE =len(_a ) _SCREAMING_SNAKE_CASE =out_features _SCREAMING_SNAKE_CASE =out_indices _SCREAMING_SNAKE_CASE =num_groups def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.num_labels ) _SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __UpperCamelCase ( self : Dict , _a : Dict , _a : List[Any] , _a : Dict ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =BitModel(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCamelCase ( self : int , _a : int , _a : Dict , _a : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =BitForImageClassification(_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Tuple , _a : Optional[Any] , _a : List[Any] , _a : Union[str, Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =BitBackbone(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =BitBackbone(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =config_and_inputs _SCREAMING_SNAKE_CASE ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A__ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () UpperCAmelCase = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =BitModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_a , has_text_modality=_a ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(_a ) _SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] _SCREAMING_SNAKE_CASE =['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" def check_hidden_states_output(_a : Optional[Any] , _a : Optional[Any] , _a : Tuple ): _SCREAMING_SNAKE_CASE =model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**self._prepare_for_class(_a , _a ) ) _SCREAMING_SNAKE_CASE =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _SCREAMING_SNAKE_CASE =self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _SCREAMING_SNAKE_CASE =layer_type _SCREAMING_SNAKE_CASE =True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE =True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" pass def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __UpperCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE =BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCamelCase( ): _SCREAMING_SNAKE_CASE =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) _SCREAMING_SNAKE_CASE =self.default_image_processor _SCREAMING_SNAKE_CASE =prepare_img() _SCREAMING_SNAKE_CASE =image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**_a ) # verify the logits _SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _SCREAMING_SNAKE_CASE =torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @require_torch class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = (BitBackbone,) if is_torch_available() else () UpperCAmelCase = BitConfig UpperCAmelCase = False def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =BitModelTester(self )
720
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput snake_case_ : Optional[Any] = '''scheduler_config.json''' class A__ ( UpperCamelCase__ ): UpperCAmelCase = 1 UpperCAmelCase = 2 UpperCAmelCase = 3 UpperCAmelCase = 4 UpperCAmelCase = 5 UpperCAmelCase = 6 UpperCAmelCase = 7 UpperCAmelCase = 8 UpperCAmelCase = 9 UpperCAmelCase = 10 UpperCAmelCase = 11 UpperCAmelCase = 12 UpperCAmelCase = 13 UpperCAmelCase = 14 @dataclass class A__ ( UpperCamelCase__ ): UpperCAmelCase = 42 class A__ : UpperCAmelCase = SCHEDULER_CONFIG_NAME UpperCAmelCase = [] UpperCAmelCase = True @classmethod def __UpperCamelCase ( cls : List[str] , _a : Dict[str, Any] = None , _a : Optional[str] = None , _a : Optional[Any]=False , **_a : Dict , ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cls.load_config( pretrained_model_name_or_path=_a , subfolder=_a , return_unused_kwargs=_a , return_commit_hash=_a , **_a , ) return cls.from_config(_a , return_unused_kwargs=_a , **_a ) def __UpperCamelCase ( self : Dict , _a : Union[str, os.PathLike] , _a : bool = False , **_a : int ) -> Dict: """simple docstring""" self.save_config(save_directory=_a , push_to_hub=_a , **_a ) @property def __UpperCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" return self._get_compatibles() @classmethod def __UpperCamelCase ( cls : List[Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =list(set([cls.__name__] + cls._compatibles ) ) _SCREAMING_SNAKE_CASE =importlib.import_module(__name__.split('''.''' )[0] ) _SCREAMING_SNAKE_CASE =[ getattr(_a , _a ) for c in compatible_classes_str if hasattr(_a , _a ) ] return compatible_classes
191
0
'''simple docstring''' import enum import shutil import sys snake_case, snake_case = shutil.get_terminal_size() snake_case = {'''UP''': '''A''', '''DOWN''': '''B''', '''RIGHT''': '''C''', '''LEFT''': '''D'''} class SCREAMING_SNAKE_CASE ( enum.Enum ): """simple docstring""" __A = 0 __A = 1 def A_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int]="" ): sys.stdout.write(str(_lowerCamelCase ) + end ) sys.stdout.flush() def A_ ( _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any]="" ): forceWrite(F"\u001b[{color}m{content}\u001b[0m" , _lowerCamelCase ) def A_ ( ): forceWrite('\r' ) def A_ ( _lowerCamelCase : int , _lowerCamelCase : str ): forceWrite(F"\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}" ) def A_ ( ): forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def A_ ( ): reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
309
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" def __init__( self : List[Any] , __lowerCAmelCase : Union[str, "sqlalchemy.sql.Selectable"] , __lowerCAmelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __lowerCAmelCase : Optional[Features] = None , __lowerCAmelCase : str = None , __lowerCAmelCase : bool = False , **__lowerCAmelCase : Optional[int] , ): """simple docstring""" super().__init__(features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , **__lowerCAmelCase ) _lowerCAmelCase = Sql( cache_dir=__lowerCAmelCase , features=__lowerCAmelCase , sql=__lowerCAmelCase , con=__lowerCAmelCase , **__lowerCAmelCase , ) def a ( self : str ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None self.builder.download_and_prepare( download_config=__lowerCAmelCase , download_mode=__lowerCAmelCase , verification_mode=__lowerCAmelCase , base_path=__lowerCAmelCase , ) # Build dataset for splits _lowerCAmelCase = self.builder.as_dataset( split='train' , verification_mode=__lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict , __lowerCAmelCase : Dataset , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[int] = None , **__lowerCAmelCase : Tuple , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) _lowerCAmelCase = dataset _lowerCAmelCase = name _lowerCAmelCase = con _lowerCAmelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _lowerCAmelCase = num_proc _lowerCAmelCase = to_sql_kwargs def a ( self : Optional[int] ): """simple docstring""" _lowerCAmelCase = self.to_sql_kwargs.pop('sql' , __lowerCAmelCase ) _lowerCAmelCase = self.to_sql_kwargs.pop('con' , __lowerCAmelCase ) _lowerCAmelCase = self.to_sql_kwargs.pop('index' , __lowerCAmelCase ) _lowerCAmelCase = self._write(index=__lowerCAmelCase , **self.to_sql_kwargs ) return written def a ( self : Any , __lowerCAmelCase : int ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = args _lowerCAmelCase = {**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs _lowerCAmelCase = query_table( table=self.dataset.data , key=slice(__lowerCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) _lowerCAmelCase = batch.to_pandas() _lowerCAmelCase = df.to_sql(self.name , self.con , index=__lowerCAmelCase , **__lowerCAmelCase ) return num_rows or len(__lowerCAmelCase ) def a ( self : Dict , __lowerCAmelCase : List[Any] , **__lowerCAmelCase : Dict ): """simple docstring""" _lowerCAmelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _lowerCAmelCase , _lowerCAmelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , __lowerCAmelCase , __lowerCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += num_rows return written
309
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a : Any = logging.get_logger(__name__) def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: __lowercase = 1024 __lowercase = 4096 __lowercase = 24 __lowercase = 16 __lowercase = [5, 11, 17, 23] __lowercase = [256, 512, 1024, 1024] __lowercase = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: __lowercase = 768 __lowercase = [1, 1, 1, 0.5] __lowercase = [256, 512, 768, 768] __lowercase = 150 __lowercase = 16 __lowercase = (1, 384, 384) __lowercase = False __lowercase = '''project''' if "ade" in checkpoint_url: __lowercase = True __lowercase = 768 __lowercase = [1, 1, 1, 0.5] __lowercase = 150 __lowercase = 16 __lowercase = '''huggingface/label-files''' __lowercase = '''ade20k-id2label.json''' __lowercase = json.load(open(cached_download(hf_hub_url(lowercase , lowercase , repo_type='''dataset''' ) ) , '''r''' ) ) __lowercase = {int(lowercase ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = [1, 150, 480, 480] return config, expected_shape def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def UpperCAmelCase ( lowercase ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __lowercase = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: __lowercase = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: __lowercase = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: __lowercase = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: __lowercase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: __lowercase = name.replace('''proj''' , '''projection''' ) if "blocks" in name: __lowercase = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: __lowercase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __lowercase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: __lowercase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: __lowercase = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: __lowercase = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: __lowercase = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: __lowercase = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: __lowercase = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: __lowercase = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: __lowercase = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: __lowercase = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __lowercase = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: __lowercase = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: __lowercase = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: __lowercase = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: __lowercase = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: __lowercase = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __lowercase = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: __lowercase = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: __lowercase = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: __lowercase = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: __lowercase = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: __lowercase = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: __lowercase = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: __lowercase = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: __lowercase = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: __lowercase = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: __lowercase = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: __lowercase = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: __lowercase = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: __lowercase = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: __lowercase = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: __lowercase = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: __lowercase = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: __lowercase = name.replace('''..''' , '''.''' ) if "stem.conv" in name: __lowercase = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: __lowercase = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: __lowercase = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: __lowercase = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: __lowercase = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: __lowercase = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: __lowercase = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) __lowercase = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: config.hidden_size, :] __lowercase = in_proj_bias[: config.hidden_size] __lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase = in_proj_weight[ -config.hidden_size :, : ] __lowercase = in_proj_bias[-config.hidden_size :] def UpperCAmelCase ( ): """simple docstring""" __lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" __lowercase , __lowercase = get_dpt_config(lowercase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __lowercase = torch.load(lowercase , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(lowercase ) # rename keys for key in state_dict.copy().keys(): __lowercase = state_dict.pop(lowercase ) __lowercase = val # read in qkv matrices read_in_q_k_v(lowercase , lowercase ) # load HuggingFace model __lowercase = DPTForSemanticSegmentation(lowercase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(lowercase ) model.load_state_dict(lowercase ) model.eval() # Check outputs on an image __lowercase = 480 if '''ade''' in checkpoint_url else 384 __lowercase = DPTImageProcessor(size=lowercase ) __lowercase = prepare_img() __lowercase = image_processor(lowercase , return_tensors='''pt''' ) # forward pass __lowercase = model(**lowercase ).logits if '''ade''' in checkpoint_url else model(**lowercase ).predicted_depth if show_prediction: __lowercase = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=lowercase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": __a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) parser.add_argument( """--show_prediction""", action="""store_true""", ) __a : Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
522
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a : Any = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[str] = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Dict = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Tuple = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[str] = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __a : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
522
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def _lowercase ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" UpperCamelCase = XCLIPTextConfig() # derive patch size from model name UpperCamelCase = model_name.find("""patch""" ) UpperCamelCase = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) UpperCamelCase = XCLIPVisionConfig(patch_size=SCREAMING_SNAKE_CASE__ , num_frames=SCREAMING_SNAKE_CASE__ ) if "large" in model_name: UpperCamelCase = 768 UpperCamelCase = 3_072 UpperCamelCase = 12 UpperCamelCase = 1_024 UpperCamelCase = 4_096 UpperCamelCase = 16 UpperCamelCase = 24 UpperCamelCase = 768 UpperCamelCase = 3_072 if model_name == "xclip-large-patch14-16-frames": UpperCamelCase = 336 UpperCamelCase = XCLIPConfig.from_text_vision_configs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "large" in model_name: UpperCamelCase = 768 return config def _lowercase ( SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" if name == "token_embedding.weight": UpperCamelCase = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": UpperCamelCase = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: UpperCamelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: UpperCamelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: UpperCamelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: UpperCamelCase = name.replace("""c_proj""" , """fc2""" ) if name.startswith("""transformer.resblocks""" ): UpperCamelCase = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: UpperCamelCase = name.replace("""attn.out_proj""" , """self_attn.out_proj""" ) if "ln_final" in name: UpperCamelCase = name.replace("""ln_final""" , """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": UpperCamelCase = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": UpperCamelCase = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): UpperCamelCase = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" ) if "visual.conv1" in name: UpperCamelCase = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: UpperCamelCase = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: UpperCamelCase = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" ) if "visual.proj" in name: UpperCamelCase = name.replace("""visual.proj""" , """visual_projection.weight""" ) if "text_projection" in name: UpperCamelCase = name.replace("""text_projection""" , """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: UpperCamelCase = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" ) if "prompts_visual_ln" in name: UpperCamelCase = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": UpperCamelCase = name.replace("""positional""" , """position""" ) if name.startswith("""mit.resblocks""" ): UpperCamelCase = name.replace("""mit.resblocks""" , """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): UpperCamelCase = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" ) return name def _lowercase ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "attn.in_proj" in key: UpperCamelCase = key.split(""".""" ) if key.startswith("""visual""" ): UpperCamelCase = key_split[3] UpperCamelCase = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCamelCase = val[ :dim, : ] UpperCamelCase = val[ dim : dim * 2, : ] UpperCamelCase = val[ -dim:, : ] else: UpperCamelCase = val[ :dim ] UpperCamelCase = val[ dim : dim * 2 ] UpperCamelCase = val[ -dim: ] else: if "weight" in key: UpperCamelCase = val[ :dim, : ] UpperCamelCase = val[ dim : dim * 2, : ] UpperCamelCase = val[ -dim:, : ] else: UpperCamelCase = val[:dim] UpperCamelCase = val[ dim : dim * 2 ] UpperCamelCase = val[-dim:] elif key.startswith("""mit""" ): UpperCamelCase = key_split[2] UpperCamelCase = config.vision_config.mit_hidden_size if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = key_split[2] UpperCamelCase = config.text_config.hidden_size if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[ dim : dim * 2, : ] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val[:dim] UpperCamelCase = val[ dim : dim * 2 ] UpperCamelCase = val[-dim:] else: UpperCamelCase = rename_key(SCREAMING_SNAKE_CASE__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCamelCase = val.T UpperCamelCase = val return orig_state_dict def _lowercase ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if num_frames == 8: UpperCamelCase = "eating_spaghetti_8_frames.npy" elif num_frames == 16: UpperCamelCase = "eating_spaghetti.npy" elif num_frames == 32: UpperCamelCase = "eating_spaghetti_32_frames.npy" UpperCamelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename=SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" , ) UpperCamelCase = np.load(SCREAMING_SNAKE_CASE__ ) return list(SCREAMING_SNAKE_CASE__ ) def _lowercase ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : int=False ): """simple docstring""" UpperCamelCase = { # fully supervised kinetics-400 checkpoints "xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth", "xclip-base-patch32-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth" ), "xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth", "xclip-base-patch16-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth" ), "xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb", "xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f", # fully supervised kinetics-600 checkpoints "xclip-base-patch16-kinetics-600": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth" ), "xclip-base-patch16-kinetics-600-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth" ), "xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be", # few shot "xclip-base-patch16-hmdb-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth" ), "xclip-base-patch16-hmdb-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth" ), "xclip-base-patch16-hmdb-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth" ), "xclip-base-patch16-hmdb-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth" ), "xclip-base-patch16-ucf-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth" ), "xclip-base-patch16-ucf-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth" ), "xclip-base-patch16-ucf-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth" ), "xclip-base-patch16-ucf-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth" ), # zero shot "xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth", } UpperCamelCase = model_to_url[model_name] UpperCamelCase = 8 if "16-frames" in model_name: UpperCamelCase = 16 elif "shot" in model_name: UpperCamelCase = 32 UpperCamelCase = get_xclip_config(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = XCLIPModel(SCREAMING_SNAKE_CASE__ ) model.eval() if "drive" in checkpoint_url: UpperCamelCase = "pytorch_model.bin" gdown.cached_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , quiet=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["model"] else: UpperCamelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ )["model"] UpperCamelCase = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = XCLIPModel(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCamelCase = 336 if model_name == "xclip-large-patch14-16-frames" else 224 UpperCamelCase = VideoMAEImageProcessor(size=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) UpperCamelCase = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) UpperCamelCase = XCLIPProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = prepare_video(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" , padding=SCREAMING_SNAKE_CASE__ ) print("""Shape of pixel values:""" , inputs.pixel_values.shape ) with torch.no_grad(): UpperCamelCase = model(**SCREAMING_SNAKE_CASE__ ) # Verify outputs UpperCamelCase = outputs.logits_per_video UpperCamelCase = logits_per_video.softmax(dim=1 ) print("""Probs:""" , SCREAMING_SNAKE_CASE__ ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCamelCase = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCamelCase = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": UpperCamelCase = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCamelCase = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": UpperCamelCase = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCamelCase = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCamelCase = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCamelCase = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCamelCase = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCamelCase = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCamelCase = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCamelCase = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCamelCase = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCamelCase = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCamelCase = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCamelCase = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCamelCase = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCamelCase = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(f'Model name {model_name} not supported' ) assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(SCREAMING_SNAKE_CASE__ , organization="""nielsr""" ) processor.push_to_hub(SCREAMING_SNAKE_CASE__ , organization="""nielsr""" ) slow_tokenizer.push_to_hub(SCREAMING_SNAKE_CASE__ , organization="""nielsr""" ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __snake_case = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
386
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {"""vocab_file""": """sentencepiece.bpe.model"""} SCREAMING_SNAKE_CASE_ = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", } } SCREAMING_SNAKE_CASE_ = { """camembert-base""": 5_12, } SCREAMING_SNAKE_CASE_ = """▁""" class snake_case_ ( a_ ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , a_ , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=["<s>NOTUSED", "</s>NOTUSED"] , a_ = None , **a_ , ): # Mask token behave like a normal word, i.e. include the space before it a_ : Tuple = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token a_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , cls_token=a_ , pad_token=a_ , mask_token=a_ , additional_special_tokens=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) a_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a_ ) ) a_ : Union[str, Any] = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> a_ : Union[str, Any] = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} a_ : List[Any] = len(self.fairseq_tokens_to_ids ) a_ : List[Any] = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) a_ : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def snake_case_ ( self , a_ , a_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : Tuple = [self.cls_token_id] a_ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self , a_ , a_ = None , a_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1, 1] + ([0] * len(a_ )) + [1] def snake_case_ ( self , a_ , a_ = None ): a_ : List[str] = [self.sep_token_id] a_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def snake_case_ ( self ): a_ : Any = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self , a_ ): return self.sp_model.encode(a_ , out_type=a_ ) def snake_case_ ( self , a_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(a_ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(a_ ) def snake_case_ ( self , a_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self , a_ ): a_ : Any = [] a_ : int = "" a_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a_ ) + token a_ : Union[str, Any] = True a_ : Optional[Any] = [] else: current_sub_tokens.append(a_ ) a_ : Dict = False out_string += self.sp_model.decode(a_ ) return out_string.strip() def __getstate__( self ): a_ : Any = self.__dict__.copy() a_ : Union[str, Any] = None return state def __setstate__( self , a_ ): a_ : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a_ : Optional[int] = {} a_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ ( self , a_ , a_ = None ): if not os.path.isdir(a_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a_ : List[Any] = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , "wb" ) as fi: a_ : Dict = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
237
0
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : def __init__( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : str=13 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=2 , __snake_case : Dict=3 , __snake_case : Optional[Any]=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=32 , __snake_case : Optional[int]=5 , __snake_case : Any=4 , __snake_case : int=37 , __snake_case : int="gelu" , __snake_case : Union[str, Any]=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : int=10 , __snake_case : Any=0.02 , __snake_case : List[str]=None , __snake_case : Tuple=2 , ): '''simple docstring''' _snake_case: Optional[Any] = parent _snake_case: Tuple = batch_size _snake_case: str = image_size _snake_case: int = patch_size _snake_case: Union[str, Any] = num_channels _snake_case: Dict = is_training _snake_case: Optional[Any] = use_labels _snake_case: Optional[Any] = hidden_size _snake_case: Tuple = num_hidden_layers _snake_case: List[Any] = num_attention_heads _snake_case: Union[str, Any] = intermediate_size _snake_case: List[str] = hidden_act _snake_case: Tuple = hidden_dropout_prob _snake_case: List[Any] = attention_probs_dropout_prob _snake_case: str = type_sequence_label_size _snake_case: Any = initializer_range _snake_case: str = scope _snake_case: Union[str, Any] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case: Tuple = (image_size // patch_size) ** 2 _snake_case: List[str] = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case: List[str] = None if self.use_labels: _snake_case: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case: Union[str, Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : List[str] ): '''simple docstring''' _snake_case: Dict = ViTModel(config=__snake_case ) model.to(__snake_case ) model.eval() _snake_case: Tuple = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : int ): '''simple docstring''' _snake_case: int = ViTForMaskedImageModeling(config=__snake_case ) model.to(__snake_case ) model.eval() _snake_case: Dict = model(__snake_case ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _snake_case: List[str] = 1 _snake_case: Tuple = ViTForMaskedImageModeling(__snake_case ) model.to(__snake_case ) model.eval() _snake_case: List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case: Union[str, Any] = model(__snake_case ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict ): '''simple docstring''' _snake_case: Optional[int] = self.type_sequence_label_size _snake_case: Union[str, Any] = ViTForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() _snake_case: List[Any] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case: Tuple = 1 _snake_case: Optional[int] = ViTForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() _snake_case: List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case: Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: Any = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ): int = config_and_inputs _snake_case: Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: Optional[int] = ViTModelTester(self ) _snake_case: Union[str, Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case , _snake_case: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case: Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case: Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' _snake_case , _snake_case: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case: int = model_class(__snake_case ) _snake_case: List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case: List[Any] = [*signature.parameters.keys()] _snake_case: str = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' _snake_case: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case: Any = ViTModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def lowercase_ ( ) ->List[Any]: _snake_case: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' _snake_case: Optional[int] = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(__snake_case ) _snake_case: Dict = self.default_image_processor _snake_case: Optional[Any] = prepare_img() _snake_case: List[str] = image_processor(images=__snake_case , return_tensors='pt' ).to(__snake_case ) # forward pass with torch.no_grad(): _snake_case: Optional[int] = model(**__snake_case ) # verify the logits _snake_case: Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __snake_case ) _snake_case: Dict = torch.tensor([-0.2_744, 0.8_215, -0.0_836] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: str = ViTModel.from_pretrained('facebook/dino-vits8' ).to(__snake_case ) _snake_case: Any = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=4_80 ) _snake_case: Optional[int] = prepare_img() _snake_case: Dict = image_processor(images=__snake_case , return_tensors='pt' ) _snake_case: Optional[Any] = inputs.pixel_values.to(__snake_case ) # forward pass with torch.no_grad(): _snake_case: str = model(__snake_case , interpolate_pos_encoding=__snake_case ) # verify the logits _snake_case: List[str] = torch.Size((1, 36_01, 3_84) ) self.assertEqual(outputs.last_hidden_state.shape , __snake_case ) _snake_case: Any = torch.tensor( [[4.2_340, 4.3_906, -6.6_692], [4.5_463, 1.8_928, -6.7_257], [4.4_429, 0.8_496, -5.8_585]] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __snake_case , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' _snake_case: List[Any] = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto' ) _snake_case: Dict = self.default_image_processor _snake_case: Any = prepare_img() _snake_case: str = image_processor(images=__snake_case , return_tensors='pt' ) _snake_case: Any = inputs.pixel_values.to(__snake_case ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _snake_case: int = model(__snake_case )
273
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class lowerCamelCase ( nn.Module ): def __init__( self : Optional[int] ): '''simple docstring''' super().__init__() _snake_case: int = nn.Linear(3 , 4 ) _snake_case: Any = nn.BatchNormad(4 ) _snake_case: Union[str, Any] = nn.Linear(4 , 5 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , __snake_case : List[Any] ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class lowerCamelCase ( __UpperCAmelCase ): def SCREAMING_SNAKE_CASE_ ( self : Tuple , __snake_case : Optional[Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class lowerCamelCase ( __UpperCAmelCase ): def SCREAMING_SNAKE_CASE_ ( self : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple ): '''simple docstring''' return output + 1 class lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: str = ModelForTest() _snake_case: List[str] = ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , '_hf_hook' ) ) self.assertFalse(hasattr(__snake_case , '_old_forward' ) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' _snake_case: Optional[Any] = ModelForTest() _snake_case: Union[str, Any] = ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , '_hf_hook' ) ) self.assertFalse(hasattr(__snake_case , '_old_forward' ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' _snake_case: Dict = ModelForTest() _snake_case: Tuple = torch.randn(2 , 3 ) _snake_case: List[Any] = test_model(x + 1 ) _snake_case: int = test_model(x + 2 ) _snake_case: List[str] = PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) _snake_case: List[Any] = test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _snake_case: Any = PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) _snake_case: Dict = test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks _snake_case: Any = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) _snake_case: int = test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1e-5 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: int = ModelForTest() _snake_case: str = torch.randn(2 , 3 ) _snake_case: int = test_model(__snake_case ) _snake_case: Union[str, Any] = PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) _snake_case: int = test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _snake_case: Tuple = PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) _snake_case: Optional[int] = test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks _snake_case: List[str] = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) _snake_case: List[Any] = test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1e-5 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' _snake_case: Optional[Any] = ModelForTest() _snake_case: Dict = torch.randn(2 , 3 ) _snake_case: Tuple = test_model(__snake_case ) _snake_case: Tuple = PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) _snake_case: List[str] = test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _snake_case: Any = True _snake_case: str = test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _snake_case: int = torch.randn(2 , 3 ) _snake_case: Tuple = model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) _snake_case: Optional[Any] = torch.randn(2 , 3 ).to(0 ) _snake_case: Any = model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' _snake_case: Union[str, Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices _snake_case: Optional[int] = {'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device _snake_case: Optional[int] = torch.device(hook_kwargs['execution_device'] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) _snake_case: Tuple = torch.randn(2 , 3 ) _snake_case: Union[str, Any] = model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload _snake_case: Optional[Any] = { 'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True, 'offload_buffers': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) _snake_case: Optional[Any] = torch.randn(2 , 3 ) _snake_case: Union[str, Any] = model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' _snake_case: Union[str, Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices _snake_case: Optional[Any] = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device _snake_case: List[str] = torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) _snake_case: Optional[Any] = torch.randn(2 , 3 ) _snake_case: List[str] = model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) _snake_case: Any = torch.randn(2 , 3 ) _snake_case: List[Any] = model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' _snake_case: Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices _snake_case: Tuple = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device _snake_case: str = torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) _snake_case: Dict = torch.randn(2 , 3 ) _snake_case: Dict = model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) _snake_case: List[Any] = torch.randn(2 , 3 ) _snake_case: List[str] = model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) )
273
1
from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase__ (_UpperCAmelCase): # getting number of pixels in the image SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_UpperCAmelCase): for j in range(_UpperCAmelCase): SCREAMING_SNAKE_CASE = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image a_ : int = imread('image_data/lena.jpg', 1) # convert to its negative a_ : List[Any] = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
73
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def lowercase__ ( *_lowercase : Optional[Any] , **_lowercase : str ): pass def a ( A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): lowerCamelCase : int = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : List[str] = DepthEstimationPipeline(model=_lowercase , image_processor=_lowercase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Optional[int] = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , _lowercase ) import datasets SCREAMING_SNAKE_CASE__ : List[str] = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , _lowercase , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def lowercase__ ( self : Optional[int] ): pass @slow @require_torch def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = '''Intel/dpt-large''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline('''depth-estimation''' , model=_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) SCREAMING_SNAKE_CASE__ : List[str] = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def lowercase__ ( self : str ): # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
35
0
"""simple docstring""" from __future__ import annotations from typing import Any class snake_case : def __init__( self :Union[str, Any] , _lowerCamelCase :int = 6 ): __SCREAMING_SNAKE_CASE : Node | None = None __SCREAMING_SNAKE_CASE : Node | None = None self.create_linked_list(_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , _lowerCamelCase :int ): __SCREAMING_SNAKE_CASE : Dict = Node() __SCREAMING_SNAKE_CASE : Optional[Any] = current_node __SCREAMING_SNAKE_CASE : Any = current_node __SCREAMING_SNAKE_CASE : Any = current_node for _ in range(1 , _lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = Node() __SCREAMING_SNAKE_CASE : Any = current_node __SCREAMING_SNAKE_CASE : List[Any] = previous_node __SCREAMING_SNAKE_CASE : Any = current_node __SCREAMING_SNAKE_CASE : Optional[int] = self.front __SCREAMING_SNAKE_CASE : Union[str, Any] = previous_node def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): self.check_can_perform_operation() return self.front.data if self.front else None def SCREAMING_SNAKE_CASE_ ( self :List[str] , _lowerCamelCase :Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): __SCREAMING_SNAKE_CASE : int = self.rear.next if self.rear: __SCREAMING_SNAKE_CASE : Any = data def SCREAMING_SNAKE_CASE_ ( self :int ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: __SCREAMING_SNAKE_CASE : int = self.front.data __SCREAMING_SNAKE_CASE : Union[str, Any] = None return data __SCREAMING_SNAKE_CASE : Optional[Any] = self.front __SCREAMING_SNAKE_CASE : str = old_front.next __SCREAMING_SNAKE_CASE : int = old_front.data __SCREAMING_SNAKE_CASE : str = None return data def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): if self.is_empty(): raise Exception('''Empty Queue''' ) def SCREAMING_SNAKE_CASE_ ( self :str ): if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class snake_case : def __init__( self :int ): __SCREAMING_SNAKE_CASE : Any | None = None __SCREAMING_SNAKE_CASE : Node | None = None __SCREAMING_SNAKE_CASE : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
401
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowerCAmelCase_ ( lowercase_ : dict ): '''simple docstring''' return (data["data"], data["target"]) def lowerCAmelCase_ ( lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : np.ndarray ): '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowercase_ , lowercase_ ) # Predict target for test data __SCREAMING_SNAKE_CASE : Optional[Any] = xgb.predict(lowercase_ ) __SCREAMING_SNAKE_CASE : Optional[Any] = predictions.reshape(len(lowercase_ ) , 1 ) return predictions def lowerCAmelCase_ ( ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = fetch_california_housing() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = data_handling(lowercase_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = train_test_split( lowercase_ , lowercase_ , test_size=0.25 , random_state=1 ) __SCREAMING_SNAKE_CASE : Optional[int] = xgboost(lowercase_ , lowercase_ , lowercase_ ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(lowercase_ , lowercase_ )}''' ) print(F'''Mean Square Error : {mean_squared_error(lowercase_ , lowercase_ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
401
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ : Optional[Any] = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
589
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() a__ : List[Any] = logging.get_logger(__name__) def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = RobertaPreLayerNormConfig.from_pretrained( __lowerCamelCase, architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict _lowerCAmelCase = torch.load(hf_hub_download(repo_id=__lowerCamelCase, filename='pytorch_model.bin' ) ) _lowerCAmelCase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): _lowerCAmelCase = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue _lowerCAmelCase = tensor_value _lowerCAmelCase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__lowerCamelCase, config=__lowerCamelCase, state_dict=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) # convert tokenizer _lowerCAmelCase = AutoTokenizer.from_pretrained(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": a__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a__ : Optional[int] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
589
1
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A_ ( pl.LightningModule ): def __init__( self : List[Any] , __lowerCamelCase : List[str] ) -> Optional[Any]: super().__init__() __magic_name__ : Any = model __magic_name__ : Optional[Any] = 2 __magic_name__ : Union[str, Any] = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _snake_case ( self : Optional[Any] ) -> Dict: pass def _lowerCAmelCase ( __lowerCamelCase:int , __lowerCamelCase:Union[str, Any] , __lowerCamelCase:Union[str, Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] = LongformerModel.from_pretrained(__lowerCamelCase ) __magic_name__ : Optional[Any] = LightningModel(__lowerCamelCase ) __magic_name__ : Union[str, Any] = torch.load(__lowerCamelCase , map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model __magic_name__ : int = LongformerForQuestionAnswering.from_pretrained(__lowerCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__lowerCamelCase ) print(f'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
714
"""simple docstring""" def _lowerCAmelCase ( __lowerCamelCase:int ): '''simple docstring''' __magic_name__ = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
468
0
def lowercase__ ( A_: float , A_: float ) -> float: """simple docstring""" if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
68
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( a ): """simple docstring""" A_ = ['image_processor', 'tokenizer'] A_ = 'BridgeTowerImageProcessor' A_ = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self , _lowerCamelCase , _lowerCamelCase )-> str: super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = None , **_lowerCamelCase , )-> BatchEncoding: lowercase__ = self.tokenizer( text=_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , stride=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , return_special_tokens_mask=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , return_length=_lowerCamelCase , verbose=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) # add pixel_values + pixel_mask lowercase__ = self.image_processor( _lowerCamelCase , return_tensors=_lowerCamelCase , do_normalize=_lowerCamelCase , do_center_crop=_lowerCamelCase , **_lowerCamelCase ) encoding.update(_lowerCamelCase ) return encoding def snake_case_( self , *_lowerCamelCase , **_lowerCamelCase )-> str: return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def snake_case_( self , *_lowerCamelCase , **_lowerCamelCase )-> List[Any]: return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @property def snake_case_( self )-> List[Any]: lowercase__ = self.tokenizer.model_input_names lowercase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
161
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } SCREAMING_SNAKE_CASE : Tuple = { "b0": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): UpperCamelCase_ : Tuple = EfficientNetConfig() UpperCamelCase_ : Optional[int] = CONFIG_MAP[model_name]["""hidden_dim"""] UpperCamelCase_ : Tuple = CONFIG_MAP[model_name]["""width_coef"""] UpperCamelCase_ : str = CONFIG_MAP[model_name]["""depth_coef"""] UpperCamelCase_ : Optional[int] = CONFIG_MAP[model_name]["""image_size"""] UpperCamelCase_ : Tuple = CONFIG_MAP[model_name]["""dropout_rate"""] UpperCamelCase_ : List[Any] = CONFIG_MAP[model_name]["""dw_padding"""] UpperCamelCase_ : Dict = """huggingface/label-files""" UpperCamelCase_ : Tuple = """imagenet-1k-id2label.json""" UpperCamelCase_ : List[Any] = 1000 UpperCamelCase_ : List[Any] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase_ : int = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase_ : int = idalabel UpperCamelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( ): UpperCamelCase_ : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase_ : str = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): UpperCamelCase_ : str = CONFIG_MAP[model_name]["""image_size"""] UpperCamelCase_ : List[str] = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=_SCREAMING_SNAKE_CASE , ) return preprocessor def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Optional[int] ): UpperCamelCase_ : List[str] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] UpperCamelCase_ : Optional[Any] = sorted(set(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ : str = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Any = {b: str(_SCREAMING_SNAKE_CASE ) for b, i in zip(_SCREAMING_SNAKE_CASE , range(_SCREAMING_SNAKE_CASE ) )} UpperCamelCase_ : Optional[Any] = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: UpperCamelCase_ : Tuple = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) UpperCamelCase_ : Optional[int] = {} for item in rename_keys: if item[0] in original_param_names: UpperCamelCase_ : List[str] = """efficientnet.""" + item[1] UpperCamelCase_ : str = """classifier.weight""" UpperCamelCase_ : Optional[int] = """classifier.bias""" return key_mapping def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] ): for key, value in tf_params.items(): if "normalization" in key: continue UpperCamelCase_ : Tuple = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCamelCase_ : List[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCamelCase_ : str = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCamelCase_ : List[str] = torch.from_numpy(np.transpose(_SCREAMING_SNAKE_CASE ) ) else: UpperCamelCase_ : List[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ): UpperCamelCase_ : Optional[int] = model_classes[model_name]( include_top=_SCREAMING_SNAKE_CASE , weights="""imagenet""" , input_tensor=_SCREAMING_SNAKE_CASE , input_shape=_SCREAMING_SNAKE_CASE , pooling=_SCREAMING_SNAKE_CASE , classes=1000 , classifier_activation="""softmax""" , ) UpperCamelCase_ : str = original_model.trainable_variables UpperCamelCase_ : Optional[Any] = original_model.non_trainable_variables UpperCamelCase_ : Optional[Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCamelCase_ : int = param.numpy() UpperCamelCase_ : Optional[int] = list(tf_params.keys() ) # Load HuggingFace model UpperCamelCase_ : Optional[int] = get_efficientnet_config(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Dict = EfficientNetForImageClassification(_SCREAMING_SNAKE_CASE ).eval() UpperCamelCase_ : List[Any] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) UpperCamelCase_ : Optional[Any] = rename_keys(_SCREAMING_SNAKE_CASE ) replace_params(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image UpperCamelCase_ : Optional[Any] = convert_image_processor(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Tuple = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCamelCase_ : List[Any] = hf_model(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Tuple = outputs.logits.detach().numpy() # Original model inference UpperCamelCase_ : Tuple = False UpperCamelCase_ : int = CONFIG_MAP[model_name]["""image_size"""] UpperCamelCase_ : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCamelCase_ : Tuple = image.img_to_array(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : List[Any] = np.expand_dims(_SCREAMING_SNAKE_CASE , axis=0 ) UpperCamelCase_ : Optional[int] = original_model.predict(_SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.mkdir(_SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) UpperCamelCase_ : Tuple = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(_SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
138
import numpy as np def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : float = 1E-12 , _SCREAMING_SNAKE_CASE : int = 100 , ): assert np.shape(_SCREAMING_SNAKE_CASE )[0] == np.shape(_SCREAMING_SNAKE_CASE )[1] # Ensure proper dimensionality. assert np.shape(_SCREAMING_SNAKE_CASE )[0] == np.shape(_SCREAMING_SNAKE_CASE )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_SCREAMING_SNAKE_CASE ) == np.iscomplexobj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Optional[Any] = np.iscomplexobj(_SCREAMING_SNAKE_CASE ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_SCREAMING_SNAKE_CASE , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : str = 0 UpperCamelCase_ : Optional[int] = 0 UpperCamelCase_ : List[str] = 1E12 while not convergence: # Multiple matrix by the vector. UpperCamelCase_ : Optional[Any] = np.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Normalize the resulting output vector. UpperCamelCase_ : Union[str, Any] = w / np.linalg.norm(_SCREAMING_SNAKE_CASE ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) UpperCamelCase_ : Tuple = vector.conj().T if is_complex else vector.T UpperCamelCase_ : Tuple = np.dot(_SCREAMING_SNAKE_CASE , np.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Check convergence. UpperCamelCase_ : Union[str, Any] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: UpperCamelCase_ : List[Any] = True UpperCamelCase_ : Dict = lambda_ if is_complex: UpperCamelCase_ : List[Any] = np.real(lambda_ ) return lambda_, vector def lowerCAmelCase_ ( ): UpperCamelCase_ : Tuple = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) UpperCamelCase_ : List[Any] = np.array([41, 4, 20] ) UpperCamelCase_ : str = real_input_matrix.astype(np.complexaaa ) UpperCamelCase_ : str = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T UpperCamelCase_ : List[Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": UpperCamelCase_ : Tuple = real_input_matrix UpperCamelCase_ : Any = real_vector elif problem_type == "complex": UpperCamelCase_ : List[Any] = complex_input_matrix UpperCamelCase_ : List[str] = complex_vector # Our implementation. UpperCamelCase_,UpperCamelCase_ : List[Any] = power_iteration(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). UpperCamelCase_,UpperCamelCase_ : int = np.linalg.eigh(_SCREAMING_SNAKE_CASE ) # Last eigenvalue is the maximum one. UpperCamelCase_ : Union[str, Any] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. UpperCamelCase_ : int = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_SCREAMING_SNAKE_CASE ) - np.abs(_SCREAMING_SNAKE_CASE ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
138
1
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) A = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Dict) -> Optional[int]: '''simple docstring''' _lowercase : List[str] = {} state_dict.pop('pixel_mean' , lowerCAmelCase__) state_dict.pop('pixel_std' , lowerCAmelCase__) _lowercase : Optional[int] = r'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _lowercase : int = key.replace(lowerCAmelCase__ , lowerCAmelCase__) if re.match(lowerCAmelCase__ , lowerCAmelCase__): _lowercase : Any = int(re.match(lowerCAmelCase__ , lowerCAmelCase__).group(2)) if layer_nb == 0: _lowercase : Optional[int] = key.replace('layers.0' , 'proj_in') elif layer_nb == 1: _lowercase : str = key.replace('layers.1' , 'layers.0') elif layer_nb == 2: _lowercase : str = key.replace('layers.2' , 'proj_out') _lowercase : Optional[int] = value _lowercase : Dict = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str="ybelkada/segment-anything") -> List[Any]: '''simple docstring''' _lowercase : Optional[int] = hf_hub_download(lowerCAmelCase__ , F'''checkpoints/{model_name}.pth''') if "sam_vit_b" in model_name: _lowercase : int = SamConfig() elif "sam_vit_l" in model_name: _lowercase : str = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) _lowercase : List[Any] = SamConfig( vision_config=lowerCAmelCase__ , ) elif "sam_vit_h" in model_name: _lowercase : Dict = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) _lowercase : Union[str, Any] = SamConfig( vision_config=lowerCAmelCase__ , ) _lowercase : Tuple = torch.load(lowerCAmelCase__ , map_location='cpu') _lowercase : Dict = replace_keys(lowerCAmelCase__) _lowercase : Tuple = SamImageProcessor() _lowercase : Tuple = SamProcessor(image_processor=lowerCAmelCase__) _lowercase : List[Any] = SamModel(lowerCAmelCase__) hf_model.load_state_dict(lowerCAmelCase__) _lowercase : Optional[Any] = hf_model.to('cuda') _lowercase : int = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' _lowercase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__).raw).convert('RGB') _lowercase : Dict = [[[4_00, 6_50]]] _lowercase : Any = [[1]] _lowercase : Tuple = processor(images=np.array(lowerCAmelCase__) , return_tensors='pt').to('cuda') with torch.no_grad(): _lowercase : int = hf_model(**lowerCAmelCase__) _lowercase : Optional[Any] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 _lowercase : Union[str, Any] = processor( images=np.array(lowerCAmelCase__) , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , return_tensors='pt').to('cuda') with torch.no_grad(): _lowercase : Union[str, Any] = hf_model(**lowerCAmelCase__) _lowercase : int = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 _lowercase : Dict = ((75, 2_75, 17_25, 8_50),) _lowercase : Optional[Any] = processor(images=np.array(lowerCAmelCase__) , input_boxes=lowerCAmelCase__ , return_tensors='pt').to('cuda') with torch.no_grad(): _lowercase : Dict = hf_model(**lowerCAmelCase__) _lowercase : Tuple = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. _lowercase : Dict = [[[4_00, 6_50], [8_00, 6_50]]] _lowercase : Dict = [[1, 1]] _lowercase : Optional[Any] = processor( images=np.array(lowerCAmelCase__) , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , return_tensors='pt').to('cuda') with torch.no_grad(): _lowercase : int = hf_model(**lowerCAmelCase__) _lowercase : str = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": A = argparse.ArgumentParser() A = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) A = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
125
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ : Dict = (PNDMScheduler,) lowerCAmelCase__ : Tuple = (("num_inference_steps", 50),) def _lowerCamelCase ( self : Tuple ,**UpperCamelCase : Any ) -> Dict: _lowercase : Tuple = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**UpperCamelCase ) return config def _lowerCamelCase ( self : Optional[int] ,UpperCamelCase : Dict=0 ,**UpperCamelCase : List[str] ) -> Any: _lowercase : Optional[Any] = dict(self.forward_default_kwargs ) _lowercase : Tuple = kwargs.pop('num_inference_steps' ,UpperCamelCase ) _lowercase : Tuple = self.dummy_sample _lowercase : Optional[int] = 0.1 * sample _lowercase : Dict = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _lowercase : str = self.get_scheduler_config(**UpperCamelCase ) _lowercase : List[Any] = scheduler_class(**UpperCamelCase ) scheduler.set_timesteps(UpperCamelCase ) # copy over dummy past residuals _lowercase : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase ) _lowercase : List[str] = scheduler_class.from_pretrained(UpperCamelCase ) new_scheduler.set_timesteps(UpperCamelCase ) # copy over dummy past residuals _lowercase : Any = dummy_past_residuals[:] _lowercase : Dict = scheduler.step_prk(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ).prev_sample _lowercase : Optional[Any] = new_scheduler.step_prk(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _lowercase : Union[str, Any] = scheduler.step_plms(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ).prev_sample _lowercase : Optional[Any] = new_scheduler.step_plms(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self : str ) -> List[Any]: pass def _lowerCamelCase ( self : Dict ,UpperCamelCase : List[Any]=0 ,**UpperCamelCase : List[Any] ) -> List[Any]: _lowercase : int = dict(self.forward_default_kwargs ) _lowercase : Any = kwargs.pop('num_inference_steps' ,UpperCamelCase ) _lowercase : List[str] = self.dummy_sample _lowercase : Dict = 0.1 * sample _lowercase : Any = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _lowercase : int = self.get_scheduler_config() _lowercase : Union[str, Any] = scheduler_class(**UpperCamelCase ) scheduler.set_timesteps(UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowercase : int = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase ) _lowercase : Union[str, Any] = scheduler_class.from_pretrained(UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) _lowercase : Any = dummy_past_residuals[:] _lowercase : Dict = scheduler.step_prk(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ).prev_sample _lowercase : List[Any] = new_scheduler.step_prk(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _lowercase : int = scheduler.step_plms(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ).prev_sample _lowercase : Tuple = new_scheduler.step_plms(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self : Optional[int] ,**UpperCamelCase : Any ) -> List[Any]: _lowercase : Dict = self.scheduler_classes[0] _lowercase : Union[str, Any] = self.get_scheduler_config(**UpperCamelCase ) _lowercase : Optional[int] = scheduler_class(**UpperCamelCase ) _lowercase : Dict = 10 _lowercase : str = self.dummy_model() _lowercase : Tuple = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase ) for i, t in enumerate(scheduler.prk_timesteps ): _lowercase : Any = model(UpperCamelCase ,UpperCamelCase ) _lowercase : Union[str, Any] = scheduler.step_prk(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _lowercase : Optional[Any] = model(UpperCamelCase ,UpperCamelCase ) _lowercase : Tuple = scheduler.step_plms(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ).prev_sample return sample def _lowerCamelCase ( self : Optional[Any] ) -> List[str]: _lowercase : Union[str, Any] = dict(self.forward_default_kwargs ) _lowercase : List[str] = kwargs.pop('num_inference_steps' ,UpperCamelCase ) for scheduler_class in self.scheduler_classes: _lowercase : str = self.get_scheduler_config() _lowercase : Dict = scheduler_class(**UpperCamelCase ) _lowercase : int = self.dummy_sample _lowercase : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase ,'set_timesteps' ): scheduler.set_timesteps(UpperCamelCase ) elif num_inference_steps is not None and not hasattr(UpperCamelCase ,'set_timesteps' ): _lowercase : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowercase : List[str] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] _lowercase : List[Any] = dummy_past_residuals[:] _lowercase : List[str] = scheduler.step_prk(UpperCamelCase ,0 ,UpperCamelCase ,**UpperCamelCase ).prev_sample _lowercase : List[str] = scheduler.step_prk(UpperCamelCase ,1 ,UpperCamelCase ,**UpperCamelCase ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) _lowercase : str = scheduler.step_plms(UpperCamelCase ,0 ,UpperCamelCase ,**UpperCamelCase ).prev_sample _lowercase : Any = scheduler.step_plms(UpperCamelCase ,1 ,UpperCamelCase ,**UpperCamelCase ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def _lowerCamelCase ( self : Optional[int] ) -> List[str]: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase ) def _lowerCamelCase ( self : Union[str, Any] ) -> int: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCamelCase ) _lowercase : Tuple = self.scheduler_classes[0] _lowercase : List[str] = self.get_scheduler_config(steps_offset=1 ) _lowercase : Any = scheduler_class(**UpperCamelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps ,torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) ,) def _lowerCamelCase ( self : Any ) -> Optional[int]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] ,[0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=UpperCamelCase ,beta_end=UpperCamelCase ) def _lowerCamelCase ( self : Any ) -> Union[str, Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase ) def _lowerCamelCase ( self : List[Any] ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase ) def _lowerCamelCase ( self : Optional[Any] ) -> Any: for t in [1, 5, 10]: self.check_over_forward(time_step=UpperCamelCase ) def _lowerCamelCase ( self : Dict ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase ) def _lowerCamelCase ( self : Union[str, Any] ) -> Optional[int]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 _lowercase : Dict = 27 for scheduler_class in self.scheduler_classes: _lowercase : List[Any] = self.dummy_sample _lowercase : List[str] = 0.1 * sample _lowercase : Union[str, Any] = self.get_scheduler_config() _lowercase : Any = scheduler_class(**UpperCamelCase ) scheduler.set_timesteps(UpperCamelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _lowercase : Optional[int] = scheduler.step_prk(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ).prev_sample def _lowerCamelCase ( self : Dict ) -> Dict: with self.assertRaises(UpperCamelCase ): _lowercase : Optional[int] = self.scheduler_classes[0] _lowercase : str = self.get_scheduler_config() _lowercase : Tuple = scheduler_class(**UpperCamelCase ) scheduler.step_plms(self.dummy_sample ,1 ,self.dummy_sample ).prev_sample def _lowerCamelCase ( self : Optional[int] ) -> int: _lowercase : Any = self.full_loop() _lowercase : Optional[Any] = torch.sum(torch.abs(UpperCamelCase ) ) _lowercase : Any = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def _lowerCamelCase ( self : Any ) -> Union[str, Any]: _lowercase : Tuple = self.full_loop(prediction_type='v_prediction' ) _lowercase : Optional[Any] = torch.sum(torch.abs(UpperCamelCase ) ) _lowercase : int = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def _lowerCamelCase ( self : List[Any] ) -> str: # We specify different beta, so that the first alpha is 0.99 _lowercase : List[Any] = self.full_loop(set_alpha_to_one=UpperCamelCase ,beta_start=0.0_1 ) _lowercase : List[Any] = torch.sum(torch.abs(UpperCamelCase ) ) _lowercase : Any = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def _lowerCamelCase ( self : Any ) -> Optional[int]: # We specify different beta, so that the first alpha is 0.99 _lowercase : Union[str, Any] = self.full_loop(set_alpha_to_one=UpperCamelCase ,beta_start=0.0_1 ) _lowercase : List[Any] = torch.sum(torch.abs(UpperCamelCase ) ) _lowercase : List[Any] = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
125
1
"""simple docstring""" def _lowercase ( __snake_case ) -> list[list[int]]: __lowerCAmelCase : str = [] if len(__snake_case ) == 1: return [nums.copy()] for _ in range(len(__snake_case ) ): __lowerCAmelCase : Union[str, Any] = nums.pop(0 ) __lowerCAmelCase : Optional[int] = permute(__snake_case ) for perm in permutations: perm.append(__snake_case ) result.extend(__snake_case ) nums.append(__snake_case ) return result def _lowercase ( __snake_case ) -> int: def backtrack(__snake_case ): if start == len(__snake_case ) - 1: output.append(nums[:] ) else: for i in range(__snake_case ,len(__snake_case ) ): __lowerCAmelCase , __lowerCAmelCase : Any = nums[i], nums[start] backtrack(start + 1 ) __lowerCAmelCase , __lowerCAmelCase : List[str] = nums[i], nums[start] # backtrack __lowerCAmelCase : Any = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __snake_case : List[str] = permutea([1, 2, 3]) print(res) doctest.testmod()
615
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __snake_case : Union[str, Any] = random.Random() def _lowercase ( __snake_case ,__snake_case=1.0 ,__snake_case=None ,__snake_case=None ) -> List[Any]: if rng is None: __lowerCAmelCase : Dict = global_rng __lowerCAmelCase : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class A__ ( unittest.TestCase ): '''simple docstring''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[Any]=7 , _SCREAMING_SNAKE_CASE: int=400 , _SCREAMING_SNAKE_CASE: List[str]=2000 , _SCREAMING_SNAKE_CASE: Optional[Any]=24 , _SCREAMING_SNAKE_CASE: Dict=24 , _SCREAMING_SNAKE_CASE: Optional[int]=0.0 , _SCREAMING_SNAKE_CASE: Any=1_6000 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = parent __lowerCAmelCase : str = batch_size __lowerCAmelCase : List[str] = min_seq_length __lowerCAmelCase : Any = max_seq_length __lowerCAmelCase : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowerCAmelCase : Union[str, Any] = feature_size __lowerCAmelCase : int = num_mel_bins __lowerCAmelCase : Optional[Any] = padding_value __lowerCAmelCase : List[Any] = sampling_rate __lowerCAmelCase : Dict = return_attention_mask __lowerCAmelCase : int = do_normalize def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[int]: """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: int=False) -> Optional[int]: """simple docstring""" def _flatten(_SCREAMING_SNAKE_CASE: Optional[Any]): return list(itertools.chain(*_SCREAMING_SNAKE_CASE)) if equal_length: __lowerCAmelCase : Tuple = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size __lowerCAmelCase : List[Any] = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: __lowerCAmelCase : Any = [np.asarray(_SCREAMING_SNAKE_CASE) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = SpeechaTextFeatureExtractor if is_speech_available() else None def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Tuple: """simple docstring""" __lowerCAmelCase : Tuple = SpeechaTextFeatureExtractionTester(self) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any]) -> str: """simple docstring""" self.assertTrue(np.all(np.mean(_SCREAMING_SNAKE_CASE , axis=0) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(_SCREAMING_SNAKE_CASE , axis=0) - 1) < 1e-3)) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> int: """simple docstring""" __lowerCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 __lowerCAmelCase : Tuple = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] __lowerCAmelCase : Optional[int] = [np.asarray(_SCREAMING_SNAKE_CASE) for speech_input in speech_inputs] # Test feature size __lowerCAmelCase : Optional[int] = feature_extractor(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors="np").input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size) # Test not batched input __lowerCAmelCase : Optional[Any] = feature_extractor(speech_inputs[0] , return_tensors="np").input_features __lowerCAmelCase : Any = feature_extractor(np_speech_inputs[0] , return_tensors="np").input_features self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3)) # Test batched __lowerCAmelCase : Tuple = feature_extractor(_SCREAMING_SNAKE_CASE , return_tensors="np").input_features __lowerCAmelCase : Tuple = feature_extractor(_SCREAMING_SNAKE_CASE , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3)) # Test 2-D numpy arrays are batched. __lowerCAmelCase : List[str] = [floats_list((1, x))[0] for x in (800, 800, 800)] __lowerCAmelCase : Dict = np.asarray(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = feature_extractor(_SCREAMING_SNAKE_CASE , return_tensors="np").input_features __lowerCAmelCase : Optional[Any] = feature_extractor(_SCREAMING_SNAKE_CASE , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3)) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __lowerCAmelCase : Tuple = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] __lowerCAmelCase : Optional[Any] = ["longest", "max_length", "do_not_pad"] __lowerCAmelCase : str = [None, 16, None] for max_length, padding in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : str = feature_extractor( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = inputs.input_features __lowerCAmelCase : Optional[Any] = inputs.attention_mask __lowerCAmelCase : Tuple = [np.sum(_SCREAMING_SNAKE_CASE) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __lowerCAmelCase : Any = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] __lowerCAmelCase : Dict = ["longest", "max_length", "do_not_pad"] __lowerCAmelCase : List[Any] = [None, 16, None] for max_length, padding in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : List[str] = feature_extractor( _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors="np" , return_attention_mask=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = inputs.input_features __lowerCAmelCase : Dict = inputs.attention_mask __lowerCAmelCase : Dict = [np.sum(_SCREAMING_SNAKE_CASE) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) def _SCREAMING_SNAKE_CASE ( self: str) -> Any: """simple docstring""" __lowerCAmelCase : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __lowerCAmelCase : str = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] __lowerCAmelCase : str = feature_extractor( _SCREAMING_SNAKE_CASE , padding="max_length" , max_length=4 , truncation=_SCREAMING_SNAKE_CASE , return_tensors="np" , return_attention_mask=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[str] = inputs.input_features __lowerCAmelCase : Dict = inputs.attention_mask __lowerCAmelCase : Any = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1]) self._check_zero_mean_unit_variance(input_features[2]) def _SCREAMING_SNAKE_CASE ( self: int) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __lowerCAmelCase : List[Any] = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] __lowerCAmelCase : Any = feature_extractor( _SCREAMING_SNAKE_CASE , padding="longest" , max_length=4 , truncation=_SCREAMING_SNAKE_CASE , return_tensors="np" , return_attention_mask=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[str] = inputs.input_features __lowerCAmelCase : Optional[Any] = inputs.attention_mask __lowerCAmelCase : Optional[Any] = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2]) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24)) __lowerCAmelCase : List[str] = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] __lowerCAmelCase : List[str] = feature_extractor( _SCREAMING_SNAKE_CASE , padding="longest" , max_length=16 , truncation=_SCREAMING_SNAKE_CASE , return_tensors="np" , return_attention_mask=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Optional[Any] = inputs.input_features __lowerCAmelCase : Optional[int] = inputs.attention_mask __lowerCAmelCase : str = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2]) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24)) def _SCREAMING_SNAKE_CASE ( self: Any) -> Dict: """simple docstring""" import torch __lowerCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __lowerCAmelCase : List[str] = np.random.rand(100 , 32).astype(np.floataa) __lowerCAmelCase : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowerCAmelCase : Any = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np") self.assertTrue(np_processed.input_features.dtype == np.floataa) __lowerCAmelCase : List[Any] = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt") self.assertTrue(pt_processed.input_features.dtype == torch.floataa) def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: List[Any]) -> Optional[Any]: """simple docstring""" from datasets import load_dataset __lowerCAmelCase : Any = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation") # automatic decoding with librispeech __lowerCAmelCase : List[Any] = ds.sort("id").select(range(_SCREAMING_SNAKE_CASE))[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Any: """simple docstring""" __lowerCAmelCase : str = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ]) # fmt: on __lowerCAmelCase : str = self._load_datasamples(1) __lowerCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __lowerCAmelCase : List[str] = feature_extractor(_SCREAMING_SNAKE_CASE , return_tensors="pt").input_features self.assertEquals(input_features.shape , (1, 584, 24)) self.assertTrue(np.allclose(input_features[0, 0, :30] , _SCREAMING_SNAKE_CASE , atol=1e-4))
615
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class _A : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 * 4 , _SCREAMING_SNAKE_CASE=32 * 6 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=32 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : str = batch_size SCREAMING_SNAKE_CASE_ : List[str] = is_training SCREAMING_SNAKE_CASE_ : Tuple = use_auxiliary_loss SCREAMING_SNAKE_CASE_ : Any = num_queries SCREAMING_SNAKE_CASE_ : Optional[Any] = num_channels SCREAMING_SNAKE_CASE_ : Dict = min_size SCREAMING_SNAKE_CASE_ : Any = max_size SCREAMING_SNAKE_CASE_ : Optional[Any] = num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = mask_feature_size def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_SCREAMING_SNAKE_CASE ) > 0.5 ).float() SCREAMING_SNAKE_CASE_ : Any = (torch.rand((self.batch_size, self.num_labels) , device=_SCREAMING_SNAKE_CASE ) > 0.5).long() SCREAMING_SNAKE_CASE_ : Tuple = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase ( self ): """simple docstring""" return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = output.encoder_hidden_states SCREAMING_SNAKE_CASE_ : str = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE_ : int = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , config.decoder_config.decoder_layers ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): """simple docstring""" with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] = MaskFormerModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_ : str = model(pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = model(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = MaskFormerForInstanceSegmentation(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() def comm_check_on_output(_SCREAMING_SNAKE_CASE ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[Any] = model(pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = model(_SCREAMING_SNAKE_CASE ) comm_check_on_output(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = model( pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ) comm_check_on_output(_SCREAMING_SNAKE_CASE ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _A ( __magic_name__ , __magic_name__ , unittest.TestCase): SCREAMING_SNAKE_CASE : Optional[int] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE : Any = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Optional[Any] = False def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = MaskFormerModelTester(self ) SCREAMING_SNAKE_CASE_ : int = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def UpperCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def UpperCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MaskFormer is not a generative model' ) def UpperCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def UpperCAmelCase ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase ( self ): """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase ( self ): """simple docstring""" pass def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Any = model_class(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Union[str, Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase ( self ): """simple docstring""" for model_name in ["facebook/maskformer-swin-small-coco"]: SCREAMING_SNAKE_CASE_ : str = MaskFormerModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE_ : Any = { 'pixel_values': torch.randn((2, 3, *size) , device=_SCREAMING_SNAKE_CASE ), 'mask_labels': torch.randn((2, 10, *size) , device=_SCREAMING_SNAKE_CASE ), 'class_labels': torch.zeros(2 , 10 , device=_SCREAMING_SNAKE_CASE ).long(), } SCREAMING_SNAKE_CASE_ : Optional[Any] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = model(**_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = model(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase ( self ): """simple docstring""" if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss SCREAMING_SNAKE_CASE_ : List[Any] = self.all_model_classes[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : Dict = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() SCREAMING_SNAKE_CASE_ : List[Any] = model(_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ).loss loss.backward() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.all_model_classes[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : Tuple = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() SCREAMING_SNAKE_CASE_ : Tuple = model(_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ : Dict = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't SCREAMING_SNAKE_CASE_ : int = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ : int = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCAmelCase : Optional[Any] = 1e-4 def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class _A ( unittest.TestCase): @cached_property def UpperCAmelCase ( self ): """simple docstring""" return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = self.default_image_processor SCREAMING_SNAKE_CASE_ : str = prepare_img() SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 800, 1088) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] = model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(_SCREAMING_SNAKE_CASE ) .eval() ) SCREAMING_SNAKE_CASE_ : Dict = self.default_image_processor SCREAMING_SNAKE_CASE_ : int = prepare_img() SCREAMING_SNAKE_CASE_ : Dict = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 800, 1088) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[Any] = model(**_SCREAMING_SNAKE_CASE ) # masks_queries_logits SCREAMING_SNAKE_CASE_ : List[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) SCREAMING_SNAKE_CASE_ : List[str] = [ [-1.3737124, -1.7724937, -1.9364233], [-1.5977281, -1.9867939, -2.1523695], [-1.5795398, -1.9269832, -2.093942], ] SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) # class_queries_logits SCREAMING_SNAKE_CASE_ : Dict = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor( [ [1.6_512e00, -5.2_572e00, -3.3_519e00], [3.6_169e-02, -5.9_025e00, -2.9_313e00], [1.0_766e-04, -7.7_630e00, -5.1_263e00], ] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(_SCREAMING_SNAKE_CASE ) .eval() ) SCREAMING_SNAKE_CASE_ : List[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_ : str = prepare_img() SCREAMING_SNAKE_CASE_ : List[str] = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 800, 1088) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : str = model(**_SCREAMING_SNAKE_CASE ) # masks_queries_logits SCREAMING_SNAKE_CASE_ : str = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) SCREAMING_SNAKE_CASE_ : str = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] SCREAMING_SNAKE_CASE_ : Dict = torch.tensor(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) # class_queries_logits SCREAMING_SNAKE_CASE_ : Union[str, Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(_SCREAMING_SNAKE_CASE ) .eval() ) SCREAMING_SNAKE_CASE_ : Tuple = self.default_image_processor SCREAMING_SNAKE_CASE_ : int = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) SCREAMING_SNAKE_CASE_ : List[Any] = inputs['pixel_values'].to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = [el.to(_SCREAMING_SNAKE_CASE ) for el in inputs['mask_labels']] SCREAMING_SNAKE_CASE_ : Optional[int] = [el.to(_SCREAMING_SNAKE_CASE ) for el in inputs['class_labels']] with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] = model(**_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None )
511
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=a , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=a , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=a ) return parser.parse_args() def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = parse_args() # Import training_script as a module. SCREAMING_SNAKE_CASE_ : Dict = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = script_fpath.stem SCREAMING_SNAKE_CASE_ : int = importlib.import_module(a ) # Patch sys.argv SCREAMING_SNAKE_CASE_ : int = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
511
1
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Dict = 10 def _UpperCAmelCase ( self : Optional[Any] ) -> List[str]: '''simple docstring''' __magic_name__ : Optional[int] = [1, 2, 3, 4] __magic_name__ : Optional[Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(snake_case , self.block_size , 0 ) , snake_case ) def _UpperCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __magic_name__ : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(snake_case , self.block_size , 0 ) , snake_case ) def _UpperCAmelCase ( self : Optional[Any] ) -> List[str]: '''simple docstring''' __magic_name__ : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __magic_name__ : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(snake_case , self.block_size , 0 ) , snake_case ) def _UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' __magic_name__ : List[str] = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' __magic_name__ , __magic_name__ : Optional[Any] = process_story(snake_case ) self.assertEqual(snake_case , [] ) def _UpperCAmelCase ( self : Dict ) -> str: '''simple docstring''' __magic_name__ : List[str] = '''''' __magic_name__ , __magic_name__ : Optional[int] = process_story(snake_case ) self.assertEqual(snake_case , [] ) self.assertEqual(snake_case , [] ) def _UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' __magic_name__ : Optional[Any] = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) __magic_name__ , __magic_name__ : Union[str, Any] = process_story(snake_case ) __magic_name__ : int = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(snake_case , snake_case ) __magic_name__ : Tuple = ['''It was the best of times.'''] self.assertEqual(snake_case , snake_case ) def _UpperCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' __magic_name__ : Optional[int] = torch.tensor([1, 2, 3, 4] ) __magic_name__ : Dict = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(snake_case , 0 ).numpy() , expected.numpy() ) def _UpperCAmelCase ( self : Any ) -> Dict: '''simple docstring''' __magic_name__ : Any = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __magic_name__ : Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(snake_case , 23 ).numpy() , expected.numpy() ) def _UpperCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' __magic_name__ : List[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __magic_name__ : Dict = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(snake_case , 1 ).numpy() , expected.numpy() ) def _UpperCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' __magic_name__ : List[str] = 101 __magic_name__ : Union[str, Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) __magic_name__ : Optional[int] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __magic_name__ : List[str] = compute_token_type_ids(snake_case , snake_case ) np.testing.assert_array_equal(snake_case , snake_case )
147
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCamelCase_ ( lowerCamelCase : int ) -> bool: """simple docstring""" __magic_name__ : int = int(number**0.5 ) return number == sq * sq def UpperCamelCase_ ( lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ) -> tuple[int, int]: """simple docstring""" __magic_name__ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __magic_name__ : int = x_den * y_den * z_den __magic_name__ : int = gcd(lowerCamelCase , lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def UpperCamelCase_ ( lowerCamelCase : int = 35 ) -> int: """simple docstring""" __magic_name__ : set = set() __magic_name__ : int __magic_name__ : Fraction = Fraction(0 ) __magic_name__ : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 __magic_name__ : Dict = x_num * y_den + x_den * y_num __magic_name__ : str = x_den * y_den __magic_name__ : Union[str, Any] = gcd(lowerCamelCase , lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __magic_name__ : Dict = add_three( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) unique_s.add(lowerCamelCase ) # n=2 __magic_name__ : Any = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __magic_name__ : int = x_den * x_den * y_den * y_den if is_sq(lowerCamelCase ) and is_sq(lowerCamelCase ): __magic_name__ : str = int(sqrt(lowerCamelCase ) ) __magic_name__ : Dict = int(sqrt(lowerCamelCase ) ) __magic_name__ : Optional[Any] = gcd(lowerCamelCase , lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __magic_name__ : Dict = add_three( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) unique_s.add(lowerCamelCase ) # n=-1 __magic_name__ : Optional[int] = x_num * y_num __magic_name__ : str = x_den * y_num + x_num * y_den __magic_name__ : Dict = gcd(lowerCamelCase , lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __magic_name__ : List[Any] = add_three( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) unique_s.add(lowerCamelCase ) # n=2 __magic_name__ : Any = x_num * x_num * y_num * y_num __magic_name__ : List[str] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCamelCase ) and is_sq(lowerCamelCase ): __magic_name__ : Optional[Any] = int(sqrt(lowerCamelCase ) ) __magic_name__ : Dict = int(sqrt(lowerCamelCase ) ) __magic_name__ : Any = gcd(lowerCamelCase , lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __magic_name__ : Any = add_three( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) unique_s.add(lowerCamelCase ) for num, den in unique_s: total += Fraction(lowerCamelCase , lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
147
1
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "tf_padding" ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "depth_multiplier" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Optional[int]=8 , _UpperCAmelCase : Union[str, Any]=8 , _UpperCAmelCase : Tuple=6 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : int="relu6" , _UpperCAmelCase : Optional[int]=1280 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[int]=10 , _UpperCAmelCase : Optional[Any]=None , ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = depth_divisible_by UpperCAmelCase_ = min_depth UpperCAmelCase_ = expand_ratio UpperCAmelCase_ = tf_padding UpperCAmelCase_ = output_stride UpperCAmelCase_ = first_layer_is_expansion UpperCAmelCase_ = finegrained_output UpperCAmelCase_ = hidden_act UpperCAmelCase_ = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase__ ( self : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = MobileNetVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowercase__ ( self : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileNetVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : int ) -> str: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileNetVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = MobileNetVaModelTester(self ) UpperCAmelCase_ = MobileNetVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV2 does not use inputs_embeds" ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileNetV2 does not support input and output embeddings" ) def lowercase__ ( self : str ) -> int: '''simple docstring''' pass @unittest.skip(reason="MobileNetV2 does not output attentions" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 16 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileNetVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224" ).to(_UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([0.2445, -1.1993, 0.1905] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = MobileNetVaForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileNetVaImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
82
"""simple docstring""" from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase__ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=30 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : str=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : List[Any]=10 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Dict=None , ) -> str: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : int ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = TFViTModel(config=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ = self.image_size // 2 UpperCAmelCase_ = pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ = model(_UpperCAmelCase , interpolate_pos_encoding=_UpperCAmelCase , training=_UpperCAmelCase ) UpperCAmelCase_ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowercase__ ( self : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = TFViTForImageClassification(_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ = self.image_size // 2 UpperCAmelCase_ = pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ = model(_UpperCAmelCase , interpolate_pos_encoding=_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = TFViTForImageClassification(_UpperCAmelCase ) UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () UpperCamelCase = ( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = TFViTModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' pass def lowercase__ ( self : str ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , tf.keras.layers.Layer ) ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowercase__ ( self : int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowercase__ ( self : int ) -> Any: '''simple docstring''' UpperCAmelCase_ = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 )
82
1
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( __snake_case , unittest.TestCase ): lowercase_ : str =LEDTokenizer lowercase_ : Union[str, Any] =LEDTokenizerFast lowercase_ : Tuple =True def A__ ( self): super().setUp() lowercase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase = dict(zip(A_ ,range(len(A_)))) lowercase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase = {"unk_token": "<unk>"} lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file''']) lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''') as fp: fp.write(json.dumps(A_) + '''\n''') with open(self.merges_file ,'''w''' ,encoding='''utf-8''') as fp: fp.write('''\n'''.join(A_)) def A__ ( self ,**A__): kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**A_) def A__ ( self ,**A__): kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**A_) def A__ ( self ,A__): return "lower newer", "lower newer" @cached_property def A__ ( self): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''') @cached_property def A__ ( self): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''') @require_torch def A__ ( self): lowercase = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase = tokenizer(A_ ,max_length=len(A_) ,padding=A_ ,return_tensors='''pt''') self.assertIsInstance(A_ ,A_) self.assertEqual((2, 9) ,batch.input_ids.shape) self.assertEqual((2, 9) ,batch.attention_mask.shape) lowercase = batch.input_ids.tolist()[0] self.assertListEqual(A_ ,A_) @require_torch def A__ ( self): lowercase = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase = tokenizer(A_ ,padding=A_ ,return_tensors='''pt''') self.assertIn('''input_ids''' ,A_) self.assertIn('''attention_mask''' ,A_) self.assertNotIn('''labels''' ,A_) self.assertNotIn('''decoder_attention_mask''' ,A_) @require_torch def A__ ( self): lowercase = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase = tokenizer(text_target=A_ ,max_length=3_2 ,padding='''max_length''' ,return_tensors='''pt''') self.assertEqual(3_2 ,targets['''input_ids'''].shape[1]) @require_torch def A__ ( self): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase = tokenizer( ['''I am a small frog''' * 1_0_2_4, '''I am a small frog'''] ,padding=A_ ,truncation=A_ ,return_tensors='''pt''') self.assertIsInstance(A_ ,A_) self.assertEqual(batch.input_ids.shape ,(2, 5_1_2_2)) @require_torch def A__ ( self): lowercase = ["A long paragraph for summarization."] lowercase = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase = tokenizer(A_ ,return_tensors='''pt''') lowercase = tokenizer(text_target=A_ ,return_tensors='''pt''') lowercase = inputs["input_ids"] lowercase = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) @require_torch def A__ ( self): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase = ["Summary of the text.", "Another summary."] lowercase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowercase = tokenizer(A_ ,padding=A_) lowercase = [[0] * len(A_) for x in encoded_output["input_ids"]] lowercase = tokenizer.pad(A_) self.assertSequenceEqual(outputs['''global_attention_mask'''] ,A_) def A__ ( self): pass def A__ ( self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase = self.rust_tokenizer_class.from_pretrained(A_ ,**A_) lowercase = self.tokenizer_class.from_pretrained(A_ ,**A_) lowercase = "A, <mask> AllenNLP sentence." lowercase = tokenizer_r.encode_plus(A_ ,add_special_tokens=A_ ,return_token_type_ids=A_) lowercase = tokenizer_p.encode_plus(A_ ,add_special_tokens=A_ ,return_token_type_ids=A_) self.assertEqual(sum(tokens_r['''token_type_ids''']) ,sum(tokens_p['''token_type_ids'''])) self.assertEqual( sum(tokens_r['''attention_mask''']) / len(tokens_r['''attention_mask''']) ,sum(tokens_p['''attention_mask''']) / len(tokens_p['''attention_mask''']) ,) lowercase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids''']) lowercase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids''']) self.assertSequenceEqual(tokens_p['''input_ids'''] ,[0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2]) self.assertSequenceEqual(tokens_r['''input_ids'''] ,[0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2]) self.assertSequenceEqual( A_ ,['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>''']) self.assertSequenceEqual( A_ ,['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''])
716
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowercase__ :Any = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def UpperCamelCase ( lowerCAmelCase__=None ): '''simple docstring''' if subparsers is not None: lowercase = subparsers.add_parser('''tpu-config''' , description=_description ) else: lowercase = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments lowercase = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=lowerCAmelCase__ , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=lowerCAmelCase__ , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) lowercase = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=lowerCAmelCase__ , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase__ ) return parser def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(lowerCAmelCase__ ): lowercase = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: lowercase = defaults.command_file if not args.command and defaults.commands is not None: lowercase = defaults.commands if not args.tpu_name: lowercase = defaults.tpu_name if not args.tpu_zone: lowercase = defaults.tpu_zone if args.accelerate_version == "dev": lowercase = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": lowercase = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , lowerCAmelCase__ ): lowercase = f'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: lowercase = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , lowerCAmelCase__ ): lowercase = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate lowercase = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'pip install {args.accelerate_version}'] new_cmd += args.command lowercase = '''; '''.join(lowerCAmelCase__ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess lowercase = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'Running {" ".join(lowerCAmelCase__ )}' ) return subprocess.run(lowerCAmelCase__ ) print('''Successfully setup pod.''' ) def UpperCamelCase ( ): '''simple docstring''' lowercase = tpu_command_parser() lowercase = parser.parse_args() tpu_command_launcher(lowerCAmelCase__ )
633
0
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = CustomTokenizer pass
480
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __SCREAMING_SNAKE_CASE : Optional[int] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
348
0
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( lowercase__ , unittest.TestCase ): """simple docstring""" _lowercase : Dict = None _lowercase : int = BloomTokenizerFast _lowercase : Any = BloomTokenizerFast _lowercase : Dict = True _lowercase : Union[str, Any] = False _lowercase : Optional[Any] = '''tokenizer_file''' _lowercase : Any = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def __magic_name__ ( self : Tuple): '''simple docstring''' super().setUp() snake_case__ = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""") tokenizer.save_pretrained(self.tmpdirname) def __magic_name__ ( self : str , **UpperCamelCase__ : Dict): '''simple docstring''' kwargs.update(self.special_tokens_map) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__) def __magic_name__ ( self : int): '''simple docstring''' snake_case__ = self.get_rust_tokenizer() snake_case__ = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] snake_case__ = [[2_1_7_5, 2_3_7_1_4, 7_3_1_7_3, 1_4_4_2_5_2, 2], [7_7, 1_3_2_6_1_9, 3_4_7_8, 3_6_8, 1_0_9_5_8_6, 3_5_4_3_3, 2]] snake_case__ = tokenizer.batch_encode_plus(UpperCamelCase__)["input_ids"] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__) snake_case__ = tokenizer.batch_decode(UpperCamelCase__) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__) def __magic_name__ ( self : Dict , UpperCamelCase__ : List[str]=6): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})'''): snake_case__ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input snake_case__ = "This is a simple input" snake_case__ = ["This is a simple input 1", "This is a simple input 2"] snake_case__ = ("This is a simple input", "This is a pair") snake_case__ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(UpperCamelCase__ , max_length=UpperCamelCase__) tokenizer_r.encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__) tokenizer_r.batch_encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__) tokenizer_r.encode(UpperCamelCase__ , max_length=UpperCamelCase__) tokenizer_r.batch_encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""") snake_case__ = None # Hotfixing padding = None self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""") # Simple input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""") # Simple input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" , ) # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""") # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""") # Pair input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" , ) def __magic_name__ ( self : Any): '''simple docstring''' snake_case__ = self.get_rust_tokenizer() snake_case__ = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=UpperCamelCase__) snake_case__ = next(iter(UpperCamelCase__))["premise"] # pick up one data snake_case__ = list(sample_data.values()) snake_case__ = list(map(tokenizer.encode , UpperCamelCase__)) snake_case__ = [tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__) for x in output_tokens] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__) def __magic_name__ ( self : Union[str, Any]): '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map) , 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]) , 1)
704
from __future__ import annotations import time a__ = list[tuple[int, int]] a__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Node | None): '''simple docstring''' snake_case__ = pos_x snake_case__ = pos_y snake_case__ = (pos_y, pos_x) snake_case__ = goal_x snake_case__ = goal_y snake_case__ = parent class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : tuple[int, int] , UpperCamelCase__ : tuple[int, int]): '''simple docstring''' snake_case__ = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCamelCase__) snake_case__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCamelCase__) snake_case__ = [self.start] snake_case__ = False def __magic_name__ ( self : List[Any]): '''simple docstring''' while self.node_queue: snake_case__ = self.node_queue.pop(0) if current_node.pos == self.target.pos: snake_case__ = True return self.retrace_path(UpperCamelCase__) snake_case__ = self.get_successors(UpperCamelCase__) for node in successors: self.node_queue.append(UpperCamelCase__) if not self.reached: return [self.start.pos] return None def __magic_name__ ( self : Any , UpperCamelCase__ : Node): '''simple docstring''' snake_case__ = [] for action in delta: snake_case__ = parent.pos_x + action[1] snake_case__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(UpperCamelCase__) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCamelCase__ , UpperCamelCase__ , self.target.pos_y , self.target.pos_x , UpperCamelCase__)) return successors def __magic_name__ ( self : str , UpperCamelCase__ : Node | None): '''simple docstring''' snake_case__ = node snake_case__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) snake_case__ = current_node.parent path.reverse() return path class _lowerCAmelCase : """simple docstring""" def __init__( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any): '''simple docstring''' snake_case__ = BreadthFirstSearch(UpperCamelCase__ , UpperCamelCase__) snake_case__ = BreadthFirstSearch(UpperCamelCase__ , UpperCamelCase__) snake_case__ = False def __magic_name__ ( self : Any): '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ = self.fwd_bfs.node_queue.pop(0) snake_case__ = self.bwd_bfs.node_queue.pop(0) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ = True return self.retrace_bidirectional_path( UpperCamelCase__ , UpperCamelCase__) snake_case__ = current_bwd_node snake_case__ = current_fwd_node snake_case__ = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCamelCase__), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCamelCase__), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCamelCase__) if not self.reached: return [self.fwd_bfs.start.pos] return None def __magic_name__ ( self : Union[str, Any] , UpperCamelCase__ : Node , UpperCamelCase__ : Node): '''simple docstring''' snake_case__ = self.fwd_bfs.retrace_path(UpperCamelCase__) snake_case__ = self.bwd_bfs.retrace_path(UpperCamelCase__) bwd_path.pop() bwd_path.reverse() snake_case__ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a__ = (0, 0) a__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a__ = time.time() a__ = BreadthFirstSearch(init, goal) a__ = bfs.search() a__ = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) a__ = time.time() a__ = BidirectionalBreadthFirstSearch(init, goal) a__ = bd_bfs.search() a__ = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
99
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _a : _lowercase : int _lowercase : Node | None = None _lowercase : Node | None = None def _a ( ): """simple docstring""" lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] def populate_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return output def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] def populate_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return output def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(SCREAMING_SNAKE_CASE ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowercase__ = 0 return output def _a ( ): # Main function for testing. """simple docstring""" lowercase__ = make_tree() print(f'In-order Traversal: {inorder(SCREAMING_SNAKE_CASE )}' ) print(f'Pre-order Traversal: {preorder(SCREAMING_SNAKE_CASE )}' ) print(f'Post-order Traversal: {postorder(SCREAMING_SNAKE_CASE )}' , '''\n''' ) print(f'Height of Tree: {height(SCREAMING_SNAKE_CASE )}' , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(SCREAMING_SNAKE_CASE ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(SCREAMING_SNAKE_CASE ) + 1 ): print(f'Level {level}:' , get_nodes_from_left_to_right(SCREAMING_SNAKE_CASE , level=SCREAMING_SNAKE_CASE ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
43
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Tuple = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: lowerCamelCase__ = 1024 lowerCamelCase__ = 4096 lowerCamelCase__ = 24 lowerCamelCase__ = 16 lowerCamelCase__ = [5, 11, 17, 23] lowerCamelCase__ = [256, 512, 1024, 1024] lowerCamelCase__ = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCamelCase__ = 768 lowerCamelCase__ = [1, 1, 1, 0.5] lowerCamelCase__ = [256, 512, 768, 768] lowerCamelCase__ = 150 lowerCamelCase__ = 16 lowerCamelCase__ = (1, 384, 384) lowerCamelCase__ = False lowerCamelCase__ = """project""" if "ade" in checkpoint_url: lowerCamelCase__ = True lowerCamelCase__ = 768 lowerCamelCase__ = [1, 1, 1, 0.5] lowerCamelCase__ = 150 lowerCamelCase__ = 16 lowerCamelCase__ = """huggingface/label-files""" lowerCamelCase__ = """ade20k-id2label.json""" lowerCamelCase__ = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ = idalabel lowerCamelCase__ = {v: k for k, v in idalabel.items()} lowerCamelCase__ = [1, 150, 480, 480] return config, expected_shape def A__ ( __lowerCAmelCase : Optional[int] ): lowerCamelCase__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : List[Any] ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: lowerCamelCase__ = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: lowerCamelCase__ = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: lowerCamelCase__ = name.replace("""proj""" , """projection""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: lowerCamelCase__ = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: lowerCamelCase__ = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: lowerCamelCase__ = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: lowerCamelCase__ = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: lowerCamelCase__ = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: lowerCamelCase__ = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: lowerCamelCase__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: lowerCamelCase__ = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: lowerCamelCase__ = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: lowerCamelCase__ = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: lowerCamelCase__ = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: lowerCamelCase__ = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: lowerCamelCase__ = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: lowerCamelCase__ = name.replace("""bn""" , """batch_norm""" ) if "head" in name: lowerCamelCase__ = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: lowerCamelCase__ = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: lowerCamelCase__ = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: lowerCamelCase__ = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: lowerCamelCase__ = name.replace("""..""" , """.""" ) if "stem.conv" in name: lowerCamelCase__ = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: lowerCamelCase__ = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: lowerCamelCase__ = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: lowerCamelCase__ = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: lowerCamelCase__ = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: lowerCamelCase__ = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ = in_proj_weight[: config.hidden_size, :] lowerCamelCase__ = in_proj_bias[: config.hidden_size] lowerCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ = in_proj_bias[-config.hidden_size :] def A__ ( ): lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ): lowerCamelCase__ , lowerCamelCase__ = get_dpt_config(__lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(__lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) lowerCamelCase__ = val # read in qkv matrices read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model lowerCamelCase__ = DPTForSemanticSegmentation(__lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Check outputs on an image lowerCamelCase__ = 480 if """ade""" in checkpoint_url else 384 lowerCamelCase__ = DPTImageProcessor(size=__lowerCAmelCase ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" ) # forward pass lowerCamelCase__ = model(**__lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth if show_prediction: lowerCamelCase__ = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=__lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) UpperCamelCase : List[str] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
50
0
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : str , **lowerCAmelCase__ : List[str] ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[Any] , **lowerCAmelCase__ : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = {} __SCREAMING_SNAKE_CASE : str = {} __SCREAMING_SNAKE_CASE : Tuple = {} # preprocess args if "points_per_batch" in kwargs: __SCREAMING_SNAKE_CASE : Any = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: __SCREAMING_SNAKE_CASE : Dict = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: __SCREAMING_SNAKE_CASE : List[Any] = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: __SCREAMING_SNAKE_CASE : Dict = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: __SCREAMING_SNAKE_CASE : int = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: __SCREAMING_SNAKE_CASE : Optional[int] = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: __SCREAMING_SNAKE_CASE : Optional[int] = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: __SCREAMING_SNAKE_CASE : Optional[int] = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: __SCREAMING_SNAKE_CASE : List[Any] = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: __SCREAMING_SNAKE_CASE : Optional[int] = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: __SCREAMING_SNAKE_CASE : Optional[Any] = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: __SCREAMING_SNAKE_CASE : Any = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Tuple , lowerCAmelCase__ : int , *lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Optional[int]=None , **lowerCAmelCase__ : Optional[int] ): """simple docstring""" return super().__call__(lowerCAmelCase__ , *lowerCAmelCase__ , num_workers=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any]=6_4 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : float = 5_1_2 / 1_5_0_0 , lowerCAmelCase__ : Optional[int] = 3_2 , lowerCAmelCase__ : Optional[int] = 1 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = load_image(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = self.image_processor.size["""longest_edge"""] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor.generate_crop_boxes( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self.image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inference_context() with inference_context(): __SCREAMING_SNAKE_CASE : Any = self._ensure_tensor_on_device(lowerCAmelCase__ , device=self.device ) __SCREAMING_SNAKE_CASE : int = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) __SCREAMING_SNAKE_CASE : List[Any] = image_embeddings __SCREAMING_SNAKE_CASE : List[str] = grid_points.shape[1] __SCREAMING_SNAKE_CASE : Union[str, Any] = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : List[Any] = grid_points[:, i : i + points_per_batch, :, :] __SCREAMING_SNAKE_CASE : Dict = input_labels[:, i : i + points_per_batch] __SCREAMING_SNAKE_CASE : Any = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=0.88 , lowerCAmelCase__ : Dict=0.95 , lowerCAmelCase__ : List[str]=0 , lowerCAmelCase__ : Optional[int]=1 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = model_inputs.pop("""input_boxes""" ) __SCREAMING_SNAKE_CASE : int = model_inputs.pop("""is_last""" ) __SCREAMING_SNAKE_CASE : Any = model_inputs.pop("""original_sizes""" ).tolist() __SCREAMING_SNAKE_CASE : str = model_inputs.pop("""reshaped_input_sizes""" ).tolist() __SCREAMING_SNAKE_CASE : Optional[Any] = self.model(**lowerCAmelCase__ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __SCREAMING_SNAKE_CASE : Any = model_outputs["""pred_masks"""] __SCREAMING_SNAKE_CASE : Dict = self.image_processor.post_process_masks( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , binarize=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = model_outputs["""iou_scores"""] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int=False , lowerCAmelCase__ : List[str]=False , lowerCAmelCase__ : Optional[Any]=0.7 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : Any = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) __SCREAMING_SNAKE_CASE : List[Any] = torch.cat(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = torch.cat(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor.post_process_for_mask_generation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = defaultdict(lowerCAmelCase__ ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = {} if output_rle_mask: __SCREAMING_SNAKE_CASE : List[Any] = rle_mask if output_bboxes_mask: __SCREAMING_SNAKE_CASE : List[Any] = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
178
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def lowerCAmelCase_ ( _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : List[Any] = SwinvaConfig() __SCREAMING_SNAKE_CASE : List[Any] = swinva_name.split("""_""" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = name_split[1] if "to" in name_split[3]: __SCREAMING_SNAKE_CASE : Dict = int(name_split[3][-3:] ) else: __SCREAMING_SNAKE_CASE : str = int(name_split[3] ) if "to" in name_split[2]: __SCREAMING_SNAKE_CASE : Optional[Any] = int(name_split[2][-2:] ) else: __SCREAMING_SNAKE_CASE : Optional[int] = int(name_split[2][6:] ) if model_size == "tiny": __SCREAMING_SNAKE_CASE : Dict = 96 __SCREAMING_SNAKE_CASE : List[str] = (2, 2, 6, 2) __SCREAMING_SNAKE_CASE : List[Any] = (3, 6, 12, 24) elif model_size == "small": __SCREAMING_SNAKE_CASE : List[str] = 96 __SCREAMING_SNAKE_CASE : int = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE : int = (3, 6, 12, 24) elif model_size == "base": __SCREAMING_SNAKE_CASE : int = 1_28 __SCREAMING_SNAKE_CASE : str = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE : Optional[int] = (4, 8, 16, 32) else: __SCREAMING_SNAKE_CASE : List[str] = 1_92 __SCREAMING_SNAKE_CASE : Union[str, Any] = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE : Dict = (6, 12, 24, 48) if "to" in swinva_name: __SCREAMING_SNAKE_CASE : int = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __SCREAMING_SNAKE_CASE : int = 2_18_41 __SCREAMING_SNAKE_CASE : str = """huggingface/label-files""" __SCREAMING_SNAKE_CASE : List[str] = """imagenet-22k-id2label.json""" __SCREAMING_SNAKE_CASE : List[str] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE : List[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Optional[int] = idalabel __SCREAMING_SNAKE_CASE : str = {v: k for k, v in idalabel.items()} else: __SCREAMING_SNAKE_CASE : str = 10_00 __SCREAMING_SNAKE_CASE : Optional[int] = """huggingface/label-files""" __SCREAMING_SNAKE_CASE : Any = """imagenet-1k-id2label.json""" __SCREAMING_SNAKE_CASE : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE : int = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Optional[int] = idalabel __SCREAMING_SNAKE_CASE : Dict = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Any = img_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_classes __SCREAMING_SNAKE_CASE : int = embed_dim __SCREAMING_SNAKE_CASE : Dict = depths __SCREAMING_SNAKE_CASE : str = num_heads __SCREAMING_SNAKE_CASE : int = window_size return config def lowerCAmelCase_ ( _lowerCamelCase: int ): if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: __SCREAMING_SNAKE_CASE : Optional[int] = """encoder.""" + name if "attn.proj" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __SCREAMING_SNAKE_CASE : Any = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: __SCREAMING_SNAKE_CASE : str = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if name == "norm.weight": __SCREAMING_SNAKE_CASE : Tuple = """layernorm.weight""" if name == "norm.bias": __SCREAMING_SNAKE_CASE : Optional[int] = """layernorm.bias""" if "head" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""head""" , """classifier""" ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = """swinv2.""" + name return name def lowerCAmelCase_ ( _lowerCamelCase: int , _lowerCamelCase: Optional[Any] ): for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE : Optional[Any] = orig_state_dict.pop(_lowerCamelCase ) if "mask" in key: continue elif "qkv" in key: __SCREAMING_SNAKE_CASE : Union[str, Any] = key.split(""".""" ) __SCREAMING_SNAKE_CASE : List[str] = int(key_split[1] ) __SCREAMING_SNAKE_CASE : Dict = int(key_split[3] ) __SCREAMING_SNAKE_CASE : str = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __SCREAMING_SNAKE_CASE : Optional[int] = val[:dim, :] __SCREAMING_SNAKE_CASE : str = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE : Dict = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Optional[Any] = val[:dim] __SCREAMING_SNAKE_CASE : int = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : int = val[-dim:] else: __SCREAMING_SNAKE_CASE : Optional[Any] = val return orig_state_dict def lowerCAmelCase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : Union[str, Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() __SCREAMING_SNAKE_CASE : int = get_swinva_config(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = SwinvaForImageClassification(_lowerCamelCase ) model.eval() __SCREAMING_SNAKE_CASE : Optional[int] = convert_state_dict(timm_model.state_dict() , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" __SCREAMING_SNAKE_CASE : List[Any] = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swinva_name.replace("""_""" , """-""" ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE : int = timm_model(inputs["""pixel_values"""] ) __SCREAMING_SNAKE_CASE : Dict = model(**_lowerCamelCase ).logits assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) print(F"Saving model {swinva_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase ) , organization="""nandwalritik""" , commit_message="""Add model""" , ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase__ : Optional[int] = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
178
1
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCAmelCase_ ( __A , __A ): '''simple docstring''' @register_to_config def __init__( self , *, __UpperCAmelCase = 4 , __UpperCAmelCase = 768 , __UpperCAmelCase , __UpperCAmelCase , ): super().__init__() SCREAMING_SNAKE_CASE_ : Any =nn.Parameter(torch.zeros(__UpperCAmelCase ) ) # parameters for additional clip time embeddings SCREAMING_SNAKE_CASE_ : Any =nn.Linear(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict =nn.Linear(__UpperCAmelCase , __UpperCAmelCase ) # parameters for encoder hidden states SCREAMING_SNAKE_CASE_ : Dict =clip_extra_context_tokens SCREAMING_SNAKE_CASE_ : Optional[int] =nn.Linear( __UpperCAmelCase , self.clip_extra_context_tokens * cross_attention_dim ) SCREAMING_SNAKE_CASE_ : Tuple =nn.Linear(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : str =nn.LayerNorm(__UpperCAmelCase ) def __lowerCamelCase ( self , *, __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings SCREAMING_SNAKE_CASE_ : Tuple =image_embeddings.shape[0] SCREAMING_SNAKE_CASE_ : Optional[int] =self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] =classifier_free_guidance_embeddings.expand( __UpperCAmelCase , -1 ) SCREAMING_SNAKE_CASE_ : Tuple =torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] SCREAMING_SNAKE_CASE_ : Any =prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... SCREAMING_SNAKE_CASE_ : Dict =self.embedding_proj(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple =self.clip_image_embeddings_project_to_time_embeddings(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict =time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.clip_extra_context_tokens_proj(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : int =clip_extra_context_tokens.reshape(__UpperCAmelCase , -1 , self.clip_extra_context_tokens ) SCREAMING_SNAKE_CASE_ : List[Any] =clip_extra_context_tokens.permute(0 , 2 , 1 ) SCREAMING_SNAKE_CASE_ : Tuple =self.encoder_hidden_states_proj(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] =self.text_encoder_hidden_states_norm(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
220
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = 'Hello, World!' __SCREAMING_SNAKE_CASE = 'en_XX' def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : str ,lowerCAmelCase_ : str ,lowerCAmelCase_ : bool ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] =Path('data_bin' ) SCREAMING_SNAKE_CASE_ : Any =FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(lowerCAmelCase_ ).parent ) ,checkpoint_file=Path(lowerCAmelCase_ ).name ,_name='xmod_base' ,arch='xmod_base' ,task='multilingual_masked_lm' ,data_name_or_path=str(lowerCAmelCase_ ) ,bpe='sentencepiece' ,sentencepiece_model=str(Path(lowerCAmelCase_ ).parent / 'sentencepiece.bpe.model' ) ,src_dict=str(data_dir / 'dict.txt' ) ,) xmod.eval() # disable dropout print(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] =xmod.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE_ : Union[str, Any] =XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings ,hidden_size=xmod.cfg.model.encoder_embed_dim ,num_hidden_layers=xmod.cfg.model.encoder_layers ,num_attention_heads=xmod.cfg.model.encoder_attention_heads ,intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1e-5 ,pre_norm=xmod.cfg.model.encoder_normalize_before ,adapter_reduction_factor=getattr(xmod.cfg.model ,'bottleneck' ,2 ) ,adapter_layer_norm=xmod.cfg.model.adapter_layer_norm ,adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm ,ln_before_adapter=xmod.cfg.model.ln_before_adapter ,languages=xmod.cfg.model.languages ,) if classification_head: SCREAMING_SNAKE_CASE_ : Any =xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' ,lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple =XmodForSequenceClassification(lowerCAmelCase_ ) if classification_head else XmodForMaskedLM(lowerCAmelCase_ ) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE_ : Any =xmod_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE_ : Dict =xmod_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. SCREAMING_SNAKE_CASE_ : Dict =xmod_sent_encoder.layernorm_embedding.weight SCREAMING_SNAKE_CASE_ : Tuple =xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer SCREAMING_SNAKE_CASE_ : Dict =model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE_ : List[Any] =xmod_sent_encoder.layers[i] # self attention SCREAMING_SNAKE_CASE_ : int =layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) SCREAMING_SNAKE_CASE_ : Tuple =xmod_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE_ : int =xmod_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE_ : Any =xmod_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE_ : Optional[int] =xmod_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE_ : Union[str, Any] =xmod_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE_ : int =xmod_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE_ : Dict =layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) SCREAMING_SNAKE_CASE_ : Optional[Any] =xmod_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE_ : Tuple =xmod_layer.self_attn.out_proj.bias SCREAMING_SNAKE_CASE_ : Any =xmod_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE_ : Optional[Any] =xmod_layer.self_attn_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE_ : Optional[int] =layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) SCREAMING_SNAKE_CASE_ : int =xmod_layer.fca.weight SCREAMING_SNAKE_CASE_ : List[Any] =xmod_layer.fca.bias # output SCREAMING_SNAKE_CASE_ : Union[str, Any] =layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) SCREAMING_SNAKE_CASE_ : Any =xmod_layer.fca.weight SCREAMING_SNAKE_CASE_ : Dict =xmod_layer.fca.bias SCREAMING_SNAKE_CASE_ : str =xmod_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE_ : List[str] =xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: SCREAMING_SNAKE_CASE_ : Dict =xmod_layer.adapter_layer_norm.weight SCREAMING_SNAKE_CASE_ : Union[str, Any] =xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): SCREAMING_SNAKE_CASE_ : Union[str, Any] =bert_output.adapter_modules[lang_code] SCREAMING_SNAKE_CASE_ : Tuple =xmod_layer.adapter_modules[lang_code] SCREAMING_SNAKE_CASE_ : int =from_adapter.fca.weight SCREAMING_SNAKE_CASE_ : Union[str, Any] =from_adapter.fca.bias SCREAMING_SNAKE_CASE_ : Optional[Any] =from_adapter.fca.weight SCREAMING_SNAKE_CASE_ : int =from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: SCREAMING_SNAKE_CASE_ : str =xmod_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE_ : Optional[int] =xmod_sent_encoder.layer_norm.bias if classification_head: SCREAMING_SNAKE_CASE_ : List[Any] =xmod.model.classification_heads['mnli'].dense.weight SCREAMING_SNAKE_CASE_ : Optional[Any] =xmod.model.classification_heads['mnli'].dense.bias SCREAMING_SNAKE_CASE_ : Dict =xmod.model.classification_heads['mnli'].out_proj.weight SCREAMING_SNAKE_CASE_ : Optional[int] =xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE_ : Optional[int] =xmod.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE_ : Tuple =xmod.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE_ : Dict =xmod.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE_ : Tuple =xmod.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE_ : List[str] =xmod.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE_ : Tuple =xmod.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE_ : Optional[Any] =xmod.encode(lowerCAmelCase_ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] =model(lowerCAmelCase_ )[0] if classification_head: SCREAMING_SNAKE_CASE_ : Union[str, Any] =xmod.model.classification_heads['mnli'](xmod.extract_features(lowerCAmelCase_ ) ) else: SCREAMING_SNAKE_CASE_ : List[str] =xmod.model(lowerCAmelCase_ ,lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape ,their_output.shape ) SCREAMING_SNAKE_CASE_ : str =torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 SCREAMING_SNAKE_CASE_ : str =torch.allclose(lowerCAmelCase_ ,lowerCAmelCase_ ,atol=1e-3 ) print('Do both models output the same tensors?' ,'🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(lowerCAmelCase_ ).mkdir(parents=lowerCAmelCase_ ,exist_ok=lowerCAmelCase_ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
220
1
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __lowercase : Union[str, Any] = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex __lowercase : Tuple = 10 __lowercase : Union[str, Any] = 256 def lowercase_ ( _lowercase ) -> Optional[MinHash]: '''simple docstring''' if len(_lowercase ) < MIN_NUM_TOKENS: return None lowerCamelCase_ : Union[str, Any] = MinHash(num_perm=_lowercase ) for token in set(_lowercase ): min_hash.update(token.encode() ) return min_hash def lowercase_ ( _lowercase ) -> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(_lowercase ) if len(t.strip() ) > 0} class __lowercase : def __init__(self , *, A = 0.85 , ): lowerCamelCase_ : Optional[Any] = duplication_jaccard_threshold lowerCamelCase_ : Any = NUM_PERM lowerCamelCase_ : str = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowerCamelCase_ : Optional[int] = defaultdict(A ) def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : int = self._index.query(A ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = [] for base, duplicates in self._duplicate_clusters.items(): lowerCamelCase_ : Any = [base] + list(A ) # reformat the cluster to be a list of dict lowerCamelCase_ : List[Any] = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Any = self.get_duplicate_clusters() with open(A , '''w''' ) as f: json.dump(A , A ) def lowercase_ ( _lowercase ) -> Any: '''simple docstring''' lowerCamelCase_, lowerCamelCase_ : List[str] = element lowerCamelCase_ : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowercase_ ( _lowercase ) -> Union[str, Any]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_lowercase , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def lowercase_ ( _lowercase , _lowercase ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ : List[Any] = DuplicationIndex(duplication_jaccard_threshold=_lowercase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_lowercase ) ) , max_queue_size=100 ) ): di.add(_lowercase , _lowercase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowercase_ ( _lowercase , _lowercase ) -> float: '''simple docstring''' lowerCamelCase_ : int = get_tokens(_lowercase ) lowerCamelCase_ : Optional[int] = get_tokens(_lowercase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __lowercase : str = None def lowercase_ ( _lowercase , _lowercase ) -> Dict: '''simple docstring''' lowerCamelCase_ : str = [] for elementa in cluster: lowerCamelCase_ : Optional[int] = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: lowerCamelCase_ : List[str] = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(_lowercase , _lowercase ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowerCamelCase_ : List[str] = 1 extremes.append(_lowercase ) return extremes def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: '''simple docstring''' global _shared_dataset lowerCamelCase_ : Tuple = dataset lowerCamelCase_ : Optional[Any] = [] lowerCamelCase_ : List[str] = partial(_find_cluster_extremes_shared , jaccard_threshold=_lowercase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _lowercase , _lowercase , ) , total=len(_lowercase ) , ): extremes_list.append(_lowercase ) return extremes_list def lowercase_ ( _lowercase , _lowercase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' lowerCamelCase_ : Any = make_duplicate_clusters(_lowercase , _lowercase ) lowerCamelCase_ : List[Any] = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} lowerCamelCase_ : Optional[int] = {} lowerCamelCase_ : Tuple = find_extremes(_lowercase , _lowercase , _lowercase ) for extremes in extremes_clusters: for element in extremes: lowerCamelCase_ : str = element lowerCamelCase_ : Dict = duplicate_indices - set(extreme_dict.keys() ) lowerCamelCase_ : Tuple = dataset.filter(lambda _lowercase , _lowercase : idx not in remove_indices , with_indices=_lowercase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowerCamelCase_ : List[str] = element['''base_index'''] in extreme_dict if element["is_extreme"]: lowerCamelCase_ : Dict = extreme_dict[element['''base_index''']]['''copies'''] print(F"""Original dataset size: {len(_lowercase )}""" ) print(F"""Number of duplicate clusters: {len(_lowercase )}""" ) print(F"""Files in duplicate cluster: {len(_lowercase )}""" ) print(F"""Unique files in duplicate cluster: {len(_lowercase )}""" ) print(F"""Filtered dataset size: {len(_lowercase )}""" ) return ds_filter, duplicate_clusters
357
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowercase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __lowercase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
357
1
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> str: # Checks if the entire collection has been sorted if len(SCREAMING_SNAKE_CASE ) <= 1 or n <= 1: return insert_next(SCREAMING_SNAKE_CASE , n - 1 ) rec_insertion_sort(SCREAMING_SNAKE_CASE , n - 1 ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[Any]: # Checks order between adjacent elements if index >= len(SCREAMING_SNAKE_CASE ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __lowerCAmelCase , __lowerCAmelCase : Any = ( collection[index], collection[index - 1], ) insert_next(SCREAMING_SNAKE_CASE , index + 1 ) if __name__ == "__main__": _UpperCAmelCase = input('Enter integers separated by spaces: ') _UpperCAmelCase = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
504
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> list[tuple[int, int]]: __lowercase , __lowercase = position __lowercase = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __lowercase = [] for position in positions: __lowercase , __lowercase = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(snake_case ) return permissible_positions def SCREAMING_SNAKE_CASE ( snake_case ) -> bool: return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> bool: if is_complete(snake_case ): return True for position in get_valid_pos(snake_case , len(snake_case ) ): __lowercase , __lowercase = position if board[y][x] == 0: __lowercase = curr + 1 if open_knight_tour_helper(snake_case , snake_case , curr + 1 ): return True __lowercase = 0 return False def SCREAMING_SNAKE_CASE ( snake_case ) -> list[list[int]]: __lowercase = [[0 for i in range(snake_case )] for j in range(snake_case )] for i in range(snake_case ): for j in range(snake_case ): __lowercase = 1 if open_knight_tour_helper(snake_case , (i, j) , 1 ): return board __lowercase = 0 __lowercase = F"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
375
0
"""simple docstring""" from ... import PretrainedConfig UpperCamelCase_ : List[Any] = { """sijunhe/nezha-cn-base""": """https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json""", } class _lowercase ( lowerCAmelCase ): _a : Any = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP _a : str = '''nezha''' def __init__( self : Any , a : Dict=2_1_1_2_8 , a : int=7_6_8 , a : Optional[Any]=1_2 , a : Optional[int]=1_2 , a : Optional[Any]=3_0_7_2 , a : List[str]="gelu" , a : Tuple=0.1 , a : List[str]=0.1 , a : str=5_1_2 , a : Optional[int]=6_4 , a : List[Any]=2 , a : Optional[Any]=0.0_2 , a : str=1e-12 , a : str=0.1 , a : Union[str, Any]=0 , a : Union[str, Any]=2 , a : List[Any]=3 , a : int=True , **a : List[Any] , ): """simple docstring""" super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) __snake_case : Optional[Any] =vocab_size __snake_case : Optional[int] =hidden_size __snake_case : Optional[int] =num_hidden_layers __snake_case : List[Any] =num_attention_heads __snake_case : Optional[Any] =hidden_act __snake_case : Tuple =intermediate_size __snake_case : Optional[Any] =hidden_dropout_prob __snake_case : List[Any] =attention_probs_dropout_prob __snake_case : List[str] =max_position_embeddings __snake_case : Optional[Any] =max_relative_position __snake_case : Dict =type_vocab_size __snake_case : int =initializer_range __snake_case : Optional[Any] =layer_norm_eps __snake_case : str =classifier_dropout __snake_case : Union[str, Any] =use_cache
497
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase_ : Union[str, Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCamelCase_ : Optional[Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } UpperCamelCase_ : int = { """moussaKam/mbarthez""": 1024, """moussaKam/barthez""": 1024, """moussaKam/barthez-orangesum-title""": 1024, } UpperCamelCase_ : Optional[int] = """▁""" class _lowercase ( lowerCAmelCase ): _a : int = VOCAB_FILES_NAMES _a : int = PRETRAINED_VOCAB_FILES_MAP _a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , a : Optional[Any] , a : Optional[Any]="<s>" , a : Dict="</s>" , a : Any="</s>" , a : Optional[int]="<s>" , a : Optional[Any]="<unk>" , a : int="<pad>" , a : Tuple="<mask>" , a : Optional[Dict[str, Any]] = None , **a : List[Any] , ): """simple docstring""" __snake_case : Dict =AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token __snake_case : List[str] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) __snake_case : Optional[int] =vocab_file __snake_case : Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a ) ) __snake_case : Optional[Any] ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} __snake_case : Optional[int] =len(self.sp_model ) - 1 __snake_case : Union[str, Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def _UpperCamelCase ( self : Tuple , a : List[int] , a : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict =[self.cls_token_id] __snake_case : List[str] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase ( self : str , a : List[int] , a : Optional[List[int]] = None , a : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1, 1] + ([0] * len(a )) + [1] def _UpperCamelCase ( self : Dict , a : List[int] , a : Optional[List[int]] = None ): """simple docstring""" __snake_case : Optional[int] =[self.sep_token_id] __snake_case : int =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCamelCase ( self : List[Any] ): """simple docstring""" return len(self.sp_model ) def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" __snake_case : List[Any] ={self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self : str , a : str ): """simple docstring""" return self.sp_model.encode(a , out_type=a ) def _UpperCamelCase ( self : int , a : Union[str, Any] ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __snake_case : List[Any] =self.sp_model.PieceToId(a ) return spm_id if spm_id else self.unk_token_id def _UpperCamelCase ( self : List[str] , a : Dict ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(a ) def _UpperCamelCase ( self : Optional[int] , a : int ): """simple docstring""" __snake_case : int =[] __snake_case : Optional[int] ='''''' __snake_case : Optional[int] =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a ) + token __snake_case : str =True __snake_case : int =[] else: current_sub_tokens.append(a ) __snake_case : Tuple =False out_string += self.sp_model.decode(a ) return out_string.strip() def __getstate__( self : Optional[int] ): """simple docstring""" __snake_case : List[Any] =self.__dict__.copy() __snake_case : Optional[Any] =None return state def __setstate__( self : Optional[int] , a : Optional[Any] ): """simple docstring""" __snake_case : Any =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __snake_case : Tuple ={} __snake_case : int =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case : int =os.path.join( a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , '''wb''' ) as fi: __snake_case : List[Any] =self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
497
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
475
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowerCAmelCase : def __init__( self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=512 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ) -> List[str]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = self.vocab_size - 1 def _a ( self ) -> Union[str, Any]: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _a ( self , a_ , a_ , a_ , a_ , *a_ ) -> Optional[int]: _UpperCAmelCase = OpenAIGPTModel(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase = model(a_ , token_type_ids=a_ , head_mask=a_ ) _UpperCAmelCase = model(a_ , token_type_ids=a_ ) _UpperCAmelCase = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , a_ , a_ , a_ , a_ , *a_ ) -> List[Any]: _UpperCAmelCase = OpenAIGPTLMHeadModel(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase = model(a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , a_ , a_ , a_ , a_ , *a_ ) -> Optional[Any]: _UpperCAmelCase = OpenAIGPTDoubleHeadsModel(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase = model(a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , a_ , a_ , a_ , a_ , *a_ ) -> Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = OpenAIGPTForSequenceClassification(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = model(a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> List[str]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class _lowerCAmelCase ( lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase_ : Any = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowercase_ : Optional[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowercase_ : Union[str, Any] = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _a ( self , a_ , a_ , a_ , a_ , a_ ) -> Any: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _a ( self , a_ , a_ , a_=False ) -> Optional[int]: _UpperCAmelCase = super()._prepare_for_class(a_ , a_ , return_labels=a_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=a_ , ) _UpperCAmelCase = inputs_dict["labels"] _UpperCAmelCase = inputs_dict["labels"] _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=a_ , ) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) return inputs_dict def _a ( self ) -> Optional[int]: _UpperCAmelCase = OpenAIGPTModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=a_ , n_embd=37 ) def _a ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _a ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*a_ ) def _a ( self ) -> Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*a_ ) def _a ( self ) -> List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*a_ ) def _a ( self ) -> List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*a_ ) @slow def _a ( self ) -> int: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = OpenAIGPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): @slow def _a ( self ) -> Any: _UpperCAmelCase = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(a_ ) _UpperCAmelCase = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=a_ ) # the president is _UpperCAmelCase = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the _UpperCAmelCase = model.generate(a_ , do_sample=a_ ) self.assertListEqual(output_ids[0].tolist() , a_ )
657
0
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] = None ): '''simple docstring''' a__ : List[str] = word_bank or [] # create a table a__ : int = len(__lowerCAmelCase ) + 1 a__ : list[list[list[str]]] = [] for _ in range(__lowerCAmelCase ): table.append([] ) # seed value a__ : Union[str, Any] = [[]] # because empty string has empty combination # iterate through the indices for i in range(__lowerCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__lowerCAmelCase )] == word: a__ : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__lowerCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__lowerCAmelCase )]: combination.reverse() return table[len(__lowerCAmelCase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
712
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class __UpperCAmelCase ( _UpperCamelCase ): __lowerCamelCase : str = "bart" __lowerCamelCase : Dict = ["past_key_values"] __lowerCamelCase : List[str] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Union[str, Any] , a_ : Union[str, Any]=5_02_65 , a_ : List[str]=10_24 , a_ : str=12 , a_ : Union[str, Any]=40_96 , a_ : Tuple=16 , a_ : List[str]=12 , a_ : int=40_96 , a_ : Tuple=16 , a_ : int=0.0 , a_ : Optional[int]=0.0 , a_ : Dict="gelu" , a_ : Optional[int]=10_24 , a_ : Tuple=0.1 , a_ : str=0.0 , a_ : str=0.0 , a_ : Optional[Any]=0.02 , a_ : Any=0.0 , a_ : int=False , a_ : Dict=True , a_ : List[Any]=3 , a_ : Tuple=1 , a_ : Optional[Any]=0 , a_ : Any=2 , a_ : List[Any]=True , a_ : Dict=2 , a_ : List[str]=2 , **a_ : Dict , ) -> Dict: '''simple docstring''' a__ : List[Any] = vocab_size a__ : Dict = max_position_embeddings a__ : Optional[Any] = d_model a__ : Optional[Any] = encoder_ffn_dim a__ : Union[str, Any] = encoder_layers a__ : Union[str, Any] = encoder_attention_heads a__ : Tuple = decoder_ffn_dim a__ : Union[str, Any] = decoder_layers a__ : Union[str, Any] = decoder_attention_heads a__ : Optional[Any] = dropout a__ : str = attention_dropout a__ : Dict = activation_dropout a__ : List[Any] = activation_function a__ : Dict = init_std a__ : Dict = encoder_layerdrop a__ : List[Any] = decoder_layerdrop a__ : List[Any] = classifier_dropout a__ : Union[str, Any] = use_cache a__ : Any = encoder_layers a__ : str = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=a_ , pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , decoder_start_token_id=a_ , forced_eos_token_id=a_ , **a_ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , a_ ): a__ : List[Any] = self.bos_token_id warnings.warn( F"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " "The config can simply be saved and uploaded again to be fixed." ) class __UpperCAmelCase ( _UpperCamelCase ): @property def UpperCAmelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: a__ : Optional[Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: a__ : Optional[int] = {0: "batch"} a__ : Dict = {0: "batch", 1: "past_decoder_sequence + sequence"} else: a__ : Dict = {0: "batch", 1: "decoder_sequence"} a__ : Union[str, Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(a_ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. a__ : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: a__ , a__ : Any = self.num_layers for i in range(a_ ): a__ : Tuple = {0: "batch", 2: "past_sequence + sequence"} a__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"} else: a__ : List[Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def UpperCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: a__ : int = super().outputs else: a__ : Tuple = super(a_ , self ).outputs if self.use_past: a__ , a__ : List[str] = self.num_layers for i in range(a_ ): a__ : List[Any] = {0: "batch", 2: "past_sequence + sequence"} a__ : List[str] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def UpperCAmelCase ( self : Dict , a_ : PreTrainedTokenizer , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' a__ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a_ , a_ , a_ , a_ , a_ ) # Generate decoder inputs a__ : Optional[Any] = seq_length if not self.use_past else 1 a__ : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a_ , a_ , a_ , a_ , a_ ) a__ : Union[str, Any] = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} a__ : str = dict(**a_ , **a_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch a__ , a__ : Union[str, Any] = common_inputs["input_ids"].shape a__ : List[Any] = common_inputs["decoder_input_ids"].shape[1] a__ , a__ : Tuple = self.num_attention_heads a__ : List[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) a__ : List[str] = decoder_seq_length + 3 a__ : Tuple = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) a__ : List[Any] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(a_ , a_ )] , dim=1 ) a__ : Tuple = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered a__ , a__ : Any = self.num_layers a__ : Dict = min(a_ , a_ ) a__ : Optional[int] = max(a_ , a_ ) - min_num_layers a__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(a_ ): common_inputs["past_key_values"].append( ( torch.zeros(a_ ), torch.zeros(a_ ), torch.zeros(a_ ), torch.zeros(a_ ), ) ) # TODO: test this. a__ : List[Any] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(a_ , a_ ): common_inputs["past_key_values"].append((torch.zeros(a_ ), torch.zeros(a_ )) ) return common_inputs def UpperCAmelCase ( self : Optional[Any] , a_ : PreTrainedTokenizer , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' a__ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a_ , a_ , a_ , a_ , a_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch a__ , a__ : List[str] = common_inputs["input_ids"].shape # Not using the same length for past_key_values a__ : Any = seqlen + 2 a__ , a__ : Any = self.num_layers a__ , a__ : List[Any] = self.num_attention_heads a__ : Optional[int] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) a__ : str = common_inputs["attention_mask"].dtype a__ : List[str] = torch.cat( [common_inputs["attention_mask"], torch.ones(a_ , a_ , dtype=a_ )] , dim=1 ) a__ : Optional[Any] = [ (torch.zeros(a_ ), torch.zeros(a_ )) for _ in range(a_ ) ] return common_inputs def UpperCAmelCase ( self : List[Any] , a_ : PreTrainedTokenizer , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' a__ : Any = compute_effective_axis_dimension( a_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a__ : Any = tokenizer.num_special_tokens_to_add(a_ ) a__ : Dict = compute_effective_axis_dimension( a_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a_ ) # Generate dummy inputs according to compute batch and sequence a__ : int = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size a__ : Any = dict(tokenizer(a_ , return_tensors=a_ ) ) return common_inputs def UpperCAmelCase ( self : List[Any] , a_ : PreTrainedTokenizer , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: a__ : List[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) elif self.task == "causal-lm": a__ : Optional[int] = self._generate_dummy_inputs_for_causal_lm( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) else: a__ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) return common_inputs def UpperCAmelCase ( self : Optional[Any] , a_ : int , a_ : Optional[Any] , a_ : Union[str, Any] , a_ : List[Any] ) -> str: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: a__ : int = super()._flatten_past_key_values_(a_ , a_ , a_ , a_ ) else: a__ : Union[str, Any] = super(a_ , self )._flatten_past_key_values_( a_ , a_ , a_ , a_ )
251
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def _lowerCamelCase (__lowerCamelCase : list[list[float]] ) -> list[list[float]]: a__ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(__lowerCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix a__ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements a__ = [[0.0, 0.0], [0.0, 0.0]] a__ , a__ = matrix[1][1], matrix[0][0] a__ , a__ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(__lowerCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(__lowerCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule a__ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix a__ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] a__ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) a__ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) a__ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) a__ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) a__ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) a__ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) a__ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) a__ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) a__ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) a__ = array(__lowerCamelCase ) for i in range(3 ): for j in range(3 ): a__ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix a__ = array(__lowerCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(__lowerCamelCase ) # Calculate the inverse of the matrix return [[float(d(__lowerCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
489
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( __lowerCAmelCase ): lowerCAmelCase__ : Optional[int] = (UnCLIPScheduler,) def __a ( self : Any , **lowerCamelCase : int ): '''simple docstring''' a__ = { "num_train_timesteps": 1_0_0_0, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**lowerCamelCase ) return config def __a ( self : Dict ): '''simple docstring''' for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def __a ( self : List[str] ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowerCamelCase ) def __a ( self : Any ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase ) def __a ( self : List[str] ): '''simple docstring''' for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=lowerCamelCase ) def __a ( self : Optional[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowerCamelCase ) def __a ( self : str ): '''simple docstring''' for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowerCamelCase , prev_timestep=lowerCamelCase ) def __a ( self : int ): '''simple docstring''' a__ = self.scheduler_classes[0] a__ = self.get_scheduler_config(variance_type="fixed_small_log" ) a__ = scheduler_class(**lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0549625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.9994987 ) ) < 1e-5 def __a ( self : List[Any] ): '''simple docstring''' a__ = self.scheduler_classes[0] a__ = self.get_scheduler_config(variance_type="learned_range" ) a__ = scheduler_class(**lowerCamelCase ) a__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowerCamelCase ) - -10.1712790 < 1e-5 assert scheduler._get_variance(4_8_7 , predicted_variance=lowerCamelCase ) - -5.7998052 < 1e-5 assert scheduler._get_variance(9_9_9 , predicted_variance=lowerCamelCase ) - -0.0010011 < 1e-5 def __a ( self : List[Any] ): '''simple docstring''' a__ = self.scheduler_classes[0] a__ = self.get_scheduler_config() a__ = scheduler_class(**lowerCamelCase ) a__ = scheduler.timesteps a__ = self.dummy_model() a__ = self.dummy_sample_deter a__ = torch.manual_seed(0 ) for i, t in enumerate(lowerCamelCase ): # 1. predict noise residual a__ = model(lowerCamelCase , lowerCamelCase ) # 2. predict previous mean of sample x_t-1 a__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ).prev_sample a__ = pred_prev_sample a__ = torch.sum(torch.abs(lowerCamelCase ) ) a__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3284743 ) < 1e-3 def __a ( self : Union[str, Any] ): '''simple docstring''' a__ = self.scheduler_classes[0] a__ = self.get_scheduler_config() a__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(2_5 ) a__ = scheduler.timesteps a__ = self.dummy_model() a__ = self.dummy_sample_deter a__ = torch.manual_seed(0 ) for i, t in enumerate(lowerCamelCase ): # 1. predict noise residual a__ = model(lowerCamelCase , lowerCamelCase ) if i + 1 == timesteps.shape[0]: a__ = None else: a__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 a__ = scheduler.step( lowerCamelCase , lowerCamelCase , lowerCamelCase , prev_timestep=lowerCamelCase , generator=lowerCamelCase ).prev_sample a__ = pred_prev_sample a__ = torch.sum(torch.abs(lowerCamelCase ) ) a__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3362038 ) < 1e-3 def __a ( self : List[Any] ): '''simple docstring''' pass def __a ( self : Dict ): '''simple docstring''' pass
489
1
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _a ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" snake_case__ : int = old_name if "patch_embed" in old_name: snake_case__ : Optional[int] = old_name.split('''.''' ) if layer == "0": snake_case__ : List[str] = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": snake_case__ : Tuple = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": snake_case__ : Dict = old_name.replace('''3''' , '''convolution2''' ) else: snake_case__ : str = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(r'''\d\.\d''' , __lowerCAmelCase ): snake_case__ : Tuple = r'''\b\d{2}\b''' if bool(re.search(__lowerCAmelCase , __lowerCAmelCase ) ): snake_case__ : int = re.search(r'''\d\.\d\d.''' , __lowerCAmelCase ).group() else: snake_case__ : List[str] = re.search(r'''\d\.\d.''' , __lowerCAmelCase ).group() if int(match[0] ) < 6: snake_case__ : List[Any] = old_name.replace(__lowerCAmelCase , '''''' ) snake_case__ : Dict = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) snake_case__ : List[str] = '''intermediate_stages.''' + trimmed_name else: snake_case__ : Optional[int] = old_name.replace(__lowerCAmelCase , '''''' ) if int(match[2] ) < num_meta4D_last_stage: snake_case__ : Any = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: snake_case__ : Tuple = str(int(match[2] ) - num_meta4D_last_stage ) snake_case__ : Union[str, Any] = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: snake_case__ : int = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: snake_case__ : Union[str, Any] = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: snake_case__ : Dict = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: snake_case__ : int = trimmed_name.replace('''fc2''' , '''linear_out''' ) snake_case__ : Dict = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''' , __lowerCAmelCase ): snake_case__ : Optional[Any] = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: snake_case__ : Optional[int] = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): snake_case__ : Optional[Any] = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): snake_case__ : Tuple = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: snake_case__ : Optional[Any] = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: snake_case__ : Tuple = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: snake_case__ : Any = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: snake_case__ : Optional[int] = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": snake_case__ : List[Any] = new_name.replace('''norm''' , '''layernorm''' ) snake_case__ : str = '''efficientformer.''' + new_name else: snake_case__ : int = '''efficientformer.encoder.''' + new_name return new_name def _a ( __lowerCAmelCase : Tuple , __lowerCAmelCase : int ): """simple docstring""" for key in checkpoint.copy().keys(): snake_case__ : Optional[Any] = checkpoint.pop(__lowerCAmelCase ) snake_case__ : int = val return checkpoint def _a ( ): """simple docstring""" snake_case__ : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ : List[Any] = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return image def _a ( __lowerCAmelCase : Path , __lowerCAmelCase : Path , __lowerCAmelCase : Path , __lowerCAmelCase : bool ): """simple docstring""" snake_case__ : Union[str, Any] = torch.load(__lowerCAmelCase , map_location='''cpu''' )['''model'''] snake_case__ : Optional[int] = EfficientFormerConfig.from_json_file(__lowerCAmelCase ) snake_case__ : List[str] = EfficientFormerForImageClassificationWithTeacher(__lowerCAmelCase ) snake_case__ : Union[str, Any] = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) snake_case__ : Any = config.depths[-1] - config.num_metaad_blocks + 1 snake_case__ : Tuple = convert_torch_checkpoint(__lowerCAmelCase , __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() snake_case__ : Union[str, Any] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image snake_case__ : Optional[Any] = prepare_img() snake_case__ : List[str] = 2_56 snake_case__ : List[Any] = 2_24 snake_case__ : int = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) snake_case__ : int = processor(images=__lowerCAmelCase , return_tensors='''pt''' ).pixel_values # original processing pipeline snake_case__ : Union[str, Any] = Compose( [ Resize(__lowerCAmelCase , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(__lowerCAmelCase ), ToTensor(), Normalize(__lowerCAmelCase , __lowerCAmelCase ), ] ) snake_case__ : List[Any] = image_transforms(__lowerCAmelCase ).unsqueeze(0 ) assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : Optional[int] = model(__lowerCAmelCase ) snake_case__ : List[str] = outputs.logits snake_case__ : List[str] = (1, 10_00) if "l1" in model_name: snake_case__ : List[Any] = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , __lowerCAmelCase , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: snake_case__ : Union[str, Any] = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , __lowerCAmelCase , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: snake_case__ : Optional[Any] = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(__lowerCAmelCase ) print(F"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" , commit_message='''Add model''' , use_temp_dir=__lowerCAmelCase , ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" , commit_message='''Add image processor''' , use_temp_dir=__lowerCAmelCase , ) if __name__ == "__main__": lowerCAmelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) lowerCAmelCase__ : Tuple = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
716
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCAmelCase__ : Dict = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) lowerCAmelCase__ : List[Any] = parser.parse_args() lowerCAmelCase__ : Optional[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCAmelCase__ : Optional[int] = CLIPImageProcessor() lowerCAmelCase__ : str = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") lowerCAmelCase__ : Dict = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
502
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin __lowercase = False @skip_mps class lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : Union[str, Any] = StableDiffusionAttendAndExcitePipeline a__ : str = False a__ : Dict = TEXT_TO_IMAGE_PARAMS a__ : str = TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} ) a__ : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS a__ : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def UpperCamelCase__ ( cls) -> Optional[Any]: super().setUpClass() torch.use_deterministic_algorithms(__lowercase) @classmethod def UpperCamelCase__ ( cls) -> Tuple: super().tearDownClass() torch.use_deterministic_algorithms(__lowercase) def UpperCamelCase__ ( self) -> Tuple: torch.manual_seed(0) __UpperCamelCase :Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__lowercase , ) __UpperCamelCase :List[Any] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__lowercase , set_alpha_to_one=__lowercase , ) torch.manual_seed(0) __UpperCamelCase :str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) __UpperCamelCase :List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __UpperCamelCase :Any = CLIPTextModel(__lowercase) __UpperCamelCase :str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') __UpperCamelCase :Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase__ ( self , __lowercase , __lowercase=0) -> List[str]: if str(__lowercase).startswith('''mps'''): __UpperCamelCase :Tuple = torch.manual_seed(__lowercase) else: __UpperCamelCase :Optional[Any] = torch.Generator(device=__lowercase).manual_seed(__lowercase) __UpperCamelCase :Optional[Any] = { '''prompt''': '''a cat and a frog''', '''token_indices''': [2, 5], '''generator''': generator, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''max_iter_to_alter''': 2, '''thresholds''': {0: 0.7}, } return inputs def UpperCamelCase__ ( self) -> str: __UpperCamelCase :List[Any] = '''cpu''' __UpperCamelCase :Dict = self.get_dummy_components() __UpperCamelCase :Any = self.pipeline_class(**__lowercase) pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) __UpperCamelCase :str = self.get_dummy_inputs(__lowercase) __UpperCamelCase :Union[str, Any] = pipe(**__lowercase).images __UpperCamelCase :Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3)) __UpperCamelCase :str = np.array( [0.63_90_53_64, 0.62_89_73_07, 0.48_59_90_17, 0.5_13_36_24, 0.5_55_00_48, 0.45_76_95_16, 0.50_32_69_73, 0.5_02_31_39, 0.45_38_44_96]) __UpperCamelCase :Any = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(__lowercase , 1E-3) def UpperCamelCase__ ( self) -> List[str]: super().test_cpu_offload_forward_pass(expected_max_diff=5E-4) def UpperCamelCase__ ( self) -> Dict: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def UpperCamelCase__ ( self) -> Optional[Any]: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4) def UpperCamelCase__ ( self) -> Dict: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3) def UpperCamelCase__ ( self) -> Optional[Any]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4) def UpperCamelCase__ ( self) -> str: super().test_save_load_local(expected_max_difference=5E-4) def UpperCamelCase__ ( self) -> Any: super().test_save_load_optional_components(expected_max_difference=4E-4) @require_torch_gpu @slow class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase__ ( cls) -> Optional[int]: super().setUpClass() torch.use_deterministic_algorithms(__lowercase) @classmethod def UpperCamelCase__ ( cls) -> Optional[Any]: super().tearDownClass() torch.use_deterministic_algorithms(__lowercase) def UpperCamelCase__ ( self) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Optional[Any] = torch.manual_seed(51) __UpperCamelCase :List[Any] = StableDiffusionAttendAndExcitePipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , safety_checker=__lowercase , torch_dtype=torch.floataa) pipe.to('''cuda''') __UpperCamelCase :Optional[int] = '''a painting of an elephant with glasses''' __UpperCamelCase :List[str] = [5, 7] __UpperCamelCase :List[Any] = pipe( prompt=__lowercase , token_indices=__lowercase , guidance_scale=7.5 , generator=__lowercase , num_inference_steps=5 , max_iter_to_alter=5 , output_type='''numpy''' , ).images[0] __UpperCamelCase :Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy''') assert np.abs((expected_image - image).max()) < 5E-1
167
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __lowercase = logging.getLogger(__name__) @dataclass class lowerCamelCase_ : '''simple docstring''' a__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) a__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a__ : bool = field(default=UpperCAmelCase_ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class lowerCamelCase_ : '''simple docstring''' a__ : str = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) a__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) a__ : int = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) __UpperCamelCase :Union[str, Any] = import_module('''tasks''' ) try: __UpperCamelCase :int = getattr(SCREAMING_SNAKE_CASE , model_args.task_type ) __UpperCamelCase :TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __UpperCamelCase :Optional[Any] = token_classification_task.get_labels(data_args.labels ) __UpperCamelCase :Dict[int, str] = dict(enumerate(SCREAMING_SNAKE_CASE ) ) __UpperCamelCase :Tuple = len(SCREAMING_SNAKE_CASE ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase :Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE )} , cache_dir=model_args.cache_dir , ) __UpperCamelCase :Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __UpperCamelCase :str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase :Dict = ( TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase :Optional[int] = ( TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple[List[int], List[int]]: __UpperCamelCase :Optional[int] = np.argmax(SCREAMING_SNAKE_CASE , axis=2 ) __UpperCamelCase , __UpperCamelCase :int = preds.shape __UpperCamelCase :str = [[] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCamelCase :int = [[] for _ in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(SCREAMING_SNAKE_CASE ) -> Dict: __UpperCamelCase , __UpperCamelCase :Optional[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "precision": precision_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "recall": recall_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "f1": fa_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), } # Data collator __UpperCamelCase :Tuple = DataCollatorWithPadding(SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase :Union[str, Any] = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=SCREAMING_SNAKE_CASE , eval_dataset=SCREAMING_SNAKE_CASE , compute_metrics=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase :int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCamelCase :Union[str, Any] = trainer.evaluate() __UpperCamelCase :List[str] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) writer.write('''%s = %s\n''' % (key, value) ) results.update(SCREAMING_SNAKE_CASE ) # Predict if training_args.do_predict: __UpperCamelCase :Any = TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :int = trainer.predict(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :Tuple = align_predictions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Tuple = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions __UpperCamelCase :List[str] = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' main() if __name__ == "__main__": main()
167
1
snake_case_ : Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def SCREAMING_SNAKE_CASE_( a__): _SCREAMING_SNAKE_CASE =0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution snake_case_ : list[bool | None] = [None] * 10_00_00_00 snake_case_ : List[Any] = True snake_case_ : List[str] = False def SCREAMING_SNAKE_CASE_( a__): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _SCREAMING_SNAKE_CASE =chain(next_number(a__)) _SCREAMING_SNAKE_CASE =number_chain while number < 1000_0000: _SCREAMING_SNAKE_CASE =number_chain number *= 10 return number_chain def SCREAMING_SNAKE_CASE_( a__ = 1000_0000): for i in range(1 ,a__): if CHAINS[i] is None: chain(i + 1) return CHAINS[:number].count(a__) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
701
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = KandinskyVaaPipeline UpperCAmelCase = [ "image_embeds", "negative_image_embeds", ] UpperCAmelCase = ["image_embeds", "negative_image_embeds"] UpperCAmelCase = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase = False @property def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" return 32 @property def __UpperCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" return 32 @property def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" return self.time_input_dim @property def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" return self.time_input_dim * 4 @property def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" return 100 @property def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE ={ '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _SCREAMING_SNAKE_CASE =UNetaDConditionModel(**_a ) return model @property def __UpperCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.dummy_unet _SCREAMING_SNAKE_CASE =self.dummy_movq _SCREAMING_SNAKE_CASE =DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _SCREAMING_SNAKE_CASE ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __UpperCamelCase ( self : Optional[int] , _a : Tuple , _a : Tuple=0 ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _SCREAMING_SNAKE_CASE =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) if str(_a ).startswith('''mps''' ): _SCREAMING_SNAKE_CASE =torch.manual_seed(_a ) else: _SCREAMING_SNAKE_CASE =torch.Generator(device=_a ).manual_seed(_a ) _SCREAMING_SNAKE_CASE ={ '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''cpu''' _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =self.pipeline_class(**_a ) _SCREAMING_SNAKE_CASE =pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =pipe(**self.get_dummy_inputs(_a ) ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE =np.array( [0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) _SCREAMING_SNAKE_CASE =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _SCREAMING_SNAKE_CASE =KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE =pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE ='''red cat, 4k photo''' _SCREAMING_SNAKE_CASE =torch.Generator(device='''cuda''' ).manual_seed(0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _SCREAMING_SNAKE_CASE =torch.Generator(device='''cuda''' ).manual_seed(0 ) _SCREAMING_SNAKE_CASE =pipeline( image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , output_type='''np''' , ) _SCREAMING_SNAKE_CASE =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_a , _a )
191
0
"""simple docstring""" def __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" if length <= 0 or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(UpperCamelCase__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
657
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowerCAmelCase : def __init__( self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=512 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ) -> List[str]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = self.vocab_size - 1 def _a ( self ) -> Union[str, Any]: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _a ( self , a_ , a_ , a_ , a_ , *a_ ) -> Optional[int]: _UpperCAmelCase = OpenAIGPTModel(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase = model(a_ , token_type_ids=a_ , head_mask=a_ ) _UpperCAmelCase = model(a_ , token_type_ids=a_ ) _UpperCAmelCase = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , a_ , a_ , a_ , a_ , *a_ ) -> List[Any]: _UpperCAmelCase = OpenAIGPTLMHeadModel(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase = model(a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , a_ , a_ , a_ , a_ , *a_ ) -> Optional[Any]: _UpperCAmelCase = OpenAIGPTDoubleHeadsModel(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase = model(a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , a_ , a_ , a_ , a_ , *a_ ) -> Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = OpenAIGPTForSequenceClassification(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = model(a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> List[str]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class _lowerCAmelCase ( lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase_ : Any = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowercase_ : Optional[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowercase_ : Union[str, Any] = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _a ( self , a_ , a_ , a_ , a_ , a_ ) -> Any: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _a ( self , a_ , a_ , a_=False ) -> Optional[int]: _UpperCAmelCase = super()._prepare_for_class(a_ , a_ , return_labels=a_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=a_ , ) _UpperCAmelCase = inputs_dict["labels"] _UpperCAmelCase = inputs_dict["labels"] _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=a_ , ) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) return inputs_dict def _a ( self ) -> Optional[int]: _UpperCAmelCase = OpenAIGPTModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=a_ , n_embd=37 ) def _a ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _a ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*a_ ) def _a ( self ) -> Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*a_ ) def _a ( self ) -> List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*a_ ) def _a ( self ) -> List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*a_ ) @slow def _a ( self ) -> int: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = OpenAIGPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): @slow def _a ( self ) -> Any: _UpperCAmelCase = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(a_ ) _UpperCAmelCase = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=a_ ) # the president is _UpperCAmelCase = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the _UpperCAmelCase = model.generate(a_ , do_sample=a_ ) self.assertListEqual(output_ids[0].tolist() , a_ )
657
1
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __a ( __lowerCAmelCase ) -> Optional[Any]: # picklable for multiprocessing return x.sum() def __a ( __lowerCAmelCase ) -> Optional[Any]: # picklable for multiprocessing return i + 1 @dataclass class lowercase : '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : str class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = {} SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Dict = [1, 2] SCREAMING_SNAKE_CASE : Tuple = {'a': 1, 'b': 2} SCREAMING_SNAKE_CASE : List[str] = {'a': [1, 2], 'b': [3, 4]} SCREAMING_SNAKE_CASE : Any = {'a': {'1': 1}, 'b': 2} SCREAMING_SNAKE_CASE : int = {'a': 1, 'b': 2, 'c': 3, 'd': 4} SCREAMING_SNAKE_CASE : Optional[int] = {} SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = 2 SCREAMING_SNAKE_CASE : str = [2, 3] SCREAMING_SNAKE_CASE : Union[str, Any] = {'a': 2, 'b': 3} SCREAMING_SNAKE_CASE : Optional[int] = {'a': [2, 3], 'b': [4, 5]} SCREAMING_SNAKE_CASE : str = {'a': {'1': 2}, 'b': 3} SCREAMING_SNAKE_CASE : Any = {'a': 2, 'b': 3, 'c': 4, 'd': 5} self.assertEqual(map_nested(snake_case , snake_case ) , snake_case ) self.assertEqual(map_nested(snake_case , snake_case ) , snake_case ) self.assertEqual(map_nested(snake_case , snake_case ) , snake_case ) self.assertEqual(map_nested(snake_case , snake_case ) , snake_case ) self.assertEqual(map_nested(snake_case , snake_case ) , snake_case ) self.assertEqual(map_nested(snake_case , snake_case ) , snake_case ) self.assertEqual(map_nested(snake_case , snake_case ) , snake_case ) self.assertEqual(map_nested(snake_case , snake_case ) , snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = 2 self.assertEqual(map_nested(snake_case , snake_case , num_proc=snake_case ) , snake_case ) self.assertEqual(map_nested(snake_case , snake_case , num_proc=snake_case ) , snake_case ) self.assertEqual(map_nested(snake_case , snake_case , num_proc=snake_case ) , snake_case ) self.assertEqual(map_nested(snake_case , snake_case , num_proc=snake_case ) , snake_case ) self.assertEqual(map_nested(snake_case , snake_case , num_proc=snake_case ) , snake_case ) self.assertEqual(map_nested(snake_case , snake_case , num_proc=snake_case ) , snake_case ) self.assertEqual(map_nested(snake_case , snake_case , num_proc=snake_case ) , snake_case ) self.assertEqual(map_nested(snake_case , snake_case , num_proc=snake_case ) , snake_case ) SCREAMING_SNAKE_CASE : Dict = {'a': np.eye(2 ), 'b': np.zeros(3 ), 'c': np.ones(2 )} SCREAMING_SNAKE_CASE : Optional[int] = {'a': 2, 'b': 0, 'c': 2} SCREAMING_SNAKE_CASE : Optional[Any] = { 'a': np.eye(2 ).astype(snake_case ), 'b': np.zeros(3 ).astype(snake_case ), 'c': np.ones(2 ).astype(snake_case ), } self.assertEqual(map_nested(snake_case , snake_case , map_numpy=snake_case ) , snake_case ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case , snake_case , map_numpy=snake_case ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case , snake_case , map_numpy=snake_case , num_proc=snake_case ) , snake_case ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case , snake_case , map_numpy=snake_case , num_proc=snake_case ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case ): # can't pickle a local lambda map_nested(lambda snake_case : x + 1 , snake_case , num_proc=snake_case ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = {'a': 1, 'b': 2} SCREAMING_SNAKE_CASE : Union[str, Any] = {'a': 3, 'b': 4} SCREAMING_SNAKE_CASE : Any = {'a': 5, 'b': 6} SCREAMING_SNAKE_CASE : int = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case , snake_case , snake_case ) ) , snake_case ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' class lowercase : '''simple docstring''' UpperCAmelCase : Any = 'bar' SCREAMING_SNAKE_CASE : List[str] = Foo() self.assertEqual(foo.my_attr , 'bar' ) with temporary_assignment(snake_case , 'my_attr' , 'BAR' ): self.assertEqual(foo.my_attr , 'BAR' ) self.assertEqual(foo.my_attr , 'bar' ) @pytest.mark.parametrize( 'iterable_length, num_proc, expected_num_proc' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def __a ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: with patch('datasets.utils.py_utils._single_map_nested' ) as mock_single_map_nested, patch( 'datasets.parallel.parallel.Pool' ) as mock_multiprocessing_pool: SCREAMING_SNAKE_CASE : Tuple = {F'''{i}''': i for i in range(__lowerCAmelCase )} SCREAMING_SNAKE_CASE : List[str] = map_nested(lambda __lowerCAmelCase : x + 10 , __lowerCAmelCase , num_proc=__lowerCAmelCase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' @require_tf def lowerCamelCase_ ( self : str ): '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers SCREAMING_SNAKE_CASE : List[Any] = layers.Dense(2 ) def gen_random_output(): SCREAMING_SNAKE_CASE : Any = tf.random.uniform((1, 3) ) return model(snake_case ).numpy() with temp_seed(42 , set_tensorflow=snake_case ): SCREAMING_SNAKE_CASE : Optional[Any] = gen_random_output() with temp_seed(42 , set_tensorflow=snake_case ): SCREAMING_SNAKE_CASE : Optional[int] = gen_random_output() SCREAMING_SNAKE_CASE : int = gen_random_output() np.testing.assert_equal(snake_case , snake_case ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def lowerCamelCase_ ( self : int ): '''simple docstring''' import torch def gen_random_output(): SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.Linear(3 , 2 ) SCREAMING_SNAKE_CASE : List[Any] = torch.rand(1 , 3 ) return model(snake_case ).detach().numpy() with temp_seed(42 , set_pytorch=snake_case ): SCREAMING_SNAKE_CASE : int = gen_random_output() with temp_seed(42 , set_pytorch=snake_case ): SCREAMING_SNAKE_CASE : str = gen_random_output() SCREAMING_SNAKE_CASE : Tuple = gen_random_output() np.testing.assert_equal(snake_case , snake_case ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): SCREAMING_SNAKE_CASE : Union[str, Any] = gen_random_output() with temp_seed(42 ): SCREAMING_SNAKE_CASE : List[Any] = gen_random_output() SCREAMING_SNAKE_CASE : Any = gen_random_output() np.testing.assert_equal(snake_case , snake_case ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('input_data' , [{}] ) def __a ( __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE : List[Any] = NestedDataStructure(__lowerCAmelCase ).data assert output_data == input_data @pytest.mark.parametrize( 'data, expected_output' , [ ({}, []), ([], []), ('foo', ['foo']), (['foo', 'bar'], ['foo', 'bar']), ([['foo', 'bar']], ['foo', 'bar']), ([[['foo'], ['bar']]], ['foo', 'bar']), ([[['foo'], 'bar']], ['foo', 'bar']), ({'a': 1, 'b': 2}, [1, 2]), ({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]), ({'a': {'1': 1}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': [2]}, [1, 2]), ] , ) def __a ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: SCREAMING_SNAKE_CASE : List[Any] = NestedDataStructure(__lowerCAmelCase ).flatten() assert output == expected_output def __a ( ) -> Any: SCREAMING_SNAKE_CASE : str = A(x=1 , y='foobar' ) SCREAMING_SNAKE_CASE : Tuple = {'x': 1, 'y': 'foobar'} assert asdict(__lowerCAmelCase ) == expected_output SCREAMING_SNAKE_CASE : Optional[int] = {'a': {'b': A(x=10 , y='foo' )}, 'c': [A(x=20 , y='bar' )]} SCREAMING_SNAKE_CASE : int = {'a': {'b': {'x': 10, 'y': 'foo'}}, 'c': [{'x': 20, 'y': 'bar'}]} assert asdict(__lowerCAmelCase ) == expected_output with pytest.raises(__lowerCAmelCase ): asdict([1, A(x=10 , y='foo' )] ) def __a ( __lowerCAmelCase ) -> List[str]: return text.split() def __a ( __lowerCAmelCase ) -> Optional[int]: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __a ( ) -> Union[str, Any]: with Pool(2 ) as pool: SCREAMING_SNAKE_CASE : Optional[Any] = list(iflatmap_unordered(__lowerCAmelCase , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(__lowerCAmelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: SCREAMING_SNAKE_CASE : Union[str, Any] = list(iflatmap_unordered(__lowerCAmelCase , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(__lowerCAmelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: SCREAMING_SNAKE_CASE : int = [] for yield_time, content in iflatmap_unordered( __lowerCAmelCase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'content': 'a'}, {'content': 'b'}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__lowerCAmelCase ) assert out.count('a' ) == 2 assert out.count('b' ) == 2 assert len(__lowerCAmelCase ) == 4
708
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class lowercase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase): '''simple docstring''' UpperCAmelCase : Tuple = ReformerTokenizer UpperCAmelCase : Dict = ReformerTokenizerFast UpperCAmelCase : Any = True UpperCAmelCase : List[Any] = False UpperCAmelCase : Any = True def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE : Optional[Any] = ReformerTokenizer(snake_case , keep_accents=snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = '<s>' SCREAMING_SNAKE_CASE : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case ) , 1000 ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : List[Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : List[str] = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(snake_case , add_special_tokens=snake_case ) SCREAMING_SNAKE_CASE : Tuple = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode(snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self : str , snake_case : Optional[int]=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case ) # Simple input SCREAMING_SNAKE_CASE : Optional[int] = 'This is a simple input' SCREAMING_SNAKE_CASE : Union[str, Any] = ['This is a simple input 1', 'This is a simple input 2'] SCREAMING_SNAKE_CASE : str = ('This is a simple input', 'This is a pair') SCREAMING_SNAKE_CASE : Dict = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(snake_case , tokenizer_r.encode , snake_case , max_length=snake_case , padding='max_length' ) # Simple input self.assertRaises(snake_case , tokenizer_r.encode_plus , snake_case , max_length=snake_case , padding='max_length' ) # Simple input self.assertRaises( snake_case , tokenizer_r.batch_encode_plus , snake_case , max_length=snake_case , padding='max_length' , ) # Pair input self.assertRaises(snake_case , tokenizer_r.encode , snake_case , max_length=snake_case , padding='max_length' ) # Pair input self.assertRaises(snake_case , tokenizer_r.encode_plus , snake_case , max_length=snake_case , padding='max_length' ) # Pair input self.assertRaises( snake_case , tokenizer_r.batch_encode_plus , snake_case , max_length=snake_case , padding='max_length' , ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' pass def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ReformerTokenizer(snake_case , keep_accents=snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case ) , [285, 46, 10, 170, 382] , ) SCREAMING_SNAKE_CASE : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) SCREAMING_SNAKE_CASE : Any = tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual( snake_case , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual( snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = 'Hello World!' SCREAMING_SNAKE_CASE : int = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(snake_case , self.big_tokenizer.encode(snake_case ) ) @slow def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) SCREAMING_SNAKE_CASE : Optional[Any] = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(snake_case , self.big_tokenizer.encode(snake_case ) ) @require_torch @slow def lowerCamelCase_ ( self : int ): '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence SCREAMING_SNAKE_CASE : Tuple = list(self.big_tokenizer.get_vocab().keys() )[:10] SCREAMING_SNAKE_CASE : Dict = ' '.join(snake_case ) SCREAMING_SNAKE_CASE : Dict = self.big_tokenizer.encode_plus(snake_case , return_tensors='pt' ) SCREAMING_SNAKE_CASE : Dict = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='pt' ) SCREAMING_SNAKE_CASE : List[str] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) SCREAMING_SNAKE_CASE : Optional[Any] = encoded_sequence['input_ids'].shape SCREAMING_SNAKE_CASE : Union[str, Any] = ReformerModel(snake_case ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**snake_case ) model(**snake_case ) @slow def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = {'input_ids': [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 SCREAMING_SNAKE_CASE : Any = [ 'This is a very simple sentence.', 'The quick brown fox jumps over the lazy dog.', ] self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='google/reformer-crime-and-punishment' , revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a' , padding=snake_case , sequences=snake_case , )
308
0
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') UpperCamelCase : Any = get_tests_dir('fixtures/test_sentencepiece_bpe.model') UpperCamelCase : int = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = CamembertTokenizer _UpperCamelCase = CamembertTokenizerFast _UpperCamelCase = True _UpperCamelCase = True def UpperCamelCase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ = CamembertTokenizer(_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """<pad>""" lowerCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) ,_lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] ,"""<pad>""" ) self.assertEqual(vocab_keys[-1] ,"""<mask>""" ) self.assertEqual(len(_lowerCAmelCase ) ,10_04 ) def UpperCamelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,10_05 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = CamembertTokenizer(_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) lowerCamelCase__ = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) lowerCamelCase__ = """I was born in 92000, and this is falsé.""" lowerCamelCase__ = tokenizer.encode(_lowerCAmelCase ) lowerCamelCase__ = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode(_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ) lowerCamelCase__ = rust_tokenizer.encode(_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) lowerCamelCase__ = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): if not self.test_rust_tokenizer: return lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = self.get_rust_tokenizer() lowerCamelCase__ = """I was born in 92000, and this is falsé.""" lowerCamelCase__ = tokenizer.tokenize(_lowerCAmelCase ) lowerCamelCase__ = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode(_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ) lowerCamelCase__ = rust_tokenizer.encode(_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self.get_rust_tokenizer() lowerCamelCase__ = tokenizer.encode(_lowerCAmelCase ) lowerCamelCase__ = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): # fmt: off lowerCamelCase__ = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. lowerCamelCase__ = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase ,model_name="""camembert-base""" ,revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" ,sequences=_lowerCAmelCase ,)
50
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A__ ( __lowerCAmelCase : Any ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False def A__ ( __lowerCAmelCase : str ): # word like '180' or '身高' or '神' for char in word: lowerCamelCase__ = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def A__ ( __lowerCAmelCase : List[str] ): lowerCamelCase__ = set() for token in tokens: lowerCamelCase__ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) lowerCamelCase__ = list(__lowerCAmelCase ) return word_list def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : set() ): if not chinese_word_set: return bert_tokens lowerCamelCase__ = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) lowerCamelCase__ = bert_tokens lowerCamelCase__ , lowerCamelCase__ = 0, len(__lowerCAmelCase ) while start < end: lowerCamelCase__ = True if is_chinese(bert_word[start] ): lowerCamelCase__ = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): lowerCamelCase__ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCamelCase__ = """##""" + bert_word[j] lowerCamelCase__ = start + i lowerCamelCase__ = False break if single_word: start += 1 return bert_word def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : LTP , __lowerCAmelCase : BertTokenizer ): lowerCamelCase__ = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): lowerCamelCase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws lowerCamelCase__ = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowerCamelCase__ = [] for i in range(0 , len(__lowerCAmelCase ) , 100 ): lowerCamelCase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowerCamelCase__ = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = [] for id in input_ids: lowerCamelCase__ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) lowerCamelCase__ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": lowerCamelCase__ = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def A__ ( __lowerCAmelCase : Optional[int] ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowerCamelCase__ = f.readlines() lowerCamelCase__ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCamelCase__ = LTP(args.ltp ) # faster in GPU device lowerCamelCase__ = BertTokenizer.from_pretrained(args.bert ) lowerCamelCase__ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowerCamelCase__ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) UpperCamelCase : Any = parser.parse_args() main(args)
50
1
class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : Optional[int] = graph self._normalize_graph(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = None def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :int ) -> Union[str, Any]: if sources is int: __SCREAMING_SNAKE_CASE : Any = [sources] if sinks is int: __SCREAMING_SNAKE_CASE : int = [sinks] if len(lowerCAmelCase__ ) == 0 or len(lowerCAmelCase__ ) == 0: return __SCREAMING_SNAKE_CASE : List[Any] = sources[0] __SCREAMING_SNAKE_CASE : str = sinks[0] # make fake vertex if there are more # than one source or sink if len(lowerCAmelCase__ ) > 1 or len(lowerCAmelCase__ ) > 1: __SCREAMING_SNAKE_CASE : Optional[int] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __SCREAMING_SNAKE_CASE : List[str] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __SCREAMING_SNAKE_CASE : str = max_input_flow __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Dict = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __SCREAMING_SNAKE_CASE : List[Any] = max_input_flow __SCREAMING_SNAKE_CASE : Union[str, Any] = size - 1 def __magic_name__( self :List[str] ) -> List[str]: if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __magic_name__( self :List[Any] , lowerCAmelCase__ :Tuple ) -> str: __SCREAMING_SNAKE_CASE : Dict = algorithm(self ) class _lowercase : '''simple docstring''' def __init__( self :Dict , lowerCAmelCase__ :Optional[int] ) -> Tuple: __SCREAMING_SNAKE_CASE : Tuple = flow_network __SCREAMING_SNAKE_CASE : Optional[Any] = flow_network.verticesCount __SCREAMING_SNAKE_CASE : str = flow_network.sourceIndex __SCREAMING_SNAKE_CASE : Tuple = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __SCREAMING_SNAKE_CASE : Any = flow_network.graph __SCREAMING_SNAKE_CASE : str = False def __magic_name__( self :str ) -> List[Any]: if not self.executed: self._algorithm() __SCREAMING_SNAKE_CASE : Optional[int] = True def __magic_name__( self :List[Any] ) -> Dict: pass class _lowercase ( A__ ): '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :List[str] ) -> List[Any]: super().__init__(lowerCAmelCase__ ) # use this to save your result __SCREAMING_SNAKE_CASE : int = -1 def __magic_name__( self :int ) -> List[Any]: if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class _lowercase ( A__ ): '''simple docstring''' def __init__( self :Tuple , lowerCAmelCase__ :Any ) -> Union[str, Any]: super().__init__(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = [[0] * self.verticies_count for i in range(self.verticies_count )] __SCREAMING_SNAKE_CASE : List[str] = [0] * self.verticies_count __SCREAMING_SNAKE_CASE : Tuple = [0] * self.verticies_count def __magic_name__( self :Union[str, Any] ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __SCREAMING_SNAKE_CASE : str = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __SCREAMING_SNAKE_CASE : Optional[Any] = 0 while i < len(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Any = vertices_list[i] __SCREAMING_SNAKE_CASE : Tuple = self.heights[vertex_index] self.process_vertex(lowerCAmelCase__ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 else: i += 1 __SCREAMING_SNAKE_CASE : str = sum(self.preflow[self.source_index] ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Optional[Any] ) -> List[str]: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(lowerCAmelCase__ , lowerCAmelCase__ ) self.relabel(lowerCAmelCase__ ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :str ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : int = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __magic_name__( self :List[str] , lowerCAmelCase__ :int ) -> int: __SCREAMING_SNAKE_CASE : List[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __SCREAMING_SNAKE_CASE : str = self.heights[to_index] if min_height is not None: __SCREAMING_SNAKE_CASE : Union[str, Any] = min_height + 1 if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =[0] __lowerCAmelCase : Union[str, Any] =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase : Tuple =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase : List[Any] =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase : List[str] =flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
707
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset __lowerCAmelCase : Any =pd.read_csv( 'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/' 'position_salaries.csv' ) __lowerCAmelCase : Dict =dataset.iloc[:, 1:2].values __lowerCAmelCase : Any =dataset.iloc[:, 2].values __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : List[str] =train_test_split(X, y, test_size=0.2, random_state=0) __lowerCAmelCase : List[Any] =PolynomialFeatures(degree=4) __lowerCAmelCase : Any =poly_reg.fit_transform(X) __lowerCAmelCase : str =LinearRegression() pol_reg.fit(X_poly, y) def _UpperCamelCase ( ): plt.scatter(lowercase__ , lowercase__ , color='''red''' ) plt.plot(lowercase__ , pol_reg.predict(poly_reg.fit_transform(lowercase__ ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
260
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=18 , SCREAMING_SNAKE_CASE__=30 , SCREAMING_SNAKE_CASE__=400 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__=[0.5, 0.5, 0.5] , ) -> Any: A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size if size is not None else {"height": 18, "width": 20} A__ = do_thumbnail A__ = do_align_axis A__ = do_pad A__ = do_normalize A__ = image_mean A__ = image_std def snake_case__ ( self ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCamelCase__ ( _lowerCAmelCase , unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = DonutImageProcessor if is_vision_available() else None def snake_case__ ( self ) -> Dict: A__ = DonutImageProcessingTester(self ) @property def snake_case__ ( self ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self ) -> List[Any]: A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_thumbnail" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_align_long_axis" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_pad" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "image_std" ) ) def snake_case__ ( self ) -> Dict: A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 20} ) A__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order A__ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"height": 84, "width": 42} ) def snake_case__ ( self ) -> Any: pass @is_flaky() def snake_case__ ( self ) -> Tuple: # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A__ = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def snake_case__ ( self ) -> Any: # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A__ = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def snake_case__ ( self ) -> Dict: # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A__ = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
104
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case__ ( unittest.TestCase ): def A_ ( self : int , __a : Optional[int] , __a : Union[str, Any] ) -> str: '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={"_".join([str(__a ) for s in shape] )}.npy''' def A_ ( self : Any ) -> List[str]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def A_ ( self : List[Any] , __a : Union[str, Any]=0 , __a : List[str]=(4, 4, 64, 64) , __a : Optional[Any]=False ) -> List[str]: '''simple docstring''' __snake_case : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa __snake_case : List[Any] = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def A_ ( self : Any , __a : Any=False , __a : Dict="CompVis/stable-diffusion-v1-4" ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = jnp.bfloataa if fpaa else jnp.floataa __snake_case : int = 'bf16' if fpaa else None __snake_case , __snake_case : Union[str, Any] = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='unet' , dtype=__a , revision=__a ) return model, params def A_ ( self : Any , __a : Dict=0 , __a : Dict=(4, 77, 768) , __a : List[str]=False ) -> List[Any]: '''simple docstring''' __snake_case : List[Any] = jnp.bfloataa if fpaa else jnp.floataa __snake_case : Any = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [17, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1000, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def A_ ( self : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : Any ) -> Dict: '''simple docstring''' __snake_case , __snake_case : Tuple = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=__a ) __snake_case : Tuple = self.get_latents(__a , fpaa=__a ) __snake_case : int = self.get_encoder_hidden_states(__a , fpaa=__a ) __snake_case : List[str] = model.apply( {'params': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __snake_case : List[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __snake_case : str = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [17, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1000, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def A_ ( self : str , __a : Optional[int] , __a : Union[str, Any] , __a : Tuple ) -> Optional[Any]: '''simple docstring''' __snake_case , __snake_case : int = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=__a ) __snake_case : int = self.get_latents(__a , shape=(4, 4, 96, 96) , fpaa=__a ) __snake_case : Optional[Any] = self.get_encoder_hidden_states(__a , shape=(4, 77, 1024) , fpaa=__a ) __snake_case : List[str] = model.apply( {'params': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __snake_case : List[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __snake_case : int = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
286
0
import re def snake_case_ ( snake_case ) -> str: if len(re.findall('[ATCG]' , __UpperCamelCase ) ) != len(__UpperCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
708
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class __a ( __UpperCamelCase ): __lowercase : int = 'canine' def __init__( self , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3_072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=16_384 , lowerCAmelCase__=16 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__=0xe000 , lowerCAmelCase__=0xe001 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__=8 , lowerCAmelCase__=16_384 , lowerCAmelCase__=128 , **lowerCAmelCase__ , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Optional[int] = max_position_embeddings lowercase__: Any = hidden_size lowercase__: List[str] = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: Optional[Any] = intermediate_size lowercase__: List[Any] = hidden_act lowercase__: str = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Dict = initializer_range lowercase__: List[str] = type_vocab_size lowercase__: List[Any] = layer_norm_eps # Character config: lowercase__: List[str] = downsampling_rate lowercase__: int = upsampling_kernel_size lowercase__: Optional[Any] = num_hash_functions lowercase__: Optional[Any] = num_hash_buckets lowercase__: Optional[Any] = local_transformer_stride
335
0
def UpperCamelCase ( snake_case__ : List[Any] ,snake_case__ : List[Any] ): '''simple docstring''' assert x is not None assert y is not None __snake_case :Optional[int] = len(_lowercase ) __snake_case :int = len(_lowercase ) # declaring the array for storing the dp values __snake_case :str = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 ,m + 1 ): for j in range(1 ,n + 1 ): __snake_case :Tuple = 1 if x[i - 1] == y[j - 1] else 0 __snake_case :Dict = max(l[i - 1][j] ,l[i][j - 1] ,l[i - 1][j - 1] + match ) __snake_case :Tuple = """""" __snake_case :int = m, n while i > 0 and j > 0: __snake_case :Union[str, Any] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __snake_case :str = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": lowerCamelCase__ = """AGGTAB""" lowerCamelCase__ = """GXTXAYB""" lowerCamelCase__ = 4 lowerCamelCase__ = """GTAB""" lowerCamelCase__ = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
455
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): def a_ ( self : Union[str, Any] , A__ : float ): """simple docstring""" return 0.0 def __lowercase (_lowercase, _lowercase ) -> tuple[int | float, int | float]: """simple docstring""" __lowerCamelCase : Dict = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __lowerCamelCase : List[str] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __lowercase (_lowercase, _lowercase ) -> None: """simple docstring""" __lowerCamelCase : int = 512 __lowerCamelCase : List[str] = [1] + [0] * (size - 1) __lowerCamelCase : Dict = [filter_type.process(_lowercase ) for item in inputs] __lowerCamelCase : List[Any] = [0] * (samplerate - size) # zero-padding outputs += filler __lowerCamelCase : Union[str, Any] = np.abs(np.fft.fft(_lowercase ) ) __lowerCamelCase : Dict = 20 * np.logaa(_lowercase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds __lowerCamelCase : List[Any] = get_bounds(_lowercase, _lowercase ) plt.ylim(max([-80, bounds[0]] ), min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(_lowercase ) plt.show() def __lowercase (_lowercase, _lowercase ) -> None: """simple docstring""" __lowerCamelCase : Dict = 512 __lowerCamelCase : List[str] = [1] + [0] * (size - 1) __lowerCamelCase : str = [filter_type.process(_lowercase ) for item in inputs] __lowerCamelCase : Optional[int] = [0] * (samplerate - size) # zero-padding outputs += filler __lowerCamelCase : List[Any] = np.angle(np.fft.fft(_lowercase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi, 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(_lowercase, -2 * pi ) ) plt.show()
150
0
import sys _UpperCAmelCase = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def UpperCamelCase ( __lowercase : str = N ): '''simple docstring''' A_ : List[Any] = -sys.maxsize - 1 for i in range(len(__lowercase ) - 12 ): A_ : List[Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: A_ : int = product return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
70
def UpperCamelCase ( __lowercase : str ): '''simple docstring''' A_ : int = len(__lowercase ) A_ : List[Any] = sum(__lowercase ) A_ : List[str] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 ,n + 1 ): A_ : Optional[Any] = True for i in range(1 ,s + 1 ): A_ : Tuple = False for i in range(1 ,n + 1 ): for j in range(1 ,s + 1 ): A_ : Dict = dp[i][j - 1] if arr[i - 1] <= j: A_ : Dict = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) ,-1 ,-1 ): if dp[n][j] is True: A_ : List[Any] = s - 2 * j break return diff
70
1
"""simple docstring""" A : Tuple = 8.3_144_598 def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example A : Optional[Any] = 3_0_0 A : Any = 2_8 A : int = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
636
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = False while is_sorted is False: # Until all the indices are traversed keep looping __lowerCAmelCase = True for i in range(0 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __lowerCAmelCase , __lowerCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order __lowerCAmelCase = False for i in range(1 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __lowerCAmelCase , __lowerCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order __lowerCAmelCase = False return input_list if __name__ == "__main__": print("Enter list to be sorted") A : Tuple = [int(x) for x in input().split()] # inputing elements of the list in one line A : Dict = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
636
1
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask A__ = logging.getLogger(__name__) class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self: int , __UpperCamelCase: str=-1 ): '''simple docstring''' __magic_name__ = label_idx def _SCREAMING_SNAKE_CASE ( self: Optional[int] , __UpperCamelCase: List[str] , __UpperCamelCase: Union[Split, str] ): '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ): __magic_name__ = mode.value __magic_name__ = os.path.join(__UpperCamelCase , F'{mode}.txt' ) __magic_name__ = 1 __magic_name__ = [] with open(__UpperCamelCase , encoding='utf-8' ) as f: __magic_name__ = [] __magic_name__ = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=__UpperCamelCase , labels=__UpperCamelCase ) ) guid_index += 1 __magic_name__ = [] __magic_name__ = [] else: __magic_name__ = line.split(' ' ) words.append(splits[0] ) if len(__UpperCamelCase ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=__UpperCamelCase , labels=__UpperCamelCase ) ) return examples def _SCREAMING_SNAKE_CASE ( self: List[Any] , __UpperCamelCase: TextIO , __UpperCamelCase: TextIO , __UpperCamelCase: List ): '''simple docstring''' __magic_name__ = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(__UpperCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: __magic_name__ = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(__UpperCamelCase ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def _SCREAMING_SNAKE_CASE ( self: int , __UpperCamelCase: str ): '''simple docstring''' if path: with open(__UpperCamelCase , 'r' ) as f: __magic_name__ = f.read().splitlines() if "O" not in labels: __magic_name__ = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self: Tuple ): '''simple docstring''' super().__init__(label_idx=-2 ) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , __UpperCamelCase: str ): '''simple docstring''' if path: with open(__UpperCamelCase , 'r' ) as f: __magic_name__ = f.read().splitlines() if "O" not in labels: __magic_name__ = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): def _SCREAMING_SNAKE_CASE ( self: Any , __UpperCamelCase: Optional[int] , __UpperCamelCase: Union[Split, str] ): '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ): __magic_name__ = mode.value __magic_name__ = os.path.join(__UpperCamelCase , F'{mode}.txt' ) __magic_name__ = 1 __magic_name__ = [] with open(__UpperCamelCase , encoding='utf-8' ) as f: for sentence in parse_incr(__UpperCamelCase ): __magic_name__ = [] __magic_name__ = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=__UpperCamelCase , labels=__UpperCamelCase ) ) guid_index += 1 return examples def _SCREAMING_SNAKE_CASE ( self: List[Any] , __UpperCamelCase: TextIO , __UpperCamelCase: TextIO , __UpperCamelCase: List ): '''simple docstring''' __magic_name__ = 0 for sentence in parse_incr(__UpperCamelCase ): __magic_name__ = preds_list[example_id] __magic_name__ = '' for token in sentence: out += F'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(__UpperCamelCase ) example_id += 1 def _SCREAMING_SNAKE_CASE ( self: int , __UpperCamelCase: str ): '''simple docstring''' if path: with open(__UpperCamelCase , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
184
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A__ = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
184
1
from __future__ import annotations from collections.abc import Callable lowerCAmelCase_ = list[list[float | int]] def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Matrix: """simple docstring""" snake_case_ : int = len(_UpperCamelCase ) snake_case_ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_UpperCamelCase )] snake_case_ : int snake_case_ : int snake_case_ : int snake_case_ : int snake_case_ : int snake_case_ : float for row in range(_UpperCamelCase ): for col in range(_UpperCamelCase ): snake_case_ : int = matrix[row][col] snake_case_ : int = vector[row][0] snake_case_ : str = 0 snake_case_ : List[str] = 0 while row < size and col < size: # pivoting snake_case_ : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_UpperCamelCase , _UpperCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: snake_case_ , snake_case_ : int = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _UpperCamelCase ): snake_case_ : Tuple = augmented[rowa][col] / augmented[row][col] snake_case_ : str = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _UpperCamelCase ): for row in range(_UpperCamelCase ): snake_case_ : Tuple = augmented[row][col] / augmented[col][col] for cola in range(_UpperCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_UpperCamelCase ) ] def lowerCamelCase_ ( _UpperCamelCase ) -> Callable[[int], int]: """simple docstring""" snake_case_ : int = len(_UpperCamelCase ) snake_case_ : Matrix = [[0 for _ in range(_UpperCamelCase )] for _ in range(_UpperCamelCase )] snake_case_ : Matrix = [[0] for _ in range(_UpperCamelCase )] snake_case_ : Matrix snake_case_ : int snake_case_ : int snake_case_ : int for x_val, y_val in enumerate(_UpperCamelCase ): for col in range(_UpperCamelCase ): snake_case_ : str = (x_val + 1) ** (size - col - 1) snake_case_ : Optional[int] = y_val snake_case_ : Any = solve(_UpperCamelCase , _UpperCamelCase ) def interpolated_func(_UpperCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_UpperCamelCase ) ) return interpolated_func def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase_ ( _UpperCamelCase = question_function , _UpperCamelCase = 10 ) -> int: """simple docstring""" snake_case_ : list[int] = [func(_UpperCamelCase ) for x_val in range(1 , order + 1 )] snake_case_ : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] snake_case_ : int = 0 snake_case_ : Callable[[int], int] snake_case_ : int for poly in polynomials: snake_case_ : List[Any] = 1 while func(_UpperCamelCase ) == poly(_UpperCamelCase ): x_val += 1 ret += poly(_UpperCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
60
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCAmelCase_ ( lowercase: Dict ) -> Any: '''simple docstring''' _UpperCamelCase: Optional[Any] = fname.split(os.path.sep )[-1] return re.search(R'''^(.*)_\d+\.jpg$''' , lowercase ).groups()[0] class __magic_name__ ( __a ): """simple docstring""" def __init__( self : Dict , _lowercase : Any , _lowercase : Any=None , _lowercase : List[str]=None ): """simple docstring""" _UpperCamelCase: str = file_names _UpperCamelCase: List[Any] = image_transform _UpperCamelCase: Tuple = label_to_id def __len__( self : List[str] ): """simple docstring""" return len(self.file_names ) def __getitem__( self : List[str] , _lowercase : Optional[Any] ): """simple docstring""" _UpperCamelCase: Optional[int] = self.file_names[idx] _UpperCamelCase: Optional[int] = PIL.Image.open(_lowercase ) _UpperCamelCase: List[str] = raw_image.convert('''RGB''' ) if self.image_transform is not None: _UpperCamelCase: Optional[Any] = self.image_transform(_lowercase ) _UpperCamelCase: Tuple = extract_label(_lowercase ) if self.label_to_id is not None: _UpperCamelCase: Any = self.label_to_id[label] return {"image": image, "label": label} def lowerCAmelCase_ ( lowercase: Optional[Any] , lowercase: Any ) -> str: '''simple docstring''' # Initialize accelerator if args.with_tracking: _UpperCamelCase: Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: _UpperCamelCase: Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase: List[str] = config['''lr'''] _UpperCamelCase: int = int(config['''num_epochs'''] ) _UpperCamelCase: Optional[Any] = int(config['''seed'''] ) _UpperCamelCase: Optional[Any] = int(config['''batch_size'''] ) _UpperCamelCase: List[str] = config['''image_size'''] if not isinstance(lowercase , (list, tuple) ): _UpperCamelCase: Optional[int] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , '''isdigit''' ): if args.checkpointing_steps == "epoch": _UpperCamelCase: Any = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): _UpperCamelCase: List[str] = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: _UpperCamelCase: Any = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: _UpperCamelCase: Union[str, Any] = os.path.split(lowercase )[-1].split('''.''' )[0] accelerator.init_trackers(lowercase , lowercase ) # Grab all the image filenames _UpperCamelCase: List[str] = [os.path.join(args.data_dir , lowercase ) for fname in os.listdir(args.data_dir ) if fname.endswith('''.jpg''' )] # Build the label correspondences _UpperCamelCase: Optional[Any] = [extract_label(lowercase ) for fname in file_names] _UpperCamelCase: int = list(set(lowercase ) ) id_to_label.sort() _UpperCamelCase: Tuple = {lbl: i for i, lbl in enumerate(lowercase )} # Set the seed before splitting the data. np.random.seed(lowercase ) torch.manual_seed(lowercase ) torch.cuda.manual_seed_all(lowercase ) # Split our filenames between train and validation _UpperCamelCase: List[str] = np.random.permutation(len(lowercase ) ) _UpperCamelCase: Dict = int(0.8 * len(lowercase ) ) _UpperCamelCase: Optional[int] = random_perm[:cut] _UpperCamelCase: Optional[int] = random_perm[cut:] # For training we use a simple RandomResizedCrop _UpperCamelCase: List[Any] = Compose([RandomResizedCrop(lowercase , scale=(0.5, 1.0) ), ToTensor()] ) _UpperCamelCase: int = PetsDataset( [file_names[i] for i in train_split] , image_transform=lowercase , label_to_id=lowercase ) # For evaluation, we use a deterministic Resize _UpperCamelCase: Dict = Compose([Resize(lowercase ), ToTensor()] ) _UpperCamelCase: str = PetsDataset([file_names[i] for i in eval_split] , image_transform=lowercase , label_to_id=lowercase ) # Instantiate dataloaders. _UpperCamelCase: str = DataLoader(lowercase , shuffle=lowercase , batch_size=lowercase , num_workers=4 ) _UpperCamelCase: str = DataLoader(lowercase , shuffle=lowercase , batch_size=lowercase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase: str = create_model('''resnet50d''' , pretrained=lowercase , num_classes=len(lowercase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCamelCase: Optional[int] = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): _UpperCamelCase: Optional[Any] = False for param in model.get_classifier().parameters(): _UpperCamelCase: Optional[int] = True # We normalize the batches of images to be a bit faster. _UpperCamelCase: Union[str, Any] = torch.tensor(model.default_cfg['''mean'''] )[None, :, None, None].to(accelerator.device ) _UpperCamelCase: List[Any] = torch.tensor(model.default_cfg['''std'''] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer _UpperCamelCase: List[str] = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler _UpperCamelCase: Any = OneCycleLR(optimizer=lowercase , max_lr=lowercase , epochs=lowercase , steps_per_epoch=len(lowercase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase: List[str] = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # We need to keep track of how many total steps we have iterated over _UpperCamelCase: Tuple = 0 # We also need to keep track of the starting epoch so files are named properly _UpperCamelCase: List[str] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) _UpperCamelCase: Union[str, Any] = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint _UpperCamelCase: Union[str, Any] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) _UpperCamelCase: Union[str, Any] = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` _UpperCamelCase: List[Any] = os.path.splitext(lowercase )[0] if "epoch" in training_difference: _UpperCamelCase: Any = int(training_difference.replace('''epoch_''' , '''''' ) ) + 1 _UpperCamelCase: List[str] = None else: _UpperCamelCase: int = int(training_difference.replace('''step_''' , '''''' ) ) _UpperCamelCase: List[Any] = resume_step // len(lowercase ) resume_step -= starting_epoch * len(lowercase ) # Now we train the model for epoch in range(lowercase , lowercase ): model.train() if args.with_tracking: _UpperCamelCase: Optional[int] = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step _UpperCamelCase: Union[str, Any] = accelerator.skip_first_batches(lowercase , lowercase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader _UpperCamelCase: Optional[int] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. _UpperCamelCase: Optional[Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} _UpperCamelCase: int = (batch['''image'''] - mean) / std _UpperCamelCase: List[str] = model(lowercase ) _UpperCamelCase: Dict = torch.nn.functional.cross_entropy(lowercase , batch['''label'''] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(lowercase , lowercase ): _UpperCamelCase: Any = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: _UpperCamelCase: List[Any] = os.path.join(args.output_dir , lowercase ) accelerator.save_state(lowercase ) model.eval() _UpperCamelCase: List[str] = 0 _UpperCamelCase: Union[str, Any] = 0 for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. _UpperCamelCase: Optional[Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} _UpperCamelCase: Union[str, Any] = (batch['''image'''] - mean) / std with torch.no_grad(): _UpperCamelCase: List[Any] = model(lowercase ) _UpperCamelCase: Optional[Any] = outputs.argmax(dim=-1 ) _UpperCamelCase , _UpperCamelCase: Optional[int] = accelerator.gather_for_metrics((predictions, batch['''label''']) ) _UpperCamelCase: List[str] = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() _UpperCamelCase: Optional[int] = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { '''accuracy''': 100 * eval_metric, '''train_loss''': total_loss.item() / len(lowercase ), '''epoch''': epoch, } , step=lowercase , ) if checkpointing_steps == "epoch": _UpperCamelCase: Tuple = F"""epoch_{epoch}""" if args.output_dir is not None: _UpperCamelCase: Any = os.path.join(args.output_dir , lowercase ) accelerator.save_state(lowercase ) if args.with_tracking: accelerator.end_training() def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase: str = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument('''--data_dir''' , required=lowercase , help='''The data folder on disk.''' ) parser.add_argument('''--fp16''' , action='''store_true''' , help='''If passed, will use FP16 training.''' ) parser.add_argument( '''--mixed_precision''' , type=lowercase , default=lowercase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--checkpointing_steps''' , type=lowercase , default=lowercase , help='''Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.''' , ) parser.add_argument( '''--output_dir''' , type=lowercase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=lowercase , default=lowercase , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=lowercase , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) _UpperCamelCase: Any = parser.parse_args() _UpperCamelCase: Optional[int] = {'''lr''': 3E-2, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 64, '''image_size''': 224} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
271
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __lowercase ( a__ ): _lowerCAmelCase = "pegasus" _lowerCAmelCase = ["past_key_values"] _lowerCAmelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : str , lowercase__ : List[Any]=5_0_2_6_5 , lowercase__ : Any=1_0_2_4 , lowercase__ : List[Any]=1_2 , lowercase__ : Tuple=4_0_9_6 , lowercase__ : int=1_6 , lowercase__ : Tuple=1_2 , lowercase__ : Optional[int]=4_0_9_6 , lowercase__ : List[str]=1_6 , lowercase__ : Any=0.0 , lowercase__ : List[Any]=0.0 , lowercase__ : str=True , lowercase__ : str=True , lowercase__ : int="gelu" , lowercase__ : Tuple=1_0_2_4 , lowercase__ : Dict=0.1 , lowercase__ : str=0.0 , lowercase__ : Tuple=0.0 , lowercase__ : Any=0.02 , lowercase__ : List[Any]=0 , lowercase__ : str=False , lowercase__ : Any=0 , lowercase__ : List[str]=1 , lowercase__ : Dict=1 , **lowercase__ : Any , ): a_ = vocab_size a_ = max_position_embeddings a_ = d_model a_ = encoder_ffn_dim a_ = encoder_layers a_ = encoder_attention_heads a_ = decoder_ffn_dim a_ = decoder_layers a_ = decoder_attention_heads a_ = dropout a_ = attention_dropout a_ = activation_dropout a_ = activation_function a_ = init_std a_ = encoder_layerdrop a_ = decoder_layerdrop a_ = use_cache a_ = encoder_layers a_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) @property def __magic_name__ ( self : Optional[int] ): return self.encoder_attention_heads @property def __magic_name__ ( self : Tuple ): return self.d_model
143
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) UpperCamelCase__ = logging.getLogger(__name__) def UpperCAmelCase__ ( _A , _A ): """simple docstring""" a_ = np.argmax(_A , axis=1 ) return np.sum(outputs == labels ) def UpperCAmelCase__ ( _A ): """simple docstring""" with open(_A , encoding='''utf_8''' ) as f: a_ = csv.reader(_A ) a_ = [] next(_A ) # skip the first line for line in tqdm(_A ): output.append((''' '''.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def UpperCAmelCase__ ( _A , _A , _A , _A , _A , _A ): """simple docstring""" a_ = [] for dataset in encoded_datasets: a_ = len(_A ) a_ = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) a_ = np.zeros((n_batch, 2) , dtype=np.intaa ) a_ = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) a_ = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_A ): a_ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] a_ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] a_ = with_conta a_ = with_conta a_ = len(_A ) - 1 a_ = len(_A ) - 1 a_ = with_conta a_ = with_conta a_ = mc_label a_ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_A ) for t in all_inputs ) ) return tensor_datasets def UpperCAmelCase__ ( ): """simple docstring""" a_ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=_A , default='''openai-gpt''' , help='''pretrained model name''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''' ) parser.add_argument( '''--output_dir''' , default=_A , type=_A , required=_A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=_A , default='''''' ) parser.add_argument('''--eval_dataset''' , type=_A , default='''''' ) parser.add_argument('''--seed''' , type=_A , default=42 ) parser.add_argument('''--num_train_epochs''' , type=_A , default=3 ) parser.add_argument('''--train_batch_size''' , type=_A , default=8 ) parser.add_argument('''--eval_batch_size''' , type=_A , default=16 ) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=_A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , type=_A , default=1 ) parser.add_argument( '''--max_steps''' , default=-1 , type=_A , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=_A , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=_A , default=6.2_5e-5 ) parser.add_argument('''--warmup_steps''' , default=0 , type=_A , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--lr_schedule''' , type=_A , default='''warmup_linear''' ) parser.add_argument('''--weight_decay''' , type=_A , default=0.01 ) parser.add_argument('''--lm_coef''' , type=_A , default=0.9 ) parser.add_argument('''--n_valid''' , type=_A , default=374 ) parser.add_argument('''--server_ip''' , type=_A , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=_A , default='''''' , help='''Can be used for distant debugging.''' ) a_ = parser.parse_args() print(_A ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_A ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) a_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) a_ = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(_A , _A ) ) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset a_ = ['''_start_''', '''_delimiter_''', '''_classify_'''] a_ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_A ) a_ = tokenizer.convert_tokens_to_ids(_A ) a_ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_A ) ) model.to(_A ) # Load and encode the datasets def tokenize_and_encode(_A ): if isinstance(_A , _A ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_A ) ) elif isinstance(_A , _A ): return obj return [tokenize_and_encode(_A ) for o in obj] logger.info('''Encoding dataset...''' ) a_ = load_rocstories_dataset(args.train_dataset ) a_ = load_rocstories_dataset(args.eval_dataset ) a_ = (train_dataset, eval_dataset) a_ = tokenize_and_encode(_A ) # Compute the max input length for the Transformer a_ = model.config.n_positions // 2 - 2 a_ = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) a_ = min(_A , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders a_ = pre_process_datasets(_A , _A , _A , *_A ) a_ , a_ = tensor_datasets[0], tensor_datasets[1] a_ = TensorDataset(*_A ) a_ = RandomSampler(_A ) a_ = DataLoader(_A , sampler=_A , batch_size=args.train_batch_size ) a_ = TensorDataset(*_A ) a_ = SequentialSampler(_A ) a_ = DataLoader(_A , sampler=_A , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: a_ = args.max_steps a_ = args.max_steps // (len(_A ) // args.gradient_accumulation_steps) + 1 else: a_ = len(_A ) // args.gradient_accumulation_steps * args.num_train_epochs a_ = list(model.named_parameters() ) a_ = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] a_ = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0}, ] a_ = AdamW(_A , lr=args.learning_rate , eps=args.adam_epsilon ) a_ = get_linear_schedule_with_warmup( _A , num_warmup_steps=args.warmup_steps , num_training_steps=_A ) if args.do_train: a_ , a_ , a_ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='''Epoch''' ): a_ = 0 a_ = 0 a_ = tqdm(_A , desc='''Training''' ) for step, batch in enumerate(_A ): a_ = tuple(t.to(_A ) for t in batch ) a_ , a_ , a_ , a_ = batch a_ = model(_A , mc_token_ids=_A , lm_labels=_A , mc_labels=_A ) a_ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() a_ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 a_ = '''Training loss: {:.2e} lr: {:.2e}'''.format(_A , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer a_ = model.module if hasattr(_A , '''module''' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` a_ = os.path.join(args.output_dir , _A ) a_ = os.path.join(args.output_dir , _A ) torch.save(model_to_save.state_dict() , _A ) model_to_save.config.to_json_file(_A ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned a_ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) a_ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_A ) if args.do_eval: model.eval() a_ , a_ = 0, 0 a_ , a_ = 0, 0 for batch in tqdm(_A , desc='''Evaluating''' ): a_ = tuple(t.to(_A ) for t in batch ) a_ , a_ , a_ , a_ = batch with torch.no_grad(): a_ , a_ , a_ , a_ = model( _A , mc_token_ids=_A , lm_labels=_A , mc_labels=_A ) a_ = mc_logits.detach().cpu().numpy() a_ = mc_labels.to('''cpu''' ).numpy() a_ = accuracy(_A , _A ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 a_ = eval_loss / nb_eval_steps a_ = eval_accuracy / nb_eval_examples a_ = tr_loss / nb_tr_steps if args.do_train else None a_ = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} a_ = os.path.join(args.output_dir , '''eval_results.txt''' ) with open(_A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , _A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) if __name__ == "__main__": main()
143
1
'''simple docstring''' def __snake_case ( lowercase : str , lowercase : bool = False ): if not isinstance(lowercase_ , lowercase_ ): snake_case_ = f'''Expected string as input, found {type(lowercase_ )}''' raise ValueError(lowercase_ ) if not isinstance(lowercase_ , lowercase_ ): snake_case_ = f'''Expected boolean as use_pascal parameter, found {type(lowercase_ )}''' raise ValueError(lowercase_ ) snake_case_ = input_str.split("_" ) snake_case_ = 0 if use_pascal else 1 snake_case_ = words[start_index:] snake_case_ = [word[0].upper() + word[1:] for word in words_to_capitalize] snake_case_ = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
508
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["GLPNFeatureExtractor"] __lowerCAmelCase = ["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
536
0
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __magic_name__ : List[Any] = False __magic_name__ : int = True __magic_name__ : List[str] = False if __name__ == "__main__": __magic_name__ : str = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __magic_name__ : Tuple = parser.parse_args() __magic_name__ : Tuple = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } __magic_name__ : str = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } __magic_name__ : Optional[Any] = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: __magic_name__ : Dict = reader.read() __magic_name__ : List[str] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): __magic_name__ : Optional[int] = UNetaDModel(**config) else: __magic_name__ : Optional[int] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel __magic_name__ : List[Any] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __magic_name__ : int = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __magic_name__ : Tuple = config[key] del config[key] __magic_name__ : Dict = [k.replace('UNetRes', '') for k in config['down_block_types']] __magic_name__ : Tuple = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: __magic_name__ : int = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) __magic_name__ : List[Any] = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue __magic_name__ : str = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: __magic_name__ : Tuple = param_value __magic_name__ : Union[str, Any] = True if not has_changed: __magic_name__ : Any = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
608
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowerCAmelCase ( snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Any=1e-12 )-> List[str]: A_ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(snake_case__ , axis=1 ) , a_min=snake_case__ ) ).T A_ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(snake_case__ , axis=1 ) , a_min=snake_case__ ) ).T return jnp.matmul(snake_case__ , norm_emb_a.T ) class lowerCamelCase ( nn.Module ): """simple docstring""" lowerCAmelCase_ = 42 lowerCAmelCase_ = jnp.floataa def lowercase_ ( self ): A_ = FlaxCLIPVisionModule(self.config.vision_config ) A_ = nn.Dense(self.config.projection_dim , use_bias=__UpperCamelCase , dtype=self.dtype ) A_ = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) A_ = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) A_ = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) A_ = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self , __UpperCamelCase ): A_ = self.vision_model(__UpperCamelCase )[1] A_ = self.visual_projection(__UpperCamelCase ) A_ = jax_cosine_distance(__UpperCamelCase , self.special_care_embeds ) A_ = jax_cosine_distance(__UpperCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs A_ = 0.0 A_ = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment A_ = jnp.round(__UpperCamelCase , 3 ) A_ = jnp.any(special_scores > 0 , axis=1 , keepdims=__UpperCamelCase ) # Use a lower threshold if an image has any special care concept A_ = is_special_care * 0.01 A_ = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment A_ = jnp.round(__UpperCamelCase , 3 ) A_ = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class lowerCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase_ = CLIPConfig lowerCAmelCase_ = """clip_input""" lowerCAmelCase_ = FlaxStableDiffusionSafetyCheckerModule def __init__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = 0 , __UpperCamelCase = jnp.floataa , __UpperCamelCase = True , **__UpperCamelCase , ): if input_shape is None: A_ = (1, 224, 224, 3) A_ = self.module_class(config=__UpperCamelCase , dtype=__UpperCamelCase , **__UpperCamelCase ) super().__init__(__UpperCamelCase , __UpperCamelCase , input_shape=__UpperCamelCase , seed=__UpperCamelCase , dtype=__UpperCamelCase , _do_init=_do_init ) def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None ): # init input tensor A_ = jax.random.normal(__UpperCamelCase , __UpperCamelCase ) A_ , A_ = jax.random.split(__UpperCamelCase ) A_ = {"params": params_rng, "dropout": dropout_rng} A_ = self.module.init(__UpperCamelCase , __UpperCamelCase )["params"] return random_params def __call__( self , __UpperCamelCase , __UpperCamelCase = None , ): A_ = jnp.transpose(__UpperCamelCase , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(__UpperCamelCase , dtype=jnp.floataa ) , rngs={} , )
608
1
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __A : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" @register_to_config def __init__( self : Union[str, Any] , __UpperCamelCase : bool , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None )->Tuple: super().__init__() _UpperCAmelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _UpperCAmelCase = torch.zeros(__UpperCamelCase , __UpperCamelCase ) else: _UpperCAmelCase = None _UpperCAmelCase = torch.nn.Parameter(__UpperCamelCase ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 def __init__( self : Optional[int] , __UpperCamelCase : VQModel , __UpperCamelCase : CLIPTextModel , __UpperCamelCase : CLIPTokenizer , __UpperCamelCase : TransformeraDModel , __UpperCamelCase : VQDiffusionScheduler , __UpperCamelCase : LearnedClassifierFreeSamplingEmbeddings , )->Optional[int]: super().__init__() self.register_modules( vqvae=__UpperCamelCase , transformer=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , scheduler=__UpperCamelCase , learned_classifier_free_sampling_embeddings=__UpperCamelCase , ) def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->str: _UpperCAmelCase = len(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else 1 # get prompt text embeddings _UpperCAmelCase = self.tokenizer( __UpperCamelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) _UpperCAmelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _UpperCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) _UpperCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length] _UpperCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _UpperCAmelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__UpperCamelCase ) # duplicate text embeddings for each generation per prompt _UpperCAmelCase = prompt_embeds.repeat_interleave(__UpperCamelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _UpperCAmelCase = self.learned_classifier_free_sampling_embeddings.embeddings _UpperCAmelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(__UpperCamelCase , 1 , 1 ) else: _UpperCAmelCase = [''''''] * batch_size _UpperCAmelCase = text_input_ids.shape[-1] _UpperCAmelCase = self.tokenizer( __UpperCamelCase , padding='''max_length''' , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors='''pt''' , ) _UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _UpperCAmelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__UpperCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _UpperCAmelCase = negative_prompt_embeds.shape[1] _UpperCAmelCase = negative_prompt_embeds.repeat(1 , __UpperCamelCase , 1 ) _UpperCAmelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : List[Any] , __UpperCamelCase : Union[str, List[str]] , __UpperCamelCase : int = 1_0_0 , __UpperCamelCase : float = 5.0 , __UpperCamelCase : float = 1.0 , __UpperCamelCase : int = 1 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCamelCase : int = 1 , )->Union[ImagePipelineOutput, Tuple]: if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = len(__UpperCamelCase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}' ) _UpperCAmelCase = batch_size * num_images_per_prompt _UpperCAmelCase = guidance_scale > 1.0 _UpperCAmelCase = self._encode_prompt(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(__UpperCamelCase )}.' ) # get the initial completely masked latents unless the user supplied it _UpperCAmelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: _UpperCAmelCase = self.transformer.num_vector_embeds - 1 _UpperCAmelCase = torch.full(__UpperCamelCase , __UpperCamelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F' {self.transformer.num_vector_embeds - 1} (inclusive).' ) _UpperCAmelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCamelCase , device=self.device ) _UpperCAmelCase = self.scheduler.timesteps.to(self.device ) _UpperCAmelCase = latents for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the sample if we are doing classifier free guidance _UpperCAmelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _UpperCAmelCase = self.transformer(__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase ).sample if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase = model_output.chunk(2 ) _UpperCAmelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__UpperCamelCase , dim=1 , keepdim=__UpperCamelCase ) _UpperCAmelCase = self.truncate(__UpperCamelCase , __UpperCamelCase ) # remove `log(0)`'s (`-inf`s) _UpperCAmelCase = model_output.clamp(-7_0 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(__UpperCamelCase , timestep=__UpperCamelCase , sample=__UpperCamelCase , generator=__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.vqvae.config.vq_embed_dim _UpperCAmelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _UpperCAmelCase = self.vqvae.quantize.get_codebook_entry(__UpperCamelCase , shape=__UpperCamelCase ) _UpperCAmelCase = self.vqvae.decode(__UpperCamelCase , force_not_quantize=__UpperCamelCase ).sample _UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float )->torch.FloatTensor: _UpperCAmelCase , _UpperCAmelCase = torch.sort(__UpperCamelCase , 1 , descending=__UpperCamelCase ) _UpperCAmelCase = torch.exp(__UpperCamelCase ) _UpperCAmelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _UpperCAmelCase = torch.full_like(keep_mask[:, 0:1, :] , __UpperCamelCase ) _UpperCAmelCase = torch.cat((all_true, keep_mask) , dim=1 ) _UpperCAmelCase = keep_mask[:, :-1, :] _UpperCAmelCase = keep_mask.gather(1 , indices.argsort(1 ) ) _UpperCAmelCase = log_p_x_0.clone() _UpperCAmelCase = -torch.inf # -inf = log(0) return rv
602
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __A : List[str] = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __A : List[Any] = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" __A : int = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' def remove_articles(_SCREAMING_SNAKE_CASE : Optional[int] ): _UpperCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 100 def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams] _UpperCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = Counter() for sgram, scount in sgramcounter.items(): _UpperCAmelCase = scount * numref _UpperCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = Counter() for cgram, ccount in cgramcounter.items(): _UpperCAmelCase = ccount * numref # KEEP _UpperCAmelCase = sgramcounter_rep & cgramcounter_rep _UpperCAmelCase = keepgramcounter_rep & rgramcounter _UpperCAmelCase = sgramcounter_rep & rgramcounter _UpperCAmelCase = 0 _UpperCAmelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _UpperCAmelCase = 1 _UpperCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _UpperCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _UpperCAmelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: _UpperCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _UpperCAmelCase = sgramcounter_rep - cgramcounter_rep _UpperCAmelCase = delgramcounter_rep - rgramcounter _UpperCAmelCase = sgramcounter_rep - rgramcounter _UpperCAmelCase = 0 _UpperCAmelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _UpperCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE ) # ADDITION _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _UpperCAmelCase = 1 _UpperCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = 0 if addscore_precision > 0 or addscore_recall > 0: _UpperCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ssent.split(''' ''' ) _UpperCAmelCase = csent.split(''' ''' ) _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for rsent in rsents: _UpperCAmelCase = rsent.split(''' ''' ) _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _UpperCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _UpperCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _UpperCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _UpperCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _UpperCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _UpperCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _UpperCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _UpperCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _UpperCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_SCREAMING_SNAKE_CASE ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _UpperCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4 _UpperCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4 _UpperCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True ): '''simple docstring''' if lowercase: _UpperCAmelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _UpperCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": _UpperCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": _UpperCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = sentence if not return_str: _UpperCAmelCase = normalized_sent.split() return normalized_sent def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _UpperCAmelCase = 0 for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] ) _UpperCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE ) return 100 * sari_score def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str="exp" , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : List[str]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , ): '''simple docstring''' _UpperCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _UpperCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = sacrebleu.corpus_bleu( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a ( datasets.Metric): """simple docstring""" def lowercase__ ( self : Dict )->Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def lowercase__ ( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] )->Any: _UpperCAmelCase = {} result.update({'''sari''': compute_sari(sources=__UpperCamelCase , predictions=__UpperCamelCase , references=__UpperCamelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCamelCase , references=__UpperCamelCase )} ) result.update({'''exact''': compute_em(predictions=__UpperCamelCase , references=__UpperCamelCase )} ) return result
602
1
import inspect import unittest class snake_case__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Any ): try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase__ ( self : Union[str, Any] ): import diffusers from diffusers.dependency_versions_table import deps snake_case__ : Any = inspect.getmembers(_lowerCamelCase , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case__ : int = 'k-diffusion' elif backend == "invisible_watermark": snake_case__ : List[str] = 'invisible-watermark' assert backend in deps, F'''{backend} is not in the deps table!'''
303
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case__ ( UpperCamelCase_ ): _lowerCAmelCase =42 _lowerCAmelCase =42 def __init__( self : List[str] , _lowerCamelCase : UNetaDModel , _lowerCamelCase : ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self : Union[str, Any] , _lowerCamelCase : int = 1 , _lowerCamelCase : int = 2_0_0_0 , _lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCamelCase : Optional[str] = "pil" , _lowerCamelCase : bool = True , **_lowerCamelCase : Optional[int] , ): snake_case__ : Union[str, Any] = self.unet.config.sample_size snake_case__ : Tuple = (batch_size, 3, img_size, img_size) snake_case__ : List[str] = self.unet snake_case__ : int = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase ) * self.scheduler.init_noise_sigma snake_case__ : Tuple = sample.to(self.device ) self.scheduler.set_timesteps(_lowerCamelCase ) self.scheduler.set_sigmas(_lowerCamelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): snake_case__ : Union[str, Any] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): snake_case__ : Tuple = self.unet(_lowerCamelCase , _lowerCamelCase ).sample snake_case__ : List[str] = self.scheduler.step_correct(_lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample # prediction step snake_case__ : Dict = model(_lowerCamelCase , _lowerCamelCase ).sample snake_case__ : Tuple = self.scheduler.step_pred(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) snake_case__ , snake_case__ : str = output.prev_sample, output.prev_sample_mean snake_case__ : Optional[int] = sample_mean.clamp(0 , 1 ) snake_case__ : Optional[int] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case__ : Optional[Any] = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_lowerCamelCase )
303
1
"""simple docstring""" from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) SCREAMING_SNAKE_CASE = 299_792_458 # Symbols SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = symbols("""ct x y z""") def lowerCamelCase__ ( UpperCAmelCase_ )-> float: """simple docstring""" if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!" ) return velocity / c def lowerCamelCase__ ( UpperCAmelCase_ )-> float: """simple docstring""" return 1 / sqrt(1 - beta(UpperCAmelCase_ ) ** 2 ) def lowerCamelCase__ ( UpperCAmelCase_ )-> np.ndarray: """simple docstring""" return np.array( [ [gamma(UpperCAmelCase_ ), -gamma(UpperCAmelCase_ ) * beta(UpperCAmelCase_ ), 0, 0], [-gamma(UpperCAmelCase_ ) * beta(UpperCAmelCase_ ), gamma(UpperCAmelCase_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ = None )-> np.ndarray: """simple docstring""" # Ensure event is not empty if event is None: UpperCamelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCAmelCase_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: SCREAMING_SNAKE_CASE = transform(29_979_245) print("""Example of four vector: """) print(F'''ct\' = {four_vector[0]}''') print(F'''x\' = {four_vector[1]}''') print(F'''y\' = {four_vector[2]}''') print(F'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values SCREAMING_SNAKE_CASE = {ct: c, x: 1, y: 1, z: 1} SCREAMING_SNAKE_CASE = [four_vector[i].subs(sub_dict) for i in range(4)] print(F'''\n{numerical_vector}''')
554
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a ( unittest.TestCase ): def __init__( self : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=7 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[int]=30 , UpperCAmelCase_ : Any=400 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Dict=0.9 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[int]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , )-> List[str]: """simple docstring""" UpperCamelCase = size if size is not None else {"shortest_edge": 30} UpperCamelCase = crop_size if crop_size is not None else {"height": 30, "width": 30} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize_and_center_crop UpperCamelCase = size UpperCamelCase = crop_pct UpperCamelCase = crop_size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> str: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( _lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : List[Any] = PoolFormerImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> str: """simple docstring""" UpperCamelCase = PoolFormerImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Dict )-> Optional[int]: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std" ) ) def _SCREAMING_SNAKE_CASE ( self : int )-> List[Any]: """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Any: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Dict: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> List[str]: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : str )-> str: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
554
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""")) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""") @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 6_50, """eval_accuracy""": 0.6, """eval_loss""": 0.9}, }, { """framework""": """tensorflow""", """script""": """run_tf.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.3, """eval_loss""": 0.9}, }, ]) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self )-> int: '''simple docstring''' if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='utf-8' , check=A_ , ) assert hasattr(self , 'env' ) def UpperCAmelCase_ ( self , A_=1 )-> Any: '''simple docstring''' return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-single''' , instance_count=A_ , instance_type=self.instance_type , debugger_hook_config=A_ , hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='py36' , ) def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' TrainingJobAnalytics(A_ ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = self.create_estimator() # run training estimator.fit() # result dataframe UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , A_ )
432
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : int = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCAmelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
432
1
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase__ = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-ctx_encoder-multiset-base''': 5_1_2, } UpperCamelCase__ = { '''facebook/dpr-question_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-question_encoder-multiset-base''': 5_1_2, } UpperCamelCase__ = { '''facebook/dpr-reader-single-nq-base''': 5_1_2, '''facebook/dpr-reader-multiset-base''': 5_1_2, } UpperCamelCase__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase__ = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase__ = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class a__ ( snake_case_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class a__ ( snake_case_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) UpperCamelCase__ = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) UpperCamelCase__ = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(snake_case_ ) class a__ : def __call__( self : List[str] ,a__ : Optional[int] ,a__ : Optional[str] = None ,a__ : Optional[str] = None ,a__ : Union[bool, str] = False ,a__ : Union[bool, str] = False ,a__ : Optional[int] = None ,a__ : Optional[Union[str, TensorType]] = None ,a__ : Optional[bool] = None ,**a__ : Optional[int] ,) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( __snake_case ,padding=__snake_case ,truncation=__snake_case ,max_length=__snake_case ,return_tensors=__snake_case ,return_attention_mask=__snake_case ,**__snake_case ,) elif titles is None or texts is None: _lowerCAmelCase:Optional[int] = titles if texts is None else texts return super().__call__( __snake_case ,__snake_case ,padding=__snake_case ,truncation=__snake_case ,max_length=__snake_case ,return_tensors=__snake_case ,return_attention_mask=__snake_case ,**__snake_case ,) _lowerCAmelCase:Tuple = titles if not isinstance(__snake_case ,__snake_case) else [titles] _lowerCAmelCase:Tuple = texts if not isinstance(__snake_case ,__snake_case) else [texts] _lowerCAmelCase:Union[str, Any] = len(__snake_case) _lowerCAmelCase:Union[str, Any] = questions if not isinstance(__snake_case ,__snake_case) else [questions] * n_passages if len(__snake_case) != len(__snake_case): raise ValueError( F'There should be as many titles than texts but got {len(__snake_case)} titles and {len(__snake_case)} texts.') _lowerCAmelCase:str = super().__call__(__snake_case ,__snake_case ,padding=__snake_case ,truncation=__snake_case)['''input_ids'''] _lowerCAmelCase:Union[str, Any] = super().__call__(__snake_case ,add_special_tokens=__snake_case ,padding=__snake_case ,truncation=__snake_case)['''input_ids'''] _lowerCAmelCase:int = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__snake_case ,__snake_case) ] } if return_attention_mask is not False: _lowerCAmelCase:Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) _lowerCAmelCase:List[Any] = attention_mask return self.pad(__snake_case ,padding=__snake_case ,max_length=__snake_case ,return_tensors=__snake_case) def __UpperCamelCase ( self : Optional[Any] ,a__ : BatchEncoding ,a__ : DPRReaderOutput ,a__ : int = 16 ,a__ : int = 64 ,a__ : int = 4 ,) -> List[DPRSpanPrediction]: """simple docstring""" _lowerCAmelCase:Tuple = reader_input['''input_ids'''] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase:Union[str, Any] = reader_output[:3] _lowerCAmelCase:Union[str, Any] = len(__snake_case) _lowerCAmelCase:str = sorted(range(__snake_case) ,reverse=__snake_case ,key=relevance_logits.__getitem__) _lowerCAmelCase:int = [] for doc_id in sorted_docs: _lowerCAmelCase:Optional[Any] = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase:int = sequence_ids.index(self.sep_token_id ,2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase:List[Any] = sequence_ids.index(self.pad_token_id) else: _lowerCAmelCase:Optional[int] = len(__snake_case) _lowerCAmelCase:Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=__snake_case ,top_spans=__snake_case ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=__snake_case ,start_index=__snake_case ,end_index=__snake_case ,text=self.decode(sequence_ids[start_index : end_index + 1]) ,)) if len(__snake_case) >= num_spans: break return nbest_spans_predictions[:num_spans] def __UpperCamelCase ( self : str ,a__ : List[int] ,a__ : List[int] ,a__ : int ,a__ : int ,) -> List[DPRSpanPrediction]: """simple docstring""" _lowerCAmelCase:Dict = [] for start_index, start_score in enumerate(__snake_case): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) _lowerCAmelCase:List[Any] = sorted(__snake_case ,key=lambda a__: x[1] ,reverse=__snake_case) _lowerCAmelCase:Union[str, Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'Wrong span indices: [{start_index}:{end_index}]') _lowerCAmelCase:Union[str, Any] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'Span is too long: {length} > {max_answer_length}') if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(__snake_case) == top_spans: break return chosen_span_intervals @add_end_docstrings(snake_case_ ) class a__ ( snake_case_ , snake_case_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = READER_PRETRAINED_VOCAB_FILES_MAP snake_case__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = READER_PRETRAINED_INIT_CONFIGURATION snake_case__ = ['''input_ids''', '''attention_mask''']
227
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ : List[str] =imread(r'''digital_image_processing/image_data/lena_small.jpg''') A__ : Union[str, Any] =cvtColor(img, COLOR_BGR2GRAY) def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = cn.convert_to_negative(lowerCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def UpperCamelCase__ ( ): """simple docstring""" with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase , 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() _lowerCAmelCase = canny.canny(lowerCAmelCase ) # assert canny array for at least one True assert canny_array.any() def UpperCamelCase__ ( ): """simple docstring""" assert gg.gaussian_filter(lowerCAmelCase , 5 , sigma=0.9 ).all() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _lowerCAmelCase = conv.img_convolve(lowerCAmelCase , lowerCAmelCase ).astype(lowerCAmelCase ) assert res.any() def UpperCamelCase__ ( ): """simple docstring""" assert med.median_filter(lowerCAmelCase , 3 ).any() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = sob.sobel_filter(lowerCAmelCase ) assert grad.any() and theta.any() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = sp.make_sepia(lowerCAmelCase , 20 ) assert sepia.all() def UpperCamelCase__ ( lowerCAmelCase = "digital_image_processing/image_data/lena_small.jpg" ): """simple docstring""" _lowerCAmelCase = bs.Burkes(imread(lowerCAmelCase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCamelCase__ ( lowerCAmelCase = "digital_image_processing/image_data/lena_small.jpg" , ): """simple docstring""" _lowerCAmelCase = rs.NearestNeighbour(imread(lowerCAmelCase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. _lowerCAmelCase = imread(lowerCAmelCase , 0 ) # Test for get_neighbors_pixel function() return not None _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = image[x_coordinate][y_coordinate] _lowerCAmelCase = lbp.get_neighbors_pixel( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _lowerCAmelCase = lbp.local_binary_value(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) assert lbp_image.any()
207
0
'''simple docstring''' import os def lowercase ( ): """simple docstring""" _A : Dict = os.path.dirname(os.path.realpath(lowerCAmelCase)) _A : Any = os.path.join(lowerCAmelCase , '''triangle.txt''') with open(lowerCAmelCase) as f: _A : Optional[Any] = f.readlines() _A : Optional[int] = [] for line in triangle: _A : Optional[int] = [] for number in line.strip().split(''' '''): numbers_from_line.append(int(lowerCAmelCase)) a.append(lowerCAmelCase) for i in range(1 , len(lowerCAmelCase)): for j in range(len(a[i])): _A : Union[str, Any] = a[i - 1][j] if j != len(a[i - 1]) else 0 _A : Optional[int] = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCAmelCase , lowerCAmelCase) return max(a[-1]) if __name__ == "__main__": print(solution())
417
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Union[str, Any] = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __UpperCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
417
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : List[Any] =logging.get_logger(__name__) A_ : Optional[int] ={"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} A_ : List[str] ={ """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } A_ : str ={ """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCamelCase_ ( ): """simple docstring""" a_ = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) a_ = bs[:] a_ = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCAmelCase__ ) cs.append(2**8 + n ) n += 1 a_ = [chr(UpperCAmelCase__ ) for n in cs] return dict(zip(UpperCAmelCase__ , UpperCAmelCase__ ) ) def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" a_ = set() a_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a_ = char return pairs class lowercase_ ( UpperCamelCase__): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="replace" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=False , **_UpperCAmelCase , ): """simple docstring""" a_ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token a_ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token a_ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token a_ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token a_ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token a_ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it a_ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding="""utf-8""" ) as vocab_handle: a_ = json.load(_UpperCAmelCase ) a_ = {v: k for k, v in self.encoder.items()} a_ = errors # how to handle errors in decoding a_ = bytes_to_unicode() a_ = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCAmelCase , encoding="""utf-8""" ) as merges_handle: a_ = merges_handle.read().split("""\n""" )[1:-1] a_ = [tuple(merge.split() ) for merge in bpe_merges] a_ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) a_ = {} a_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a_ = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def lowercase__ ( self ): """simple docstring""" return len(self.encoder ) def lowercase__ ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self , _UpperCAmelCase ): """simple docstring""" if token in self.cache: return self.cache[token] a_ = tuple(_UpperCAmelCase ) a_ = get_pairs(_UpperCAmelCase ) if not pairs: return token while True: a_ = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break a_ , a_ = bigram a_ = [] a_ = 0 while i < len(_UpperCAmelCase ): try: a_ = word.index(_UpperCAmelCase , _UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a_ = j if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a_ = tuple(_UpperCAmelCase ) a_ = new_word if len(_UpperCAmelCase ) == 1: break else: a_ = get_pairs(_UpperCAmelCase ) a_ = """ """.join(_UpperCAmelCase ) a_ = word return word def lowercase__ ( self , _UpperCAmelCase ): """simple docstring""" a_ = [] for token in re.findall(self.pat , _UpperCAmelCase ): a_ = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCAmelCase ).split(""" """ ) ) return bpe_tokens def lowercase__ ( self , _UpperCAmelCase ): """simple docstring""" return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowercase__ ( self , _UpperCAmelCase ): """simple docstring""" return self.decoder.get(_UpperCAmelCase ) def lowercase__ ( self , _UpperCAmelCase ): """simple docstring""" a_ = """""".join(_UpperCAmelCase ) a_ = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return a_ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) a_ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + """\n""" ) a_ = 0 with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) a_ = token_index writer.write(""" """.join(_UpperCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ = [self.cls_token_id] a_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): """simple docstring""" a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase=False , **_UpperCAmelCase ): """simple docstring""" a_ = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCAmelCase ) > 0 and not text[0].isspace()): a_ = """ """ + text return (text, kwargs)
483
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class lowercase_ ( UpperCamelCase__): """simple docstring""" def __init__( self , _UpperCAmelCase ): """simple docstring""" a_ = data def __iter__( self ): """simple docstring""" for element in self.data: yield element def lowerCamelCase_ ( UpperCAmelCase__=True ): """simple docstring""" a_ = Accelerator(even_batches=UpperCAmelCase__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False ): """simple docstring""" if iterable: a_ = DummyIterableDataset(torch.as_tensor(range(UpperCAmelCase__ ) ) ) else: a_ = TensorDataset(torch.as_tensor(range(UpperCAmelCase__ ) ) ) a_ = DataLoader(UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) a_ = accelerator.prepare(UpperCAmelCase__ ) return dl def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): """simple docstring""" a_ = create_dataloader(accelerator=UpperCAmelCase__ , dataset_size=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) a_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def lowerCamelCase_ ( ): """simple docstring""" a_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def lowerCamelCase_ ( ): """simple docstring""" a_ = create_accelerator(even_batches=UpperCAmelCase__ ) verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def lowerCamelCase_ ( ): """simple docstring""" a_ = create_accelerator(even_batches=UpperCAmelCase__ ) a_ = torch.nn.Linear(1 , 1 ) a_ = accelerator.prepare(UpperCAmelCase__ ) a_ = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) a_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(UpperCAmelCase__ ): a_ = ddp_model(batch[0].float() ) a_ = output.sum() loss.backward() batch_idxs.append(UpperCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" with warnings.catch_warnings(record=UpperCAmelCase__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , UpperCAmelCase__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def lowerCamelCase_ ( ): """simple docstring""" a_ = True a_ = False a_ = create_accelerator(even_batches=UpperCAmelCase__ ) a_ = torch.nn.Linear(1 , 1 ) a_ = accelerator.prepare(UpperCAmelCase__ ) a_ = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) a_ = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): a_ = train_dl.batch_sampler.even_batches a_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def lowerCamelCase_ ( ): """simple docstring""" a_ = True a_ = False a_ = create_accelerator(even_batches=UpperCAmelCase__ ) a_ = torch.nn.Linear(1 , 1 ) a_ = accelerator.prepare(UpperCAmelCase__ ) create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase__ ) a_ = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): a_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def lowerCamelCase_ ( ): """simple docstring""" a_ = create_accelerator() a_ = torch.nn.Linear(1 , 1 ) a_ = accelerator.prepare(UpperCAmelCase__ ) create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase__ ) with warnings.catch_warnings(record=UpperCAmelCase__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): pass assert issubclass(w[-1].category , UpperCAmelCase__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def lowerCamelCase_ ( ): """simple docstring""" a_ = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) a_ = accelerator.state.distributed_type a_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(UpperCAmelCase__ ) a_ = original_state if __name__ == "__main__": main()
483
1
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __snake_case = { '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Tuple = 'maskformer' A_ : int = {'hidden_size': 'mask_feature_size'} A_ : Optional[Any] = ['resnet', 'swin'] A_ : Optional[Any] = ['detr'] def __init__( self , __UpperCAmelCase = 256 , __UpperCAmelCase = 256 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0.02 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = 20.0 , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Tuple: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _a = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _a = backbone_config.pop('''model_type''' ) _a = CONFIG_MAPPING[backbone_model_type] _a = config_class.from_dict(__UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' F'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _a = DetrConfig() else: # verify that the decoder is supported _a = ( decoder_config.pop('''model_type''' ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'Transformer Decoder {decoder_type} not supported, please use one of' F' {",".join(self.decoders_supported )}' ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _a = CONFIG_MAPPING[decoder_type] _a = config_class.from_dict(__UpperCAmelCase ) _a = backbone_config _a = decoder_config # main feature dimension for the model _a = fpn_feature_size _a = mask_feature_size # initializer _a = init_std _a = init_xavier_std # Hungarian matcher && loss _a = cross_entropy_weight _a = dice_weight _a = mask_weight _a = use_auxiliary_loss _a = no_object_weight _a = output_auxiliary_logits _a = self.decoder_config.encoder_attention_heads _a = self.decoder_config.num_hidden_layers super().__init__(**__UpperCAmelCase ) @classmethod def _UpperCAmelCase ( cls , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: return cls( backbone_config=__UpperCAmelCase , decoder_config=__UpperCAmelCase , **__UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> Dict[str, any]: _a = copy.deepcopy(self.__dict__ ) _a = self.backbone_config.to_dict() _a = self.decoder_config.to_dict() _a = self.__class__.model_type return output
285
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=True , __UpperCAmelCase=1 / 255 , __UpperCAmelCase=True , ) -> Optional[int]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _a = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} _a = parent _a = batch_size _a = num_channels _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std _a = do_rescale _a = rescale_factor _a = do_pad def _UpperCAmelCase ( self ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ) -> List[str]: if not batched: _a = image_inputs[0] if isinstance(__UpperCAmelCase , Image.Image ): _a , _a = image.size else: _a , _a = image.shape[1], image.shape[2] if w < h: _a = int(self.size['''shortest_edge'''] * h / w ) _a = self.size['''shortest_edge'''] elif w > h: _a = self.size['''shortest_edge'''] _a = int(self.size['''shortest_edge'''] * w / h ) else: _a = self.size['''shortest_edge'''] _a = self.size['''shortest_edge'''] else: _a = [] for image in image_inputs: _a , _a = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _a = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[0] )[0] _a = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : List[str] = DeformableDetrImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> Dict: _a = DeformableDetrImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Dict: _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) ) def _UpperCAmelCase ( self ) -> Dict: _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __UpperCAmelCase ) _a = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__UpperCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: pass def _UpperCAmelCase ( self ) -> List[Any]: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) _a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ) -> int: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ) -> Dict: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: # prepare image and target _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _a = json.loads(f.read() ) _a = {'''image_id''': 39769, '''annotations''': target} # encode them _a = DeformableDetrImageProcessor() _a = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values _a = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __UpperCAmelCase ) _a = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __UpperCAmelCase , atol=1e-4 ) ) # verify area _a = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __UpperCAmelCase ) ) # verify boxes _a = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __UpperCAmelCase ) _a = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __UpperCAmelCase , atol=1e-3 ) ) # verify image_id _a = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __UpperCAmelCase ) ) # verify is_crowd _a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __UpperCAmelCase ) ) # verify class_labels _a = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __UpperCAmelCase ) ) # verify orig_size _a = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __UpperCAmelCase ) ) # verify size _a = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __UpperCAmelCase ) ) @slow def _UpperCAmelCase ( self ) -> str: # prepare image, target and masks_path _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _a = json.loads(f.read() ) _a = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} _a = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _a = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _a = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , masks_path=__UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values _a = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __UpperCAmelCase ) _a = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __UpperCAmelCase , atol=1e-4 ) ) # verify area _a = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __UpperCAmelCase ) ) # verify boxes _a = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __UpperCAmelCase ) _a = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __UpperCAmelCase , atol=1e-3 ) ) # verify image_id _a = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __UpperCAmelCase ) ) # verify is_crowd _a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __UpperCAmelCase ) ) # verify class_labels _a = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __UpperCAmelCase ) ) # verify masks _a = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __UpperCAmelCase ) # verify orig_size _a = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __UpperCAmelCase ) ) # verify size _a = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __UpperCAmelCase ) )
285
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class A_ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=2 , snake_case=24 , snake_case=16 , snake_case=True , snake_case=True , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=10 , snake_case=0.02 , snake_case=None , snake_case=2 , snake_case=2 , ): lowercase = parent lowercase = batch_size lowercase = patch_size lowercase = max_length lowercase = num_mel_bins lowercase = is_training lowercase = use_labels lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = type_sequence_label_size lowercase = initializer_range lowercase = scope lowercase = frequency_stride lowercase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowercase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 lowercase = (self.max_length - self.patch_size) // self.time_stride + 1 lowercase = frequency_out_dimension * time_out_dimension lowercase = num_patches + 2 def SCREAMING_SNAKE_CASE__ ( self ): lowercase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = self.get_config() return config, input_values, labels def SCREAMING_SNAKE_CASE__ ( self ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): lowercase = ASTModel(config=snake_case ) model.to(snake_case ) model.eval() lowercase = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = {'input_values': input_values} return config, inputs_dict @require_torch class A_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : str = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _UpperCamelCase : Optional[int] = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : List[Any] = False _UpperCamelCase : Any = False _UpperCamelCase : Optional[int] = False def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ASTModelTester(self ) lowercase = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(snake_case ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ['input_values'] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = ASTModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def UpperCAmelCase_ ( ): lowercase = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' ) lowercase , lowercase = torchaudio.load(__SCREAMING_SNAKE_CASE ) return audio, sampling_rate @require_torch @require_torchaudio class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self ): return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.default_feature_extractor lowercase = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(snake_case ) lowercase = self.default_feature_extractor lowercase , lowercase = prepare_audio() lowercase = audio.squeeze().numpy() lowercase = feature_extractor(snake_case , sampling_rate=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): lowercase = model(**snake_case ) # verify the logits lowercase = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , snake_case ) lowercase = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
84
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
102
0
"""simple docstring""" from ...processing_utils import ProcessorMixin class snake_case ( __UpperCAmelCase ): lowerCamelCase__ = '''SpeechT5FeatureExtractor''' lowerCamelCase__ = '''SpeechT5Tokenizer''' def __init__( self :List[Any] , _lowerCamelCase :Optional[int] , _lowerCamelCase :str ): super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__( self :Optional[int] , *_lowerCamelCase :Dict , **_lowerCamelCase :Union[str, Any] ): __SCREAMING_SNAKE_CASE : Any = kwargs.pop('''audio''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = kwargs.pop('''text''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''text_target''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('''audio_target''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''sampling_rate''' , _lowerCamelCase ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: __SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) elif text is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : Tuple = None if audio_target is not None: __SCREAMING_SNAKE_CASE : Tuple = self.feature_extractor(audio_target=_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = targets['''input_values'''] elif text_target is not None: __SCREAMING_SNAKE_CASE : str = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = targets['''input_ids'''] else: __SCREAMING_SNAKE_CASE : List[Any] = None if inputs is None: return targets if targets is not None: __SCREAMING_SNAKE_CASE : int = labels __SCREAMING_SNAKE_CASE : Dict = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: __SCREAMING_SNAKE_CASE : Any = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , *_lowerCamelCase :Dict , **_lowerCamelCase :Any ): __SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop('''input_values''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('''input_ids''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = kwargs.pop('''labels''' , _lowerCamelCase ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extractor.pad(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) elif input_ids is not None: __SCREAMING_SNAKE_CASE : int = self.tokenizer.pad(_lowerCamelCase , **_lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : Any = None if labels is not None: if "input_ids" in labels or (isinstance(_lowerCamelCase , _lowerCamelCase ) and "input_ids" in labels[0]): __SCREAMING_SNAKE_CASE : Any = self.tokenizer.pad(_lowerCamelCase , **_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = targets['''input_ids'''] else: __SCREAMING_SNAKE_CASE : Any = self.feature_extractor.feature_size __SCREAMING_SNAKE_CASE : Any = self.feature_extractor.num_mel_bins __SCREAMING_SNAKE_CASE : Any = self.feature_extractor.pad(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = feature_size_hack __SCREAMING_SNAKE_CASE : Any = targets['''input_values'''] else: __SCREAMING_SNAKE_CASE : Dict = None if inputs is None: return targets if targets is not None: __SCREAMING_SNAKE_CASE : List[Any] = labels __SCREAMING_SNAKE_CASE : int = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: __SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE_ ( self :Tuple , *_lowerCamelCase :Tuple , **_lowerCamelCase :Union[str, Any] ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , *_lowerCamelCase :List[Any] , **_lowerCamelCase :List[str] ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase )
710
"""simple docstring""" from __future__ import annotations _lowerCamelCase = 8.988e9 # units = N * m^s * C^-2 def lowerCAmelCase_ ( lowercase_ : float , lowercase_ : float , lowercase_ : float , lowercase_ : float ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: __SCREAMING_SNAKE_CASE : int = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __SCREAMING_SNAKE_CASE : List[str] = abs(lowercase_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __SCREAMING_SNAKE_CASE : Optional[int] = abs(lowercase_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __SCREAMING_SNAKE_CASE : Tuple = (COULOMBS_CONSTANT * charge_product / abs(lowercase_ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
401
0