code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[int] ) ->Optional[int]: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: super().__init__() a : Union[str, Any] = module a : Any = nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase__ , bias=lowerCAmelCase__ ) , nn.Linear(lowerCAmelCase__ , module.out_features , bias=lowerCAmelCase__ ) , ) a : str = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase__ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __a ( self , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: return self.module(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) + self.adapter(lowerCAmelCase__ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCamelCase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCamelCase : int ="""bigscience/bloom-1b7""" # Constant values lowerCamelCase : Any =2.109_659_552_692_574 lowerCamelCase : Optional[int] ="""Hello my name is""" lowerCamelCase : List[str] =set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) lowerCamelCase : List[str] =10 def __a ( self ) -> Any: # Models and tokenizer a : Tuple = AutoTokenizer.from_pretrained(self.model_name ) class __UpperCamelCase ( a__ ): def __a ( self ) -> Dict: super().setUp() # Models and tokenizer a : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) a : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase__ , device_map="auto" ) def __a ( self ) -> str: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Optional[Any]: a : Union[str, Any] = self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase__ , "quantization_config" ) ) a : Tuple = config.to_dict() a : List[Any] = config.to_diff_dict() a : int = config.to_json_string() def __a ( self ) -> Tuple: from bitsandbytes.nn import Paramsabit a : List[str] = self.model_fpaa.get_memory_footprint() a : int = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) a : List[Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __a ( self ) -> List[Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase__ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __a ( self ) -> Tuple: a : str = self.tokenizer(self.input_text , return_tensors="pt" ) a : Optional[int] = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase__ ) , self.EXPECTED_OUTPUTS ) def __a ( self ) -> Union[str, Any]: a : Dict = BitsAndBytesConfig() a : List[str] = True a : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase__ , device_map="auto" ) a : str = self.tokenizer(self.input_text , return_tensors="pt" ) a : Dict = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase__ ) , self.EXPECTED_OUTPUTS ) def __a ( self ) -> Optional[Any]: with self.assertRaises(lowerCAmelCase__ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase__ ) def __a ( self ) -> Dict: a : Any = BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase__ ): a : int = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase__ , load_in_abit=lowerCAmelCase__ , device_map="auto" , bnb_abit_quant_type="nf4" , ) def __a ( self ) -> List[Any]: with self.assertRaises(lowerCAmelCase__ ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(lowerCAmelCase__ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase__ ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(lowerCAmelCase__ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase__ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything a : int = self.tokenizer(self.input_text , return_tensors="pt" ) a : Union[str, Any] = self.model_fpaa.to(torch.floataa ) a : int = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error a : Optional[int] = self.model_fpaa.to("cpu" ) # Check this does not throw an error a : Union[str, Any] = self.model_fpaa.half() # Check this does not throw an error a : List[str] = self.model_fpaa.float() def __a ( self ) -> Dict: a : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=lowerCAmelCase__ , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCamelCase ( unittest.TestCase ): @classmethod def __a ( cls ) -> Dict: a : Optional[int] = "t5-small" a : int = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense a : List[Any] = AutoTokenizer.from_pretrained(cls.model_name ) a : List[str] = "Translate in German: Hello, my dog is cute" def __a ( self ) -> str: gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Union[str, Any]: from transformers import TaForConditionalGeneration a : Dict = TaForConditionalGeneration._keep_in_fpaa_modules a : Optional[Any] = None # test with `t5-small` a : Optional[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase__ , device_map="auto" ) a : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a : Any = model.generate(**lowerCAmelCase__ ) # test with `flan-t5-small` a : Union[str, Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase__ , device_map="auto" ) a : Tuple = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a : Dict = model.generate(**lowerCAmelCase__ ) a : Optional[int] = modules def __a ( self ) -> Optional[Any]: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` a : str = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase__ , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) a : Any = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a : str = model.generate(**lowerCAmelCase__ ) # test with `flan-t5-small` a : Any = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase__ , device_map="auto" ) a : int = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a : int = model.generate(**lowerCAmelCase__ ) class __UpperCamelCase ( a__ ): def __a ( self ) -> str: super().setUp() # model_name a : Union[str, Any] = "bigscience/bloom-560m" a : Dict = "t5-small" # Different types of model a : Optional[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase__ , device_map="auto" ) # Sequence classification model a : Tuple = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase__ , device_map="auto" ) # CausalLM model a : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase__ , device_map="auto" ) # Seq2seq model a : int = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase__ , device_map="auto" ) def __a ( self ) -> int: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Any: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __UpperCamelCase ( a__ ): def __a ( self ) -> Dict: super().setUp() def __a ( self ) -> int: del self.pipe gc.collect() torch.cuda.empty_cache() def __a ( self ) -> List[str]: a : int = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass a : Dict = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __UpperCamelCase ( a__ ): def __a ( self ) -> Tuple: super().setUp() def __a ( self ) -> int: a : Union[str, Any] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase__ , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model a : Optional[Any] = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch a : Optional[int] = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase__ ) , self.EXPECTED_OUTPUTS ) class __UpperCamelCase ( a__ ): def __a ( self ) -> Union[str, Any]: a : List[Any] = "facebook/opt-350m" super().setUp() def __a ( self ) -> Optional[int]: if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters a : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase__ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): a : Any = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability a : List[Any] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase__ ) ): a : Any = LoRALayer(module.q_proj , rank=16 ) a : List[Any] = LoRALayer(module.k_proj , rank=16 ) a : Union[str, Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch a : Tuple = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): a : str = model.forward(**lowerCAmelCase__ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase__ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __UpperCamelCase ( a__ ): lowerCamelCase : Dict ="""gpt2-xl""" lowerCamelCase : Tuple =3.3_191_854_854_152_187
633
"""simple docstring""" import unittest from transformers import DonutProcessor a : Optional[int] = '''naver-clova-ix/donut-base''' class __UpperCamelCase ( unittest.TestCase ): def __a ( self ) -> Dict: a : Optional[Any] = DonutProcessor.from_pretrained(lowerCAmelCase__ ) def __a ( self ) -> List[Any]: a : Optional[Any] = { "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } a : Tuple = ( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) a : List[Any] = self.processor.tokenajson(lowerCAmelCase__ ) self.assertDictEqual(lowerCAmelCase__ , lowerCAmelCase__ )
633
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """google/vit-base-patch16-224""": """https://huggingface.co/vit-base-patch16-224/resolve/main/config.json""", # See all ViT models at https://huggingface.co/models?filter=vit } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''vit''' def __init__( self : int , lowerCamelCase_ : Any=7_68 , lowerCamelCase_ : Optional[Any]=12 , lowerCamelCase_ : int=12 , lowerCamelCase_ : Optional[Any]=30_72 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : Tuple=0.0 , lowerCamelCase_ : Optional[Any]=0.0 , lowerCamelCase_ : Any=0.02 , lowerCamelCase_ : str=1e-12 , lowerCamelCase_ : Optional[int]=2_24 , lowerCamelCase_ : Tuple=16 , lowerCamelCase_ : Union[str, Any]=3 , lowerCamelCase_ : str=True , lowerCamelCase_ : List[Any]=16 , **lowerCamelCase_ : Tuple , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = image_size SCREAMING_SNAKE_CASE : Optional[int] = patch_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = qkv_bias SCREAMING_SNAKE_CASE : Dict = encoder_stride class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self : int ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return 1e-4
79
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=8 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase_ : UNetaDConditionModel , lowerCamelCase_ : DDPMScheduler , lowerCamelCase_ : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , movq=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : str = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase_ ( self : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : int ): '''simple docstring''' if latents is None: SCREAMING_SNAKE_CASE : Tuple = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=lowerCamelCase_ , dtype=lowerCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) SCREAMING_SNAKE_CASE : Dict = latents.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Dict=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) SCREAMING_SNAKE_CASE : List[Any] = torch.device(f'''cuda:{gpu_id}''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Tuple=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) SCREAMING_SNAKE_CASE : Any = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowerCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE : Union[str, Any] = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = cpu_offload_with_hook(lowerCamelCase_ , lowerCamelCase_ , prev_module_hook=lowerCamelCase_ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE : str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase_ ( self : str ): '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase_ ) def __call__( self : Optional[Any] , lowerCamelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 1_00 , lowerCamelCase_ : float = 4.0 , lowerCamelCase_ : int = 1 , lowerCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ : Optional[torch.FloatTensor] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self._execution_device SCREAMING_SNAKE_CASE : Optional[int] = guidance_scale > 1.0 if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = torch.cat(lowerCamelCase_ , dim=0 ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Dict = torch.cat(lowerCamelCase_ , dim=0 ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : Any = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: SCREAMING_SNAKE_CASE : List[Any] = image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : Optional[int] = negative_image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : Dict = hint.repeat_interleave(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCamelCase_ ) self.scheduler.set_timesteps(lowerCamelCase_ , device=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.timesteps SCREAMING_SNAKE_CASE : Any = self.movq.config.latent_channels SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = downscale_height_and_width(lowerCamelCase_ , lowerCamelCase_ , self.movq_scale_factor ) # create initial latent SCREAMING_SNAKE_CASE : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE : Union[str, Any] = {"""image_embeds""": image_embeds, """hint""": hint} SCREAMING_SNAKE_CASE : Dict = self.unet( sample=lowerCamelCase_ , timestep=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , added_cond_kwargs=lowerCamelCase_ , return_dict=lowerCamelCase_ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE : str = self.scheduler.step( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ , )[0] # post-processing SCREAMING_SNAKE_CASE : List[str] = self.movq.decode(lowerCamelCase_ , force_not_quantize=lowerCamelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE : Optional[int] = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : List[Any] = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Any = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
79
1
from __future__ import annotations from random import random class _lowerCAmelCase : def __init__( self : int , __snake_case : int | None = None ): lowerCamelCase :Dict = value lowerCamelCase :Any = random() lowerCamelCase :Node | None = None lowerCamelCase :Node | None = None def __repr__( self : Dict ): from pprint import pformat if self.left is None and self.right is None: return F"'{self.value}: {self.prior:.5}'" else: return pformat( {F"{self.value}: {self.prior:.5}": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): lowerCamelCase :List[str] = str(self.value ) + ''' ''' lowerCamelCase :Tuple = str(self.left or '''''' ) lowerCamelCase :int = str(self.right or '''''' ) return value + left + right def _lowerCamelCase ( a_ : Node | None , a_ : int): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCamelCase , lowerCamelCase :str = split(root.left , a_) return left, root else: lowerCamelCase , lowerCamelCase :Tuple = split(root.right , a_) return root, right def _lowerCamelCase ( a_ : Node | None , a_ : Node | None): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCamelCase :Dict = merge(left.right , a_) return left else: lowerCamelCase :List[Any] = merge(a_ , right.left) return right def _lowerCamelCase ( a_ : Node | None , a_ : int): lowerCamelCase :List[str] = Node(a_) lowerCamelCase , lowerCamelCase :Tuple = split(a_ , a_) return merge(merge(a_ , a_) , a_) def _lowerCamelCase ( a_ : Node | None , a_ : int): lowerCamelCase , lowerCamelCase :str = split(a_ , value - 1) lowerCamelCase , lowerCamelCase :Optional[int] = split(a_ , a_) return merge(a_ , a_) def _lowerCamelCase ( a_ : Node | None): if not root: # None return else: inorder(root.left) print(root.value , end=''',''') inorder(root.right) def _lowerCamelCase ( a_ : Node | None , a_ : str): for arg in args.split(): if arg[0] == "+": lowerCamelCase :int = insert(a_ , int(arg[1:])) elif arg[0] == "-": lowerCamelCase :Any = erase(a_ , int(arg[1:])) else: print('''Unknown command''') return root def _lowerCamelCase ( ): lowerCamelCase :Tuple = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''') lowerCamelCase :List[Any] = input() while args != "q": lowerCamelCase :Dict = interact_treap(a_ , a_) print(a_) lowerCamelCase :int = input() print('''good by!''') if __name__ == "__main__": import doctest doctest.testmod() main()
166
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): def __init__( self : Tuple , __snake_case : int , __snake_case : List[str]=13 , __snake_case : int=7 , __snake_case : int=True , __snake_case : int=True , __snake_case : Dict=True , __snake_case : str=True , __snake_case : Dict=99 , __snake_case : Optional[int]=32 , __snake_case : Optional[Any]=5 , __snake_case : Union[str, Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : int="gelu" , __snake_case : Union[str, Any]=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Any=512 , __snake_case : Dict=16 , __snake_case : Optional[int]=2 , __snake_case : str=0.0_2 , __snake_case : int=4 , ): lowerCamelCase :Union[str, Any] = parent lowerCamelCase :str = batch_size lowerCamelCase :Dict = seq_length lowerCamelCase :int = is_training lowerCamelCase :int = use_attention_mask lowerCamelCase :Optional[Any] = use_token_type_ids lowerCamelCase :int = use_labels lowerCamelCase :List[Any] = vocab_size lowerCamelCase :str = hidden_size lowerCamelCase :Optional[int] = num_hidden_layers lowerCamelCase :Tuple = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :Tuple = hidden_act lowerCamelCase :Any = hidden_dropout_prob lowerCamelCase :List[str] = attention_probs_dropout_prob lowerCamelCase :Any = max_position_embeddings lowerCamelCase :Dict = type_vocab_size lowerCamelCase :int = type_sequence_label_size lowerCamelCase :str = initializer_range lowerCamelCase :Any = num_choices def snake_case ( self : Any ): lowerCamelCase :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase :Any = None if self.use_attention_mask: lowerCamelCase :int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase :Dict = None if self.use_token_type_ids: lowerCamelCase :Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase :List[str] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case ( self : Any ): lowerCamelCase :int = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :Any = config_and_inputs lowerCamelCase :str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :Optional[Any] = config_and_inputs lowerCamelCase :List[Any] = True lowerCamelCase :Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase :str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = True _UpperCAmelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def snake_case ( self : Optional[int] ): lowerCamelCase :str = FlaxRobertaPreLayerNormModelTester(self ) @slow def snake_case ( self : Any ): for model_class_name in self.all_model_classes: lowerCamelCase :Dict = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=__snake_case ) lowerCamelCase :Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__snake_case ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): @slow def snake_case ( self : Tuple ): lowerCamelCase :List[str] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=__snake_case ) lowerCamelCase :int = np.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] , dtype=jnp.intaa ) lowerCamelCase :List[str] = model(__snake_case )[0] lowerCamelCase :Tuple = [1, 11, 50265] self.assertEqual(list(output.shape ) , __snake_case ) # compare the actual values for a slice. lowerCamelCase :Optional[Any] = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) ) @slow def snake_case ( self : Any ): lowerCamelCase :Optional[int] = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=__snake_case ) lowerCamelCase :Union[str, Any] = np.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] , dtype=jnp.intaa ) lowerCamelCase :int = model(__snake_case )[0] # compare the actual values for a slice. lowerCamelCase :List[Any] = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) )
166
1
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =XLMTokenizer snake_case_ =False def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase__ : str = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowerCAmelCase__ : int = dict(zip(__lowerCamelCase ,range(len(__lowerCamelCase ) ) ) ) lowerCAmelCase__ : int = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] lowerCAmelCase__ : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ) as fp: fp.write(json.dumps(__lowerCamelCase ) ) with open(self.merges_file ,'''w''' ) as fp: fp.write('''\n'''.join(__lowerCamelCase ) ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> int: """simple docstring""" lowerCAmelCase__ : List[Any] = '''lower newer''' lowerCAmelCase__ : List[Any] = '''lower newer''' return input_text, output_text def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : int = XLMTokenizer(self.vocab_file ,self.merges_file ) lowerCAmelCase__ : Optional[int] = '''lower''' lowerCAmelCase__ : List[str] = ['''low''', '''er</w>'''] lowerCAmelCase__ : List[str] = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : str = tokens + ['''<unk>'''] lowerCAmelCase__ : Optional[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) ,__lowerCamelCase ) @slow def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : List[str] = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) lowerCAmelCase__ : Dict = tokenizer.encode('''sequence builders''' ,add_special_tokens=__lowerCamelCase ) lowerCAmelCase__ : int = tokenizer.encode('''multi-sequence build''' ,add_special_tokens=__lowerCamelCase ) lowerCAmelCase__ : List[Any] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) lowerCAmelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ,__lowerCamelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
90
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case : str =logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =["""pixel_values"""] def __init__(self ,__lowerCamelCase = True ,__lowerCamelCase = None ,__lowerCamelCase = PILImageResampling.BICUBIC ,__lowerCamelCase = True ,__lowerCamelCase = None ,__lowerCamelCase = True ,__lowerCamelCase = 1 / 2_55 ,__lowerCamelCase = True ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = True ,**__lowerCamelCase ,) -> None: """simple docstring""" super().__init__(**__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = size if size is not None else {'''shortest_edge''': 2_24} lowerCAmelCase__ : Union[str, Any] = get_size_dict(__lowerCamelCase ,default_to_square=__lowerCamelCase ) lowerCAmelCase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} lowerCAmelCase__ : Optional[int] = get_size_dict(__lowerCamelCase ,default_to_square=__lowerCamelCase ,param_name='''crop_size''' ) lowerCAmelCase__ : Optional[int] = do_resize lowerCAmelCase__ : Any = size lowerCAmelCase__ : int = resample lowerCAmelCase__ : Dict = do_center_crop lowerCAmelCase__ : str = crop_size lowerCAmelCase__ : Dict = do_rescale lowerCAmelCase__ : Optional[Any] = rescale_factor lowerCAmelCase__ : Dict = do_normalize lowerCAmelCase__ : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase__ : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase__ : int = do_convert_rgb def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = PILImageResampling.BICUBIC ,__lowerCamelCase = None ,**__lowerCamelCase ,) -> np.ndarray: """simple docstring""" lowerCAmelCase__ : Optional[int] = get_size_dict(__lowerCamelCase ,default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowerCAmelCase__ : Optional[int] = get_resize_output_image_size(__lowerCamelCase ,size=size['''shortest_edge'''] ,default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase ,size=__lowerCamelCase ,resample=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = None ,**__lowerCamelCase ,) -> np.ndarray: """simple docstring""" lowerCAmelCase__ : List[Any] = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__lowerCamelCase ,size=(size['''height'''], size['''width''']) ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = None ,**__lowerCamelCase ,) -> int: """simple docstring""" return rescale(__lowerCamelCase ,scale=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = None ,**__lowerCamelCase ,) -> np.ndarray: """simple docstring""" return normalize(__lowerCamelCase ,mean=__lowerCamelCase ,std=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = ChannelDimension.FIRST ,**__lowerCamelCase ,) -> PIL.Image.Image: """simple docstring""" lowerCAmelCase__ : Tuple = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ : Tuple = size if size is not None else self.size lowerCAmelCase__ : Any = get_size_dict(__lowerCamelCase ,param_name='''size''' ,default_to_square=__lowerCamelCase ) lowerCAmelCase__ : Tuple = resample if resample is not None else self.resample lowerCAmelCase__ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ : List[Any] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ : str = get_size_dict(__lowerCamelCase ,param_name='''crop_size''' ,default_to_square=__lowerCamelCase ) lowerCAmelCase__ : Dict = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ : List[Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ : Dict = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ : int = image_std if image_std is not None else self.image_std lowerCAmelCase__ : Dict = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase__ : Optional[int] = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase__ : Union[str, Any] = [convert_to_rgb(__lowerCamelCase ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase__ : Any = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: lowerCAmelCase__ : str = [self.resize(image=__lowerCamelCase ,size=__lowerCamelCase ,resample=__lowerCamelCase ) for image in images] if do_center_crop: lowerCAmelCase__ : Dict = [self.center_crop(image=__lowerCamelCase ,size=__lowerCamelCase ) for image in images] if do_rescale: lowerCAmelCase__ : Union[str, Any] = [self.rescale(image=__lowerCamelCase ,scale=__lowerCamelCase ) for image in images] if do_normalize: lowerCAmelCase__ : Optional[Any] = [self.normalize(image=__lowerCamelCase ,mean=__lowerCamelCase ,std=__lowerCamelCase ) for image in images] lowerCAmelCase__ : List[Any] = [to_channel_dimension_format(__lowerCamelCase ,__lowerCamelCase ) for image in images] lowerCAmelCase__ : Optional[int] = {'''pixel_values''': images} return BatchFeature(data=__lowerCamelCase ,tensor_type=__lowerCamelCase )
90
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image SCREAMING_SNAKE_CASE__ : Optional[Any] = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class snake_case : lowercase_ = True lowercase_ = None # Automatically constructed lowercase_ = "PIL.Image.Image" lowercase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowercase_ = field(default='Image' , init=UpperCamelCase_ , repr=UpperCamelCase_ ) def __call__( self : str )-> Dict: """simple docstring""" return self.pa_type def __lowercase( self : str , a_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] )-> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(a_ , a_ ): SCREAMING_SNAKE_CASE__ : Optional[int] = np.array(a_ ) if isinstance(a_ , a_ ): return {"path": value, "bytes": None} elif isinstance(a_ , a_ ): return {"path": None, "bytes": value} elif isinstance(a_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(a_ ) elif isinstance(a_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(a_ ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def __lowercase( self : Union[str, Any] , a_ : dict , a_ : str=None )-> "PIL.Image.Image": """simple docstring""" if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: SCREAMING_SNAKE_CASE__ : List[str] = {} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(F'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(a_ ): SCREAMING_SNAKE_CASE__ : Any = PIL.Image.open(a_ ) else: SCREAMING_SNAKE_CASE__ : str = path.split('::' )[-1] try: SCREAMING_SNAKE_CASE__ : str = string_to_dict(a_ , config.HUB_DATASETS_URL )['repo_id'] SCREAMING_SNAKE_CASE__ : Tuple = token_per_repo_id.get(a_ ) except ValueError: SCREAMING_SNAKE_CASE__ : Tuple = None with xopen(a_ , 'rb' , use_auth_token=a_ ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] = BytesIO(f.read() ) SCREAMING_SNAKE_CASE__ : str = PIL.Image.open(bytes_ ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def __lowercase( self : List[str] )-> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def __lowercase( self : Optional[Any] , a_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] )-> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.array([None] * len(a_ ) , type=pa.binary() ) SCREAMING_SNAKE_CASE__ : Tuple = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.array([None] * len(a_ ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ : str = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: SCREAMING_SNAKE_CASE__ : List[Any] = storage.field('bytes' ) else: SCREAMING_SNAKE_CASE__ : Dict = pa.array([None] * len(a_ ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: SCREAMING_SNAKE_CASE__ : Tuple = storage.field('path' ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.array([None] * len(a_ ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): SCREAMING_SNAKE_CASE__ : List[Any] = pa.array( [encode_np_array(np.array(a_ ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pa.array([None] * len(a_ ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ : Dict = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(a_ , self.pa_type ) def __lowercase( self : List[Any] , a_ : pa.StructArray )-> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(a_ : Dict ): with xopen(a_ , 'rb' ) as f: SCREAMING_SNAKE_CASE__ : Union[str, Any] = f.read() return bytes_ SCREAMING_SNAKE_CASE__ : Any = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) SCREAMING_SNAKE_CASE__ : Dict = pa.array( [os.path.basename(a_ ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) SCREAMING_SNAKE_CASE__ : List[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(a_ , self.pa_type ) def _a ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() SCREAMING_SNAKE_CASE__ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _a ( lowercase__ : "PIL.Image.Image" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = BytesIO() if image.format in list_image_compression_formats(): SCREAMING_SNAKE_CASE__ : int = image.format else: SCREAMING_SNAKE_CASE__ : Tuple = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(lowercase__ , format=lowercase__ ) return buffer.getvalue() def _a ( lowercase__ : "PIL.Image.Image" ): '''simple docstring''' if hasattr(lowercase__ , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowercase__ )} def _a ( lowercase__ : np.ndarray ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) SCREAMING_SNAKE_CASE__ : Tuple = array.dtype SCREAMING_SNAKE_CASE__ : List[str] = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER SCREAMING_SNAKE_CASE__ : Dict = dtype.kind SCREAMING_SNAKE_CASE__ : Dict = dtype.itemsize SCREAMING_SNAKE_CASE__ : Dict = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: SCREAMING_SNAKE_CASE__ : List[str] = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: SCREAMING_SNAKE_CASE__ : List[str] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] = dtype_byteorder + dtype_kind + str(lowercase__ ) SCREAMING_SNAKE_CASE__ : Dict = np.dtype(lowercase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) SCREAMING_SNAKE_CASE__ : List[Any] = PIL.Image.fromarray(array.astype(lowercase__ ) ) return {"path": None, "bytes": image_to_bytes(lowercase__ )} def _a ( lowercase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = first_non_null_value(lowercase__ ) if isinstance(lowercase__ , lowercase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowercase__ , np.ndarray ): SCREAMING_SNAKE_CASE__ : Tuple = no_op_if_value_is_null(lowercase__ ) return [obj_to_image_dict_func(lowercase__ ) for obj in objs] elif isinstance(lowercase__ , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ : Dict = no_op_if_value_is_null(lowercase__ ) return [obj_to_image_dict_func(lowercase__ ) for obj in objs] else: return objs else: return objs
85
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def a_ ( ) -> Dict: """simple docstring""" lowerCamelCase = 1_0 lowerCamelCase = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) lowerCamelCase = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(UpperCamelCase_ ) ), } , features=UpperCamelCase_ , ) return dataset @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=UpperCamelCase_ ) return filename # FILE_CONTENT + files _lowerCAmelCase : List[str] = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'file.txt' lowerCamelCase = FILE_CONTENT with open(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ ) return filename @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Optional[Any] ) -> str: """simple docstring""" import bza lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' lowerCamelCase = bytes(UpperCamelCase_ , 'utf-8' ) with bza.open(UpperCamelCase_ , 'wb' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Optional[int] ) -> Dict: """simple docstring""" import gzip lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) lowerCamelCase = bytes(UpperCamelCase_ , 'utf-8' ) with gzip.open(UpperCamelCase_ , 'wb' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' lowerCamelCase = bytes(UpperCamelCase_ , 'utf-8' ) with lza.frame.open(UpperCamelCase_ , 'wb' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(UpperCamelCase_ , 'w' ) as archive: archive.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" import tarfile lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(UpperCamelCase_ , 'w' ) as f: f.add(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Dict ) -> Optional[Any]: """simple docstring""" import lzma lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' lowerCamelCase = bytes(UpperCamelCase_ , 'utf-8' ) with lzma.open(UpperCamelCase_ , 'wb' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : str , UpperCamelCase_ : List[str] ) -> Optional[Any]: """simple docstring""" import zipfile lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[str] ) -> int: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' lowerCamelCase = bytes(UpperCamelCase_ , 'utf-8' ) with zstd.open(UpperCamelCase_ , 'wb' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'file.xml' lowerCamelCase = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ ) return filename _lowerCAmelCase : int = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] _lowerCAmelCase : Dict = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] _lowerCAmelCase : List[str] = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } _lowerCAmelCase : Tuple = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] _lowerCAmelCase : Union[str, Any] = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def a_ ( ) -> List[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Any ) -> List[str]: """simple docstring""" lowerCamelCase = datasets.Dataset.from_dict(UpperCamelCase_ ) lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(UpperCamelCase_ ) ) as con: lowerCamelCase = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(UpperCamelCase_ , 'w' , newline='' ) as f: lowerCamelCase = csv.DictWriter(UpperCamelCase_ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(UpperCamelCase_ , 'w' , newline='' ) as f: lowerCamelCase = csv.DictWriter(UpperCamelCase_ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : str , UpperCamelCase_ : Any ) -> Optional[Any]: """simple docstring""" import bza lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(UpperCamelCase_ , 'rb' ) as f: lowerCamelCase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(UpperCamelCase_ , 'wb' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Any ) -> Tuple: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(UpperCamelCase_ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(UpperCamelCase_ ) ) ) f.write(UpperCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(UpperCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Dict ) -> List[str]: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) lowerCamelCase = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(UpperCamelCase_ , 'wb' ) as f: lowerCamelCase = pq.ParquetWriter(UpperCamelCase_ , schema=UpperCamelCase_ ) lowerCamelCase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(UpperCamelCase_ ) )] for k in DATA[0]} , schema=UpperCamelCase_ ) writer.write_table(UpperCamelCase_ ) writer.close() return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) lowerCamelCase = {'data': DATA} with open(UpperCamelCase_ , 'w' ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : str ) -> List[str]: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) lowerCamelCase = {'data': DATA_DICT_OF_LISTS} with open(UpperCamelCase_ , 'w' ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(UpperCamelCase_ , 'w' ) as f: for item in DATA: f.write(json.dumps(UpperCamelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(UpperCamelCase_ , 'w' ) as f: for item in DATA: f.write(json.dumps(UpperCamelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(UpperCamelCase_ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(UpperCamelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Optional[int] ) -> int: """simple docstring""" lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(UpperCamelCase_ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(UpperCamelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" import gzip lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(UpperCamelCase_ , 'rb' ) as orig_file: with gzip.open(UpperCamelCase_ , 'wb' ) as zipped_file: zipped_file.writelines(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" import gzip lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(UpperCamelCase_ , 'rb' ) as orig_file: with gzip.open(UpperCamelCase_ , 'wb' ) as zipped_file: zipped_file.writelines(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int ) -> int: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.join('nested' , os.path.basename(UpperCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ) -> int: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(UpperCamelCase_ ) ) ) f.write(UpperCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(UpperCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int ) -> Optional[int]: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(UpperCamelCase_ , 'w' ) as f: f.add(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) f.add(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] ) -> str: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(UpperCamelCase_ , 'w' ) as f: f.add(UpperCamelCase_ , arcname=os.path.join('nested' , os.path.basename(UpperCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase = ['0', '1', '2', '3'] lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(UpperCamelCase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[Any] ) -> int: """simple docstring""" lowerCamelCase = ['0', '1', '2', '3'] lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(UpperCamelCase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase = ['0', '1', '2', '3'] lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(UpperCamelCase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : Any ) -> Optional[Any]: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int ) -> Optional[int]: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(UpperCamelCase_ ) ) ) f.write(UpperCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(UpperCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] ) -> str: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename('unsupported.ext' ) ) f.write(UpperCamelCase_ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) lowerCamelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(UpperCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(UpperCamelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( ) -> List[str]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def a_ ( ) -> List[str]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any ) -> Optional[Any]: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(UpperCamelCase_ , 'w' ) as f: f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ) ) f.write(UpperCamelCase_ , arcname=os.path.basename(UpperCamelCase_ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def a_ ( UpperCamelCase_ : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
246
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class snake_case_ ( lowerCAmelCase ): __lowerCamelCase : Union[List[PIL.Image.Image], np.ndarray] __lowerCamelCase : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.26.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(">=", "0.0.12") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class snake_case_ ( lowerCAmelCase ): __lowerCamelCase : np.ndarray __lowerCamelCase : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
711
from string import ascii_lowercase, ascii_uppercase def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> str: if not sentence: return "" SCREAMING_SNAKE_CASE_ : int = dict(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
311
0
from functools import reduce lowerCamelCase_ : Dict = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def A__ ( lowerCamelCase = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase , lowerCamelCase : str(int(lowerCamelCase ) * int(lowerCamelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
548
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _UpperCamelCase ( unittest.TestCase , _A ): '''simple docstring''' def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: List[Any] = load_tool("""text-classification""" ) self.tool.setup() UpperCamelCase_: Optional[int] = load_tool("""text-classification""" , remote=snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Union[str, Any] = self.tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(snake_case_ , """positive""" ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Tuple = self.remote_tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(snake_case_ , """positive""" ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: int = self.tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(snake_case_ , """positive""" ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: List[Any] = self.remote_tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(snake_case_ , """positive""" )
548
1
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def snake_case__ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Any: """simple docstring""" with open(__lowercase ) as metadata_file: A__ : str = json.load(__lowercase ) A__ : Any = LukeConfig(use_entity_aware_attention=__lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path A__ : Union[str, Any] = torch.load(__lowercase , map_location="cpu" ) # Load the entity vocab file A__ : Optional[int] = load_entity_vocab(__lowercase ) A__ : int = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks A__ : Dict = AddedToken("<ent>" , lstrip=__lowercase , rstrip=__lowercase ) A__ : int = AddedToken("<ent2>" , lstrip=__lowercase , rstrip=__lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(__lowercase ) with open(os.path.join(__lowercase , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(__lowercase , __lowercase ) A__ : Dict = LukeTokenizer.from_pretrained(__lowercase ) # Initialize the embeddings of the special tokens A__ : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] A__ : str = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) A__ : Any = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) A__ : Optional[Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A__ : Optional[Any] = F'encoder.layer.{layer_index}.attention.self.' A__ : List[str] = state_dict[prefix + matrix_name] A__ : Optional[Any] = state_dict[prefix + matrix_name] A__ : Optional[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A__ : Optional[int] = state_dict["entity_embeddings.entity_embeddings.weight"] A__ : Dict = entity_emb[entity_vocab["[MASK]"]] A__ : Union[str, Any] = LukeModel(config=__lowercase ).eval() A__ , A__ : Dict = model.load_state_dict(__lowercase , strict=__lowercase ) if not (len(__lowercase ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'Missing keys {", ".join(__lowercase )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" F' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs A__ : List[str] = LukeTokenizer.from_pretrained(__lowercase , task="entity_classification" ) A__ : Dict = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) A__ : List[str] = (3_9, 4_2) A__ : str = tokenizer(__lowercase , entity_spans=[span] , add_prefix_space=__lowercase , return_tensors="pt" ) A__ : Optional[Any] = model(**__lowercase ) # Verify word hidden states if model_size == "large": A__ : Union[str, Any] = torch.Size((1, 4_2, 1_0_2_4) ) A__ : List[str] = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base A__ : List[Any] = torch.Size((1, 4_2, 7_6_8) ) A__ : List[str] = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": A__ : Dict = torch.Size((1, 1, 1_0_2_4) ) A__ : Union[str, Any] = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base A__ : int = torch.Size((1, 1, 7_6_8) ) A__ : Any = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __lowercase , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(__lowercase ) ) model.save_pretrained(__lowercase ) def snake_case__ ( __lowercase ) -> List[Any]: """simple docstring""" A__ : Tuple = {} with open(__lowercase , "r" , encoding="utf-8" ) as f: for index, line in enumerate(__lowercase ): A__ , A__ : List[str] = line.rstrip().split("\t" ) A__ : List[str] = index return entity_vocab if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) snake_case : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
182
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def snake_case__ ( __lowercase , __lowercase ) -> int: """simple docstring""" A__ : List[str] = checkpoint A__ : Dict = {} A__ : Union[str, Any] = vae_state_dict["encoder.conv_in.weight"] A__ : int = vae_state_dict["encoder.conv_in.bias"] A__ : List[Any] = vae_state_dict["encoder.conv_out.weight"] A__ : Optional[int] = vae_state_dict["encoder.conv_out.bias"] A__ : int = vae_state_dict["encoder.norm_out.weight"] A__ : Optional[int] = vae_state_dict["encoder.norm_out.bias"] A__ : Optional[int] = vae_state_dict["decoder.conv_in.weight"] A__ : Optional[Any] = vae_state_dict["decoder.conv_in.bias"] A__ : str = vae_state_dict["decoder.conv_out.weight"] A__ : Optional[int] = vae_state_dict["decoder.conv_out.bias"] A__ : Union[str, Any] = vae_state_dict["decoder.norm_out.weight"] A__ : Optional[Any] = vae_state_dict["decoder.norm_out.bias"] A__ : Optional[Any] = vae_state_dict["quant_conv.weight"] A__ : Optional[Any] = vae_state_dict["quant_conv.bias"] A__ : Dict = vae_state_dict["post_quant_conv.weight"] A__ : Union[str, Any] = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only A__ : str = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) A__ : Optional[int] = { layer_id: [key for key in vae_state_dict if F'down.{layer_id}' in key] for layer_id in range(__lowercase ) } # Retrieves the keys for the decoder up blocks only A__ : Any = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) A__ : Any = { layer_id: [key for key in vae_state_dict if F'up.{layer_id}' in key] for layer_id in range(__lowercase ) } for i in range(__lowercase ): A__ : Any = [key for key in down_blocks[i] if F'down.{i}' in key and F'down.{i}.downsample' not in key] if F'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: A__ : Any = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.weight' ) A__ : Optional[int] = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.bias' ) A__ : Any = renew_vae_resnet_paths(__lowercase ) A__ : int = {"old": F'down.{i}.block', "new": F'down_blocks.{i}.resnets'} assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase ) A__ : int = [key for key in vae_state_dict if "encoder.mid.block" in key] A__ : Any = 2 for i in range(1 , num_mid_res_blocks + 1 ): A__ : Optional[int] = [key for key in mid_resnets if F'encoder.mid.block_{i}' in key] A__ : Optional[Any] = renew_vae_resnet_paths(__lowercase ) A__ : int = {"old": F'mid.block_{i}', "new": F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase ) A__ : str = [key for key in vae_state_dict if "encoder.mid.attn" in key] A__ : List[Any] = renew_vae_attention_paths(__lowercase ) A__ : Optional[int] = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase ) conv_attn_to_linear(__lowercase ) for i in range(__lowercase ): A__ : Dict = num_up_blocks - 1 - i A__ : int = [ key for key in up_blocks[block_id] if F'up.{block_id}' in key and F'up.{block_id}.upsample' not in key ] if F'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: A__ : Tuple = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.weight' ] A__ : List[Any] = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.bias' ] A__ : str = renew_vae_resnet_paths(__lowercase ) A__ : List[str] = {"old": F'up.{block_id}.block', "new": F'up_blocks.{i}.resnets'} assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase ) A__ : int = [key for key in vae_state_dict if "decoder.mid.block" in key] A__ : Optional[int] = 2 for i in range(1 , num_mid_res_blocks + 1 ): A__ : Union[str, Any] = [key for key in mid_resnets if F'decoder.mid.block_{i}' in key] A__ : Dict = renew_vae_resnet_paths(__lowercase ) A__ : int = {"old": F'mid.block_{i}', "new": F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase ) A__ : Optional[Any] = [key for key in vae_state_dict if "decoder.mid.attn" in key] A__ : Union[str, Any] = renew_vae_attention_paths(__lowercase ) A__ : List[str] = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase ) conv_attn_to_linear(__lowercase ) return new_checkpoint def snake_case__ ( __lowercase , __lowercase , ) -> Tuple: """simple docstring""" A__ : List[str] = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) A__ : Dict = io.BytesIO(r.content ) A__ : str = OmegaConf.load(__lowercase ) A__ : Any = 5_1_2 A__ : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open A__ : str = {} with safe_open(__lowercase , framework="pt" , device="cpu" ) as f: for key in f.keys(): A__ : List[str] = f.get_tensor(__lowercase ) else: A__ : str = torch.load(__lowercase , map_location=__lowercase )["state_dict"] # Convert the VAE model. A__ : List[str] = create_vae_diffusers_config(__lowercase , image_size=__lowercase ) A__ : List[Any] = custom_convert_ldm_vae_checkpoint(__lowercase , __lowercase ) A__ : Dict = AutoencoderKL(**__lowercase ) vae.load_state_dict(__lowercase ) vae.save_pretrained(__lowercase ) if __name__ == "__main__": snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') snake_case : int = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
182
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''dandelin/vilt-b32-finetuned-vqa''' UpperCamelCase_ = ( '''This is a tool that answers a question about an image. It takes an input named `image` which should be the ''' '''image containing the information, as well as a `question` which should be the question in English. It ''' '''returns a text that is the answer to the question.''' ) UpperCamelCase_ = '''image_qa''' UpperCamelCase_ = AutoProcessor UpperCamelCase_ = AutoModelForVisualQuestionAnswering UpperCamelCase_ = ['''image''', '''text'''] UpperCamelCase_ = ['''text'''] def __init__( self : List[Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Tuple , UpperCAmelCase : "Image" , UpperCAmelCase : str ) -> Any: '''simple docstring''' return self.pre_processor(UpperCAmelCase , UpperCAmelCase , return_tensors='''pt''' ) def A__ ( self : int , UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model(**UpperCAmelCase ).logits def A__ ( self : List[Any] , UpperCAmelCase : Dict ) -> Tuple: '''simple docstring''' lowercase : List[str] =outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
94
"""simple docstring""" from __future__ import annotations lowerCamelCase_ = 8.9_88e9 # units = N * m^s * C^-2 def __lowerCamelCase ( a_ : float , a_ : float , a_ : float , a_ : float ) -> dict[str, float]: __SCREAMING_SNAKE_CASE :int = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: __SCREAMING_SNAKE_CASE :int = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __SCREAMING_SNAKE_CASE :Optional[Any] = abs(a_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __SCREAMING_SNAKE_CASE :List[Any] = abs(a_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __SCREAMING_SNAKE_CASE :Tuple = (COULOMBS_CONSTANT * charge_product / abs(a_ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
498
0
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCamelCase_ ( lowercase , lowercase , unittest.TestCase ): __lowercase : str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) __lowercase : Optional[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) __lowercase : Optional[int] = False __lowercase : Optional[int] = False def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ) -> Dict: """simple docstring""" _UpperCamelCase = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): _UpperCamelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCamelCase_ ( lowercase ): def __init__( self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=99 , lowerCamelCase_=32 , lowerCamelCase_=32 , lowerCamelCase_=2 , lowerCamelCase_=4 , lowerCamelCase_=37 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_12 , lowerCamelCase_=16 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_=None , ) -> Any: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = embedding_size def lowercase ( self ) -> Tuple: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str: """simple docstring""" _UpperCamelCase = TFMobileBertModel(config=lowerCamelCase_ ) _UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _UpperCamelCase = model(lowerCamelCase_ ) _UpperCamelCase = [input_ids, input_mask] _UpperCamelCase = model(lowerCamelCase_ ) _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: """simple docstring""" _UpperCamelCase = TFMobileBertForMaskedLM(config=lowerCamelCase_ ) _UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFMobileBertForNextSentencePrediction(config=lowerCamelCase_ ) _UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str: """simple docstring""" _UpperCamelCase = TFMobileBertForPreTraining(config=lowerCamelCase_ ) _UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase = self.num_labels _UpperCamelCase = TFMobileBertForSequenceClassification(config=lowerCamelCase_ ) _UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase = self.num_choices _UpperCamelCase = TFMobileBertForMultipleChoice(config=lowerCamelCase_ ) _UpperCamelCase = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) _UpperCamelCase = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) _UpperCamelCase = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) _UpperCamelCase = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.num_labels _UpperCamelCase = TFMobileBertForTokenClassification(config=lowerCamelCase_ ) _UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = TFMobileBertForQuestionAnswering(config=lowerCamelCase_ ) _UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self ) -> Tuple: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def lowercase ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase ( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def lowercase ( self ) -> List[str]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def lowercase ( self ) -> Tuple: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def lowercase ( self ) -> str: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) @slow def lowercase ( self ) -> str: """simple docstring""" for model_name in ["google/mobilebert-uncased"]: _UpperCamelCase = TFMobileBertModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_tf class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase ( self ) -> List[str]: """simple docstring""" _UpperCamelCase = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" ) _UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCamelCase = model(lowerCamelCase_ )[0] _UpperCamelCase = [1, 6, 3_05_22] self.assertEqual(output.shape , lowerCamelCase_ ) _UpperCamelCase = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 )
589
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""YolosFeatureExtractor"""] __lowerCAmelCase = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
589
1
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase : def __init__( self : Optional[Any] ,A : Any ,A : List[str]=2 ,A : Optional[Any]=8 ,A : List[Any]=True ,A : str=True ,A : Dict=True ,A : Dict=True ,A : Any=99 ,A : Dict=16 ,A : Optional[int]=5 ,A : Tuple=2 ,A : str=36 ,A : List[Any]="gelu" ,A : str=0.0 ,A : str=0.0 ,A : List[str]=512 ,A : Dict=16 ,A : int=2 ,A : int=0.0_2 ,A : List[Any]=3 ,A : Dict=4 ,A : int=None ,): '''simple docstring''' UpperCAmelCase__ : Any = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Tuple = seq_length UpperCAmelCase__ : List[Any] = is_training UpperCAmelCase__ : str = use_input_mask UpperCAmelCase__ : str = use_token_type_ids UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : Tuple = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : Union[str, Any] = intermediate_size UpperCAmelCase__ : List[str] = hidden_act UpperCAmelCase__ : Optional[Any] = hidden_dropout_prob UpperCAmelCase__ : int = attention_probs_dropout_prob UpperCAmelCase__ : List[str] = max_position_embeddings UpperCAmelCase__ : Optional[Any] = type_vocab_size UpperCAmelCase__ : Optional[Any] = type_sequence_label_size UpperCAmelCase__ : Tuple = initializer_range UpperCAmelCase__ : Optional[int] = num_labels UpperCAmelCase__ : Tuple = num_choices UpperCAmelCase__ : List[Any] = scope def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ : List[Any] = None if self.use_input_mask: UpperCAmelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Optional[Any] = None if self.use_labels: UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase__ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self : str ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=A ,initializer_range=self.initializer_range ,) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_config() UpperCAmelCase__ : Dict = 300 return config def __lowercase ( self : Dict ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : List[str] = self.prepare_config_and_inputs() UpperCAmelCase__ : Dict = True UpperCAmelCase__ : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowercase ( self : List[Any] ,A : List[Any] ,A : Any ,A : List[Any] ,A : List[str] ,A : int ,A : Dict ,A : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = MraModel(config=A ) model.to(A ) model.eval() UpperCAmelCase__ : str = model(A ,attention_mask=A ,token_type_ids=A ) UpperCAmelCase__ : Union[str, Any] = model(A ,token_type_ids=A ) UpperCAmelCase__ : Any = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Dict ,A : Union[str, Any] ,A : Any ,A : Any ,A : int ,A : Union[str, Any] ,A : List[str] ,A : int ,A : int ,A : Any ,): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : List[Any] = MraModel(A ) model.to(A ) model.eval() UpperCAmelCase__ : Optional[int] = model( A ,attention_mask=A ,token_type_ids=A ,encoder_hidden_states=A ,encoder_attention_mask=A ,) UpperCAmelCase__ : Optional[int] = model( A ,attention_mask=A ,token_type_ids=A ,encoder_hidden_states=A ,) UpperCAmelCase__ : int = model(A ,attention_mask=A ,token_type_ids=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Union[str, Any] ,A : List[Any] ,A : Tuple ,A : Dict ,A : List[Any] ,A : Any ,A : Any ,A : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = MraForMaskedLM(config=A ) model.to(A ) model.eval() UpperCAmelCase__ : int = model(A ,attention_mask=A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : Any ,A : int ,A : int ,A : Any ,A : List[Any] ,A : Any ,A : Tuple ,A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = MraForQuestionAnswering(config=A ) model.to(A ) model.eval() UpperCAmelCase__ : Dict = model( A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowercase ( self : List[Any] ,A : List[Any] ,A : int ,A : str ,A : Any ,A : int ,A : str ,A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.num_labels UpperCAmelCase__ : Any = MraForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(A ,attention_mask=A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : List[str] ,A : Optional[int] ,A : List[Any] ,A : str ,A : Optional[int] ,A : int ,A : Union[str, Any] ,A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_labels UpperCAmelCase__ : Any = MraForTokenClassification(config=A ) model.to(A ) model.eval() UpperCAmelCase__ : List[str] = model(A ,attention_mask=A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : Optional[Any] ,A : Tuple ,A : Tuple ,A : Tuple ,A : int ,A : Optional[int] ,A : int ,A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.num_choices UpperCAmelCase__ : List[str] = MraForMultipleChoice(config=A ) model.to(A ) model.eval() UpperCAmelCase__ : str = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase__ : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase__ : Any = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase__ : str = model( A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : List[Any] = config_and_inputs UpperCAmelCase__ : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = () def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = MraModelTester(self ) UpperCAmelCase__ : Tuple = ConfigTester(self ,config_class=A ,hidden_size=37 ) def __lowercase ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : List[str] = type self.model_tester.create_and_check_model(*A ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def __lowercase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @slow def __lowercase ( self : int ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : str = MraModel.from_pretrained(A ) self.assertIsNotNone(A ) @unittest.skip(reason="""MRA does not output attentions""" ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return @require_torch class __lowercase ( unittest.TestCase ): @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) UpperCAmelCase__ : str = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase__ : Dict = model(A )[0] UpperCAmelCase__ : Tuple = torch.Size((1, 256, 768) ) self.assertEqual(output.shape ,A ) UpperCAmelCase__ : Optional[int] = torch.tensor( [[[-0.0_1_4_0, 0.0_8_3_0, -0.0_3_8_1], [0.1_5_4_6, 0.1_4_0_2, 0.0_2_2_0], [0.1_1_6_2, 0.0_8_5_1, 0.0_1_6_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,A ,atol=1e-4 ) ) @slow def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) UpperCAmelCase__ : Tuple = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase__ : Dict = model(A )[0] UpperCAmelCase__ : Union[str, Any] = 50_265 UpperCAmelCase__ : Optional[Any] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape ,A ) UpperCAmelCase__ : List[str] = torch.tensor( [[[9.2_5_9_5, -3.6_0_3_8, 1_1.8_8_1_9], [9.3_8_6_9, -3.2_6_9_3, 1_1.0_9_5_6], [1_1.8_5_2_4, -3.4_9_3_8, 1_3.1_2_1_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,A ,atol=1e-4 ) ) @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) UpperCAmelCase__ : Optional[int] = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase__ : Any = model(A )[0] UpperCAmelCase__ : Tuple = 50_265 UpperCAmelCase__ : Tuple = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape ,A ) UpperCAmelCase__ : Tuple = torch.tensor( [[[5.4_7_8_9, -2.3_5_6_4, 7.5_0_6_4], [7.9_0_6_7, -1.3_3_6_9, 9.9_6_6_8], [9.0_7_1_2, -1.8_1_0_6, 7.0_3_8_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,A ,atol=1e-4 ) )
65
from __future__ import annotations import numpy as np def A__ ( _a : np.ndarray ): '''simple docstring''' snake_case__ , snake_case__ : str =np.shape(_a ) if rows != columns: snake_case__ : Any =( """'table' has to be of square shaped array but got a """ f"{rows}x{columns} array:\n{table}" ) raise ValueError(_a ) snake_case__ : Dict =np.zeros((rows, columns) ) snake_case__ : str =np.zeros((rows, columns) ) for i in range(_a ): for j in range(_a ): snake_case__ : Optional[int] =sum(lower[i][k] * upper[k][j] for k in range(_a ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) snake_case__ : List[Any] =(table[i][j] - total) / upper[j][j] snake_case__ : Optional[int] =1 for j in range(_a , _a ): snake_case__ : int =sum(lower[i][k] * upper[k][j] for k in range(_a ) ) snake_case__ : Dict =table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
385
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A ( unittest.TestCase ): __UpperCAmelCase : Optional[int] = MODEL_FOR_CAUSAL_LM_MAPPING __UpperCAmelCase : Tuple = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="pt" ) # Using `do_sample=False` to force deterministic output _a = text_generator("This is a test" , do_sample=snake_case_ ) self.assertEqual( snake_case_ , [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ] , ) _a = text_generator(["This is a test", "This is a second test"] ) self.assertEqual( snake_case_ , [ [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], [ { "generated_text": ( "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" " oscope. oscope. FiliFili@@" ) } ], ] , ) _a = text_generator("This is a test" , do_sample=snake_case_ , num_return_sequences=2 , return_tensors=snake_case_ ) self.assertEqual( snake_case_ , [ {"generated_token_ids": ANY(snake_case_ )}, {"generated_token_ids": ANY(snake_case_ )}, ] , ) _a = text_generator.model.config.eos_token_id _a = "<pad>" _a = text_generator( ["This is a test", "This is a second test"] , do_sample=snake_case_ , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case_ , ) self.assertEqual( snake_case_ , [ [ {"generated_token_ids": ANY(snake_case_ )}, {"generated_token_ids": ANY(snake_case_ )}, ], [ {"generated_token_ids": ANY(snake_case_ )}, {"generated_token_ids": ANY(snake_case_ )}, ], ] , ) @require_tf def __lowerCAmelCase ( self ) -> Any: _a = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="tf" ) # Using `do_sample=False` to force deterministic output _a = text_generator("This is a test" , do_sample=snake_case_ ) self.assertEqual( snake_case_ , [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ] , ) _a = text_generator(["This is a test", "This is a second test"] , do_sample=snake_case_ ) self.assertEqual( snake_case_ , [ [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], [ { "generated_text": ( "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" " Cannes 閲閲Cannes Cannes Cannes 攵 please," ) } ], ] , ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> str: _a = TextGenerationPipeline(model=snake_case_ , tokenizer=snake_case_ ) return text_generator, ["This is a test", "Another test"] def __lowerCAmelCase ( self ) -> Dict: _a = "Hello I believe in" _a = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) _a = text_generator(snake_case_ ) self.assertEqual( snake_case_ , [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}] , ) _a = text_generator(snake_case_ , stop_sequence=" fe" ) self.assertEqual(snake_case_ , [{"generated_text": "Hello I believe in fe"}] ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> List[Any]: _a = text_generator.model _a = text_generator.tokenizer _a = text_generator("This is a test" ) self.assertEqual(snake_case_ , [{"generated_text": ANY(snake_case_ )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) _a = text_generator("This is a test" , return_full_text=snake_case_ ) self.assertEqual(snake_case_ , [{"generated_text": ANY(snake_case_ )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) _a = pipeline(task="text-generation" , model=snake_case_ , tokenizer=snake_case_ , return_full_text=snake_case_ ) _a = text_generator("This is a test" ) self.assertEqual(snake_case_ , [{"generated_text": ANY(snake_case_ )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) _a = text_generator("This is a test" , return_full_text=snake_case_ ) self.assertEqual(snake_case_ , [{"generated_text": ANY(snake_case_ )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) _a = text_generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=snake_case_ ) self.assertEqual( snake_case_ , [ [{"generated_text": ANY(snake_case_ )}, {"generated_text": ANY(snake_case_ )}], [{"generated_text": ANY(snake_case_ )}, {"generated_text": ANY(snake_case_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: _a = text_generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case_ ) self.assertEqual( snake_case_ , [ [{"generated_text": ANY(snake_case_ )}, {"generated_text": ANY(snake_case_ )}], [{"generated_text": ANY(snake_case_ )}, {"generated_text": ANY(snake_case_ )}], ] , ) with self.assertRaises(snake_case_ ): _a = text_generator("test" , return_full_text=snake_case_ , return_text=snake_case_ ) with self.assertRaises(snake_case_ ): _a = text_generator("test" , return_full_text=snake_case_ , return_tensors=snake_case_ ) with self.assertRaises(snake_case_ ): _a = text_generator("test" , return_text=snake_case_ , return_tensors=snake_case_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _a = text_generator("" ) self.assertEqual(snake_case_ , [{"generated_text": ANY(snake_case_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _a = text_generator("" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _a = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"] if ( tokenizer.model_max_length < 1_0_0_0_0 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("This is a test" * 5_0_0 , max_new_tokens=2_0 ) _a = text_generator("This is a test" * 5_0_0 , handle_long_generation="hole" , max_new_tokens=2_0 ) # Hole strategy cannot work with self.assertRaises(snake_case_ ): text_generator( "This is a test" * 5_0_0 , handle_long_generation="hole" , max_new_tokens=tokenizer.model_max_length + 1_0 , ) @require_torch @require_accelerate @require_torch_gpu def __lowerCAmelCase ( self ) -> Optional[int]: import torch # Classic `model_kwargs` _a = pipeline( model="hf-internal-testing/tiny-random-bloom" , model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _a = pipe("This is a test" ) self.assertEqual( snake_case_ , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _a = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _a = pipe("This is a test" ) self.assertEqual( snake_case_ , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _a = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _a = pipe("This is a test" ) self.assertEqual( snake_case_ , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) @require_torch @require_torch_gpu def __lowerCAmelCase ( self ) -> str: import torch _a = pipeline(model="hf-internal-testing/tiny-random-bloom" , device=0 , torch_dtype=torch.floataa ) pipe("This is a test" ) @require_torch @require_accelerate @require_torch_gpu def __lowerCAmelCase ( self ) -> Optional[int]: import torch _a = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.floataa ) pipe("This is a test" , do_sample=snake_case_ , top_p=0.5 ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = "Hello world" _a = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) if text_generator.model.framework == "tf": _a = logging.get_logger("transformers.generation.tf_utils" ) else: _a = logging.get_logger("transformers.generation.utils" ) _a = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(snake_case_ ) as cl: _a = text_generator(snake_case_ , max_length=1_0 , max_new_tokens=1 ) self.assertIn(snake_case_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(snake_case_ ) as cl: _a = text_generator(snake_case_ , max_new_tokens=1 ) self.assertNotIn(snake_case_ , cl.out ) with CaptureLogger(snake_case_ ) as cl: _a = text_generator(snake_case_ , max_length=1_0 ) self.assertNotIn(snake_case_ , cl.out )
691
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowercase ( lowerCamelCase__ : Optional[int] ): # picklable for multiprocessing return x.sum() def _lowercase ( lowerCamelCase__ : int ): # picklable for multiprocessing return i + 1 @dataclass class A : __UpperCAmelCase : int __UpperCAmelCase : str class A ( a ): def __lowerCAmelCase ( self ) -> Tuple: _a = {} _a = [] _a = 1 _a = [1, 2] _a = {"a": 1, "b": 2} _a = {"a": [1, 2], "b": [3, 4]} _a = {"a": {"1": 1}, "b": 2} _a = {"a": 1, "b": 2, "c": 3, "d": 4} _a = {} _a = [] _a = 2 _a = [2, 3] _a = {"a": 2, "b": 3} _a = {"a": [2, 3], "b": [4, 5]} _a = {"a": {"1": 2}, "b": 3} _a = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) _a = 2 self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) _a = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _a = {"a": 2, "b": 0, "c": 2} _a = { "a": np.eye(2 ).astype(snake_case_ ), "b": np.zeros(3 ).astype(snake_case_ ), "c": np.ones(2 ).astype(snake_case_ ), } self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case_ ): # can't pickle a local lambda map_nested(lambda snake_case_ : x + 1 , snake_case_ , num_proc=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = {"a": 1, "b": 2} _a = {"a": 3, "b": 4} _a = {"a": 5, "b": 6} _a = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case_ , snake_case_ , snake_case_ ) ) , snake_case_ ) def __lowerCAmelCase ( self ) -> str: class A : __UpperCAmelCase : Optional[int] = """bar""" _a = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(snake_case_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int] ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _a = {F'''{i}''': i for i in range(lowerCamelCase__ )} _a = map_nested(lambda lowerCamelCase__ : x + 10, lowerCamelCase__, num_proc=lowerCamelCase__, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( a ): @require_tf def __lowerCAmelCase ( self ) -> Any: import tensorflow as tf from tensorflow.keras import layers _a = layers.Dense(2 ) def gen_random_output(): _a = tf.random.uniform((1, 3) ) return model(snake_case_ ).numpy() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch def gen_random_output(): _a = torch.nn.Linear(3 , 2 ) _a = torch.rand(1 , 3 ) return model(snake_case_ ).detach().numpy() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Optional[int]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _a = gen_random_output() with temp_seed(4_2 ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data", [{}] ) def _lowercase ( lowerCamelCase__ : Any ): _a = NestedDataStructure(lowerCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict ): _a = NestedDataStructure(lowerCamelCase__ ).flatten() assert output == expected_output def _lowercase ( ): _a = A(x=1, y="foobar" ) _a = {"x": 1, "y": "foobar"} assert asdict(lowerCamelCase__ ) == expected_output _a = {"a": {"b": A(x=10, y="foo" )}, "c": [A(x=20, y="bar" )]} _a = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(lowerCamelCase__ ) == expected_output with pytest.raises(lowerCamelCase__ ): asdict([1, A(x=10, y="foo" )] ) def _lowercase ( lowerCamelCase__ : str ): return text.split() def _lowercase ( lowerCamelCase__ : List[Any] ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowercase ( ): with Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _a = [] for yield_time, content in iflatmap_unordered( lowerCamelCase__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowerCamelCase__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(lowerCamelCase__ ) == 4
691
1
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase ( self ): A__ , A__ = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''',from_pt=__lowerCamelCase,dtype=jnp.bfloataa ) A__ , A__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''',controlnet=__lowerCamelCase,from_pt=__lowerCamelCase,dtype=jnp.bfloataa ) A__ = controlnet_params A__ = '''bird''' A__ = jax.device_count() A__ = pipe.prepare_text_inputs([prompts] * num_samples ) A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) A__ = pipe.prepare_image_inputs([canny_image] * num_samples ) A__ = jax.random.PRNGKey(0 ) A__ = jax.random.split(__lowerCamelCase,jax.device_count() ) A__ = replicate(__lowerCamelCase ) A__ = shard(__lowerCamelCase ) A__ = shard(__lowerCamelCase ) A__ = pipe( prompt_ids=__lowerCamelCase,image=__lowerCamelCase,params=__lowerCamelCase,prng_seed=__lowerCamelCase,num_inference_steps=50,jit=__lowerCamelCase,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) A__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) A__ = images[0, 253:256, 253:256, -1] A__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): A__ , A__ = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''',from_pt=__lowerCamelCase,dtype=jnp.bfloataa ) A__ , A__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''',controlnet=__lowerCamelCase,from_pt=__lowerCamelCase,dtype=jnp.bfloataa ) A__ = controlnet_params A__ = '''Chef in the kitchen''' A__ = jax.device_count() A__ = pipe.prepare_text_inputs([prompts] * num_samples ) A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) A__ = pipe.prepare_image_inputs([pose_image] * num_samples ) A__ = jax.random.PRNGKey(0 ) A__ = jax.random.split(__lowerCamelCase,jax.device_count() ) A__ = replicate(__lowerCamelCase ) A__ = shard(__lowerCamelCase ) A__ = shard(__lowerCamelCase ) A__ = pipe( prompt_ids=__lowerCamelCase,image=__lowerCamelCase,params=__lowerCamelCase,prng_seed=__lowerCamelCase,num_inference_steps=50,jit=__lowerCamelCase,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) A__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) A__ = images[0, 253:256, 253:256, -1] A__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
190
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__: List[Any] = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys a__: Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
190
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""}) lowerCAmelCase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) UpperCamelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) UpperCamelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase = CLIPTextModel(A_ ) UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase_ ( self , A_ , A_=0 )-> int: '''simple docstring''' if str(A_ ).startswith('mps' ): UpperCamelCase = torch.manual_seed(A_ ) else: UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase = 2 UpperCamelCase = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=A_ , device=torch.device(A_ ) , ) UpperCamelCase = floats_tensor(control_image.shape , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((64, 64) ) UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase_ = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(A_ ): if isinstance(A_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) UpperCamelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(A_ ) torch.manual_seed(0 ) UpperCamelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(A_ ) torch.manual_seed(0 ) UpperCamelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase = CLIPTextModel(A_ ) UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase = MultiControlNetModel([controlneta, controlneta] ) UpperCamelCase = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase_ ( self , A_ , A_=0 )-> str: '''simple docstring''' if str(A_ ).startswith('mps' ): UpperCamelCase = torch.manual_seed(A_ ) else: UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase = 2 UpperCamelCase = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=A_ , device=torch.device(A_ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=A_ , device=torch.device(A_ ) , ), ] UpperCamelCase = floats_tensor(control_image[0].shape , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((64, 64) ) UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**A_ ) pipe.to(A_ ) UpperCamelCase = 10.0 UpperCamelCase = 4 UpperCamelCase = self.get_dummy_inputs(A_ ) UpperCamelCase = steps UpperCamelCase = scale UpperCamelCase = pipe(**A_ )[0] UpperCamelCase = self.get_dummy_inputs(A_ ) UpperCamelCase = steps UpperCamelCase = scale UpperCamelCase = pipe(**A_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] UpperCamelCase = self.get_dummy_inputs(A_ ) UpperCamelCase = steps UpperCamelCase = scale UpperCamelCase = pipe(**A_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] UpperCamelCase = self.get_dummy_inputs(A_ ) UpperCamelCase = steps UpperCamelCase = scale UpperCamelCase = pipe(**A_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(A_ ) except NotImplementedError: pass @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) UpperCamelCase = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=A_ , controlnet=A_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase = 'evil space-punk bird' UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((512, 512) ) UpperCamelCase = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((512, 512) ) UpperCamelCase = pipe( A_ , A_ , control_image=A_ , generator=A_ , output_type='np' , num_inference_steps=50 , strength=0.6 , ) UpperCamelCase = output.images[0] assert image.shape == (512, 512, 3) UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9e-2
703
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Any = logging.get_logger(__name__) def A_( A : List[Any] , A : Union[str, Any]=False): UpperCamelCase = [] # fmt: off # stem: rename_keys.append(('cls_token', 'vit.embeddings.cls_token')) rename_keys.append(('pos_embed', 'vit.embeddings.position_embeddings')) rename_keys.append(('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight')) rename_keys.append(('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias')) # backbone rename_keys.append(('patch_embed.backbone.stem.conv.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight')) rename_keys.append(('patch_embed.backbone.stem.norm.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight')) rename_keys.append(('patch_embed.backbone.stem.norm.bias', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''')) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''')) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''')) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''')) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''')) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''')) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''')) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''')) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''')) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''')) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''')) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ]) # fmt: on return rename_keys def A_( A : Optional[int] , A : str , A : str=False): for i in range(config.num_hidden_layers): if base_model: UpperCamelCase = '' else: UpperCamelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''') UpperCamelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase = in_proj_bias[: config.hidden_size] UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase = in_proj_bias[-config.hidden_size :] def A_( A : Optional[Any]): UpperCamelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(A , A) def A_( A : Union[str, Any] , A : List[str] , A : Optional[Any]): UpperCamelCase = dct.pop(A) UpperCamelCase = val def A_( ): UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase = Image.open(requests.get(A , stream=A).raw) return im @torch.no_grad() def A_( A : Optional[Any] , A : Optional[int] , A : Union[str, Any]=False): UpperCamelCase = BitConfig( global_padding='same' , layer_type='bottleneck' , depths=(3, 4, 9) , out_features=['stage3'] , embedding_dynamic_padding=A , ) UpperCamelCase = ViTHybridConfig(backbone_config=A , image_size=384 , num_labels=1000) UpperCamelCase = False # load original model from timm UpperCamelCase = timm.create_model(A , pretrained=A) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase = timm_model.state_dict() if base_model: remove_classification_head_(A) UpperCamelCase = create_rename_keys(A , A) for src, dest in rename_keys: rename_key(A , A , A) read_in_q_k_v(A , A , A) UpperCamelCase = 'huggingface/label-files' UpperCamelCase = 'imagenet-1k-id2label.json' UpperCamelCase = json.load(open(hf_hub_download(A , A , repo_type='dataset') , 'r')) UpperCamelCase = {int(A): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": UpperCamelCase = ViTHybridModel(A).eval() else: UpperCamelCase = ViTHybridForImageClassification(A).eval() model.load_state_dict(A) # create image processor UpperCamelCase = create_transform(**resolve_data_config({} , model=A)) UpperCamelCase = transform.transforms UpperCamelCase = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } UpperCamelCase = ViTHybridImageProcessor( do_resize=A , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=A , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=A , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) UpperCamelCase = prepare_img() UpperCamelCase = transform(A).unsqueeze(0) UpperCamelCase = processor(A , return_tensors='pt').pixel_values # verify pixel values assert torch.allclose(A , A) # verify logits with torch.no_grad(): UpperCamelCase = model(A) UpperCamelCase = outputs.logits print('Predicted class:' , logits.argmax(-1).item()) if base_model: UpperCamelCase = timm_model.forward_features(A) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(A , outputs.pooler_output , atol=1E-3) else: UpperCamelCase = timm_model(A) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A , outputs.logits , atol=1E-3) print('Looks ok!') if pytorch_dump_folder_path is not None: Path(A).mkdir(exist_ok=A) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''') model.save_pretrained(A) print(f'''Saving processor to {pytorch_dump_folder_path}''') processor.save_pretrained(A) if push_to_hub: print(f'''Pushing model and processor to the hub {vit_name}''') model.push_to_hub(f'''ybelkada/{vit_name}''') processor.push_to_hub(f'''ybelkada/{vit_name}''') if __name__ == "__main__": lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) lowerCAmelCase : Any = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
432
0
"""simple docstring""" import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class __snake_case (lowerCamelCase ): def __init__( self: str , A_: Optional[int] , A_: str=13 , A_: Optional[int]=7 , A_: Any=True , A_: Tuple=True , A_: int=False , A_: List[str]=True , A_: Optional[int]=99 , A_: Dict=32 , A_: List[Any]=5 , A_: Optional[Any]=4 , A_: Optional[Any]=64 , A_: Union[str, Any]="gelu" , A_: Optional[Any]=0.1 , A_: Union[str, Any]=0.1 , A_: str=5_12 , A_: Optional[int]=16 , A_: int=2 , A_: str=0.02 , A_: int=3 , A_: Dict=4 , A_: str=None , A_: Optional[int]=2 , A_: Optional[Any]=2 , A_: Any=2 , A_: Tuple=2 , A_: Union[str, Any]=4 , A_: List[Any]=1 , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope __lowerCamelCase = q_groups __lowerCamelCase = k_groups __lowerCamelCase = v_groups __lowerCamelCase = post_attention_groups __lowerCamelCase = intermediate_groups __lowerCamelCase = output_groups def __a ( self: List[Any] ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self: Any ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def __a ( self: str , A_: Dict , A_: str , A_: Optional[Any] , A_: List[Any] , A_: List[Any] , A_: Tuple ): __lowerCamelCase = SqueezeBertModel(config=A_ ) model.to(A_ ) model.eval() __lowerCamelCase = model(A_ , A_ ) __lowerCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self: Union[str, Any] , A_: List[Any] , A_: int , A_: Union[str, Any] , A_: Any , A_: Optional[Any] , A_: int ): __lowerCamelCase = SqueezeBertForMaskedLM(config=A_ ) model.to(A_ ) model.eval() __lowerCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self: Optional[int] , A_: Optional[int] , A_: Union[str, Any] , A_: Optional[Any] , A_: Dict , A_: List[str] , A_: Optional[Any] ): __lowerCamelCase = SqueezeBertForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() __lowerCamelCase = model( A_ , attention_mask=A_ , start_positions=A_ , end_positions=A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self: Dict , A_: Dict , A_: Optional[Any] , A_: Dict , A_: int , A_: Optional[int] , A_: Any ): __lowerCamelCase = self.num_labels __lowerCamelCase = SqueezeBertForSequenceClassification(A_ ) model.to(A_ ) model.eval() __lowerCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self: Optional[Any] , A_: int , A_: Dict , A_: Optional[int] , A_: List[str] , A_: Dict , A_: Any ): __lowerCamelCase = self.num_labels __lowerCamelCase = SqueezeBertForTokenClassification(config=A_ ) model.to(A_ ) model.eval() __lowerCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self: List[str] , A_: Dict , A_: Optional[int] , A_: Tuple , A_: List[Any] , A_: Optional[Any] , A_: Any ): __lowerCamelCase = self.num_choices __lowerCamelCase = SqueezeBertForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() __lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = model( A_ , attention_mask=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self: Any ): __lowerCamelCase = self.prepare_config_and_inputs() ((__lowerCamelCase) ,(__lowerCamelCase) ,(__lowerCamelCase) ,(__lowerCamelCase) ,(__lowerCamelCase) ,(__lowerCamelCase)) = config_and_inputs __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __snake_case (lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __a = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __a = False __a = True __a = False def __a ( self: Dict ): __lowerCamelCase = SqueezeBertModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=A_ , dim=37 ) def __a ( self: int ): self.config_tester.run_common_tests() def __a ( self: Union[str, Any] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*A_ ) def __a ( self: str ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*A_ ) def __a ( self: Optional[int] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*A_ ) def __a ( self: List[str] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*A_ ) def __a ( self: Any ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*A_ ) def __a ( self: Optional[int] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*A_ ) @slow def __a ( self: str ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = SqueezeBertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_sentencepiece @require_tokenizers @require_torch class __snake_case (unittest.TestCase ): @slow def __a ( self: List[Any] ): __lowerCamelCase = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" ) __lowerCamelCase = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) __lowerCamelCase = model(A_ )[0] __lowerCamelCase = torch.Size((1, 3) ) self.assertEqual(output.shape , A_ ) __lowerCamelCase = torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(A_ , A_ , atol=1E-4 ) )
281
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __snake_case (unittest.TestCase ): def __init__( self: Any , A_: Optional[int] , A_: Any=7 , A_: Union[str, Any]=3 , A_: List[Any]=30 , A_: int=4_00 , A_: Any=True , A_: str=None , A_: Dict=True , A_: Optional[Any]=[0.5, 0.5, 0.5] , A_: List[Any]=[0.5, 0.5, 0.5] , A_: Any=True , A_: Optional[Any]=1 / 2_55 , A_: int=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __lowerCamelCase = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = num_channels __lowerCamelCase = min_resolution __lowerCamelCase = max_resolution __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = do_normalize __lowerCamelCase = image_mean __lowerCamelCase = image_std __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_pad def __a ( self: Tuple ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __a ( self: int , A_: List[str] , A_: List[Any]=False ): if not batched: __lowerCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): __lowerCamelCase ,__lowerCamelCase = image.size else: __lowerCamelCase ,__lowerCamelCase = image.shape[1], image.shape[2] if w < h: __lowerCamelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCamelCase = self.size["""shortest_edge"""] elif w > h: __lowerCamelCase = self.size["""shortest_edge"""] __lowerCamelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCamelCase = self.size["""shortest_edge"""] __lowerCamelCase = self.size["""shortest_edge"""] else: __lowerCamelCase = [] for image in image_inputs: __lowerCamelCase ,__lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCamelCase = max(A_ , key=lambda A_ : item[0] )[0] __lowerCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __snake_case (lowerCamelCase , unittest.TestCase ): __a = DetaImageProcessor if is_vision_available() else None def __a ( self: Tuple ): __lowerCamelCase = DetaImageProcessingTester(self ) @property def __a ( self: Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self: Tuple ): __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , """image_mean""" ) ) self.assertTrue(hasattr(A_ , """image_std""" ) ) self.assertTrue(hasattr(A_ , """do_normalize""" ) ) self.assertTrue(hasattr(A_ , """do_resize""" ) ) self.assertTrue(hasattr(A_ , """do_rescale""" ) ) self.assertTrue(hasattr(A_ , """do_pad""" ) ) self.assertTrue(hasattr(A_ , """size""" ) ) def __a ( self: List[Any] ): __lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , A_ ) def __a ( self: Any ): pass def __a ( self: Optional[Any] ): # Initialize image_processing __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowerCamelCase ,__lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase ,__lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) __lowerCamelCase = image_processing(A_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self: int ): # Initialize image_processing __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowerCamelCase ,__lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase = image_processing(A_ , return_tensors="""pt""" ).pixel_values __lowerCamelCase ,__lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self: Dict ): # Initialize image_processing __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowerCamelCase ,__lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase = image_processing(A_ , return_tensors="""pt""" ).pixel_values __lowerCamelCase ,__lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __a ( self: List[str] ): # prepare image and target __lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __lowerCamelCase = json.loads(f.read() ) __lowerCamelCase = {"""image_id""": 3_97_69, """annotations""": target} # encode them __lowerCamelCase = DetaImageProcessor() __lowerCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors="""pt""" ) # verify pixel values __lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , A_ ) __lowerCamelCase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area __lowerCamelCase = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A_ ) ) # verify boxes __lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A_ ) __lowerCamelCase = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A_ , atol=1E-3 ) ) # verify image_id __lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A_ ) ) # verify is_crowd __lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A_ ) ) # verify class_labels __lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A_ ) ) # verify orig_size __lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A_ ) ) # verify size __lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A_ ) ) @slow def __a ( self: Tuple ): # prepare image, target and masks_path __lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __lowerCamelCase = json.loads(f.read() ) __lowerCamelCase = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} __lowerCamelCase = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __lowerCamelCase = DetaImageProcessor(format="""coco_panoptic""" ) __lowerCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors="""pt""" ) # verify pixel values __lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , A_ ) __lowerCamelCase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area __lowerCamelCase = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A_ ) ) # verify boxes __lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A_ ) __lowerCamelCase = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A_ , atol=1E-3 ) ) # verify image_id __lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A_ ) ) # verify is_crowd __lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A_ ) ) # verify class_labels __lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A_ ) ) # verify masks __lowerCamelCase = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , A_ ) # verify orig_size __lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A_ ) ) # verify size __lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A_ ) )
281
1
def UpperCAmelCase ( A__ ) -> int: if not isinstance(A__ , A__ ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
711
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCAmelCase_ = logging.get_logger(__name__) def UpperCAmelCase ( A__ , A__ ) -> str: try: with open(A__ , """rb""" ) as flax_state_f: _snake_case : str = from_bytes(A__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(A__ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(A__ , A__ ) def UpperCAmelCase ( A__ , A__ ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights _snake_case : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda A__ : x.dtype == jnp.bfloataa , A__ ) ).values() if any(A__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) _snake_case : Any = jax.tree_util.tree_map( lambda A__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , A__ ) _snake_case : int = """""" _snake_case : Union[str, Any] = flatten_dict(A__ , sep=""".""" ) _snake_case : List[Any] = pt_model.state_dict() # keep track of unexpected & missing keys _snake_case : Optional[int] = [] _snake_case : int = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _snake_case : Union[str, Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: _snake_case : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] _snake_case : Optional[Any] = jnp.transpose(A__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": _snake_case : Optional[int] = flax_key_tuple_array[:-1] + ["""weight"""] _snake_case : Union[str, Any] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": _snake_case : int = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(A__ ): _snake_case : Optional[int] = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) _snake_case : Optional[Any] = """.""".join(A__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' f'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict _snake_case : List[str] = np.asarray(A__ ) if not isinstance(A__ , np.ndarray ) else flax_tensor _snake_case : Tuple = torch.from_numpy(A__ ) # remove from missing keys missing_keys.remove(A__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(A__ ) pt_model.load_state_dict(A__ ) # re-transform missing_keys to list _snake_case : List[Any] = list(A__ ) if len(A__ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' f''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(A__ ) > 0: logger.warning( f'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' f''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' """ use it for predictions and inference.""" ) return pt_model
519
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCAmelCase_ : List[Any] = logging.get_logger(__name__) class lowerCamelCase_ ( __lowerCamelCase ): def __init__( self : int , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[str] ): """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , __A , ) super().__init__(*__A , **__A )
527
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params a__ : Union[str, Any] =getLogger(__name__) a__ : List[str] ='''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase__ ( __lowercase : List[str] , __lowercase : str , __lowercase : str , __lowercase : int = 8 , __lowercase : str = DEFAULT_DEVICE , __lowercase : Optional[int]=False , __lowercase : Optional[Any]="summarization" , __lowercase : List[str]=None , **__lowercase : List[str] , ) -> Dict: """simple docstring""" __UpperCamelCase = Path(__lowercase ).open('w' , encoding='utf-8' ) __UpperCamelCase = str(__lowercase ) __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ).to(__lowercase ) if fpaa: __UpperCamelCase = model.half() __UpperCamelCase = AutoTokenizer.from_pretrained(__lowercase ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. __UpperCamelCase = time.time() # update config with task specific params use_task_specific_params(__lowercase , __lowercase ) if prefix is None: __UpperCamelCase = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(__lowercase , __lowercase ) ) ): __UpperCamelCase = [prefix + text for text in examples_chunk] __UpperCamelCase = tokenizer(__lowercase , return_tensors='pt' , truncation=__lowercase , padding='longest' ).to(__lowercase ) __UpperCamelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **__lowercase , ) __UpperCamelCase = tokenizer.batch_decode(__lowercase , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() __UpperCamelCase = int(time.time() - start_time ) # seconds __UpperCamelCase = len(__lowercase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase__ ( ) -> Dict: """simple docstring""" return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def lowercase__ ( __lowercase : Dict=True ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('model_name' , type=__lowercase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=__lowercase , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=__lowercase , help='where to save summaries' ) parser.add_argument('--reference_path' , type=__lowercase , required=__lowercase , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=__lowercase , required=__lowercase , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=__lowercase , required=__lowercase , default=__lowercase , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=__lowercase , required=__lowercase , default=__lowercase , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=__lowercase , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=__lowercase , default=8 , required=__lowercase , help='batch size' ) parser.add_argument( '--n_obs' , type=__lowercase , default=-1 , required=__lowercase , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=__lowercase , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __UpperCamelCase , __UpperCamelCase = parser.parse_known_args() __UpperCamelCase = parse_numeric_n_bool_cl_kwargs(__lowercase ) if parsed_args and verbose: print(F'''parsed the following generate kwargs: {parsed_args}''' ) __UpperCamelCase = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __UpperCamelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=__lowercase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) __UpperCamelCase = generate_summaries_or_translations( __lowercase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **__lowercase , ) if args.reference_path is None: return {} # Compute scores __UpperCamelCase = calculate_bleu if 'translation' in args.task else calculate_rouge __UpperCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __UpperCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(__lowercase )] __UpperCamelCase = score_fn(__lowercase , __lowercase ) scores.update(__lowercase ) if args.dump_args: scores.update(__lowercase ) if args.info: __UpperCamelCase = args.info if verbose: print(__lowercase ) if args.score_path is not None: json.dump(__lowercase , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
399
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase_ : Dict = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = ["""DPTFeatureExtractor"""] lowerCamelCase_ : Optional[int] = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCamelCase_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase( __lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(__lowerCamelCase , __lowerCamelCase ) -> bool: __a = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __a = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __a = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.0 , __lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(__lowerCamelCase , __lowerCamelCase ) ) for _ in range(__lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase = 0.0 , __lowerCamelCase = 1.0 ): def identity_function(__lowerCamelCase ) -> float: return x __a = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __a = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('******************' ) def lowerCAmelCase( __lowerCamelCase ): def function_to_integrate(__lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __a = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
246
0
'''simple docstring''' from __future__ import annotations A__ : Any =list[tuple[int, int]] A__ : Dict =[ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A__ : Tuple =([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class UpperCAmelCase : def __init__( self : List[Any] , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : float , __snake_case : Node | None , ) -> Optional[Any]: _lowerCAmelCase = pos_x _lowerCAmelCase = pos_y _lowerCAmelCase = (pos_y, pos_x) _lowerCAmelCase = goal_x _lowerCAmelCase = goal_y _lowerCAmelCase = g_cost _lowerCAmelCase = parent _lowerCAmelCase = self.calculate_heuristic() def lowercase__ ( self : int ) -> Dict: _lowerCAmelCase = abs(self.pos_x - self.goal_x ) _lowerCAmelCase = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Union[str, Any] , __snake_case : int ) -> int: return self.f_cost < other.f_cost class UpperCAmelCase : def __init__( self : str , __snake_case : tuple[int, int] , __snake_case : tuple[int, int] ) -> Dict: _lowerCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCamelCase__ ) _lowerCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , lowerCamelCase__ ) _lowerCAmelCase = [self.start] _lowerCAmelCase = [] _lowerCAmelCase = False def lowercase__ ( self : str ) -> Dict: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCAmelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: _lowerCAmelCase = True return self.retrace_path(lowerCamelCase__ ) self.closed_nodes.append(lowerCamelCase__ ) _lowerCAmelCase = self.get_successors(lowerCamelCase__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCamelCase__ ) else: # retrieve the best current path _lowerCAmelCase = self.open_nodes.pop(self.open_nodes.index(lowerCamelCase__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCamelCase__ ) else: self.open_nodes.append(lowerCamelCase__ ) if not self.reached: return [self.start.pos] return None def lowercase__ ( self : List[Any] , __snake_case : Node ) -> str: _lowerCAmelCase = [] for action in delta: _lowerCAmelCase = parent.pos_x + action[1] _lowerCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCamelCase__ , lowerCamelCase__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCamelCase__ , ) ) return successors def lowercase__ ( self : Dict , __snake_case : Node | None ) -> Tuple: _lowerCAmelCase = node _lowerCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase = current_node.parent path.reverse() return path if __name__ == "__main__": A__ : Any =(0, 0) A__ : str =(len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') A__ : List[str] =GreedyBestFirst(init, goal) A__ : Optional[int] =greedy_bf.search() if path: for pos_x, pos_y in path: A__ : Optional[Any] =2 for elem in grid: print(elem)
207
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar snake_case_ : Optional[Any] = TypeVar('KEY') snake_case_ : Dict = TypeVar('VAL') @dataclass(frozen=lowercase , slots=lowercase ) class lowercase__ ( Generic[KEY, VAL] ): lowercase__ = 42 lowercase__ = 42 class lowercase__ ( _Item ): def __init__( self : Union[str, Any] ): '''simple docstring''' super().__init__(lowerCamelCase__ ,lowerCamelCase__ ) def __bool__( self : Tuple ): '''simple docstring''' return False snake_case_ : int = _DeletedItem() class lowercase__ ( MutableMapping[KEY, VAL] ): def __init__( self : Any ,lowerCamelCase__ : int = 8 ,lowerCamelCase__ : float = 0.7_5 ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = initial_block_size _UpperCamelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _UpperCamelCase : Optional[int] = capacity_factor _UpperCamelCase : List[Any] = 0 def UpperCamelCase_ ( self : Optional[int] ,lowerCamelCase__ : KEY ): '''simple docstring''' return hash(lowerCamelCase__ ) % len(self._buckets ) def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : int ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : KEY ,lowerCamelCase__ : VAL ): '''simple docstring''' _UpperCamelCase : str = self._buckets[ind] if not stored: _UpperCamelCase : str = _Item(lowerCamelCase__ ,lowerCamelCase__ ) self._len += 1 return True elif stored.key == key: _UpperCamelCase : Union[str, Any] = _Item(lowerCamelCase__ ,lowerCamelCase__ ) return True else: return False def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : Dict = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase__ ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False _UpperCamelCase : str = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCamelCase_ ( self : int ,lowerCamelCase__ : int ): '''simple docstring''' _UpperCamelCase : int = self._buckets _UpperCamelCase : Dict = [None] * new_size _UpperCamelCase : str = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def UpperCamelCase_ ( self : int ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : KEY ): '''simple docstring''' _UpperCamelCase : List[str] = self._get_bucket_index(lowerCamelCase__ ) for _ in range(len(self._buckets ) ): yield ind _UpperCamelCase : Optional[int] = self._get_next_ind(lowerCamelCase__ ) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : KEY ,lowerCamelCase__ : VAL ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase__ ): if self._try_set(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ): break def __setitem__( self : Dict ,lowerCamelCase__ : KEY ,lowerCamelCase__ : VAL ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase__ ,lowerCamelCase__ ) def __delitem__( self : Optional[Any] ,lowerCamelCase__ : KEY ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase__ ): _UpperCamelCase : Any = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase__ ) if item is _deleted: continue if item.key == key: _UpperCamelCase : Optional[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Dict ,lowerCamelCase__ : KEY ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase__ ): _UpperCamelCase : Any = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase__ ) def __len__( self : Dict ): '''simple docstring''' return self._len def __iter__( self : List[str] ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Tuple = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
195
0
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder SCREAMING_SNAKE_CASE__ = "base_with_context" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Tuple: __lowercase = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) __lowercase = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): __lowercase = weights[F"""layers_{lyr_num}"""] __lowercase = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) __lowercase = ly_weight["attention"] __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> Dict: __lowercase = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) __lowercase = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): __lowercase = weights[F"""layers_{lyr_num}"""] __lowercase = ly_weight["attention"] __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) __lowercase = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) __lowercase = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ) -> Dict: __lowercase = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) __lowercase = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=_lowerCamelCase ) __lowercase = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): __lowercase = weights[F"""layers_{lyr_num}"""] __lowercase = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) __lowercase = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) __lowercase = ly_weight["self_attention"] __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) __lowercase = ly_weight["MultiHeadDotProductAttention_0"] __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) __lowercase = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) __lowercase = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) __lowercase = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> List[Any]: __lowercase = checkpoints.load_tax_checkpoint(args.checkpoint_path ) __lowercase = jnp.tree_util.tree_map(onp.array , _lowerCamelCase ) __lowercase = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] __lowercase = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) __lowercase = inference.parse_training_gin_file(_lowerCamelCase , _lowerCamelCase ) __lowercase = inference.InferenceModel(args.checkpoint_path , _lowerCamelCase ) __lowercase = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) __lowercase = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) __lowercase = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) __lowercase = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) __lowercase = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , _lowerCamelCase ) __lowercase = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , _lowerCamelCase ) __lowercase = load_decoder(ta_checkpoint['target']['decoder'] , _lowerCamelCase ) __lowercase = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) __lowercase = SpectrogramDiffusionPipeline( notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help="""Path to the original jax model checkpoint.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() main(args)
704
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __lowercase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __lowercase = 4 __lowercase = True # hparam_utils.py hparams __lowercase = 0.664_694 __lowercase = 0.207_951 __lowercase = 0.121_194 __lowercase = True __lowercase = True __lowercase = False __lowercase = 0.0_352_513 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase = 4 __lowercase = False # hparam_utils.py hparams __lowercase = 36.4_519 __lowercase = 0.903_421 __lowercase = 222.088 __lowercase = True __lowercase = True __lowercase = True __lowercase = 0.763_141 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
0
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata lowerCAmelCase : Tuple = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class __magic_name__ ( tr.AbstractTransform ): '''simple docstring''' def __init__( self , _a = " " ): """simple docstring""" lowerCamelCase = sentence_delimiter def _lowerCAmelCase ( self , _a ): """simple docstring""" return list(_a ) def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = [] for sent_idx, sentence in enumerate(_a ): chars.extend(self.process_string(_a ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(_a ) - 1: chars.append(self.sentence_delimiter ) return chars lowerCAmelCase : List[str] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowerCAmelCase : Tuple = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowerCAmelCase : Any = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ lowerCAmelCase : Union[str, Any] = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ lowerCAmelCase : Dict = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", """https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""", ] , ) def _lowerCAmelCase ( self , _a , _a , _a=False ): """simple docstring""" if concatenate_texts: return jiwer.compute_measures( _a , _a , truth_transform=_a , hypothesis_transform=_a , )["wer"] lowerCamelCase = 0 lowerCamelCase = 0 for prediction, reference in zip(_a , _a ): lowerCamelCase = jiwer.compute_measures( _a , _a , truth_transform=_a , hypothesis_transform=_a , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
543
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __magic_name__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = DiTPipeline __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase = False def _lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_a , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=_a , ) lowerCamelCase = AutoencoderKL() lowerCamelCase = DDIMScheduler() lowerCamelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def _lowerCAmelCase ( self , _a , _a=0 ): """simple docstring""" if str(_a ).startswith("""mps""" ): lowerCamelCase = torch.manual_seed(_a ) else: lowerCamelCase = torch.Generator(device=_a ).manual_seed(_a ) lowerCamelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = """cpu""" lowerCamelCase = self.get_dummy_components() lowerCamelCase = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCamelCase = self.get_dummy_inputs(_a ) lowerCamelCase = pipe(**_a ).images lowerCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) lowerCamelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def _lowerCAmelCase ( self ): """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_a , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowerCAmelCase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __magic_name__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) lowerCamelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] lowerCamelCase = pipe.get_label_ids(_a ) lowerCamelCase = pipe(_a , generator=_a , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(_a , _a ): lowerCamelCase = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1e-2 def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) lowerCamelCase = ["""vase""", """umbrella"""] lowerCamelCase = pipe.get_label_ids(_a ) lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = pipe(_a , generator=_a , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(_a , _a ): lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1e-1
543
1
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __magic_name__ ( lowerCAmelCase ): def __get__( self , snake_case , snake_case=None) -> Dict: '''simple docstring''' # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute') _UpperCAmelCase : Optional[int] ='__cached_' + self.fget.__name__ _UpperCAmelCase : List[str] =getattr(snake_case , snake_case , snake_case) if cached is None: _UpperCAmelCase : Any =self.fget(snake_case) setattr(snake_case , snake_case , snake_case) return cached def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] ): '''simple docstring''' _UpperCAmelCase : Optional[Any] =val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"invalid truth value {val!r}" ) def lowerCamelCase__ ( __lowerCamelCase : int ): '''simple docstring''' if is_torch_fx_proxy(__lowerCamelCase ): return True if is_torch_available(): import torch if isinstance(__lowerCamelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__lowerCamelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__lowerCamelCase , (jnp.ndarray, Tracer) ): return True return isinstance(__lowerCamelCase , np.ndarray ) def lowerCamelCase__ ( __lowerCamelCase : Dict ): '''simple docstring''' return isinstance(__lowerCamelCase , np.ndarray ) def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): '''simple docstring''' return _is_numpy(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' import torch return isinstance(__lowerCamelCase , torch.Tensor ) def lowerCamelCase__ ( __lowerCamelCase : Dict ): '''simple docstring''' return False if not is_torch_available() else _is_torch(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : List[str] ): '''simple docstring''' import torch return isinstance(__lowerCamelCase , torch.device ) def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): '''simple docstring''' return False if not is_torch_available() else _is_torch_device(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] ): '''simple docstring''' import torch if isinstance(__lowerCamelCase , __lowerCamelCase ): if hasattr(__lowerCamelCase , __lowerCamelCase ): _UpperCAmelCase : Optional[int] =getattr(__lowerCamelCase , __lowerCamelCase ) else: return False return isinstance(__lowerCamelCase , torch.dtype ) def lowerCamelCase__ ( __lowerCamelCase : List[str] ): '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): '''simple docstring''' import tensorflow as tf return isinstance(__lowerCamelCase , tf.Tensor ) def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] ): '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__lowerCamelCase , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(__lowerCamelCase ) return type(__lowerCamelCase ) == tf.Tensor def lowerCamelCase__ ( __lowerCamelCase : int ): '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Dict ): '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(__lowerCamelCase , jnp.ndarray ) def lowerCamelCase__ ( __lowerCamelCase : int ): '''simple docstring''' return False if not is_flax_available() else _is_jax(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] ): '''simple docstring''' if isinstance(__lowerCamelCase , (dict, UserDict) ): return {k: to_py_obj(__lowerCamelCase ) for k, v in obj.items()} elif isinstance(__lowerCamelCase , (list, tuple) ): return [to_py_obj(__lowerCamelCase ) for o in obj] elif is_tf_tensor(__lowerCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(__lowerCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(__lowerCamelCase ): return np.asarray(__lowerCamelCase ).tolist() elif isinstance(__lowerCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowerCamelCase__ ( __lowerCamelCase : int ): '''simple docstring''' if isinstance(__lowerCamelCase , (dict, UserDict) ): return {k: to_numpy(__lowerCamelCase ) for k, v in obj.items()} elif isinstance(__lowerCamelCase , (list, tuple) ): return np.array(__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): return obj.numpy() elif is_torch_tensor(__lowerCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(__lowerCamelCase ): return np.asarray(__lowerCamelCase ) else: return obj class __magic_name__ ( lowerCAmelCase ): def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : Tuple =fields(self) # Safety and consistency checks if not len(snake_case): raise ValueError(f"{self.__class__.__name__} has no fields.") if not all(field.default is None for field in class_fields[1:]): raise ValueError(f"{self.__class__.__name__} should not have more than one required field.") _UpperCAmelCase : int =getattr(self , class_fields[0].name) _UpperCAmelCase : Any =all(getattr(self , field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(snake_case): if isinstance(snake_case , snake_case): _UpperCAmelCase : Any =first_field.items() _UpperCAmelCase : Dict =True else: try: _UpperCAmelCase : str =iter(snake_case) _UpperCAmelCase : Optional[Any] =True except TypeError: _UpperCAmelCase : Dict =False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(snake_case): if ( not isinstance(snake_case , (list, tuple)) or not len(snake_case) == 2 or not isinstance(element[0] , snake_case) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _UpperCAmelCase : Any =first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"Cannot set key/value for {element}. It needs to be a tuple (key, value).") break setattr(self , element[0] , element[1]) if element[1] is not None: _UpperCAmelCase : List[Any] =element[1] elif first_field is not None: _UpperCAmelCase : List[Any] =first_field else: for field in class_fields: _UpperCAmelCase : int =getattr(self , field.name) if v is not None: _UpperCAmelCase : Optional[Any] =v def __delitem__( self , *snake_case , **snake_case) -> Any: '''simple docstring''' raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.") def lowerCAmelCase ( self , *snake_case , **snake_case) -> Any: '''simple docstring''' raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.") def lowerCAmelCase ( self , *snake_case , **snake_case) -> Tuple: '''simple docstring''' raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.") def lowerCAmelCase ( self , *snake_case , **snake_case) -> str: '''simple docstring''' raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.") def __getitem__( self , snake_case) -> str: '''simple docstring''' if isinstance(snake_case , snake_case): _UpperCAmelCase : Optional[Any] =dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , snake_case , snake_case) -> str: '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(snake_case , snake_case) super().__setattr__(snake_case , snake_case) def __setitem__( self , snake_case , snake_case) -> List[str]: '''simple docstring''' # Will raise a KeyException if needed super().__setitem__(snake_case , snake_case) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(snake_case , snake_case) def lowerCAmelCase ( self) -> Tuple[Any]: '''simple docstring''' return tuple(self[k] for k in self.keys()) class __magic_name__ ( lowerCAmelCase ,lowerCAmelCase ): @classmethod def lowerCAmelCase ( cls , snake_case) -> List[Any]: '''simple docstring''' raise ValueError( f"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys())}") class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="longest" UpperCAmelCase ="max_length" UpperCAmelCase ="do_not_pad" class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="pt" UpperCAmelCase ="tf" UpperCAmelCase ="np" UpperCAmelCase ="jax" class __magic_name__ : def __init__( self , snake_case) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] =context_managers _UpperCAmelCase : str =ExitStack() def __enter__( self) -> Dict: '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(snake_case) def __exit__( self , *snake_case , **snake_case) -> Dict: '''simple docstring''' self.stack.__exit__(*snake_case , **snake_case) def lowerCamelCase__ ( __lowerCamelCase : Tuple ): '''simple docstring''' _UpperCAmelCase : Tuple =infer_framework(__lowerCamelCase ) if framework == "tf": _UpperCAmelCase : List[str] =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCAmelCase : Optional[Any] =inspect.signature(model_class.forward ) # PyTorch models else: _UpperCAmelCase : Optional[Any] =inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] ): '''simple docstring''' _UpperCAmelCase : Optional[Any] =model_class.__name__ _UpperCAmelCase : Union[str, Any] =infer_framework(__lowerCamelCase ) if framework == "tf": _UpperCAmelCase : Dict =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCAmelCase : str =inspect.signature(model_class.forward ) # PyTorch models else: _UpperCAmelCase : Optional[Any] =inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowerCamelCase__ ( __lowerCamelCase : MutableMapping , __lowerCamelCase : str = "" , __lowerCamelCase : str = "." ): '''simple docstring''' def _flatten_dict(__lowerCamelCase : Dict , __lowerCamelCase : List[str]="" , __lowerCamelCase : Any="." ): for k, v in d.items(): _UpperCAmelCase : Optional[Any] =str(__lowerCamelCase ) + delimiter + str(__lowerCamelCase ) if parent_key else k if v and isinstance(__lowerCamelCase , __lowerCamelCase ): yield from flatten_dict(__lowerCamelCase , __lowerCamelCase , delimiter=__lowerCamelCase ).items() else: yield key, v return dict(_flatten_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ) @contextmanager def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : bool = False ): '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Any=None ): '''simple docstring''' if is_numpy_array(__lowerCamelCase ): return np.transpose(__lowerCamelCase , axes=__lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.T if axes is None else array.permute(*__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.transpose(__lowerCamelCase , perm=__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.transpose(__lowerCamelCase , axes=__lowerCamelCase ) else: raise ValueError(f"Type not supported for transpose: {type(__lowerCamelCase )}." ) def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Dict ): '''simple docstring''' if is_numpy_array(__lowerCamelCase ): return np.reshape(__lowerCamelCase , __lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.reshape(*__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.reshape(__lowerCamelCase , __lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.reshape(__lowerCamelCase , __lowerCamelCase ) else: raise ValueError(f"Type not supported for reshape: {type(__lowerCamelCase )}." ) def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Any=None ): '''simple docstring''' if is_numpy_array(__lowerCamelCase ): return np.squeeze(__lowerCamelCase , axis=__lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.squeeze(__lowerCamelCase , axis=__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.squeeze(__lowerCamelCase , axis=__lowerCamelCase ) else: raise ValueError(f"Type not supported for squeeze: {type(__lowerCamelCase )}." ) def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' if is_numpy_array(__lowerCamelCase ): return np.expand_dims(__lowerCamelCase , __lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.unsqueeze(dim=__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.expand_dims(__lowerCamelCase , axis=__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.expand_dims(__lowerCamelCase , axis=__lowerCamelCase ) else: raise ValueError(f"Type not supported for expand_dims: {type(__lowerCamelCase )}." ) def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] ): '''simple docstring''' if is_numpy_array(__lowerCamelCase ): return np.size(__lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.numel() elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.size(__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return array.size else: raise ValueError(f"Type not supported for expand_dims: {type(__lowerCamelCase )}." ) def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : str ): '''simple docstring''' for key, value in auto_map.items(): if isinstance(__lowerCamelCase , (tuple, list) ): _UpperCAmelCase : Union[str, Any] =[f"{repo_id}--{v}" if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: _UpperCAmelCase : Optional[Any] =f"{repo_id}--{value}" return auto_map def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' for base_class in inspect.getmro(__lowerCamelCase ): _UpperCAmelCase : str =base_class.__module__ _UpperCAmelCase : Dict =base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"Could not infer framework from class {model_class}." )
331
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : int ='https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' _UpperCAmelCase : Optional[int] =Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert('RGB' ) return image def lowerCamelCase__ ( __lowerCamelCase : Any ): '''simple docstring''' _UpperCAmelCase : int =[] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"visual_encoder.blocks.{i}.norm1.weight", f"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm1.bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.weight", f"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.qkv.weight", f"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.weight", f"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.bias", f"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.weight", f"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.weight", f"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : Optional[Any] =dct.pop(__lowerCamelCase ) _UpperCAmelCase : Dict =val def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _UpperCAmelCase : str =state_dict.pop(f"visual_encoder.blocks.{i}.attn.q_bias" ) _UpperCAmelCase : Tuple =state_dict.pop(f"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict _UpperCAmelCase : Optional[Any] =torch.cat((q_bias, torch.zeros_like(__lowerCamelCase , requires_grad=__lowerCamelCase ), v_bias) ) _UpperCAmelCase : int =qkv_bias def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =3_6_4 if 'coco' in model_name else 2_2_4 _UpperCAmelCase : Optional[int] =BlipaVisionConfig(image_size=__lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _UpperCAmelCase : Tuple =OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=__lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _UpperCAmelCase : Dict =OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=__lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _UpperCAmelCase : Union[str, Any] =TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _UpperCAmelCase : Dict =TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() _UpperCAmelCase : str =BlipaConfig(vision_config=__lowerCamelCase , text_config=__lowerCamelCase ) return config, image_size @torch.no_grad() def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=None , __lowerCamelCase : Dict=False ): '''simple docstring''' _UpperCAmelCase : str =( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) _UpperCAmelCase : Tuple =tokenizer('\n' , add_special_tokens=__lowerCamelCase ).input_ids[0] _UpperCAmelCase , _UpperCAmelCase : List[str] =get_blipa_config(__lowerCamelCase , eos_token_id=__lowerCamelCase ) _UpperCAmelCase : Optional[int] =BlipaForConditionalGeneration(__lowerCamelCase ).eval() _UpperCAmelCase : int ={ 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } _UpperCAmelCase , _UpperCAmelCase : Tuple =model_name_to_original[model_name] # load original model print('Loading original model...' ) _UpperCAmelCase : Optional[int] ='cuda' if torch.cuda.is_available() else 'cpu' _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] =load_model_and_preprocess( name=__lowerCamelCase , model_type=__lowerCamelCase , is_eval=__lowerCamelCase , device=__lowerCamelCase ) original_model.eval() print('Done!' ) # update state dict keys _UpperCAmelCase : List[Any] =original_model.state_dict() _UpperCAmelCase : Optional[Any] =create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _UpperCAmelCase : Optional[Any] =state_dict.pop(__lowerCamelCase ) if key.startswith('Qformer.bert' ): _UpperCAmelCase : Tuple =key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: _UpperCAmelCase : Optional[Any] =key.replace('self' , 'attention' ) if "opt_proj" in key: _UpperCAmelCase : List[str] =key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: _UpperCAmelCase : Tuple =key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): _UpperCAmelCase : Optional[Any] =key.replace('opt' , 'language' ) if key.startswith('t5' ): _UpperCAmelCase : Dict =key.replace('t5' , 'language' ) _UpperCAmelCase : Any =val # read in qv biases read_in_q_v_bias(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase , _UpperCAmelCase : List[Any] =hf_model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) assert len(__lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _UpperCAmelCase : Union[str, Any] =load_demo_image() _UpperCAmelCase : str =vis_processors['eval'](__lowerCamelCase ).unsqueeze(0 ).to(__lowerCamelCase ) _UpperCAmelCase : Any =tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(__lowerCamelCase ) # create processor _UpperCAmelCase : str =BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=__lowerCamelCase , image_std=__lowerCamelCase ) _UpperCAmelCase : Union[str, Any] =BlipaProcessor(image_processor=__lowerCamelCase , tokenizer=__lowerCamelCase ) _UpperCAmelCase : str =processor(images=__lowerCamelCase , return_tensors='pt' ).pixel_values.to(__lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowerCamelCase , __lowerCamelCase ) original_model.to(__lowerCamelCase ) hf_model.to(__lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _UpperCAmelCase : Dict =original_model({'image': original_pixel_values, 'text_input': ['']} ).logits _UpperCAmelCase : int =hf_model(__lowerCamelCase , __lowerCamelCase ).logits else: _UpperCAmelCase : Tuple =original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits _UpperCAmelCase : Union[str, Any] =input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) _UpperCAmelCase : Any =hf_model(__lowerCamelCase , __lowerCamelCase , labels=__lowerCamelCase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _UpperCAmelCase : Dict =torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=__lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , __lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _UpperCAmelCase : Optional[Any] =torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=__lowerCamelCase ) else: # cast to same type _UpperCAmelCase : List[str] =logits.dtype assert torch.allclose(original_logits.to(__lowerCamelCase ) , __lowerCamelCase , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) _UpperCAmelCase : str ='' _UpperCAmelCase : Tuple =tokenizer(__lowerCamelCase , return_tensors='pt' ).input_ids.to(__lowerCamelCase ) _UpperCAmelCase : Any =original_model.generate({'image': original_pixel_values} ) _UpperCAmelCase : List[str] =hf_model.generate( __lowerCamelCase , __lowerCamelCase , do_sample=__lowerCamelCase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , __lowerCamelCase ) _UpperCAmelCase : List[Any] =input_ids.shape[1] _UpperCAmelCase : Optional[int] =processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowerCamelCase ) _UpperCAmelCase : Optional[Any] =[text.strip() for text in output_text] print('HF generation:' , __lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowerCamelCase ) hf_model.save_pretrained(__lowerCamelCase ) if push_to_hub: processor.push_to_hub(f"nielsr/{model_name}" ) hf_model.push_to_hub(f"nielsr/{model_name}" ) if __name__ == "__main__": lowercase =argparse.ArgumentParser() lowercase =[ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) lowercase =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
331
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = len(UpperCamelCase__ ) print('''The following activities are selected:''' ) # The first activity is always selected __UpperCAmelCase = 0 print(UpperCamelCase__ , end=''',''' ) # Consider rest of the activities for j in range(UpperCamelCase__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(UpperCamelCase__ , end=''',''' ) __UpperCAmelCase = j if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Optional[int] = [1, 3, 0, 5, 8, 5] __lowerCAmelCase : Tuple = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
262
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping a : Optional[Any] = tuple[int, int] class lowercase: def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" a__ = vertices a__ = { (min(__SCREAMING_SNAKE_CASE ), max(__SCREAMING_SNAKE_CASE )): weight for edge, weight in edges.items() } def lowercase__ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) a__ = weight def lowercase__ ( self ) -> Graph: """simple docstring""" a__ = Graph({min(self.vertices )} , {} ) a__ = 42 a__ = 42 a__ = 42 a__ = 42 while len(subgraph.vertices ) < len(self.vertices ): a__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: a__ = edge a__ = weight subgraph.add_edge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return subgraph def __magic_name__ ( UpperCamelCase : str = "p107_network.txt" ) -> int: a__ = os.path.abspath(os.path.dirname(UpperCamelCase ) ) a__ = os.path.join(UpperCamelCase , UpperCamelCase ) a__ = {} a__ = 42 a__ = 42 a__ = 42 with open(UpperCamelCase ) as f: a__ = f.read().strip().split('\n' ) a__ = [line.split(',' ) for line in data] for edgea in range(1 , len(UpperCamelCase ) ): for edgea in range(UpperCamelCase ): if adjaceny_matrix[edgea][edgea] != "-": a__ = int(adjaceny_matrix[edgea][edgea] ) a__ = Graph(set(range(len(UpperCamelCase ) ) ) , UpperCamelCase ) a__ = graph.prims_algorithm() a__ = sum(graph.edges.values() ) a__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'''{solution() = }''')
273
0
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
714
'''simple docstring''' A_ = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} A_ = ["a", "b", "c", "d", "e"] def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[str]: lowerCamelCase_ = start # add current to visited visited.append(__UpperCamelCase ) lowerCamelCase_ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowerCamelCase_ = topological_sort(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # if all neighbors visited add current to sort sort.append(__UpperCamelCase ) # if all vertices haven't been visited select a new one to visit if len(__UpperCamelCase ) != len(__UpperCamelCase ): for vertice in vertices: if vertice not in visited: lowerCamelCase_ = topological_sort(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # return sort return sort if __name__ == "__main__": A_ = topological_sort("a", [], []) print(sort)
384
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['MobileViTFeatureExtractor'] __UpperCAmelCase = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
65
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __UpperCAmelCase = logging.get_logger(__name__) class __lowercase ( __lowerCamelCase ): snake_case_ = ["""input_features""", """attention_mask"""] def __init__( self : Any ,A : str=80 ,A : Optional[int]=16_000 ,A : int=0.0 ,A : str=10 ,A : Any=25 ,A : str="hamming_window" ,A : int=3_2_7_6_8.0 ,A : List[str]=0.9_7 ,A : Optional[int]=1.0 ,A : Optional[Any]=True ,A : Tuple=True ,A : Any=False ,**A : int ,): '''simple docstring''' super().__init__(feature_size=A ,sampling_rate=A ,padding_value=A ,**A ) UpperCAmelCase__ : str = feature_size UpperCAmelCase__ : int = sampling_rate UpperCAmelCase__ : int = padding_value UpperCAmelCase__ : Dict = hop_length UpperCAmelCase__ : int = win_length UpperCAmelCase__ : Dict = frame_signal_scale UpperCAmelCase__ : Dict = preemphasis_coeff UpperCAmelCase__ : str = mel_floor UpperCAmelCase__ : Any = normalize_means UpperCAmelCase__ : str = normalize_vars UpperCAmelCase__ : int = win_function UpperCAmelCase__ : List[Any] = return_attention_mask UpperCAmelCase__ : str = win_length * sampling_rate // 1_000 UpperCAmelCase__ : List[Any] = hop_length * sampling_rate // 1_000 UpperCAmelCase__ : int = optimal_fft_length(self.sample_size ) UpperCAmelCase__ : List[Any] = (self.n_fft // 2) + 1 def __lowercase ( self : Union[str, Any] ,A : np.array ): '''simple docstring''' if self.win_function == "hamming_window": UpperCAmelCase__ : Any = window_function(window_length=self.sample_size ,name=self.win_function ,periodic=A ) else: UpperCAmelCase__ : Any = window_function(window_length=self.sample_size ,name=self.win_function ) UpperCAmelCase__ : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.n_freqs ,num_mel_filters=self.feature_size ,min_frequency=0.0 ,max_frequency=self.sampling_rate / 2.0 ,sampling_rate=self.sampling_rate ,) UpperCAmelCase__ : Optional[Any] = spectrogram( one_waveform * self.frame_signal_scale ,window=A ,frame_length=self.sample_size ,hop_length=self.sample_stride ,fft_length=self.n_fft ,center=A ,preemphasis=self.preemphasis_coeff ,mel_filters=A ,mel_floor=self.mel_floor ,log_mel="""log""" ,) return msfc_features.T def __lowercase ( self : str ,A : Any ,A : Optional[int] ,A : str ): '''simple docstring''' # make sure we normalize float32 arrays if self.normalize_means: UpperCAmelCase__ : Optional[Any] = x[:input_length].mean(axis=0 ) UpperCAmelCase__ : Any = np.subtract(A ,A ) if self.normalize_vars: UpperCAmelCase__ : str = x[:input_length].std(axis=0 ) UpperCAmelCase__ : Optional[int] = np.divide(A ,A ) if input_length < x.shape[0]: UpperCAmelCase__ : int = padding_value # make sure array is in float32 UpperCAmelCase__ : str = x.astype(np.floataa ) return x def __lowercase ( self : Union[str, Any] ,A : List[np.ndarray] ,A : Optional[np.ndarray] = None ): '''simple docstring''' UpperCAmelCase__ : Any = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(A ,A ,self.padding_value ) for x, n in zip(A ,A )] def __call__( self : Union[str, Any] ,A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,A : Union[bool, str, PaddingStrategy] = False ,A : Optional[int] = None ,A : bool = False ,A : Optional[int] = None ,A : Optional[bool] = None ,A : Optional[Union[str, TensorType]] = None ,A : Optional[int] = None ,**A : Tuple ,): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) UpperCAmelCase__ : Optional[Any] = isinstance(A ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) UpperCAmelCase__ : Any = is_batched_numpy or ( isinstance(A ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase__ : List[str] = [np.asarray(A ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A ,np.ndarray ): UpperCAmelCase__ : Union[str, Any] = np.asarray(A ,dtype=np.floataa ) elif isinstance(A ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase__ : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase__ : Optional[Any] = [raw_speech] # extract fbank features UpperCAmelCase__ : Tuple = [self._extract_mfsc_features(A ) for one_waveform in raw_speech] # convert into correct format for padding UpperCAmelCase__ : str = BatchFeature({"""input_features""": features} ) UpperCAmelCase__ : Optional[Any] = self.pad( A ,padding=A ,max_length=A ,truncation=A ,pad_to_multiple_of=A ,return_attention_mask=A ,**A ,) # make sure list is in array format UpperCAmelCase__ : Tuple = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] ,A ): UpperCAmelCase__ : Union[str, Any] = [np.asarray(A ,dtype=np.floataa ) for feature in input_features] UpperCAmelCase__ : Dict = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: UpperCAmelCase__ : str = [np.asarray(A ,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: UpperCAmelCase__ : Union[str, Any] = ( np.array(A ,dtype=np.intaa ) if self._get_padding_strategies(A ,max_length=A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) UpperCAmelCase__ : Any = self.normalize( padded_inputs["""input_features"""] ,attention_mask=A ) if return_tensors is not None: UpperCAmelCase__ : Union[str, Any] = padded_inputs.convert_to_tensors(A ) return padded_inputs
65
1
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase_ = logging.get_logger(__name__) # TODO: upload to AWS UpperCAmelCase_ = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class __lowercase ( _UpperCAmelCase ): _a = """retribert""" def __init__( self , UpperCamelCase=3_0522 , UpperCamelCase=768 , UpperCamelCase=8 , UpperCamelCase=12 , UpperCamelCase=3072 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=512 , UpperCamelCase=2 , UpperCamelCase=0.02 , UpperCamelCase=1e-12 , UpperCamelCase=True , UpperCamelCase=128 , UpperCamelCase=0 , **UpperCamelCase , ) -> Tuple: super().__init__(pad_token_id=lowercase__ , **lowercase__ ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = share_encoders __a = projection_dim
702
'''simple docstring''' from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata UpperCAmelCase_ = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class __lowercase ( tr.AbstractTransform ): def __init__( self , UpperCamelCase = " " ) -> Tuple: __a = sentence_delimiter def UpperCamelCase__ ( self , UpperCamelCase ) -> Union[str, Any]: return list(UpperCamelCase ) def UpperCamelCase__ ( self , UpperCamelCase ) -> int: __a = [] for sent_idx, sentence in enumerate(UpperCamelCase ): chars.extend(self.process_string(UpperCamelCase ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCamelCase ) - 1: chars.append(self.sentence_delimiter ) return chars UpperCAmelCase_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: UpperCAmelCase_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) UpperCAmelCase_ = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" UpperCAmelCase_ = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" UpperCAmelCase_ = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): def UpperCamelCase__ ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ] , ) def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase=False ) -> int: if concatenate_texts: return jiwer.compute_measures( UpperCamelCase , UpperCamelCase , truth_transform=UpperCamelCase , hypothesis_transform=UpperCamelCase , )["wer"] __a = 0 __a = 0 for prediction, reference in zip(UpperCamelCase , UpperCamelCase ): __a = jiwer.compute_measures( UpperCamelCase , UpperCamelCase , truth_transform=UpperCamelCase , hypothesis_transform=UpperCamelCase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
490
0
def lowerCamelCase_ ( UpperCamelCase__ : int = 3, UpperCamelCase__ : int = 7, UpperCamelCase__ : int = 100_0000 ): '''simple docstring''' UpperCamelCase__ = 0 UpperCamelCase__ = 1 for current_denominator in range(1, limit + 1 ): UpperCamelCase__ = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: UpperCamelCase__ = current_numerator UpperCamelCase__ = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_0_0_0_0_0_0))
240
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowercase ( A, unittest.TestCase ): '''simple docstring''' _A : Dict = RoCBertTokenizer _A : Optional[Any] = None _A : Dict = False _A : List[str] = True _A : Optional[int] = filter_non_english def A_ ( self : int ): super().setUp() UpperCamelCase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] UpperCamelCase__ = {} UpperCamelCase__ = {} for i, value in enumerate(_a ): UpperCamelCase__ = i UpperCamelCase__ = i UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(_a , _a , ensure_ascii=_a ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(_a , _a , ensure_ascii=_a ) def A_ ( self : List[str] ): UpperCamelCase__ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCamelCase__ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(_a , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(_a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(_a ) , [5, 6, 2, 5, 7, 8] ) def A_ ( self : Tuple ): UpperCamelCase__ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def A_ ( self : Optional[Any] ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A_ ( self : Optional[int] ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def A_ ( self : List[Any] ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A_ ( self : Any ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A_ ( self : str ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A_ ( self : List[Any] ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A_ ( self : Any ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A_ ( self : Optional[int] ): UpperCamelCase__ = RoCBertBasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def A_ ( self : Optional[int] ): UpperCamelCase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] UpperCamelCase__ = {} for i, token in enumerate(_a ): UpperCamelCase__ = i UpperCamelCase__ = RoCBertWordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def A_ ( self : Union[str, Any] ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def A_ ( self : Optional[Any] ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def A_ ( self : List[str] ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def A_ ( self : Union[str, Any] ): UpperCamelCase__ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: UpperCamelCase__ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def A_ ( self : Tuple ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) UpperCamelCase__ = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCamelCase__ = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) UpperCamelCase__ = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False UpperCamelCase__ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def A_ ( self : Any ): UpperCamelCase__ = ['''的''', '''人''', '''有'''] UpperCamelCase__ = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase__ = True UpperCamelCase__ = self.tokenizer_class.from_pretrained(_a , **_a ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) UpperCamelCase__ = tokenizer_p.encode(_a , add_special_tokens=_a ) UpperCamelCase__ = tokenizer_r.encode(_a , add_special_tokens=_a ) UpperCamelCase__ = tokenizer_r.convert_ids_to_tokens(_a ) UpperCamelCase__ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) UpperCamelCase__ = False UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) UpperCamelCase__ = self.tokenizer_class.from_pretrained(_a , **_a ) UpperCamelCase__ = tokenizer_r.encode(_a , add_special_tokens=_a ) UpperCamelCase__ = tokenizer_p.encode(_a , add_special_tokens=_a ) UpperCamelCase__ = tokenizer_r.convert_ids_to_tokens(_a ) UpperCamelCase__ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". UpperCamelCase__ = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) @slow def A_ ( self : str ): UpperCamelCase__ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCamelCase__ = tokenizer.encode('''你好''' , add_special_tokens=_a ) UpperCamelCase__ = tokenizer.encode('''你是谁''' , add_special_tokens=_a ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(_a ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def A_ ( self : List[Any] ): UpperCamelCase__ = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): UpperCamelCase__ = '''你好,你是谁''' UpperCamelCase__ = tokenizer.tokenize(_a ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(_a ) UpperCamelCase__ = tokenizer.convert_tokens_to_shape_ids(_a ) UpperCamelCase__ = tokenizer.convert_tokens_to_pronunciation_ids(_a ) UpperCamelCase__ = tokenizer.prepare_for_model( _a , _a , _a , add_special_tokens=_a ) UpperCamelCase__ = tokenizer.encode_plus(_a , add_special_tokens=_a ) self.assertEqual(_a , _a )
240
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __UpperCamelCase : str = HfArgumentParser(InitializationArguments) __UpperCamelCase : Dict = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __UpperCamelCase : Any = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __UpperCamelCase : Dict = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) __UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __UpperCamelCase : List[str] = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
106
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class __magic_name__ ( __lowerCAmelCase): A: Optional[Any] = "markuplm" def __init__( self : List[Any] , lowerCamelCase__ : Optional[int]=30522 , lowerCamelCase__ : Dict=768 , lowerCamelCase__ : List[str]=12 , lowerCamelCase__ : List[Any]=12 , lowerCamelCase__ : Optional[Any]=3072 , lowerCamelCase__ : int="gelu" , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : Tuple=512 , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : Union[str, Any]=0.02 , lowerCamelCase__ : Optional[Any]=1E-1_2 , lowerCamelCase__ : List[str]=0 , lowerCamelCase__ : Tuple=0 , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : List[Any]=256 , lowerCamelCase__ : List[str]=1024 , lowerCamelCase__ : Optional[int]=216 , lowerCamelCase__ : Any=1001 , lowerCamelCase__ : int=32 , lowerCamelCase__ : Tuple=50 , lowerCamelCase__ : str="absolute" , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[Any]=None , **lowerCamelCase__ : List[str] , ) -> Union[str, Any]: '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ , ) UpperCamelCase__ : Optional[int] = vocab_size UpperCamelCase__ : List[Any] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : Tuple = num_attention_heads UpperCamelCase__ : Any = hidden_act UpperCamelCase__ : Dict = intermediate_size UpperCamelCase__ : Optional[Any] = hidden_dropout_prob UpperCamelCase__ : Optional[int] = attention_probs_dropout_prob UpperCamelCase__ : Tuple = max_position_embeddings UpperCamelCase__ : List[str] = type_vocab_size UpperCamelCase__ : Any = initializer_range UpperCamelCase__ : Dict = layer_norm_eps UpperCamelCase__ : Any = position_embedding_type UpperCamelCase__ : Optional[Any] = use_cache UpperCamelCase__ : int = classifier_dropout # additional properties UpperCamelCase__ : int = max_depth UpperCamelCase__ : Optional[Any] = max_xpath_tag_unit_embeddings UpperCamelCase__ : List[Any] = max_xpath_subs_unit_embeddings UpperCamelCase__ : List[Any] = tag_pad_id UpperCamelCase__ : Optional[int] = subs_pad_id UpperCamelCase__ : Optional[Any] = xpath_unit_hidden_size
106
1
import heapq as hq import math from collections.abc import Iterator class _a : """simple docstring""" def __init__( self , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = str(id_ ) UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = [] UpperCamelCase_ = {} # {vertex:distance} def __lt__( self , _UpperCAmelCase ) -> Optional[int]: return self.key < other.key def __repr__( self ) -> Optional[int]: return self.id def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]: self.neighbors.append(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: UpperCamelCase_ = weight def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1]) graph[b - 1].add_neighbor(graph[a - 1]) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __lowercase) graph[b - 1].add_edge(graph[a - 1] , __lowercase) def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = [] for u in graph: UpperCamelCase_ = math.inf UpperCamelCase_ = None UpperCamelCase_ = 0 UpperCamelCase_ = graph[:] while q: UpperCamelCase_ = min(__lowercase) q.remove(__lowercase) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCamelCase_ = u UpperCamelCase_ = u.edges[v.id] for i in range(1 , len(__lowercase)): a.append((int(graph[i].id) + 1, int(graph[i].pi.id) + 1)) return a def _snake_case (__lowercase , __lowercase): for u in graph: UpperCamelCase_ = math.inf UpperCamelCase_ = None UpperCamelCase_ = 0 UpperCamelCase_ = list(__lowercase) hq.heapify(__lowercase) while h: UpperCamelCase_ = hq.heappop(__lowercase) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCamelCase_ = u UpperCamelCase_ = u.edges[v.id] hq.heapify(__lowercase) for i in range(1 , len(__lowercase)): yield (int(graph[i].id) + 1, int(graph[i].pi.id) + 1) def _snake_case (): pass if __name__ == "__main__": import doctest doctest.testmod()
23
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): @slow def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Tuple = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) __lowerCamelCase : Optional[int] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowerCamelCase : Optional[Any] = model(UpperCAmelCase )["last_hidden_state"] __lowerCamelCase : int = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , UpperCAmelCase ) # compare the actual values for a slice. __lowerCamelCase : Optional[int] = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
646
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase_ ( snake_case__ ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : AutoencoderKL , SCREAMING_SNAKE_CASE_ : CLIPTextModel , SCREAMING_SNAKE_CASE_ : CLIPTokenizer , SCREAMING_SNAKE_CASE_ : UNetaDConditionModel , SCREAMING_SNAKE_CASE_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , SCREAMING_SNAKE_CASE_ : StableDiffusionSafetyChecker , SCREAMING_SNAKE_CASE_ : CLIPImageProcessor , ): super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , ) def __snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCAmelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : List[str] ): self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, List[str]] , SCREAMING_SNAKE_CASE_ : int = 512 , SCREAMING_SNAKE_CASE_ : int = 512 , SCREAMING_SNAKE_CASE_ : int = 50 , SCREAMING_SNAKE_CASE_ : float = 7.5 , SCREAMING_SNAKE_CASE_ : Optional[Union[str, List[str]]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(SCREAMING_SNAKE_CASE_ )}.' ) # get prompt text embeddings lowerCAmelCase__ = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) lowerCAmelCase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) lowerCAmelCase__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowerCAmelCase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = text_embeddings.shape lowerCAmelCase__ = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 ) lowerCAmelCase__ = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase__ = 42 if negative_prompt is None: lowerCAmelCase__ = [''''''] elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !=' f' {type(SCREAMING_SNAKE_CASE_ )}.' ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ''' the batch size of `prompt`.''' ) else: lowerCAmelCase__ = negative_prompt lowerCAmelCase__ = text_input_ids.shape[-1] lowerCAmelCase__ = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , ) lowerCAmelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase__ = uncond_embeddings.shape[1] lowerCAmelCase__ = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) lowerCAmelCase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowerCAmelCase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase__ = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='''cpu''' , dtype=SCREAMING_SNAKE_CASE_ ).to(self.device ) lowerCAmelCase__ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='''cpu''' , dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: lowerCAmelCase__ = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents_reference.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) lowerCAmelCase__ = latents_reference.to(self.device ) lowerCAmelCase__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowerCAmelCase__ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowerCAmelCase__ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowerCAmelCase__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowerCAmelCase__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowerCAmelCase__ = 0 if dx < 0 else dx lowerCAmelCase__ = 0 if dy < 0 else dy lowerCAmelCase__ = max(-dx , 0 ) lowerCAmelCase__ = max(-dy , 0 ) # import pdb # pdb.set_trace() lowerCAmelCase__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase__ = {} if accepts_eta: lowerCAmelCase__ = eta for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase__ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual lowerCAmelCase__ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase__ , lowerCAmelCase__ = noise_pred.chunk(2 ) lowerCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase__ = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = 1 / 0.18_215 * latents lowerCAmelCase__ = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample lowerCAmelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowerCAmelCase__ = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) , return_tensors='''pt''' ).to( self.device ) lowerCAmelCase__ , lowerCAmelCase__ = self.safety_checker( images=SCREAMING_SNAKE_CASE_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowerCAmelCase__ = None if output_type == "pil": lowerCAmelCase__ = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
288
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class lowerCAmelCase_ : def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) lowerCAmelCase__ = img lowerCAmelCase__ = img.shape[1] lowerCAmelCase__ = img.shape[0] lowerCAmelCase__ = dst_width lowerCAmelCase__ = dst_height lowerCAmelCase__ = self.src_w / self.dst_w lowerCAmelCase__ = self.src_h / self.dst_h lowerCAmelCase__ = lowerCAmelCase__ = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def __snake_case ( self : List[str] ): for i in range(self.dst_h ): for j in range(self.dst_w ): lowerCAmelCase__ = self.img[self.get_y(SCREAMING_SNAKE_CASE_ )][self.get_x(SCREAMING_SNAKE_CASE_ )] def __snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : int ): return int(self.ratio_x * x ) def __snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : int ): return int(self.ratio_y * y ) if __name__ == "__main__": _UpperCAmelCase , _UpperCAmelCase : List[str] = 800, 600 _UpperCAmelCase : Tuple = imread("image_data/lena.jpg", 1) _UpperCAmelCase : str = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
288
1
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _lowercase = False class _UpperCAmelCase ( unittest.TestCase ): pass @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def snake_case_ ( self): A__ = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''') pipe.to(a__) pipe.set_progress_bar_config(disable=a__) A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''') A__ = torch.manual_seed(0) A__ = pipe( image=a__ , generator=a__ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''' , ).images A__ = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) A__ = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
632
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): UpperCamelCase__ = '''timm_backbone''' def __init__( self , a__=None , a__=3 , a__=True , a__=True , a__=None , **a__ , ): super().__init__(**a__) A__ = backbone A__ = num_channels A__ = features_only A__ = use_pretrained_backbone A__ = True A__ = out_indices if out_indices is not None else (-1,)
632
1
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar lowerCAmelCase : Optional[Any] = TypeVar("""_T""") class _UpperCamelCase ( Generic[_T]): '''simple docstring''' def __init__( self , a_ = None ) -> None: lowercase : list[_T] = list(iterable or [] ) lowercase : list[_T] = [] def __len__( self ) -> int: return len(self._stacka ) + len(self._stacka ) def __repr__( self ) -> str: return F'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def a__ ( self , a_ ) -> None: self._stacka.append(a_ ) def a__ ( self ) -> _T: lowercase : int = self._stacka.pop lowercase : Tuple = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
712
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowerCAmelCase : Dict = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _A ( A ,A ,A ,A ,A ) -> str: for attribute in key.split("." ): lowercase : Any = getattr(A ,A ) if weight_type is not None: lowercase : Optional[Any] = getattr(A ,A ).shape else: lowercase : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase : Any = value elif weight_type == "weight_g": lowercase : Optional[Any] = value elif weight_type == "weight_v": lowercase : Tuple = value elif weight_type == "bias": lowercase : int = value else: lowercase : int = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _A ( A ,A ) -> int: lowercase : List[Any] = [] lowercase : int = fairseq_model.state_dict() lowercase : Optional[Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase : List[str] = False if "conv_layers" in name: load_conv_layer( A ,A ,A ,A ,hf_model.config.feat_extract_norm == "group" ,) lowercase : Optional[int] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase : Union[str, Any] = True if "*" in mapped_key: lowercase : Dict = name.split(A )[0].split("." )[-2] lowercase : Union[str, Any] = mapped_key.replace("*" ,A ) if "weight_g" in name: lowercase : Union[str, Any] = "weight_g" elif "weight_v" in name: lowercase : Tuple = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: lowercase : Union[str, Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase : Any = "weight" else: lowercase : Tuple = None set_recursively(A ,A ,A ,A ,A ) continue if not is_used: unused_weights.append(A ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _A ( A ,A ,A ,A ,A ) -> Any: lowercase : Optional[int] = full_name.split("conv_layers." )[-1] lowercase : Any = name.split("." ) lowercase : Dict = int(items[0] ) lowercase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase : List[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(A ) @torch.no_grad() def _A ( A ,A ,A=None ) -> Optional[Any]: # load the pre-trained checkpoints lowercase : Union[str, Any] = torch.load(A ) lowercase : List[Any] = WavLMConfigOrig(checkpoint["cfg"] ) lowercase : Tuple = WavLMOrig(A ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: lowercase : List[str] = WavLMConfig.from_pretrained(A ) else: lowercase : Union[str, Any] = WavLMConfig() lowercase : Optional[Any] = WavLMModel(A ) recursively_load_weights(A ,A ) hf_wavlm.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCAmelCase : int = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
425
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _a : List[Any] = logging.get_logger(__name__) def UpperCamelCase__ ( _A: Tuple ): '''simple docstring''' if isinstance(_A , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_A , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_A ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = ['''pixel_values'''] def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = 1 / 2_5_5 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ): super().__init__(**UpperCAmelCase ) __lowerCamelCase = size if size is not None else {"""shortest_edge""": 2_2_4} __lowerCamelCase = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) __lowerCamelCase = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} __lowerCamelCase = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = resample __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = None , **UpperCAmelCase , ): __lowerCamelCase = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) if "shortest_edge" in size: __lowerCamelCase = get_resize_output_image_size(UpperCAmelCase , size["""shortest_edge"""] , default_to_square=UpperCAmelCase ) elif "height" in size and "width" in size: __lowerCamelCase = (size["""height"""], size["""width"""]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ): __lowerCamelCase = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ): return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ): return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __lowerCamelCase = to_numpy_array(UpperCAmelCase ) if do_resize: __lowerCamelCase = self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) if do_center_crop: __lowerCamelCase = self.center_crop(UpperCAmelCase , size=UpperCAmelCase ) if do_rescale: __lowerCamelCase = self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) if do_normalize: __lowerCamelCase = self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) __lowerCamelCase = to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) return image def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ): __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) if not valid_images(UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __lowerCamelCase = make_batched(UpperCAmelCase ) __lowerCamelCase = [ [ self._preprocess_image( image=UpperCAmelCase , do_resize=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , do_center_crop=UpperCAmelCase , crop_size=UpperCAmelCase , do_rescale=UpperCAmelCase , rescale_factor=UpperCAmelCase , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , data_format=UpperCAmelCase , ) for img in video ] for video in videos ] __lowerCamelCase = {"""pixel_values""": videos} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
479
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType _a : Tuple = logging.get_logger(__name__) _a : int = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = '''layoutlmv3''' def __init__( self , UpperCAmelCase=5_0_2_6_5 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1E-5 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase=1_0_2_4 , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_2_8 , UpperCAmelCase=True , UpperCAmelCase=3_2 , UpperCAmelCase=1_2_8 , UpperCAmelCase=6_4 , UpperCAmelCase=2_5_6 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=2_2_4 , UpperCAmelCase=3 , UpperCAmelCase=1_6 , UpperCAmelCase=None , **UpperCAmelCase , ): super().__init__( vocab_size=UpperCAmelCase , hidden_size=UpperCAmelCase , num_hidden_layers=UpperCAmelCase , num_attention_heads=UpperCAmelCase , intermediate_size=UpperCAmelCase , hidden_act=UpperCAmelCase , hidden_dropout_prob=UpperCAmelCase , attention_probs_dropout_prob=UpperCAmelCase , max_position_embeddings=UpperCAmelCase , type_vocab_size=UpperCAmelCase , initializer_range=UpperCAmelCase , layer_norm_eps=UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase , ) __lowerCamelCase = max_ad_position_embeddings __lowerCamelCase = coordinate_size __lowerCamelCase = shape_size __lowerCamelCase = has_relative_attention_bias __lowerCamelCase = rel_pos_bins __lowerCamelCase = max_rel_pos __lowerCamelCase = has_spatial_attention_bias __lowerCamelCase = rel_ad_pos_bins __lowerCamelCase = max_rel_ad_pos __lowerCamelCase = text_embed __lowerCamelCase = visual_embed __lowerCamelCase = input_size __lowerCamelCase = num_channels __lowerCamelCase = patch_size __lowerCamelCase = classifier_dropout class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = version.parse('''1.12''' ) @property def lowerCamelCase_ ( self ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCamelCase_ ( self ): return 1E-5 @property def lowerCamelCase_ ( self ): return 1_2 def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 3 , UpperCAmelCase = 4_0 , UpperCAmelCase = 4_0 , ): setattr(processor.image_processor , """apply_ocr""" , UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowerCamelCase = compute_effective_axis_dimension( UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowerCamelCase = processor.tokenizer.num_special_tokens_to_add(UpperCAmelCase ) __lowerCamelCase = compute_effective_axis_dimension( UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowerCamelCase = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowerCamelCase = [[[4_8, 8_4, 7_3, 1_2_8]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowerCamelCase = self._generate_dummy_images(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase = dict( processor( UpperCAmelCase , text=UpperCAmelCase , boxes=UpperCAmelCase , return_tensors=UpperCAmelCase , ) ) return inputs
479
1
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _snake_case ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = 0 if start < end: lowerCAmelCase = randint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = a[end] lowerCAmelCase = a[pivot] lowerCAmelCase = temp lowerCAmelCase, lowerCAmelCase = _in_place_partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) count += _in_place_quick_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , p - 1 ) count += _in_place_quick_sort(_SCREAMING_SNAKE_CASE , p + 1 , _SCREAMING_SNAKE_CASE ) return count def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = 0 lowerCAmelCase = randint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = a[end] lowerCAmelCase = a[pivot] lowerCAmelCase = temp lowerCAmelCase = start - 1 for index in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCAmelCase = new_pivot_index + 1 lowerCAmelCase = a[new_pivot_index] lowerCAmelCase = a[index] lowerCAmelCase = temp lowerCAmelCase = a[new_pivot_index + 1] lowerCAmelCase = a[end] lowerCAmelCase = temp return new_pivot_index + 1, count UpperCAmelCase = TemporaryFile() UpperCAmelCase = 100 # 1000 elements are to be sorted UpperCAmelCase , UpperCAmelCase = 0, 1 # mean and standard deviation UpperCAmelCase = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array UpperCAmelCase = np.load(outfile) UpperCAmelCase = len(M) - 1 UpperCAmelCase = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
344
'''simple docstring''' import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : Optional[int]=None , ) -> Optional[Any]: """simple docstring""" if attention_mask is None: lowerCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCAmelCase = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) if decoder_head_mask is None: lowerCAmelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) if cross_attn_head_mask is None: lowerCAmelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __snake_case: '''simple docstring''' def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=False , A_=99 , A_=16 , A_=2 , A_=4 , A_=4 , A_="relu" , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=20 , A_=2 , A_=1 , A_=0 , ) -> Union[str, Any]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = encoder_layerdrop lowerCAmelCase = decoder_layerdrop lowerCAmelCase = max_position_embeddings lowerCAmelCase = eos_token_id lowerCAmelCase = pad_token_id lowerCAmelCase = bos_token_id def __snake_case ( self ) -> Tuple: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = self.eos_token_id # Eos Token lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase = self.get_config() lowerCAmelCase = prepare_mam_aaa_inputs_dict(A_ , A_ , A_ ) return config, inputs_dict def __snake_case ( self ) -> Optional[Any]: return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def __snake_case ( self ) -> str: lowerCAmelCase, lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def __snake_case ( self , A_ , A_ ) -> Tuple: lowerCAmelCase = MaMaaaModel(config=A_ ).get_decoder().to(A_ ).eval() lowerCAmelCase = inputs_dict["""input_ids"""] lowerCAmelCase = inputs_dict["""attention_mask"""] lowerCAmelCase = inputs_dict["""head_mask"""] # first forward pass lowerCAmelCase = model(A_ , attention_mask=A_ , head_mask=A_ , use_cache=A_ ) lowerCAmelCase, lowerCAmelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) lowerCAmelCase = model(A_ , attention_mask=A_ )["""last_hidden_state"""] lowerCAmelCase = model(A_ , attention_mask=A_ , past_key_values=A_ )[ """last_hidden_state""" ] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1e-2 ) ) def __snake_case ( self , A_ , A_ ) -> Any: lowerCAmelCase = MaMaaaModel(config=A_ ).to(A_ ).eval() lowerCAmelCase = model(**A_ ) lowerCAmelCase = outputs.encoder_last_hidden_state lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = model.get_encoder() encoder.save_pretrained(A_ ) lowerCAmelCase = MaMaaaEncoder.from_pretrained(A_ ).to(A_ ) lowerCAmelCase = encoder(inputs_dict["""input_ids"""] , attention_mask=inputs_dict["""attention_mask"""] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = model.get_decoder() decoder.save_pretrained(A_ ) lowerCAmelCase = MaMaaaDecoder.from_pretrained(A_ ).to(A_ ) lowerCAmelCase = decoder( input_ids=inputs_dict["""decoder_input_ids"""] , attention_mask=inputs_dict["""decoder_attention_mask"""] , encoder_hidden_states=A_ , encoder_attention_mask=inputs_dict["""attention_mask"""] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : int = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) UpperCAmelCase : Tuple = (MaMaaaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase : Any = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) UpperCAmelCase : str = True UpperCAmelCase : Optional[int] = True UpperCAmelCase : Dict = False UpperCAmelCase : Dict = False def __snake_case ( self , A_ , A_ , A_ , A_ , A_ ) -> int: if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def __snake_case ( self ) -> int: lowerCAmelCase = MaMaaaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=A_ ) def __snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def __snake_case ( self ) -> List[Any]: lowerCAmelCase, lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase = model_class(A_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ ) lowerCAmelCase, lowerCAmelCase = model_class.from_pretrained(A_ , output_loading_info=A_ ) self.assertEqual(info["""missing_keys"""] , [] ) def __snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*A_ ) def __snake_case ( self ) -> int: lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A_ ) def __snake_case ( self ) -> Tuple: lowerCAmelCase, lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): lowerCAmelCase = model_class(A_ ) model.to(A_ ) model.eval() lowerCAmelCase = copy.deepcopy(self._prepare_for_class(A_ , A_ ) ) if not self.is_encoder_decoder: lowerCAmelCase = inputs["""input_ids"""] del inputs["input_ids"] else: lowerCAmelCase = inputs["""input_ids"""] lowerCAmelCase = inputs.get("""decoder_input_ids""" , A_ ) del inputs["input_ids"] inputs.pop("""decoder_input_ids""" , A_ ) lowerCAmelCase = model.get_input_embeddings() if not self.is_encoder_decoder: lowerCAmelCase = wte(A_ ) else: lowerCAmelCase = wte(A_ ) lowerCAmelCase = wte(A_ ) with torch.no_grad(): model(**A_ )[0] def __snake_case ( self ) -> str: lowerCAmelCase, lowerCAmelCase = self.model_tester.prepare_config_and_inputs() lowerCAmelCase = input_dict["""input_ids"""] lowerCAmelCase = input_ids.ne(1 ).to(A_ ) lowerCAmelCase = MaMaaaForConditionalGeneration(A_ ).eval().to(A_ ) if torch_device == "cuda": model.half() model.generate(A_ , attention_mask=A_ ) model.generate(num_beams=4 , do_sample=A_ , early_stopping=A_ , num_return_sequences=3 ) def _snake_case ( _SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: """simple docstring""" return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) UpperCAmelCase = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __snake_case( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ) -> List[Any]: return MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" ) def __snake_case ( self ) -> str: lowerCAmelCase = MaMaaaModel.from_pretrained("""facebook/m2m100_418M""" ).to(A_ ) lowerCAmelCase = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) lowerCAmelCase = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) lowerCAmelCase = prepare_mam_aaa_inputs_dict(model.config , A_ , A_ ) with torch.no_grad(): lowerCAmelCase = model(**A_ )[0] lowerCAmelCase = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , A_ ) # change to expected output here lowerCAmelCase = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=A_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=A_ ) ) def __snake_case ( self ) -> Dict: lowerCAmelCase = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(A_ ) # change to intended input lowerCAmelCase = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) lowerCAmelCase = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) lowerCAmelCase = prepare_mam_aaa_inputs_dict(model.config , A_ , A_ ) with torch.no_grad(): lowerCAmelCase = model(**A_ )[0] lowerCAmelCase = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , A_ ) # change to expected output here lowerCAmelCase = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=A_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=A_ ) ) def __snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(A_ ) lowerCAmelCase = MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" , src_lang="""fr""" , tgt_lang="""en""" ) lowerCAmelCase = [ """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent""" """ Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de""" """ l'ampleur de la surveillance américaine sur l'ensemble des communications en France.""", ] # The below article tests that we don't add any hypotheses outside of the top n_beams lowerCAmelCase = tokenizer(A_ , padding=A_ , return_tensors="""pt""" ) lowerCAmelCase = model.generate( input_ids=dct["""input_ids"""].to(A_ ) , attention_mask=dct["""attention_mask"""].to(A_ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("""en""" ) , ) lowerCAmelCase = [ """The NSA case highlights the total absence of intelligence debate""", """I think there are two levels of response from the French government.""", """When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.""" """ Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all""" """ communications in France.""", ] lowerCAmelCase = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=A_ , skip_special_tokens=A_ ) assert generated == expected_en
344
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCamelCase : Dict = logging.get_logger(__name__) __lowerCamelCase : str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCamelCase : int = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } __lowerCamelCase : Dict = { 'gpt2': 1024, 'gpt2-medium': 1024, 'gpt2-large': 1024, 'gpt2-xl': 1024, 'distilgpt2': 1024, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] a_ = GPTaTokenizer def __init__( self : Any , __A : int=None , __A : Dict=None , __A : Tuple=None , __A : Union[str, Any]="<|endoftext|>" , __A : str="<|endoftext|>" , __A : str="<|endoftext|>" , __A : int=False , **__A : Optional[Any] , ): super().__init__( __A , __A , tokenizer_file=__A , unk_token=__A , bos_token=__A , eos_token=__A , add_prefix_space=__A , **__A , ) snake_case__ : int = kwargs.pop("add_bos_token" , __A ) snake_case__ : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __A ) != add_prefix_space: snake_case__ : List[Any] = getattr(__A , pre_tok_state.pop("type" ) ) snake_case__ : List[Any] = add_prefix_space snake_case__ : Union[str, Any] = pre_tok_class(**__A ) snake_case__ : Dict = add_prefix_space def _lowercase ( self : Any , *__A : Any , **__A : Union[str, Any] ): snake_case__ : Dict = kwargs.get("is_split_into_words" , __A ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A , **__A ) def _lowercase ( self : Tuple , *__A : int , **__A : Dict ): snake_case__ : Tuple = kwargs.get("is_split_into_words" , __A ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A , **__A ) def _lowercase ( self : Tuple , __A : List[Any] , __A : Dict = None ): snake_case__ : Any = self._tokenizer.model.save(__A , name=__A ) return tuple(__A ) def _lowercase ( self : str , __A : Dict ): snake_case__ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__A , add_special_tokens=__A ) + [self.eos_token_id] ) if len(__A ) > self.model_max_length: snake_case__ : Optional[Any] = input_ids[-self.model_max_length :] return input_ids
297
from itertools import count def UpperCamelCase__ ( _A: int = 50 ): '''simple docstring''' __lowerCamelCase = [1] * min_block_length for n in count(_A ): fill_count_functions.append(1 ) for block_length in range(_A , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1000000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
479
0
"""simple docstring""" from __future__ import annotations import math class _UpperCAmelCase : def __init__( self : Dict , A : int ) -> None: lowercase_ : Optional[int] = size # approximate the overall size of segment tree with given value lowercase_ : int = [0 for i in range(0 , 4 * size )] # create array to store lazy update lowercase_ : Optional[Any] = [0 for i in range(0 , 4 * size )] lowercase_ : Union[str, Any] = [0 for i in range(0 , 4 * size )] # flag for lazy update def A ( self : Optional[int] , A : int ) -> int: return idx * 2 def A ( self : Optional[Any] , A : int ) -> int: return idx * 2 + 1 def A ( self : List[Any] , A : int , A : int , A : int , A : list[int] ) -> None: if left_element == right_element: lowercase_ : List[Any] = a[left_element - 1] else: lowercase_ : Optional[Any] = (left_element + right_element) // 2 self.build(self.left(lowerCamelCase__ ) , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) self.build(self.right(lowerCamelCase__ ) , mid + 1 , lowerCamelCase__ , lowerCamelCase__ ) lowercase_ : int = max( self.segment_tree[self.left(lowerCamelCase__ )] , self.segment_tree[self.right(lowerCamelCase__ )] ) def A ( self : str , A : int , A : int , A : int , A : int , A : int , A : int ) -> bool: if self.flag[idx] is True: lowercase_ : Tuple = self.lazy[idx] lowercase_ : Any = False if left_element != right_element: lowercase_ : List[str] = self.lazy[idx] lowercase_ : List[str] = self.lazy[idx] lowercase_ : List[Any] = True lowercase_ : Any = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: lowercase_ : List[str] = val if left_element != right_element: lowercase_ : Tuple = val lowercase_ : Union[str, Any] = val lowercase_ : Optional[int] = True lowercase_ : str = True return True lowercase_ : Union[str, Any] = (left_element + right_element) // 2 self.update(self.left(lowerCamelCase__ ) , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) self.update(self.right(lowerCamelCase__ ) , mid + 1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowercase_ : Optional[int] = max( self.segment_tree[self.left(lowerCamelCase__ )] , self.segment_tree[self.right(lowerCamelCase__ )] ) return True def A ( self : int , A : int , A : int , A : int , A : int , A : int ) -> int | float: if self.flag[idx] is True: lowercase_ : Any = self.lazy[idx] lowercase_ : str = False if left_element != right_element: lowercase_ : Optional[int] = self.lazy[idx] lowercase_ : Optional[Any] = self.lazy[idx] lowercase_ : List[Any] = True lowercase_ : Tuple = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] lowercase_ : Optional[int] = (left_element + right_element) // 2 lowercase_ : str = self.query(self.left(lowerCamelCase__ ) , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowercase_ : List[str] = self.query(self.right(lowerCamelCase__ ) , mid + 1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return max(lowerCamelCase__ , lowerCamelCase__ ) def __str__( self : Optional[Any] ) -> str: return str([self.query(1 , 1 , self.size , lowerCamelCase__ , lowerCamelCase__ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": __A : Any = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] __A : Tuple = 15 __A : Union[str, Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
718
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __A : int = logging.getLogger(__name__) class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Optional[Any] = "sequence-classification" def __init__( self : int , A : Union[str, Any] ) -> Optional[Any]: if type(A ) == dict: lowercase_ : Any = Namespace(**A ) lowercase_ : Tuple = glue_output_modes[hparams.task] lowercase_ : Optional[int] = glue_tasks_num_labels[hparams.task] super().__init__(A , A , self.mode ) def A ( self : Union[str, Any] , **A : List[Any] ) -> str: return self.model(**A ) def A ( self : Any , A : List[Any] , A : Union[str, Any] ) -> str: lowercase_ : Dict = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase_ : Union[str, Any] = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None lowercase_ : int = self(**A ) lowercase_ : Optional[int] = outputs[0] lowercase_ : Union[str, Any] = self.trainer.lr_schedulers[0]['''scheduler'''] lowercase_ : List[str] = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[int] ) -> Union[str, Any]: lowercase_ : str = self.hparams lowercase_ : Any = processors[args.task]() lowercase_ : Union[str, Any] = processor.get_labels() for mode in ["train", "dev"]: lowercase_ : Union[str, Any] = self._feature_file(A ) if os.path.exists(A ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , A ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) lowercase_ : Union[str, Any] = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) lowercase_ : Tuple = convert_examples_to_features( A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , A ) torch.save(A , A ) def A ( self : Optional[Any] , A : str , A : int , A : bool = False ) -> DataLoader: lowercase_ : Union[str, Any] = '''dev''' if mode == '''test''' else mode lowercase_ : List[Any] = self._feature_file(A ) logger.info('''Loading features from cached file %s''' , A ) lowercase_ : Optional[int] = torch.load(A ) lowercase_ : str = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase_ : Union[str, Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) lowercase_ : List[Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": lowercase_ : Union[str, Any] = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": lowercase_ : Union[str, Any] = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(A , A , A , A ) , batch_size=A , shuffle=A , ) def A ( self : Dict , A : str , A : Union[str, Any] ) -> int: lowercase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase_ : Any = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None lowercase_ : List[str] = self(**A ) lowercase_ , lowercase_ : List[str] = outputs[:2] lowercase_ : Dict = logits.detach().cpu().numpy() lowercase_ : Optional[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : List[str] , A : Optional[Any] ) -> tuple: lowercase_ : Tuple = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() lowercase_ : Any = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": lowercase_ : Union[str, Any] = np.argmax(A , axis=1 ) elif self.hparams.glue_output_mode == "regression": lowercase_ : Optional[Any] = np.squeeze(A ) lowercase_ : str = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) lowercase_ : Dict = [[] for _ in range(out_label_ids.shape[0] )] lowercase_ : str = [[] for _ in range(out_label_ids.shape[0] )] lowercase_ : List[str] = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , A , A )} lowercase_ : List[str] = dict(results.items() ) lowercase_ : int = results return ret, preds_list, out_label_list def A ( self : str , A : list ) -> dict: lowercase_ , lowercase_ , lowercase_ : List[Any] = self._eval_end(A ) lowercase_ : Dict = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : str , A : int ) -> dict: lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self._eval_end(A ) lowercase_ : Tuple = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( A : Optional[int] , A : Optional[Any] ) -> Optional[Any]: BaseTransformer.add_model_specific_args(A , A ) parser.add_argument( '''--max_seq_length''' , default=1_28 , type=A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=A , required=A , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=A , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def lowercase ( ): lowercase_ : str = argparse.ArgumentParser() add_generic_args(__snake_case , os.getcwd() ) lowercase_ : List[str] = GLUETransformer.add_model_specific_args(__snake_case , os.getcwd() ) lowercase_ : Dict = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowercase_ : int = os.path.join( '''./results''' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) lowercase_ : List[Any] = GLUETransformer(__snake_case ) lowercase_ : List[Any] = generic_train(__snake_case , __snake_case ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowercase_ : List[str] = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=__snake_case ) ) lowercase_ : Dict = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__snake_case ) if __name__ == "__main__": main()
141
0
import re def __a ( lowerCAmelCase_ : str ) -> bool: '''simple docstring''' UpperCAmelCase_= re.compile(r"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(__lowercase ,__lowercase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('''+918827897895'''))
593
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class lowercase_ ( __snake_case ): _lowerCamelCase = ['image_processor'] _lowerCamelCase = 'SamImageProcessor' def __init__( self , lowercase_ ): super().__init__(lowercase_ ) _snake_case : Optional[Any] = self.image_processor _snake_case : Tuple = -10 _snake_case : str = self.image_processor.size["longest_edge"] def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_ = None , **lowercase_ , ): _snake_case : List[Any] = self.image_processor( lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # pop arguments that are not used in the foward but used nevertheless _snake_case : Any = encoding_image_processor["original_sizes"] if hasattr(lowercase_ , "numpy" ): # Checks if Torch or TF tensor _snake_case : int = original_sizes.numpy() _snake_case ,_snake_case ,_snake_case : Union[str, Any] = self._check_and_preprocess_points( input_points=lowercase_ , input_labels=lowercase_ , input_boxes=lowercase_ , ) _snake_case : Dict = self._normalize_and_convert( lowercase_ , lowercase_ , input_points=lowercase_ , input_labels=lowercase_ , input_boxes=lowercase_ , return_tensors=lowercase_ , ) return encoding_image_processor def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="pt" , ): if input_points is not None: if len(lowercase_ ) != len(lowercase_ ): _snake_case : int = [ self._normalize_coordinates(self.target_size , lowercase_ , original_sizes[0] ) for point in input_points ] else: _snake_case : Dict = [ self._normalize_coordinates(self.target_size , lowercase_ , lowercase_ ) for point, original_size in zip(lowercase_ , lowercase_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _snake_case ,_snake_case : int = self._pad_points_and_labels(lowercase_ , lowercase_ ) _snake_case : Any = np.array(lowercase_ ) if input_labels is not None: _snake_case : Optional[Any] = np.array(lowercase_ ) if input_boxes is not None: if len(lowercase_ ) != len(lowercase_ ): _snake_case : Optional[Any] = [ self._normalize_coordinates(self.target_size , lowercase_ , original_sizes[0] , is_bounding_box=lowercase_ ) for box in input_boxes ] else: _snake_case : List[str] = [ self._normalize_coordinates(self.target_size , lowercase_ , lowercase_ , is_bounding_box=lowercase_ ) for box, original_size in zip(lowercase_ , lowercase_ ) ] _snake_case : Tuple = np.array(lowercase_ ) if input_boxes is not None: if return_tensors == "pt": _snake_case : List[str] = torch.from_numpy(lowercase_ ) # boxes batch size of 1 by default _snake_case : Optional[Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _snake_case : List[str] = tf.convert_to_tensor(lowercase_ ) # boxes batch size of 1 by default _snake_case : Optional[int] = tf.expand_dims(lowercase_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": _snake_case : Tuple = torch.from_numpy(lowercase_ ) # point batch size of 1 by default _snake_case : int = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _snake_case : List[str] = tf.convert_to_tensor(lowercase_ ) # point batch size of 1 by default _snake_case : Tuple = tf.expand_dims(lowercase_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": _snake_case : Dict = torch.from_numpy(lowercase_ ) # point batch size of 1 by default _snake_case : str = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _snake_case : Optional[Any] = tf.convert_to_tensor(lowercase_ ) # point batch size of 1 by default _snake_case : List[Any] = tf.expand_dims(lowercase_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def UpperCamelCase ( self , lowercase_ , lowercase_ ): _snake_case : List[Any] = max([point.shape[0] for point in input_points] ) _snake_case : List[str] = [] for i, point in enumerate(lowercase_ ): if point.shape[0] != expected_nb_points: _snake_case : Optional[Any] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) _snake_case : Union[str, Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(lowercase_ ) _snake_case : Optional[Any] = processed_input_points return input_points, input_labels def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=False ): _snake_case ,_snake_case : Optional[int] = original_size _snake_case ,_snake_case : List[str] = self.image_processor._get_preprocess_shape(lowercase_ , longest_edge=lowercase_ ) _snake_case : Optional[Any] = deepcopy(lowercase_ ).astype(lowercase_ ) if is_bounding_box: _snake_case : str = coords.reshape(-1 , 2 , 2 ) _snake_case : Optional[Any] = coords[..., 0] * (new_w / old_w) _snake_case : Dict = coords[..., 1] * (new_h / old_h) if is_bounding_box: _snake_case : Optional[Any] = coords.reshape(-1 , 4 ) return coords def UpperCamelCase ( self , lowercase_=None , lowercase_=None , lowercase_=None , ): if input_points is not None: if hasattr(lowercase_ , "numpy" ): # Checks for TF or Torch tensor _snake_case : Union[str, Any] = input_points.numpy().tolist() if not isinstance(lowercase_ , lowercase_ ) or not isinstance(input_points[0] , lowercase_ ): raise ValueError("Input points must be a list of list of floating points." ) _snake_case : Any = [np.array(lowercase_ ) for input_point in input_points] else: _snake_case : Optional[int] = None if input_labels is not None: if hasattr(lowercase_ , "numpy" ): _snake_case : Tuple = input_labels.numpy().tolist() if not isinstance(lowercase_ , lowercase_ ) or not isinstance(input_labels[0] , lowercase_ ): raise ValueError("Input labels must be a list of list integers." ) _snake_case : Tuple = [np.array(lowercase_ ) for label in input_labels] else: _snake_case : Optional[Any] = None if input_boxes is not None: if hasattr(lowercase_ , "numpy" ): _snake_case : List[str] = input_boxes.numpy().tolist() if ( not isinstance(lowercase_ , lowercase_ ) or not isinstance(input_boxes[0] , lowercase_ ) or not isinstance(input_boxes[0][0] , lowercase_ ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) _snake_case : List[Any] = [np.array(lowercase_ ).astype(np.floataa ) for box in input_boxes] else: _snake_case : Optional[int] = None return input_points, input_labels, input_boxes @property def UpperCamelCase ( self ): _snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(lowercase_ ) ) def UpperCamelCase ( self , *lowercase_ , **lowercase_ ): return self.image_processor.post_process_masks(*lowercase_ , **lowercase_ )
670
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase_ = 25_00_04 UpperCAmelCase_ = 25_00_20 @require_sentencepiece @require_tokenizers class __lowercase ( __magic_name__ , unittest.TestCase ): _a = MBartaaTokenizer _a = MBartaaTokenizerFast _a = True _a = True def UpperCamelCase__ ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing __a = MBartaaTokenizer(UpperCamelCase , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ) -> Dict: __a = '<s>' __a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase__ ( self ) -> List[str]: __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(UpperCamelCase ) , 1054 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: __a = MBartaaTokenizer(UpperCamelCase , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=UpperCamelCase ) __a = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCamelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) __a = tokenizer.convert_tokens_to_ids(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def UpperCamelCase__ ( self ) -> Dict: # fmt: off __a = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def UpperCamelCase__ ( self ) -> Union[str, Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __a = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __a = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __a = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __a = tempfile.mkdtemp() __a = tokenizer_r.save_pretrained(UpperCamelCase ) __a = tokenizer_p.save_pretrained(UpperCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(UpperCamelCase , UpperCamelCase ) # Checks everything loads correctly in the same way __a = tokenizer_r.from_pretrained(UpperCamelCase ) __a = tokenizer_p.from_pretrained(UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase , UpperCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCamelCase ) # Save tokenizer rust, legacy_format=True __a = tempfile.mkdtemp() __a = tokenizer_r.save_pretrained(UpperCamelCase , legacy_format=UpperCamelCase ) __a = tokenizer_p.save_pretrained(UpperCamelCase ) # Checks it save with the same files self.assertSequenceEqual(UpperCamelCase , UpperCamelCase ) # Checks everything loads correctly in the same way __a = tokenizer_r.from_pretrained(UpperCamelCase ) __a = tokenizer_p.from_pretrained(UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase , UpperCamelCase ) ) shutil.rmtree(UpperCamelCase ) # Save tokenizer rust, legacy_format=False __a = tempfile.mkdtemp() __a = tokenizer_r.save_pretrained(UpperCamelCase , legacy_format=UpperCamelCase ) __a = tokenizer_p.save_pretrained(UpperCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a = tokenizer_r.from_pretrained(UpperCamelCase ) __a = tokenizer_p.from_pretrained(UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase , UpperCamelCase ) ) shutil.rmtree(UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class __lowercase ( unittest.TestCase ): _a = """facebook/mbart-large-50-one-to-many-mmt""" _a = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] _a = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] _a = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def UpperCamelCase__ ( cls ) -> Optional[int]: __a = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) __a = 1 return cls def UpperCamelCase__ ( self ) -> int: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 ) def UpperCamelCase__ ( self ) -> int: __a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase ) def UpperCamelCase__ ( self ) -> int: self.assertIn(UpperCamelCase , self.tokenizer.all_special_ids ) __a = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] __a = self.tokenizer.decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) __a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase ) def UpperCamelCase__ ( self ) -> int: __a = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , UpperCamelCase ) __a = 10 __a = self.tokenizer(UpperCamelCase , max_length=UpperCamelCase , truncation=UpperCamelCase ).input_ids[0] self.assertEqual(ids[0] , UpperCamelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase__ ( self ) -> str: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] ) def UpperCamelCase__ ( self ) -> Optional[int]: __a = tempfile.mkdtemp() __a = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCamelCase ) __a = MBartaaTokenizer.from_pretrained(UpperCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase ) @require_torch def UpperCamelCase__ ( self ) -> Optional[Any]: __a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase , return_tensors='pt' ) __a = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase__ ( self ) -> int: __a = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __a = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def UpperCamelCase__ ( self ) -> Optional[int]: __a = self.tokenizer(self.src_text , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=3 , return_tensors='pt' ) __a = self.tokenizer( text_target=self.tgt_text , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=10 , return_tensors='pt' ) __a = targets['input_ids'] __a = shift_tokens_right(UpperCamelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase__ ( self ) -> Dict: __a = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(UpperCamelCase ) , { # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } , )
490
'''simple docstring''' def SCREAMING_SNAKE_CASE ( a_ : int ): __a = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def SCREAMING_SNAKE_CASE ( a_ : int = 100 ): __a = 1 __a = 2 for i in range(2 , max_n + 1 ): __a = pre_numerator __a = 2 * i // 3 if i % 3 == 0 else 1 __a = cur_numerator __a = e_cont * pre_numerator + temp return sum_digits(a_ ) if __name__ == "__main__": print(f"""{solution() = }""")
490
1
import math import tensorflow as tf from packaging import version def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict: """simple docstring""" a = tf.convert_to_tensor(lowerCamelCase__ ) a = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ), x.dtype ) )) return x * cdf def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" a = tf.convert_to_tensor(lowerCamelCase__ ) a = tf.cast(math.pi, x.dtype ) a = tf.cast(0.04_4715, x.dtype ) a = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase__, 3 )) )) return x * cdf def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" a = tf.convert_to_tensor(lowerCamelCase__ ) return x * tf.tanh(tf.math.softplus(lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[Any]: """simple docstring""" a = tf.convert_to_tensor(lowerCamelCase__ ) a = tf.cast(0.04_4715, x.dtype ) a = tf.cast(0.79_7884_5608, x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" a = tf.convert_to_tensor(lowerCamelCase__ ) a = tf.cast(1.702, x.dtype ) return x * tf.math.sigmoid(coeff * x ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" return tf.clip_by_value(_gelu(lowerCamelCase__ ), -1_0, 1_0 ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=-1 ) -> Union[str, Any]: """simple docstring""" a , a = tf.split(lowerCamelCase__, 2, axis=lowerCamelCase__ ) return a * tf.math.sigmoid(lowerCamelCase__ ) if version.parse(tf.version.VERSION) >= version.parse("""2.4"""): def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict: """simple docstring""" return tf.keras.activations.gelu(lowerCamelCase__, approximate=lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = tf.keras.activations.gelu UpperCamelCase__ : int = approximate_gelu_wrap else: UpperCamelCase__ : Dict = _gelu UpperCamelCase__ : Dict = _gelu_new UpperCamelCase__ : List[str] = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple: """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}""" )
387
import random from typing import Any def __lowerCamelCase ( lowerCamelCase__ : list ): '''simple docstring''' for _ in range(len(lowerCamelCase__ ) ): lowerCamelCase = random.randint(0 , len(lowerCamelCase__ ) - 1 ) lowerCamelCase = random.randint(0 , len(lowerCamelCase__ ) - 1 ) lowerCamelCase , lowerCamelCase = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase : str = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase : Union[str, Any] = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
457
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__: Tuple = logging.get_logger(__name__) UpperCamelCase__: Optional[int] = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """sew-d""" def __init__( self : str , __snake_case : Tuple=32 , __snake_case : str=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : List[Any]=3072 , __snake_case : List[Any]=2 , __snake_case : Any=512 , __snake_case : Optional[int]=256 , __snake_case : str=True , __snake_case : str=True , __snake_case : str=("p2c", "c2p") , __snake_case : Optional[Any]="layer_norm" , __snake_case : List[str]="gelu_python" , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=0.02 , __snake_case : Dict=1E-7 , __snake_case : Any=1E-5 , __snake_case : Optional[int]="group" , __snake_case : Optional[Any]="gelu" , __snake_case : Dict=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __snake_case : str=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __snake_case : Union[str, Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __snake_case : Optional[Any]=False , __snake_case : Dict=128 , __snake_case : int=16 , __snake_case : List[Any]=True , __snake_case : Optional[int]=0.05 , __snake_case : Union[str, Any]=10 , __snake_case : str=2 , __snake_case : Dict=0.0 , __snake_case : Any=10 , __snake_case : List[Any]=0 , __snake_case : Union[str, Any]="mean" , __snake_case : Tuple=False , __snake_case : Optional[int]=False , __snake_case : Optional[int]=256 , __snake_case : Union[str, Any]=0 , __snake_case : Union[str, Any]=1 , __snake_case : Optional[int]=2 , **__snake_case : Union[str, Any] , ) -> Dict: super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase : Dict = hidden_size UpperCAmelCase : str = feat_extract_norm UpperCAmelCase : Union[str, Any] = feat_extract_activation UpperCAmelCase : str = list(__snake_case ) UpperCAmelCase : List[str] = list(__snake_case ) UpperCAmelCase : str = list(__snake_case ) UpperCAmelCase : List[Any] = conv_bias UpperCAmelCase : Optional[int] = num_conv_pos_embeddings UpperCAmelCase : Any = num_conv_pos_embedding_groups UpperCAmelCase : str = len(self.conv_dim ) UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Tuple = squeeze_factor UpperCAmelCase : int = max_position_embeddings UpperCAmelCase : str = position_buckets UpperCAmelCase : Dict = share_att_key UpperCAmelCase : Tuple = relative_attention UpperCAmelCase : Tuple = norm_rel_ebd UpperCAmelCase : str = list(__snake_case ) UpperCAmelCase : int = hidden_act UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : int = hidden_dropout UpperCAmelCase : Union[str, Any] = attention_dropout UpperCAmelCase : Optional[int] = activation_dropout UpperCAmelCase : Tuple = feat_proj_dropout UpperCAmelCase : Union[str, Any] = final_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Optional[int] = feature_layer_norm_eps UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Optional[Any] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[int] = apply_spec_augment UpperCAmelCase : Union[str, Any] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : Tuple = mask_time_min_masks UpperCAmelCase : List[Any] = mask_feature_prob UpperCAmelCase : Optional[Any] = mask_feature_length UpperCAmelCase : Union[str, Any] = mask_feature_min_masks # ctc loss UpperCAmelCase : Any = ctc_loss_reduction UpperCAmelCase : Any = ctc_zero_infinity # sequence classification UpperCAmelCase : Optional[Any] = use_weighted_layer_sum UpperCAmelCase : List[Any] = classifier_proj_size @property def A ( self : Union[str, Any] ) -> List[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
528
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple ) -> str: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ) -> List[str]: UpperCAmelCase : int = tmp_path / '''cache''' UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Any = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_sql_dataset(_lowerCAmelCase , _lowerCAmelCase ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = tmp_path / '''cache''' UpperCAmelCase : Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : str = features.copy() if features else default_expected_features UpperCAmelCase : Optional[Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_sql_dataset(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[Any] ) -> Dict: with contextlib.closing(sqlitea.connect(_lowerCAmelCase ) ) as con: UpperCAmelCase : Any = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Optional[int]: UpperCAmelCase : Optional[int] = tmp_path / '''cache''' UpperCAmelCase : int = os.path.join(_lowerCAmelCase , '''tmp.sql''' ) UpperCAmelCase : Any = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_lowerCAmelCase ).read() SqlDatasetWriter(_lowerCAmelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() UpperCAmelCase : List[Any] = iter_sql_file(_lowerCAmelCase ) UpperCAmelCase : List[Any] = iter_sql_file(_lowerCAmelCase ) for rowa, rowa in zip(_lowerCAmelCase , _lowerCAmelCase ): assert rowa == rowa @require_sqlalchemy def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : Optional[Any] = tmp_path / '''cache''' UpperCAmelCase : Any = os.path.join(_lowerCAmelCase , '''tmp.sql''' ) UpperCAmelCase : List[str] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_lowerCAmelCase ).read() SqlDatasetWriter(_lowerCAmelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() UpperCAmelCase : List[str] = iter_sql_file(_lowerCAmelCase ) UpperCAmelCase : Any = iter_sql_file(_lowerCAmelCase ) for rowa, rowa in zip(_lowerCAmelCase , _lowerCAmelCase ): assert rowa == rowa @require_sqlalchemy def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = tmp_path / '''cache''' UpperCAmelCase : Tuple = os.path.join(_lowerCAmelCase , '''tmp.sql''' ) UpperCAmelCase : Optional[int] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=_lowerCAmelCase ).read() with pytest.raises(_lowerCAmelCase ): SqlDatasetWriter(_lowerCAmelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
528
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = '▁' lowerCAmelCase_ : List[Any] = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ : str = { 'vocab_file': { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model' ), } } lowerCAmelCase_ : List[str] = { 'xlm-roberta-base': 5_12, 'xlm-roberta-large': 5_12, 'xlm-roberta-large-finetuned-conll02-dutch': 5_12, 'xlm-roberta-large-finetuned-conll02-spanish': 5_12, 'xlm-roberta-large-finetuned-conll03-english': 5_12, 'xlm-roberta-large-finetuned-conll03-german': 5_12, } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =VOCAB_FILES_NAMES __a =PRETRAINED_VOCAB_FILES_MAP __a =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a =['input_ids', 'attention_mask'] def __init__( self : Any , __a : Optional[Any] , __a : Tuple="<s>" , __a : int="</s>" , __a : Dict="</s>" , __a : List[Any]="<s>" , __a : Tuple="<unk>" , __a : Union[str, Any]="<pad>" , __a : Optional[int]="<mask>" , __a : Optional[Any] = None , **__a : Dict , ): _a = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token _a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__a ) ) _a = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _a = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _a = 1 _a = len(self.sp_model ) + self.fairseq_offset _a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Dict ): _a = self.__dict__.copy() _a = None _a = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[Any] , __a : List[str] ): _a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a = [self.cls_token_id] _a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self : int , __a : Any , __a : Union[str, Any] = None , __a : List[Any] = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1] def UpperCamelCase__ ( self : Union[str, Any] , __a : Optional[int] , __a : int = None ): _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase__ ( self : Optional[int] ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def UpperCamelCase__ ( self : Any ): _a = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self : str , __a : str ): return self.sp_model.encode(__a , out_type=__a ) def UpperCamelCase__ ( self : Any , __a : List[str] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _a = self.sp_model.PieceToId(__a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase__ ( self : Any , __a : Optional[Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase__ ( self : int , __a : Any ): _a = "".join(__a ).replace(__a , " " ).strip() return out_string def UpperCamelCase__ ( self : Optional[int] , __a : List[Any] , __a : List[str] = None ): if not os.path.isdir(__a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , "wb" ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
692
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" _UpperCamelCase : Dict = 'trocr' _UpperCamelCase : Union[str, Any] = ['past_key_values'] _UpperCamelCase : Union[str, Any] = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self , snake_case=50265 , snake_case=1024 , snake_case=12 , snake_case=16 , snake_case=4096 , snake_case="gelu" , snake_case=512 , snake_case=0.1 , snake_case=0.0 , snake_case=0.0 , snake_case=2 , snake_case=0.02 , snake_case=0.0 , snake_case=True , snake_case=False , snake_case=True , snake_case=True , snake_case=1 , snake_case=0 , snake_case=2 , **snake_case , ): '''simple docstring''' UpperCamelCase__ = vocab_size UpperCamelCase__ = d_model UpperCamelCase__ = decoder_layers UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = decoder_ffn_dim UpperCamelCase__ = activation_function UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = init_std UpperCamelCase__ = decoder_layerdrop UpperCamelCase__ = use_cache UpperCamelCase__ = scale_embedding UpperCamelCase__ = use_learned_position_embeddings UpperCamelCase__ = layernorm_embedding super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , decoder_start_token_id=snake_case , **snake_case , )
551
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ )-> str: '''simple docstring''' UpperCamelCase = data UpperCamelCase = None class SCREAMING_SNAKE_CASE__ : def __init__( self )-> Any: '''simple docstring''' UpperCamelCase = None UpperCamelCase = None def __iter__( self )-> Iterator[Any]: '''simple docstring''' UpperCamelCase = self.head while self.head: yield node.data UpperCamelCase = node.next if node == self.head: break def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self )-> Any: '''simple docstring''' return "->".join(str(A_ ) for item in iter(self ) ) def UpperCAmelCase_ ( self , A_ )-> None: '''simple docstring''' self.insert_nth(len(self ) , A_ ) def UpperCAmelCase_ ( self , A_ )-> None: '''simple docstring''' self.insert_nth(0 , A_ ) def UpperCAmelCase_ ( self , A_ , A_ )-> None: '''simple docstring''' if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) UpperCamelCase = Node(A_ ) if self.head is None: UpperCamelCase = new_node # first node points itself UpperCamelCase = UpperCamelCase = new_node elif index == 0: # insert at head UpperCamelCase = self.head UpperCamelCase = UpperCamelCase = new_node else: UpperCamelCase = self.head for _ in range(index - 1 ): UpperCamelCase = temp.next UpperCamelCase = temp.next UpperCamelCase = new_node if index == len(self ) - 1: # insert at tail UpperCamelCase = new_node def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' return self.delete_nth(0 ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def UpperCAmelCase_ ( self , A_ = 0 )-> Any: '''simple docstring''' if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) UpperCamelCase = self.head if self.head == self.tail: # just one node UpperCamelCase = UpperCamelCase = None elif index == 0: # delete head node UpperCamelCase = self.tail.next.next UpperCamelCase = self.head.next else: UpperCamelCase = self.head for _ in range(index - 1 ): UpperCamelCase = temp.next UpperCamelCase = temp.next UpperCamelCase = temp.next.next if index == len(self ) - 1: # delete at tail UpperCamelCase = temp return delete_node.data def UpperCAmelCase_ ( self )-> bool: '''simple docstring''' return len(self ) == 0 def A_( ): UpperCamelCase = CircularLinkedList() assert len(A) == 0 assert circular_linked_list.is_empty() is True assert str(A) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5): assert len(A) == i circular_linked_list.insert_nth(A , i + 1) assert str(A) == "->".join(str(A) for i in range(1 , 6)) circular_linked_list.insert_tail(6) assert str(A) == "->".join(str(A) for i in range(1 , 7)) circular_linked_list.insert_head(0) assert str(A) == "->".join(str(A) for i in range(0 , 7)) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(A) == "->".join(str(A) for i in range(1 , 6)) assert circular_linked_list.delete_nth(2) == 3 circular_linked_list.insert_nth(2 , 3) assert str(A) == "->".join(str(A) for i in range(1 , 6)) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
432
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def A_( A : Tuple): UpperCamelCase = torch.exp(A) UpperCamelCase = torch.sum(A , dim=1) # sum of exp(x_i) UpperCamelCase = torch.sum(x * exp_x , dim=1) # sum of x_i * exp(x_i) return torch.log(A) - B / A class SCREAMING_SNAKE_CASE__ ( nn.Module): def __init__( self , A_ )-> List[Any]: '''simple docstring''' super().__init__() UpperCamelCase = config.output_attentions UpperCamelCase = config.output_hidden_states UpperCamelCase = nn.ModuleList([BertLayer(A_ ) for _ in range(config.num_hidden_layers )] ) UpperCamelCase = nn.ModuleList([BertHighway(A_ ) for _ in range(config.num_hidden_layers )] ) UpperCamelCase = [-1 for _ in range(config.num_hidden_layers )] def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' if (type(A_ ) is float) or (type(A_ ) is int): for i in range(len(self.early_exit_entropy ) ): UpperCamelCase = x else: UpperCamelCase = x def UpperCAmelCase_ ( self , A_ )-> Dict: '''simple docstring''' UpperCamelCase = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def UpperCAmelCase_ ( self , A_ , A_=None , A_=None , A_=None , A_=None , )-> Tuple: '''simple docstring''' UpperCamelCase = () UpperCamelCase = () UpperCamelCase = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: UpperCamelCase = all_hidden_states + (hidden_states,) UpperCamelCase = layer_module( A_ , A_ , head_mask[i] , A_ , A_ ) UpperCamelCase = layer_outputs[0] if self.output_attentions: UpperCamelCase = all_attentions + (layer_outputs[1],) UpperCamelCase = (hidden_states,) if self.output_hidden_states: UpperCamelCase = current_outputs + (all_hidden_states,) if self.output_attentions: UpperCamelCase = current_outputs + (all_attentions,) UpperCamelCase = self.highway[i](A_ ) # logits, pooled_output if not self.training: UpperCamelCase = highway_exit[0] UpperCamelCase = entropy(A_ ) UpperCamelCase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy UpperCamelCase = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: UpperCamelCase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(A_ , i + 1 ) else: UpperCamelCase = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: UpperCamelCase = all_hidden_states + (hidden_states,) UpperCamelCase = (hidden_states,) if self.output_hidden_states: UpperCamelCase = outputs + (all_hidden_states,) if self.output_attentions: UpperCamelCase = outputs + (all_attentions,) UpperCamelCase = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ )-> Dict: '''simple docstring''' super().__init__(A_ ) UpperCamelCase = config UpperCamelCase = BertEmbeddings(A_ ) UpperCamelCase = DeeBertEncoder(A_ ) UpperCamelCase = BertPooler(A_ ) self.init_weights() def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' return self.embeddings.word_embeddings def UpperCAmelCase_ ( self , A_ )-> Optional[Any]: '''simple docstring''' UpperCamelCase = value def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(A_ ) @add_start_docstrings_to_model_forward(A_ ) def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , )-> List[Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: UpperCamelCase = input_ids.size() elif inputs_embeds is not None: UpperCamelCase = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) UpperCamelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCamelCase = torch.ones(A_ , device=A_ ) if encoder_attention_mask is None: UpperCamelCase = torch.ones(A_ , device=A_ ) if token_type_ids is None: UpperCamelCase = torch.zeros(A_ , dtype=torch.long , device=A_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCamelCase = self.get_extended_attention_mask(A_ , A_ , A_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: UpperCamelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: UpperCamelCase = encoder_attention_mask[:, None, None, :] UpperCamelCase = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility UpperCamelCase = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCamelCase = self.get_head_mask(A_ , self.config.num_hidden_layers ) UpperCamelCase = self.embeddings( input_ids=A_ , position_ids=A_ , token_type_ids=A_ , inputs_embeds=A_ ) UpperCamelCase = self.encoder( A_ , attention_mask=A_ , head_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) UpperCamelCase = encoder_outputs[0] UpperCamelCase = self.pooler(A_ ) UpperCamelCase = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = message UpperCamelCase = exit_layer # start from 1! class SCREAMING_SNAKE_CASE__ ( nn.Module): def __init__( self , A_ )-> Dict: '''simple docstring''' super().__init__() UpperCamelCase = BertPooler(A_ ) UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) UpperCamelCase = nn.Linear(config.hidden_size , config.num_labels ) def UpperCAmelCase_ ( self , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = encoder_outputs[0] UpperCamelCase = self.pooler(A_ ) # "return" pooler_output # BertModel UpperCamelCase = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification UpperCamelCase = bmodel_output[1] UpperCamelCase = self.dropout(A_ ) UpperCamelCase = self.classifier(A_ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ )-> Tuple: '''simple docstring''' super().__init__(A_ ) UpperCamelCase = config.num_labels UpperCamelCase = config.num_hidden_layers UpperCamelCase = DeeBertModel(A_ ) UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) UpperCamelCase = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(A_ ) def UpperCAmelCase_ ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=-1 , A_=False , )-> Tuple: '''simple docstring''' UpperCamelCase = self.num_layers try: UpperCamelCase = self.bert( A_ , attention_mask=A_ , token_type_ids=A_ , position_ids=A_ , head_mask=A_ , inputs_embeds=A_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits UpperCamelCase = outputs[1] UpperCamelCase = self.dropout(A_ ) UpperCamelCase = self.classifier(A_ ) UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: UpperCamelCase = e.message UpperCamelCase = e.exit_layer UpperCamelCase = outputs[0] if not self.training: UpperCamelCase = entropy(A_ ) UpperCamelCase = [] UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression UpperCamelCase = MSELoss() UpperCamelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: UpperCamelCase = CrossEntropyLoss() UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits UpperCamelCase = [] for highway_exit in outputs[-1]: UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(A_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression UpperCamelCase = MSELoss() UpperCamelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: UpperCamelCase = CrossEntropyLoss() UpperCamelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(A_ ) if train_highway: UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: UpperCamelCase = (loss,) + outputs if not self.training: UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
432
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class a__( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = path_or_paths lowerCAmelCase = split if split or isinstance(__lowerCAmelCase , __lowerCAmelCase) else """train""" lowerCAmelCase = features lowerCAmelCase = cache_dir lowerCAmelCase = keep_in_memory lowerCAmelCase = streaming lowerCAmelCase = num_proc lowerCAmelCase = kwargs @abstractmethod def a_ ( self): """simple docstring""" pass class a__( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = features lowerCAmelCase = cache_dir lowerCAmelCase = keep_in_memory lowerCAmelCase = streaming lowerCAmelCase = num_proc lowerCAmelCase = kwargs @abstractmethod def a_ ( self): """simple docstring""" pass
370
'''simple docstring''' def snake_case__ ( _A: int ) -> list[int]: '''simple docstring''' if length <= 0 or not isinstance(_A , _A ): raise ValueError("""Length must be a positive integer.""" ) return [n * (2 * n - 1) for n in range(_A )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
370
1
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a_ : def __init__( self :Union[str, Any] , _lowercase :int , _lowercase :List[Any]=13 , _lowercase :Optional[Any]=7 , _lowercase :Dict=True , _lowercase :Tuple=True , _lowercase :Optional[int]=True , _lowercase :str=True , _lowercase :List[Any]=99 , _lowercase :int=64 , _lowercase :List[str]=5 , _lowercase :Union[str, Any]=4 , _lowercase :int=37 , _lowercase :Optional[Any]="gelu" , _lowercase :List[Any]=0.1 , _lowercase :Any=0.1 , _lowercase :Any=512 , _lowercase :Union[str, Any]=16 , _lowercase :Optional[Any]=2 , _lowercase :Any=0.02 , _lowercase :Union[str, Any]=3 , _lowercase :str=4 , _lowercase :List[str]=None , ) -> Optional[Any]: UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope UpperCAmelCase_ = vocab_size - 1 def __a ( self :int) -> Any: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase_ = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self :Optional[int]) -> Any: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __a ( self :Union[str, Any]) -> int: UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ = True return config, input_ids, input_mask, token_labels def __a ( self :Union[str, Any] , _lowercase :int , _lowercase :int , _lowercase :Union[str, Any]) -> Optional[int]: UpperCAmelCase_ = GPTNeoXModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() UpperCAmelCase_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__) UpperCAmelCase_ = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __a ( self :str , _lowercase :int , _lowercase :int , _lowercase :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = True UpperCAmelCase_ = GPTNeoXModel(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() UpperCAmelCase_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __a ( self :List[Any] , _lowercase :List[Any] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any] , _lowercase :List[Any]) -> Union[str, Any]: UpperCAmelCase_ = GPTNeoXForCausalLM(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() UpperCAmelCase_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __a ( self :Union[str, Any] , _lowercase :Tuple , _lowercase :List[str] , _lowercase :List[str] , _lowercase :Dict) -> str: UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = GPTNeoXForQuestionAnswering(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() UpperCAmelCase_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __a ( self :Optional[int] , _lowercase :Optional[Any] , _lowercase :Optional[Any] , _lowercase :int , _lowercase :Dict) -> Optional[Any]: UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = GPTNeoXForSequenceClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __a ( self :List[str] , _lowercase :Any , _lowercase :Optional[Any] , _lowercase :int , _lowercase :int) -> Union[str, Any]: UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = GPTNeoXForTokenClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() UpperCAmelCase_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __a ( self :Tuple , _lowercase :List[str] , _lowercase :Tuple , _lowercase :int) -> List[str]: UpperCAmelCase_ = True UpperCAmelCase_ = GPTNeoXForCausalLM(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() # first forward pass UpperCAmelCase_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__) UpperCAmelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size) UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and UpperCAmelCase_ = torch.cat([input_ids, next_tokens] , dim=-1) UpperCAmelCase_ = torch.cat([input_mask, next_mask] , dim=-1) UpperCAmelCase_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__) UpperCAmelCase_ = output_from_no_past["hidden_states"][0] UpperCAmelCase_ = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0] # select random slice UpperCAmelCase_ = ids_tensor((1,) , output_from_past.shape[-1]).item() UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) def __a ( self :Tuple) -> Tuple: UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a_ ( a__ , a__ , a__ , unittest.TestCase ): UpperCamelCase__ : int =( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase__ : str =(GPTNeoXForCausalLM,) if is_torch_available() else () UpperCamelCase__ : int =( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ : Union[str, Any] =False UpperCamelCase__ : Optional[Any] =False UpperCamelCase__ : Union[str, Any] =False UpperCamelCase__ : str =False def __a ( self :Any) -> Optional[int]: UpperCAmelCase_ = GPTNeoXModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=64 , num_attention_heads=8) def __a ( self :Tuple) -> Optional[Any]: self.config_tester.run_common_tests() def __a ( self :List[Any]) -> Union[str, Any]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def __a ( self :Tuple) -> int: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def __a ( self :Tuple) -> Optional[int]: # This regression test was failing with PyTorch < 1.3 UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase_ = None self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase__) def __a ( self :List[str]) -> str: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__) def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__) def __a ( self :Union[str, Any]) -> str: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__) @unittest.skip(reason='''Feed forward chunking is not implemented''') def __a ( self :Optional[Any]) -> Union[str, Any]: pass @parameterized.expand([('''linear''',), ('''dynamic''',)]) def __a ( self :Any , _lowercase :List[Any]) -> str: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = ids_tensor([1, 10] , config.vocab_size) UpperCAmelCase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ = GPTNeoXModel(lowerCAmelCase__) original_model.to(lowerCAmelCase__) original_model.eval() UpperCAmelCase_ = original_model(lowerCAmelCase__).last_hidden_state UpperCAmelCase_ = original_model(lowerCAmelCase__).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ = {"type": scaling_type, "factor": 10.0} UpperCAmelCase_ = GPTNeoXModel(lowerCAmelCase__) scaled_model.to(lowerCAmelCase__) scaled_model.eval() UpperCAmelCase_ = scaled_model(lowerCAmelCase__).last_hidden_state UpperCAmelCase_ = scaled_model(lowerCAmelCase__).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5)) else: self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5)) @require_torch class a_ ( unittest.TestCase ): @slow def __a ( self :Union[str, Any]) -> int: UpperCAmelCase_ = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''') for checkpointing in [True, False]: UpperCAmelCase_ = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''') if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCAmelCase__) UpperCAmelCase_ = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(lowerCAmelCase__) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCAmelCase_ = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" UpperCAmelCase_ = model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=20) UpperCAmelCase_ = tokenizer.batch_decode(lowerCAmelCase__)[0] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__)
709
from collections import defaultdict class a_ : def __init__( self :Tuple , _lowercase :List[str] , _lowercase :List[Any]) -> List[Any]: UpperCAmelCase_ = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCAmelCase_ = [ [-1 for i in range(total + 1)] for j in range(2 ** len(_lowercase)) ] UpperCAmelCase_ = defaultdict(_lowercase) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCAmelCase_ = (1 << len(_lowercase)) - 1 def __a ( self :str , _lowercase :int , _lowercase :Optional[Any]) -> Optional[int]: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCAmelCase_ = self.count_ways_until(_lowercase , task_no + 1) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1) # save the value. UpperCAmelCase_ = total_ways_util return self.dp[mask][task_no] def __a ( self :List[Any] , _lowercase :Any) -> Optional[Any]: # Store the list of persons for each task for i in range(len(_lowercase)): for j in task_performed[i]: self.task[j].append(_lowercase) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1) if __name__ == "__main__": UpperCamelCase_ = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. UpperCamelCase_ = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
561
0
from collections import deque class _lowerCAmelCase : def __init__( self : Optional[Any] , __snake_case : str , __snake_case : int , __snake_case : int ): lowerCamelCase :Optional[int] = process_name # process name lowerCamelCase :List[Any] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCamelCase :List[str] = arrival_time lowerCamelCase :Optional[Any] = burst_time # remaining burst time lowerCamelCase :List[str] = 0 # total time of the process wait in ready queue lowerCamelCase :Tuple = 0 # time from arrival time to completion time class _lowerCAmelCase : def __init__( self : Dict , __snake_case : int , __snake_case : list[int] , __snake_case : deque[Process] , __snake_case : int , ): # total number of mlfq's queues lowerCamelCase :Tuple = number_of_queues # time slice of queues that round robin algorithm applied lowerCamelCase :List[Any] = time_slices # unfinished process is in this ready_queue lowerCamelCase :Any = queue # current time lowerCamelCase :int = current_time # finished process is in this sequence queue lowerCamelCase :deque[Process] = deque() def snake_case ( self : List[str] ): lowerCamelCase :Dict = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case ( self : Optional[int] , __snake_case : list[Process] ): lowerCamelCase :Optional[Any] = [] for i in range(len(__snake_case ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case ( self : Dict , __snake_case : list[Process] ): lowerCamelCase :str = [] for i in range(len(__snake_case ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case ( self : int , __snake_case : list[Process] ): lowerCamelCase :List[str] = [] for i in range(len(__snake_case ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case ( self : Tuple , __snake_case : deque[Process] ): return [q.burst_time for q in queue] def snake_case ( self : int , __snake_case : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case ( self : Optional[int] , __snake_case : deque[Process] ): lowerCamelCase :deque[Process] = deque() # sequence deque of finished process while len(__snake_case ) != 0: lowerCamelCase :Dict = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__snake_case ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCamelCase :Union[str, Any] = 0 # set the process's turnaround time because it is finished lowerCamelCase :str = self.current_time - cp.arrival_time # set the completion time lowerCamelCase :List[Any] = self.current_time # add the process to queue that has finished queue finished.append(__snake_case ) self.finish_queue.extend(__snake_case ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case ( self : Dict , __snake_case : deque[Process] , __snake_case : int ): lowerCamelCase :deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__snake_case ) ): lowerCamelCase :Dict = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__snake_case ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCamelCase :Dict = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__snake_case ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCamelCase :List[Any] = 0 # set the finish time lowerCamelCase :List[str] = self.current_time # update the process' turnaround time because it is finished lowerCamelCase :Union[str, Any] = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__snake_case ) self.finish_queue.extend(__snake_case ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case ( self : Optional[Any] ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowerCamelCase , lowerCamelCase :int = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A__ = Process("""P1""", 0, 53) A__ = Process("""P2""", 0, 17) A__ = Process("""P3""", 0, 68) A__ = Process("""P4""", 0, 24) A__ = 3 A__ = [17, 25] A__ = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"""queue""": deque([Pa, Pa, Pa, Pa])}) A__ = Process("""P1""", 0, 53) A__ = Process("""P2""", 0, 17) A__ = Process("""P3""", 0, 68) A__ = Process("""P4""", 0, 24) A__ = 3 A__ = [17, 25] A__ = deque([Pa, Pa, Pa, Pa]) A__ = MLFQ(number_of_queues, time_slices, queue, 0) A__ = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
166
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
166
1
from __future__ import annotations def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case , ): if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case , ): if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( __snake_case , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
721
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Dict = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class _UpperCamelCase (a_ ): snake_case_ = """markuplm""" def __init__( self , __UpperCamelCase=3_0_5_2_2 , __UpperCamelCase=7_6_8 , __UpperCamelCase=1_2 , __UpperCamelCase=1_2 , __UpperCamelCase=3_0_7_2 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_1_2 , __UpperCamelCase=2 , __UpperCamelCase=0.0_2 , __UpperCamelCase=1e-12 , __UpperCamelCase=0 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase=2_5_6 , __UpperCamelCase=1_0_2_4 , __UpperCamelCase=2_1_6 , __UpperCamelCase=1_0_0_1 , __UpperCamelCase=3_2 , __UpperCamelCase=5_0 , __UpperCamelCase="absolute" , __UpperCamelCase=True , __UpperCamelCase=None , **__UpperCamelCase , )-> Dict: super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout # additional properties __lowerCAmelCase = max_depth __lowerCAmelCase = max_xpath_tag_unit_embeddings __lowerCAmelCase = max_xpath_subs_unit_embeddings __lowerCAmelCase = tag_pad_id __lowerCAmelCase = subs_pad_id __lowerCAmelCase = xpath_unit_hidden_size
290
0
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case__ ( __snake_case ): '''simple docstring''' @require_torch def UpperCamelCase ( self : str ) -> List[str]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase_ = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' UpperCAmelCase_ = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' UpperCAmelCase_ = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache UpperCAmelCase_ = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(lowerCAmelCase_ ) BertModel.from_pretrained(lowerCAmelCase_ ) BertTokenizer.from_pretrained(lowerCAmelCase_ ) pipeline(task='''fill-mask''' , model=lowerCAmelCase_ ) # baseline - just load from_pretrained with normal network UpperCAmelCase_ = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed UpperCAmelCase_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase_ = '''1''' UpperCAmelCase_ = subprocess.run(lowerCAmelCase_ , env=lowerCAmelCase_ , check=lowerCAmelCase_ , capture_output=lowerCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase_ = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' UpperCAmelCase_ = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' UpperCAmelCase_ = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache UpperCAmelCase_ = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(lowerCAmelCase_ ) BertModel.from_pretrained(lowerCAmelCase_ ) BertTokenizer.from_pretrained(lowerCAmelCase_ ) pipeline(task='''fill-mask''' , model=lowerCAmelCase_ ) # baseline - just load from_pretrained with normal network UpperCAmelCase_ = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed UpperCAmelCase_ = self.get_env() UpperCAmelCase_ = subprocess.run(lowerCAmelCase_ , env=lowerCAmelCase_ , check=lowerCAmelCase_ , capture_output=lowerCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCamelCase ( self : Any ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase_ = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' UpperCAmelCase_ = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' UpperCAmelCase_ = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network UpperCAmelCase_ = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed UpperCAmelCase_ = self.get_env() UpperCAmelCase_ = subprocess.run(lowerCAmelCase_ , env=lowerCAmelCase_ , check=lowerCAmelCase_ , capture_output=lowerCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network UpperCAmelCase_ = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase_ = '''1''' UpperCAmelCase_ = subprocess.run(lowerCAmelCase_ , env=lowerCAmelCase_ , check=lowerCAmelCase_ , capture_output=lowerCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCamelCase ( self : Optional[int] ) -> Any: UpperCAmelCase_ = ''' from transformers import pipeline ''' UpperCAmelCase_ = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' UpperCAmelCase_ = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' UpperCAmelCase_ = self.get_env() UpperCAmelCase_ = '''1''' UpperCAmelCase_ = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] UpperCAmelCase_ = subprocess.run(lowerCAmelCase_ , env=lowerCAmelCase_ , check=lowerCAmelCase_ , capture_output=lowerCAmelCase_ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def UpperCamelCase ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ = ''' from transformers import AutoModel ''' UpperCAmelCase_ = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network UpperCAmelCase_ = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed UpperCAmelCase_ = self.get_env() UpperCAmelCase_ = subprocess.run(lowerCAmelCase_ , env=lowerCAmelCase_ , check=lowerCAmelCase_ , capture_output=lowerCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase_ = '''1''' UpperCAmelCase_ = subprocess.run(lowerCAmelCase_ , env=lowerCAmelCase_ , check=lowerCAmelCase_ , capture_output=lowerCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
121
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : str = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys _lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
121
1
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) A_ = _symbol_database.Default() A_ = _descriptor_pool.Default().AddSerializedFile( b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) A_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: A_ = None A_ = b"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" A_ = 45 A_ = 15_81 A_ = 15_17 A_ = 15_70 A_ = 15_84 A_ = 17_93 A_ = 17_95 A_ = 19_16 A_ = 18_64 A_ = 19_05 A_ = 19_19 A_ = 24_29 A_ = 22_08 A_ = 24_18 A_ = 23_23 A_ = 24_07 # @@protoc_insertion_point(module_scope)
708
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ = logging.get_logger(__name__) A_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) A_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) A_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) A_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) A_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) A_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) A_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) A_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) A_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) A_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) A_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) A_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) A_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) A_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) A_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_MAPPING A_ = auto_class_update(FlaxAutoModel) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
123
0
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def a__ ( A_, A_, A_, A_, A_ ): '''simple docstring''' __magic_name__ = TapasConfig.from_json_file(A__ ) # set absolute/relative position embeddings parameter __magic_name__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __magic_name__ = TapasForQuestionAnswering(config=A__ ) elif task == "WTQ": # run_task_main.py hparams __magic_name__ = 4 __magic_name__ = True # hparam_utils.py hparams __magic_name__ = 0.664694 __magic_name__ = 0.207951 __magic_name__ = 0.121194 __magic_name__ = True __magic_name__ = True __magic_name__ = False __magic_name__ = 0.0352513 __magic_name__ = TapasForQuestionAnswering(config=A__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __magic_name__ = 4 __magic_name__ = False # hparam_utils.py hparams __magic_name__ = 36.4519 __magic_name__ = 0.903421 __magic_name__ = 222.088 __magic_name__ = True __magic_name__ = True __magic_name__ = True __magic_name__ = 0.763141 __magic_name__ = TapasForQuestionAnswering(config=A__ ) elif task == "TABFACT": __magic_name__ = TapasForSequenceClassification(config=A__ ) elif task == "MLM": __magic_name__ = TapasForMaskedLM(config=A__ ) elif task == "INTERMEDIATE_PRETRAINING": __magic_name__ = TapasModel(config=A__ ) else: raise ValueError(f'''Task {task} not supported.''' ) print(f'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(A__, A__, A__ ) # Save pytorch-model (weights and configuration) print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(A__ ) # Save tokenizer files print(f'''Save tokenizer files to {pytorch_dump_path}''' ) __magic_name__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""", model_max_length=512 ) tokenizer.save_pretrained(A__ ) print("""Used relative position embeddings:""", model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
529
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __A : int = logging.get_logger(__name__) __A : List[str] = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) __A : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __A : Tuple = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __A : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) __A : Any = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) __A : Optional[int] = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) __A : Union[str, Any] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) __A : Optional[int] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) __A : str = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) __A : Dict = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) __A : Dict = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) __A : Any = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) __A : Optional[int] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) __A : List[str] = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) __A : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __A : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __A : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __A : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __A : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __A : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __A : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __A : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __A : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __A : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __A : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __A : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_MAPPING __A : Optional[int] = auto_class_update(FlaxAutoModel) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING __A : Optional[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __A : Tuple = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING __A : List[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __A : int = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __A : Optional[int] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __A : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __A : List[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __A : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __A : Union[str, Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __A : Optional[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __A : int = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __A : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
16
0
import math def _snake_case ( __snake_case ) -> bool: '''simple docstring''' UpperCAmelCase_ : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__snake_case ) def _snake_case ( __snake_case = 1 / 1_2_3_4_5 ) -> int: '''simple docstring''' UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : int = 0 UpperCAmelCase_ : List[Any] = 3 while True: UpperCAmelCase_ : Any = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__snake_case ): UpperCAmelCase_ : Optional[Any] = int(__snake_case ) total_partitions += 1 if check_partition_perfect(__snake_case ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__snake_case ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
455
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class snake_case_ : """simple docstring""" def __init__( self ,lowercase ,lowercase=None ,lowercase=None ,lowercase=None ,lowercase="resnet50" ,lowercase=3 ,lowercase=32 ,lowercase=3 ,lowercase=True ,lowercase=True ,): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : int = out_indices if out_indices is not None else [4] UpperCAmelCase_ : Any = stage_names UpperCAmelCase_ : List[Any] = out_features UpperCAmelCase_ : List[str] = backbone UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : int = image_size UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : Optional[Any] = use_pretrained_backbone UpperCAmelCase_ : Optional[int] = is_training def A_ ( self): """simple docstring""" UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ : Dict = self.get_config() return config, pixel_values def A_ ( self): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size ,num_channels=self.num_channels ,out_features=self.out_features ,out_indices=self.out_indices ,stage_names=self.stage_names ,use_pretrained_backbone=self.use_pretrained_backbone ,backbone=self.backbone ,) def A_ ( self ,lowercase ,lowercase): """simple docstring""" UpperCAmelCase_ : List[Any] = TimmBackbone(config=lowercase) model.to(lowercase) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowercase) self.parent.assertEqual( result.feature_map[-1].shape ,(self.batch_size, model.channels[-1], 14, 14) ,) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = config_and_inputs UpperCAmelCase_ : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class snake_case_ (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = (TimmBackbone,) if is_torch_available() else () _lowerCamelCase = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def A_ ( self): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = TimmBackboneModelTester(self) UpperCAmelCase_ : Tuple = ConfigTester(self ,config_class=lowercase ,has_text_modality=lowercase) def A_ ( self): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ ( self): """simple docstring""" UpperCAmelCase_ : int = "resnet18" UpperCAmelCase_ : Tuple = "microsoft/resnet-18" UpperCAmelCase_ : int = AutoBackbone.from_pretrained(lowercase ,use_timm_backbone=lowercase) UpperCAmelCase_ : Dict = AutoBackbone.from_pretrained(lowercase) self.assertEqual(len(timm_model.out_features) ,len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) ,len(transformers_model.stage_names)) self.assertEqual(timm_model.channels ,transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices ,(-1,)) self.assertEqual(transformers_model.out_indices ,[len(timm_model.stage_names) - 1]) UpperCAmelCase_ : Dict = AutoBackbone.from_pretrained(lowercase ,use_timm_backbone=lowercase ,out_indices=[1, 2, 3]) UpperCAmelCase_ : List[str] = AutoBackbone.from_pretrained(lowercase ,out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices ,transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) ,len(transformers_model.out_features)) self.assertEqual(timm_model.channels ,transformers_model.channels) @unittest.skip("TimmBackbone doesn't support feed forward chunking") def A_ ( self): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute") def A_ ( self): """simple docstring""" pass @unittest.skip("TimmBackbone initialization is managed on the timm side") def A_ ( self): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds") def A_ ( self): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds") def A_ ( self): """simple docstring""" pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint") def A_ ( self): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone") def A_ ( self): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone.") def A_ ( self): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone.") def A_ ( self): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone") def A_ ( self): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone") def A_ ( self): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration.") def A_ ( self): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't support output_attentions.") def A_ ( self): """simple docstring""" pass @unittest.skip("Safetensors is not supported by timm.") def A_ ( self): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def A_ ( self): """simple docstring""" pass def A_ ( self): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = model_class(lowercase) UpperCAmelCase_ : Optional[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : str = [*signature.parameters.keys()] UpperCAmelCase_ : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] ,lowercase) def A_ ( self): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = self.has_attentions # no need to test all models as different heads yield the same functionality UpperCAmelCase_ : str = self.all_model_classes[0] UpperCAmelCase_ : List[Any] = model_class(lowercase) model.to(lowercase) UpperCAmelCase_ : Any = self._prepare_for_class(lowercase ,lowercase) UpperCAmelCase_ : Optional[int] = model(**lowercase) UpperCAmelCase_ : Optional[Any] = outputs[0][-1] # Encoder-/Decoder-only models UpperCAmelCase_ : List[Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: UpperCAmelCase_ : int = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def A_ ( self): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Any = model_class(lowercase) model.to(lowercase) model.eval() UpperCAmelCase_ : Tuple = model(**lowercase) self.assertEqual(len(result.feature_maps) ,len(config.out_indices)) self.assertEqual(len(model.channels) ,len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None UpperCAmelCase_ : Tuple = copy.deepcopy(lowercase) UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = model_class(lowercase) model.to(lowercase) model.eval() UpperCAmelCase_ : Tuple = model(**lowercase) self.assertEqual(len(result.feature_maps) ,1) self.assertEqual(len(model.channels) ,1) # Check backbone can be initialized with fresh weights UpperCAmelCase_ : str = copy.deepcopy(lowercase) UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : List[str] = model_class(lowercase) model.to(lowercase) model.eval() UpperCAmelCase_ : Union[str, Any] = model(**lowercase)
455
1
import numpy as np _A = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _lowerCAmelCase : def __init__( self ) -> None: SCREAMING_SNAKE_CASE : str =np.array(snake_case_ ) def __a ( self , snake_case_ ) -> np.ndarray: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] =np.where(letter == self.SQUARE ) SCREAMING_SNAKE_CASE : Optional[Any] =np.concatenate([indexa + 1, indexa + 1] ) return indexes def __a ( self , snake_case_ , snake_case_ ) -> str: SCREAMING_SNAKE_CASE : Optional[int] =self.SQUARE[indexa - 1, indexa - 1] return letter def __a ( self , snake_case_ ) -> str: SCREAMING_SNAKE_CASE : Tuple =message.lower() SCREAMING_SNAKE_CASE : Tuple =message.replace(''' ''' , '''''' ) SCREAMING_SNAKE_CASE : List[Any] =message.replace('''j''' , '''i''' ) SCREAMING_SNAKE_CASE : Optional[int] =np.empty((2, len(snake_case_ )) ) for letter_index in range(len(snake_case_ ) ): SCREAMING_SNAKE_CASE : Any =self.letter_to_numbers(message[letter_index] ) SCREAMING_SNAKE_CASE : Dict =numbers[0] SCREAMING_SNAKE_CASE : Optional[int] =numbers[1] SCREAMING_SNAKE_CASE : Optional[int] =first_step.reshape(2 * len(snake_case_ ) ) SCREAMING_SNAKE_CASE : str ='''''' for numbers_index in range(len(snake_case_ ) ): SCREAMING_SNAKE_CASE : Dict =int(second_step[numbers_index * 2] ) SCREAMING_SNAKE_CASE : str =int(second_step[(numbers_index * 2) + 1] ) SCREAMING_SNAKE_CASE : Union[str, Any] =self.numbers_to_letter(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : List[Any] =encoded_message + letter return encoded_message def __a ( self , snake_case_ ) -> str: SCREAMING_SNAKE_CASE : Tuple =message.lower() message.replace(''' ''' , '''''' ) SCREAMING_SNAKE_CASE : List[Any] =np.empty(2 * len(snake_case_ ) ) for letter_index in range(len(snake_case_ ) ): SCREAMING_SNAKE_CASE : Optional[int] =self.letter_to_numbers(message[letter_index] ) SCREAMING_SNAKE_CASE : str =numbers[0] SCREAMING_SNAKE_CASE : int =numbers[1] SCREAMING_SNAKE_CASE : Optional[int] =first_step.reshape((2, len(snake_case_ )) ) SCREAMING_SNAKE_CASE : Optional[Any] ='''''' for numbers_index in range(len(snake_case_ ) ): SCREAMING_SNAKE_CASE : List[Any] =int(second_step[0, numbers_index] ) SCREAMING_SNAKE_CASE : Optional[int] =int(second_step[1, numbers_index] ) SCREAMING_SNAKE_CASE : int =self.numbers_to_letter(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : int =decoded_message + letter return decoded_message
258
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCAmelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=2 , snake_case_=56 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=2 , snake_case_=7 , snake_case_="gelu_new" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=4 , snake_case_="block_sparse" , snake_case_=True , snake_case_=False , snake_case_=2 , snake_case_=3 , ) -> Dict: SCREAMING_SNAKE_CASE : Tuple =parent SCREAMING_SNAKE_CASE : int =batch_size SCREAMING_SNAKE_CASE : List[str] =seq_length SCREAMING_SNAKE_CASE : Tuple =is_training SCREAMING_SNAKE_CASE : Dict =use_attention_mask SCREAMING_SNAKE_CASE : List[Any] =use_token_type_ids SCREAMING_SNAKE_CASE : str =use_labels SCREAMING_SNAKE_CASE : Dict =vocab_size SCREAMING_SNAKE_CASE : str =hidden_size SCREAMING_SNAKE_CASE : Dict =num_hidden_layers SCREAMING_SNAKE_CASE : List[str] =num_attention_heads SCREAMING_SNAKE_CASE : List[str] =intermediate_size SCREAMING_SNAKE_CASE : List[str] =hidden_act SCREAMING_SNAKE_CASE : Dict =hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple =attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str =max_position_embeddings SCREAMING_SNAKE_CASE : List[str] =type_vocab_size SCREAMING_SNAKE_CASE : Tuple =type_sequence_label_size SCREAMING_SNAKE_CASE : str =initializer_range SCREAMING_SNAKE_CASE : List[Any] =num_choices SCREAMING_SNAKE_CASE : Union[str, Any] =rescale_embeddings SCREAMING_SNAKE_CASE : Tuple =attention_type SCREAMING_SNAKE_CASE : str =use_bias SCREAMING_SNAKE_CASE : List[str] =block_size SCREAMING_SNAKE_CASE : Optional[Any] =num_random_blocks def __a ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Any =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : int =None if self.use_attention_mask: SCREAMING_SNAKE_CASE : Any =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Tuple =None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : int =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] =BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def __a ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] =config_and_inputs SCREAMING_SNAKE_CASE : str ={ '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class _lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowerCamelCase__ = False lowerCamelCase__ = False def __a ( self ) -> Dict: SCREAMING_SNAKE_CASE : Optional[Any] =FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self ) -> str: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self ) -> Optional[int]: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self ) -> Dict: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self ) -> Any: super().test_hidden_states_output() @slow def __a ( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict =model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(snake_case_ ) def __a ( self ) -> str: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self ) -> Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE : Dict =self._prepare_for_class(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : Optional[int] =model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ , snake_case_=None , **snake_case_ ): return model(input_ids=snake_case_ , attention_mask=snake_case_ , **snake_case_ ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE : Union[str, Any] =model_jitted(**snake_case_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE : Optional[Any] =model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def __a ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=1E-5 , snake_case_="outputs" , snake_case_=None ) -> int: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
258
1
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class snake_case__ : @staticmethod def A_ ( *__a : Tuple , **__a : Optional[Any] ) -> Dict: '''simple docstring''' pass def a_ ( _UpperCAmelCase : Image ) -> str: __snake_case : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def a_ ( _UpperCAmelCase : Image ) -> Dict: __snake_case : List[str] = np.array(_UpperCAmelCase ) __snake_case : Optional[Any] = npimg.shape return {"hash": hashimage(_UpperCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class snake_case__ ( unittest.TestCase ): A__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) A__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def A_ ( self : Union[str, Any] , __a : List[str] , __a : Optional[Any] , __a : Optional[int] ) -> Tuple: '''simple docstring''' __snake_case : Dict = MaskGenerationPipeline(model=__a , image_processor=__a ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def A_ ( self : Dict , __a : Optional[Any] , __a : Optional[Any] ) -> Optional[int]: '''simple docstring''' pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def A_ ( self : Any ) -> Optional[int]: '''simple docstring''' pass @slow @require_torch def A_ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' __snake_case : str = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) __snake_case : Any = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=256 ) # Shortening by hashing __snake_case : Optional[Any] = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(__a ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_2_1}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_0_5_3}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9_9_6_7}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.9_9_3}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9_9_0_9}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9_8_7_9}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9_8_3_4}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9_7_1_6}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9_6_1_2}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9_5_9_9}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9_5_5_2}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9_5_3_2}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9_5_1_6}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9_4_9_9}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9_4_8_3}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9_4_6_4}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.9_4_3}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.9_4_3}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9_4_0_8}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9_3_3_5}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9_3_2_6}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9_2_6_2}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8_9_9_9}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8_9_8_6}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8_9_8_4}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8_8_7_3}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def A_ ( self : Tuple ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = 'facebook/sam-vit-huge' __snake_case : Dict = pipeline('mask-generation' , model=__a ) __snake_case : int = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __snake_case : Optional[Any] = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(__a ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_2_1_0}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_0_5_3}, ] , )
124
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def A_ ( self : Any ) -> Tuple: '''simple docstring''' __snake_case : List[str] = SMALL_MODEL_IDENTIFIER __snake_case : str = 'pt' __snake_case : int = 'tf' def A_ ( self : str , __a : Any ) -> Tuple: '''simple docstring''' __snake_case : str = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__a ) def A_ ( self : List[Any] , __a : List[Any] ) -> str: '''simple docstring''' __snake_case : Any = TFAutoModel.from_pretrained(self.test_model , from_pt=__a ) model_tf.save_pretrained(__a ) def A_ ( self : Any ) -> Any: '''simple docstring''' __snake_case : Any = 'mock_framework' # Framework provided - return whatever the user provides __snake_case : int = FeaturesManager.determine_framework(self.test_model , __a ) self.assertEqual(__a , __a ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) __snake_case : Dict = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) __snake_case : List[Any] = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) def A_ ( self : int ) -> List[str]: '''simple docstring''' # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) __snake_case : Any = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) __snake_case : List[str] = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__a ): __snake_case : List[str] = FeaturesManager.determine_framework(__a ) def A_ ( self : List[str] ) -> Any: '''simple docstring''' __snake_case : Union[str, Any] = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ): __snake_case : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __snake_case : int = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_torch_available' , __a ): __snake_case : List[str] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_tf ) # Both in environment -> use PyTorch __snake_case : Tuple = MagicMock(return_value=__a ) __snake_case : Optional[Any] = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ), patch( 'transformers.onnx.features.is_torch_available' , __a ): __snake_case : Optional[int] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # Both not in environment -> raise error __snake_case : int = MagicMock(return_value=__a ) __snake_case : Optional[Any] = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ), patch( 'transformers.onnx.features.is_torch_available' , __a ): with self.assertRaises(__a ): __snake_case : Any = FeaturesManager.determine_framework(self.test_model )
124
1
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": A : int = pd.read_csv("""sample_data.csv""", header=None) A : List[Any] = df.shape[:1][0] # If you're using some other dataset input the target column A : Optional[int] = df.iloc[:, 1:2] A : int = actual_data.values.reshape(len_data, 1) A : str = MinMaxScaler().fit_transform(actual_data) A : List[str] = 10 A : int = 5 A : Dict = 20 A : Tuple = len_data - periods * look_back A : List[Any] = actual_data[:division] A : List[str] = actual_data[division - look_back :] A , A : Union[str, Any] = [], [] A , A : Optional[int] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) A : List[str] = np.array(train_x) A : Dict = np.array(test_x) A : List[str] = np.array([list(i.ravel()) for i in train_y]) A : Union[str, Any] = np.array([list(i.ravel()) for i in test_y]) A : Tuple = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") A : str = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) A : Dict = model.predict(x_test)
349
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class lowerCAmelCase_ : __UpperCAmelCase = MBartConfig __UpperCAmelCase = {} __UpperCAmelCase = 'gelu' def __init__( self : Dict, _snake_case : Dict, _snake_case : Dict=13, _snake_case : Dict=7, _snake_case : Dict=True, _snake_case : Optional[Any]=False, _snake_case : Optional[int]=99, _snake_case : Union[str, Any]=32, _snake_case : List[Any]=2, _snake_case : List[Any]=4, _snake_case : Any=37, _snake_case : int=0.1, _snake_case : Optional[int]=0.1, _snake_case : int=20, _snake_case : int=2, _snake_case : Any=1, _snake_case : List[Any]=0, ): '''simple docstring''' snake_case : Optional[Any] =parent snake_case : Any =batch_size snake_case : List[Any] =seq_length snake_case : int =is_training snake_case : Dict =use_labels snake_case : Optional[int] =vocab_size snake_case : Tuple =hidden_size snake_case : Optional[Any] =num_hidden_layers snake_case : Tuple =num_attention_heads snake_case : Union[str, Any] =intermediate_size snake_case : Any =hidden_dropout_prob snake_case : Union[str, Any] =attention_probs_dropout_prob snake_case : List[Any] =max_position_embeddings snake_case : List[Any] =eos_token_id snake_case : int =pad_token_id snake_case : int =bos_token_id def __snake_case ( self : Optional[Any] ): '''simple docstring''' snake_case : Optional[Any] =ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) snake_case : List[str] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) snake_case : List[Any] =tf.concat([input_ids, eos_tensor], axis=1 ) snake_case : Dict =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) snake_case : int =self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) snake_case : List[Any] =prepare_mbart_inputs_dict(_snake_case, _snake_case, _snake_case ) return config, inputs_dict def __snake_case ( self : Optional[Any], _snake_case : Dict, _snake_case : Union[str, Any] ): '''simple docstring''' snake_case : Dict =TFMBartModel(config=_snake_case ).get_decoder() snake_case : Tuple =inputs_dict['''input_ids'''] snake_case : List[str] =input_ids[:1, :] snake_case : Optional[Any] =inputs_dict['''attention_mask'''][:1, :] snake_case : List[str] =inputs_dict['''head_mask'''] snake_case : str =1 # first forward pass snake_case : Union[str, Any] =model(_snake_case, attention_mask=_snake_case, head_mask=_snake_case, use_cache=_snake_case ) snake_case , snake_case : List[Any] =outputs.to_tuple() snake_case : Dict =past_key_values[1] def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , ): if attention_mask is None: snake_case : Any =tf.cast(tf.math.not_equal(lowerCamelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case : Optional[int] =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case : Any =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case : Optional[Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case : List[str] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase_ ( a_ , a_ , unittest.TestCase ): __UpperCAmelCase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCAmelCase = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCAmelCase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False def __snake_case ( self : List[str], _snake_case : Optional[Any], _snake_case : List[str], _snake_case : int, _snake_case : Union[str, Any], _snake_case : str ): '''simple docstring''' if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __snake_case ( self : Tuple ): '''simple docstring''' snake_case : Dict =TFMBartModelTester(self ) snake_case : Union[str, Any] =ConfigTester(self, config_class=_snake_case ) def __snake_case ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def __snake_case ( self : List[str] ): '''simple docstring''' snake_case : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_snake_case ) @require_sentencepiece @require_tokenizers @require_tf class lowerCAmelCase_ ( unittest.TestCase ): __UpperCAmelCase = [ ' UN Chief Says There Is No Military Solution in Syria', ] __UpperCAmelCase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] __UpperCAmelCase = 'facebook/mbart-large-en-ro' @cached_property def __snake_case ( self : Dict ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __snake_case ( self : str ): '''simple docstring''' snake_case : str =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __snake_case ( self : Optional[Any], **_snake_case : Optional[int] ): '''simple docstring''' snake_case : Tuple =self.translate_src_text(**_snake_case ) self.assertListEqual(self.expected_text, _snake_case ) def __snake_case ( self : Dict, **_snake_case : str ): '''simple docstring''' snake_case : int =self.tokenizer(self.src_text, **_snake_case, return_tensors='''tf''' ) snake_case : Optional[int] =self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2 ) snake_case : List[str] =self.tokenizer.batch_decode(_snake_case, skip_special_tokens=_snake_case ) return generated_words @slow def __snake_case ( self : int ): '''simple docstring''' self._assert_generated_batch_equal_expected()
349
1
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets lowercase = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' lowercase = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A( datasets.Metric ): def lowercase__ ( self : int ): if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int = CHRF.CHAR_ORDER , __UpperCamelCase : int = CHRF.WORD_ORDER , __UpperCamelCase : int = CHRF.BETA , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , ): lowerCamelCase_ = len(references[0] ) if any(len(__UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowerCamelCase_ = [[refs[i] for refs in references] for i in range(__UpperCamelCase )] lowerCamelCase_ = CHRF(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = sb_chrf.corpus_score(__UpperCamelCase , __UpperCamelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
103
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase = 2_5_0_0_0_4 lowercase = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class __A( UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE = MBartaaTokenizer SCREAMING_SNAKE_CASE = MBartaaTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def lowercase__ ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = MBartaaTokenizer(__UpperCamelCase , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : str ): lowerCamelCase_ = """<s>""" lowerCamelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def lowercase__ ( self : Optional[int] ): lowerCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__UpperCamelCase ) , 1_0_5_4 ) def lowercase__ ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_5_4 ) def lowercase__ ( self : str ): lowerCamelCase_ = MBartaaTokenizer(__UpperCamelCase , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=__UpperCamelCase ) lowerCamelCase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__UpperCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCamelCase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __UpperCamelCase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def lowercase__ ( self : Optional[int] ): # fmt: off lowerCamelCase_ = {"""input_ids""": [[2_5_0_0_0_4, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [2_5_0_0_0_4, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_0_0_0_4, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def lowercase__ ( self : Dict ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase_ = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(__UpperCamelCase ) lowerCamelCase_ = tokenizer_p.save_pretrained(__UpperCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) lowerCamelCase_ = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__UpperCamelCase , __UpperCamelCase ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = tokenizer_p.from_pretrained(__UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCamelCase , __UpperCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__UpperCamelCase ) # Save tokenizer rust, legacy_format=True lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(__UpperCamelCase , legacy_format=__UpperCamelCase ) lowerCamelCase_ = tokenizer_p.save_pretrained(__UpperCamelCase ) # Checks it save with the same files self.assertSequenceEqual(__UpperCamelCase , __UpperCamelCase ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = tokenizer_p.from_pretrained(__UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCamelCase , __UpperCamelCase ) ) shutil.rmtree(__UpperCamelCase ) # Save tokenizer rust, legacy_format=False lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(__UpperCamelCase , legacy_format=__UpperCamelCase ) lowerCamelCase_ = tokenizer_p.save_pretrained(__UpperCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = tokenizer_p.from_pretrained(__UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCamelCase , __UpperCamelCase ) ) shutil.rmtree(__UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class __A( unittest.TestCase ): SCREAMING_SNAKE_CASE = '''facebook/mbart-large-50-one-to-many-mmt''' SCREAMING_SNAKE_CASE = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] SCREAMING_SNAKE_CASE = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] SCREAMING_SNAKE_CASE = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def lowercase__ ( cls : Optional[Any] ): lowerCamelCase_ = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) lowerCamelCase_ = 1 return cls def lowercase__ ( self : Union[str, Any] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 2_5_0_0_2_0 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 2_5_0_0_3_8 ) def lowercase__ ( self : Optional[Any] ): lowerCamelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __UpperCamelCase ) def lowercase__ ( self : Tuple ): self.assertIn(__UpperCamelCase , self.tokenizer.all_special_ids ) lowerCamelCase_ = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] lowerCamelCase_ = self.tokenizer.decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) lowerCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token , __UpperCamelCase ) def lowercase__ ( self : Any ): lowerCamelCase_ = ["""this is gunna be a long sentence """ * 2_0] assert isinstance(src_text[0] , __UpperCamelCase ) lowerCamelCase_ = 1_0 lowerCamelCase_ = self.tokenizer(__UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase ).input_ids[0] self.assertEqual(ids[0] , __UpperCamelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) def lowercase__ ( self : Any ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_0_0_5_3, 2_5_0_0_0_1] ) def lowercase__ ( self : Dict ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__UpperCamelCase ) lowerCamelCase_ = MBartaaTokenizer.from_pretrained(__UpperCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __UpperCamelCase ) @require_torch def lowercase__ ( self : Optional[Any] ): lowerCamelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__UpperCamelCase , return_tensors="""pt""" ) lowerCamelCase_ = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def lowercase__ ( self : Optional[int] ): lowerCamelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) lowerCamelCase_ = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) lowerCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __UpperCamelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = self.tokenizer(self.src_text , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=3 , return_tensors="""pt""" ) lowerCamelCase_ = self.tokenizer( text_target=self.tgt_text , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=1_0 , return_tensors="""pt""" ) lowerCamelCase_ = targets["""input_ids"""] lowerCamelCase_ = shift_tokens_right(__UpperCamelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { # en_XX, A, test, EOS """input_ids""": [[2_5_0_0_0_4, 6_2, 3_0_3_4, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 2_5_0_0_0_1, } , )
103
1
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
18
import math def __lowerCAmelCase ( _UpperCamelCase : int ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = int(math.sqrt(_UpperCamelCase ) ) # Size of every segment SCREAMING_SNAKE_CASE = [True] * (end + 1) SCREAMING_SNAKE_CASE = [] while start <= end: if temp[start] is True: in_prime.append(_UpperCamelCase ) for i in range(start * start , end + 1 , _UpperCamelCase ): SCREAMING_SNAKE_CASE = False start += 1 prime += in_prime SCREAMING_SNAKE_CASE = end + 1 SCREAMING_SNAKE_CASE = min(2 * end , _UpperCamelCase ) while low <= n: SCREAMING_SNAKE_CASE = [True] * (high - low + 1) for each in in_prime: SCREAMING_SNAKE_CASE = math.floor(low / each ) * each if t < low: t += each for j in range(_UpperCamelCase , high + 1 , _UpperCamelCase ): SCREAMING_SNAKE_CASE = False for j in range(len(_UpperCamelCase ) ): if temp[j] is True: prime.append(j + low ) SCREAMING_SNAKE_CASE = high + 1 SCREAMING_SNAKE_CASE = min(high + end , _UpperCamelCase ) return prime print(sieve(10**6))
439
0
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCAmelCase_ ( _a): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=False , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Any: lowercase__ : Tuple = parent lowercase__ : List[Any] = batch_size lowercase__ : List[Any] = seq_length lowercase__ : List[Any] = is_training lowercase__ : Optional[Any] = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : int = use_labels lowercase__ : Tuple = vocab_size lowercase__ : int = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : List[str] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = num_labels lowercase__ : Tuple = num_choices lowercase__ : str = scope def _UpperCAmelCase ( self ) -> Any: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_input_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Dict = None lowercase__ : Optional[Any] = None lowercase__ : int = None if self.use_labels: lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Optional[int]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Tuple = DistilBertModel(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , a ) lowercase__ : str = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Dict: lowercase__ : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() lowercase__ : Union[str, Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> int: lowercase__ : Tuple = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> List[str]: lowercase__ : int = self.num_labels lowercase__ : Dict = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() lowercase__ : Optional[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Any: lowercase__ : Any = self.num_labels lowercase__ : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() lowercase__ : Any = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Tuple: lowercase__ : List[Any] = self.num_choices lowercase__ : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() lowercase__ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : int = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() (lowercase__) : List[str] = config_and_inputs lowercase__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : List[str] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ : str = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Any = True lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Optional[Any] = True def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : str = DistilBertModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=a , dim=3_7 ) def _UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> Any: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowercase__ : Optional[int] = True lowercase__ : Union[str, Any] = model_class(config=a ) lowercase__ : int = self._prepare_for_class(a , a ) lowercase__ : Tuple = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'traced_model.pt' ) ) lowercase__ : Optional[int] = torch.jit.load(os.path.join(a , 'traced_model.pt' ) , map_location=a ) loaded(inputs_dict['input_ids'].to(a ) , inputs_dict['attention_mask'].to(a ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : int = DistilBertModel.from_pretrained('distilbert-base-uncased' ) lowercase__ : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ : Optional[Any] = model(a , attention_mask=a )[0] lowercase__ : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a ) lowercase__ : List[Any] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
717
"""simple docstring""" def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Any = [0] * len(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): # use last results for better performance - dynamic programming lowercase__ : List[str] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase__ : Dict = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase__ : Union[str, Any] = j return prefix_result def a_ ( _lowerCAmelCase : str ): '''simple docstring''' return max(prefix_function(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
645
0
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def A_( A : Optional[int] , A : Any , A : Union[str, Any] , A : Optional[int]=None , A : List[str]=None): # Recurse if needed if "." in tensor_name: UpperCamelCase = tensor_name.split('.') for split in splits[:-1]: UpperCamelCase = getattr(A , A) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''') UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'''{module} does not have a parameter or a buffer named {tensor_name}.''') UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(A , A) if old_value.device == torch.device('meta') and device not in ["meta", torch.device('meta')] and value is None: raise ValueError(f'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''') UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn , 'Params4bit') and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit) UpperCamelCase = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(A) elif isinstance(A , torch.Tensor): UpperCamelCase = value.to('cpu') if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('bitsandbytes')) > version.parse( '0.37.2') if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.') else: UpperCamelCase = torch.tensor(A , device='cpu') # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , A) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(A , requires_grad=A , **A).to(A) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(A , requires_grad=A , **A).to(A) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(A)) else: if value is None: UpperCamelCase = old_value.to(A) elif isinstance(A , torch.Tensor): UpperCamelCase = value.to(A) else: UpperCamelCase = torch.tensor(A , device=A) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(A , requires_grad=old_value.requires_grad) UpperCamelCase = new_value def A_( A : Union[str, Any] , A : str=None , A : List[str]=None , A : str=None , A : Dict=False): for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(A) if (isinstance(A , nn.Linear) or isinstance(A , A)) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(A) for key in modules_to_not_convert): with init_empty_weights(): if isinstance(A , A): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( A , A , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( A , A , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(A) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(A) if len(list(module.children())) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( A , A , A , A , has_been_replaced=A , ) # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def A_( A : Union[str, Any] , A : List[Any]=None , A : Optional[Any]=None , A : str=None): UpperCamelCase = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( A , A , A , A) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.') return model def A_( *A : Tuple , **A : Optional[int]): warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , A , ) return replace_with_bnb_linear(*A , **A) def A_( *A : List[str] , **A : Tuple): warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , A , ) return set_module_quantized_tensor_to_device(*A , **A) def A_( A : int): UpperCamelCase = deepcopy(A) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(A) # For compatibility with Accelerate < 0.18 if isinstance(A , A): UpperCamelCase = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: UpperCamelCase = sum(A , []) UpperCamelCase = len(A) > 0 # Check if it is a base model UpperCamelCase = not hasattr(A , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children()) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(A) - set(A) UpperCamelCase = list(set(A)) + list(A) # remove ".weight" from the keys UpperCamelCase = ['.weight', '.bias'] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(A , '') filtered_module_names.append(A) return filtered_module_names
3
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _A = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _A = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _A = { """unc-nlp/lxmert-base-uncased""": 512, } _A = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCamelCase__ ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = LxmertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) SCREAMING_SNAKE_CASE : List[str] =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , snake_case_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , snake_case_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , snake_case_ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : str =getattr(snake_case_ , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[str] =do_lower_case SCREAMING_SNAKE_CASE : Dict =strip_accents SCREAMING_SNAKE_CASE : Dict =tokenize_chinese_chars SCREAMING_SNAKE_CASE : Union[str, Any] =normalizer_class(**snake_case_ ) SCREAMING_SNAKE_CASE : str =do_lower_case def __a ( self , snake_case_ , snake_case_=None ) -> Dict: SCREAMING_SNAKE_CASE : List[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , snake_case_ , snake_case_ = None ) -> List[int]: SCREAMING_SNAKE_CASE : Dict =[self.sep_token_id] SCREAMING_SNAKE_CASE : Any =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE : List[Any] =self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
258
0
"""simple docstring""" import string def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase__ : List[str] = """""" for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase__ : Tuple = string.ascii_uppercase.find(_A ) UpperCAmelCase__ : Tuple = num - key if num < 0: UpperCAmelCase__ : Optional[Any] = num + len(string.ascii_uppercase ) UpperCAmelCase__ : str = translated + string.ascii_uppercase[num] else: UpperCAmelCase__ : Any = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : List[Any] = input("""Encrypted message: """ ) UpperCAmelCase__ : Union[str, Any] = message.upper() decrypt(_A ) if __name__ == "__main__": import doctest doctest.testmod() main()
709
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata __UpperCAmelCase = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class __lowercase ( tr.AbstractTransform ): def __init__( self : List[str] ,A : str = " " ): '''simple docstring''' UpperCAmelCase__ : str = sentence_delimiter def __lowercase ( self : Union[str, Any] ,A : str ): '''simple docstring''' return list(A ) def __lowercase ( self : int ,A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = [] for sent_idx, sentence in enumerate(A ): chars.extend(self.process_string(A ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(A ) - 1: chars.append(self.sentence_delimiter ) return chars __UpperCAmelCase = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __UpperCAmelCase = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __UpperCAmelCase = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' __UpperCAmelCase = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' __UpperCAmelCase = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): def __lowercase ( self : int ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""string""" ,id="""sequence""" ), """references""": datasets.Value("""string""" ,id="""sequence""" ), } ) ,codebase_urls=["""https://github.com/jitsi/jiwer/"""] ,reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", """https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""", ] ,) def __lowercase ( self : Union[str, Any] ,A : Optional[Any] ,A : Tuple ,A : str=False ): '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( A ,A ,truth_transform=A ,hypothesis_transform=A ,)["wer"] UpperCAmelCase__ : Tuple = 0 UpperCAmelCase__ : Any = 0 for prediction, reference in zip(A ,A ): UpperCAmelCase__ : List[str] = jiwer.compute_measures( A ,A ,truth_transform=A ,hypothesis_transform=A ,) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
194
0
'''simple docstring''' def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): lowerCamelCase__ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def A__ ( ): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
50
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCamelCase : Tuple = False lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : List[Any] = 'ybelkada/fonts' def SCREAMING_SNAKE_CASE__ ( ) -> str: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ """Pix2StructImageProcessor. Please upgrade torch.""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Union[str, Any]: requires_backends(lowercase ,["""torch"""] ) _check_torch_version() snake_case : List[str] = image_tensor.unsqueeze(0 ) snake_case : Tuple = torch.nn.functional.unfold(lowercase ,(patch_height, patch_width) ,stride=(patch_height, patch_width) ) snake_case : Optional[int] = patches.reshape(image_tensor.size(0 ) ,image_tensor.size(1 ) ,lowercase ,lowercase ,-1 ) snake_case : List[str] = patches.permute(0 ,4 ,2 ,3 ,1 ).reshape( image_tensor.size(2 ) // patch_height ,image_tensor.size(3 ) // patch_width ,image_tensor.size(1 ) * patch_height * patch_width ,) return patches.unsqueeze(0 ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = 36 ,lowercase = "black" ,lowercase = "white" ,lowercase = 5 ,lowercase = 5 ,lowercase = 5 ,lowercase = 5 ,lowercase = None ,lowercase = None ,) -> Image.Image: requires_backends(lowercase ,"""vision""" ) # Add new lines so that each line is no more than 80 characters. snake_case : List[str] = textwrap.TextWrapper(width=80 ) snake_case : List[Any] = wrapper.wrap(text=lowercase ) snake_case : int = """\n""".join(lowercase ) if font_bytes is not None and font_path is None: snake_case : int = io.BytesIO(lowercase ) elif font_path is not None: snake_case : str = font_path else: snake_case : int = hf_hub_download(lowercase ,"""Arial.TTF""" ) snake_case : Optional[int] = ImageFont.truetype(lowercase ,encoding="""UTF-8""" ,size=lowercase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. snake_case : Tuple = ImageDraw.Draw(Image.new("""RGB""" ,(1, 1) ,lowercase ) ) snake_case , snake_case , snake_case , snake_case : Any = temp_draw.textbbox((0, 0) ,lowercase ,lowercase ) # Create the actual image with a bit of padding around the text. snake_case : Optional[int] = text_width + left_padding + right_padding snake_case : List[Any] = text_height + top_padding + bottom_padding snake_case : List[str] = Image.new("""RGB""" ,(image_width, image_height) ,lowercase ) snake_case : List[str] = ImageDraw.Draw(lowercase ) draw.text(xy=(left_padding, top_padding) ,text=lowercase ,fill=lowercase ,font=lowercase ) return image def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,**lowercase ) -> Any: requires_backends(lowercase ,"""vision""" ) # Convert to PIL image if necessary snake_case : Union[str, Any] = to_pil_image(lowercase ) snake_case : str = render_text(lowercase ,**lowercase ) snake_case : Any = max(header_image.width ,image.width ) snake_case : str = int(image.height * (new_width / image.width) ) snake_case : Union[str, Any] = int(header_image.height * (new_width / header_image.width) ) snake_case : List[str] = Image.new("""RGB""" ,(new_width, new_height + new_header_height) ,"""white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) ,(0, 0) ) new_image.paste(image.resize((new_width, new_height) ) ,(0, new_header_height) ) # Convert back to the original framework if necessary snake_case : Any = to_numpy_array(lowercase ) if infer_channel_dimension_format(lowercase ) == ChannelDimension.LAST: snake_case : str = to_channel_dimension_format(lowercase ,ChannelDimension.LAST ) return new_image class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flattened_patches"""] def __init__( self , A = True , A = True , A = None , A = 2_0_4_8 , A = False , **A , ) -> None: super().__init__(**A ) snake_case : int = patch_size if patch_size is not None else {"""height""": 1_6, """width""": 1_6} snake_case : Optional[Any] = do_normalize snake_case : List[Any] = do_convert_rgb snake_case : str = max_patches snake_case : List[Any] = is_vqa def UpperCAmelCase ( self , A , A , A , **A ) -> np.ndarray: requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch snake_case : Tuple = to_channel_dimension_format(A , ChannelDimension.FIRST ) snake_case : Optional[int] = torch.from_numpy(A ) snake_case , snake_case : int = patch_size["""height"""], patch_size["""width"""] snake_case , snake_case : Tuple = get_image_size(A ) # maximize scale s.t. snake_case : str = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) snake_case : Dict = max(min(math.floor(scale * image_height / patch_height ) , A ) , 1 ) snake_case : int = max(min(math.floor(scale * image_width / patch_width ) , A ) , 1 ) snake_case : Dict = max(num_feasible_rows * patch_height , 1 ) snake_case : Union[str, Any] = max(num_feasible_cols * patch_width , 1 ) snake_case : Tuple = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=A , antialias=A , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] snake_case : Optional[Any] = torch_extract_patches(A , A , A ) snake_case : List[Any] = patches.shape snake_case : List[str] = patches_shape[1] snake_case : int = patches_shape[2] snake_case : Tuple = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] snake_case : Tuple = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] snake_case : Dict = torch.arange(A ).reshape([rows, 1] ).repeat(1 , A ).reshape([rows * columns, 1] ) snake_case : Union[str, Any] = torch.arange(A ).reshape([1, columns] ).repeat(A , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] snake_case : Dict = row_ids.to(torch.floataa ) snake_case : Dict = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] snake_case : Any = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] snake_case : Tuple = torch.nn.functional.pad(A , [0, 0, 0, max_patches - (rows * columns)] ).float() snake_case : Optional[int] = to_numpy_array(A ) return result def UpperCAmelCase ( self , A , A = None , **A ) -> np.ndarray: if image.dtype == np.uinta: snake_case : Any = image.astype(np.floataa ) # take mean across the whole `image` snake_case : Optional[int] = np.mean(A ) snake_case : Dict = np.std(A ) snake_case : Optional[Any] = max(A , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(A , mean=A , std=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> ImageInput: snake_case : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize snake_case : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case : Union[str, Any] = patch_size if patch_size is not None else self.patch_size snake_case : Optional[int] = max_patches if max_patches is not None else self.max_patches snake_case : Any = self.is_vqa if kwargs.get("""data_format""" , A ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case : Dict = [convert_to_rgb(A ) for image in images] # All transformations expect numpy arrays. snake_case : List[Any] = [to_numpy_array(A ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) snake_case : str = kwargs.pop("""font_bytes""" , A ) snake_case : Union[str, Any] = kwargs.pop("""font_path""" , A ) if isinstance(A , A ): snake_case : List[str] = [header_text] * len(A ) snake_case : int = [ render_header(A , header_text[i] , font_bytes=A , font_path=A ) for i, image in enumerate(A ) ] if do_normalize: snake_case : int = [self.normalize(image=A ) for image in images] # convert to torch tensor and permute snake_case : Dict = [ self.extract_flattened_patches(image=A , max_patches=A , patch_size=A ) for image in images ] # create attention mask in numpy snake_case : List[str] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] snake_case : Tuple = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=A ) return encoded_outputs
587
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : str = """▁""" lowercase : List[str] = {"""vocab_file""": """spiece.model"""} lowercase : List[str] = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } lowercase : Any = { """google/reformer-crime-and-punishment""": 5_2_4_2_8_8, } class a__ ( __SCREAMING_SNAKE_CASE ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ["input_ids", "attention_mask"] def __init__( self : List[str] , A_ : str , A_ : Optional[int]="</s>" , A_ : Optional[int]="<unk>" , A_ : List[str]=[] , A_ : Optional[Dict[str, Any]] = None , **A_ : int , ) -> None: """simple docstring""" lowerCamelCase_: int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A_ , unk_token=A_ , additional_special_tokens=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) lowerCamelCase_: Union[str, Any] = vocab_file lowerCamelCase_: Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return self.sp_model.get_piece_size() def lowerCAmelCase ( self : List[Any] ) -> Dict[str, int]: """simple docstring""" lowerCamelCase_: List[Any] = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> int: """simple docstring""" lowerCamelCase_: List[Any] = self.__dict__.copy() lowerCamelCase_: Any = None return state def __setstate__( self : Tuple , A_ : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_: List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase_: Optional[int] = {} lowerCamelCase_: str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : Optional[Any] , A_ : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(A_ , out_type=A_ ) def lowerCAmelCase ( self : Optional[Any] , A_ : Optional[int] ) -> List[Any]: """simple docstring""" return self.sp_model.piece_to_id(A_ ) def lowerCAmelCase ( self : List[Any] , A_ : Tuple ) -> Any: """simple docstring""" if index < self.sp_model.get_piece_size(): lowerCamelCase_: str = self.sp_model.IdToPiece(A_ ) return token def lowerCAmelCase ( self : List[Any] , A_ : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase_: Union[str, Any] = [] lowerCamelCase_: Optional[Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token lowerCamelCase_: int = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def lowerCAmelCase ( self : List[Any] , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_: List[Any] = os.path.join( A_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , """wb""" ) as fi: lowerCamelCase_: List[str] = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
584
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
584
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class __magic_name__ ( lowercase__ ): _SCREAMING_SNAKE_CASE : Union[str, Any] = 'gpt_neox_japanese' def __init__( self : Any , snake_case_ : str=32000 , snake_case_ : Any=2560 , snake_case_ : List[str]=32 , snake_case_ : List[str]=32 , snake_case_ : Dict=4 , snake_case_ : Tuple="gelu" , snake_case_ : Optional[int]=1.00 , snake_case_ : List[Any]=10000 , snake_case_ : Any=2048 , snake_case_ : str=0.02 , snake_case_ : Union[str, Any]=1e-5 , snake_case_ : Union[str, Any]=True , snake_case_ : Optional[int]=31996 , snake_case_ : Tuple=31999 , snake_case_ : Optional[int]=0.1 , snake_case_ : List[Any]=0.0 , **snake_case_ : List[Any] , ): super().__init__(bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_multiple_size __snake_case = hidden_act __snake_case = rotary_pct __snake_case = rotary_emb_base __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = use_cache __snake_case = attention_dropout __snake_case = hidden_dropout
163
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __magic_name__ ( lowercase__ ): def __init__( self : str , *snake_case_ : Optional[Any] , **snake_case_ : List[Any] ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
163
1
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def lowerCAmelCase( a__ : Dict ): '''simple docstring''' lowerCamelCase__ = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " f"""{test_file} instead.""" ) lowerCamelCase__ = components[-1] if not test_fn.endswith("py" ): raise ValueError(f"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith("test_modeling_" ): raise ValueError( f"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) lowerCamelCase__ = components[:-1] + [test_fn.replace(".py" , "" )] lowerCamelCase__ = ".".join(a__ ) return test_module_path def lowerCAmelCase( a__ : Optional[int] ): '''simple docstring''' lowerCamelCase__ = get_module_path(a__ ) lowerCamelCase__ = importlib.import_module(a__ ) return test_module def lowerCAmelCase( a__ : Any ): '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = get_test_module(a__ ) for attr in dir(a__ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(a__ , a__ ) ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def lowerCAmelCase( a__ : Optional[int] ): '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = get_test_module(a__ ) for attr in dir(a__ ): lowerCamelCase__ = getattr(a__ , a__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCamelCase__ = getattr(a__ , "all_model_classes" , [] ) if len(a__ ) > 0: test_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def lowerCAmelCase( a__ : Dict ): '''simple docstring''' lowerCamelCase__ = get_test_classes(a__ ) lowerCamelCase__ = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def lowerCAmelCase( a__ : Optional[Any] ): '''simple docstring''' lowerCamelCase__ = test_class() if hasattr(a__ , "setUp" ): test.setUp() lowerCamelCase__ = None if hasattr(a__ , "model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCamelCase__ = test.model_tester.__class__ return model_tester def lowerCAmelCase( a__ : Any , a__ : Dict ): '''simple docstring''' lowerCamelCase__ = get_test_classes(a__ ) lowerCamelCase__ = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def lowerCAmelCase( a__ : int , a__ : List[str] ): '''simple docstring''' lowerCamelCase__ = get_test_classes_for_model(a__ , a__ ) lowerCamelCase__ = [] for test_class in test_classes: lowerCamelCase__ = get_model_tester_from_test_class(a__ ) if tester_class is not None: tester_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def lowerCAmelCase( a__ : int ): '''simple docstring''' lowerCamelCase__ = get_test_classes(a__ ) lowerCamelCase__ = {test_class: get_model_tester_from_test_class(a__ ) for test_class in test_classes} return test_tester_mapping def lowerCAmelCase( a__ : List[str] ): '''simple docstring''' lowerCamelCase__ = get_model_classes(a__ ) lowerCamelCase__ = { model_class: get_test_classes_for_model(a__ , a__ ) for model_class in model_classes } return model_test_mapping def lowerCAmelCase( a__ : int ): '''simple docstring''' lowerCamelCase__ = get_model_classes(a__ ) lowerCamelCase__ = { model_class: get_tester_classes_for_model(a__ , a__ ) for model_class in model_classes } return model_to_tester_mapping def lowerCAmelCase( a__ : Tuple ): '''simple docstring''' if isinstance(a__ , a__ ): return o elif isinstance(a__ , a__ ): return o.__name__ elif isinstance(a__ , (list, tuple) ): return [to_json(a__ ) for x in o] elif isinstance(a__ , a__ ): return {to_json(a__ ): to_json(a__ ) for k, v in o.items()} else: return o
706
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP lowerCAmelCase_ = False try: lowerCAmelCase_ = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class snake_case_ : """simple docstring""" def __init__( self , UpperCamelCase = None , UpperCamelCase = []): lowerCamelCase__ = 0 lowerCamelCase__ = choices lowerCamelCase__ = prompt if sys.platform == "win32": lowerCamelCase__ = "*" else: lowerCamelCase__ = "➔ " def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase = ""): if sys.platform != "win32": writeColor(self.choices[index] , 32 , UpperCamelCase) else: forceWrite(self.choices[index] , UpperCamelCase) def __UpperCAmelCase ( self , UpperCamelCase): if index == self.position: forceWrite(f""" {self.arrow_char} """) self.write_choice(UpperCamelCase) else: forceWrite(f""" {self.choices[index]}""") reset_cursor() def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase = 1): lowerCamelCase__ = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(UpperCamelCase) move_cursor(UpperCamelCase , direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def __UpperCAmelCase ( self): self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def __UpperCAmelCase ( self): self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def __UpperCAmelCase ( self): move_cursor(len(self.choices) - self.position , "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def __UpperCAmelCase ( self): move_cursor(len(self.choices) - self.position , "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(UpperCamelCase)] for number in range(10)]) def __UpperCAmelCase ( self): lowerCamelCase__ = int(chr(self.current_selection)) lowerCamelCase__ = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP , -movement) elif self.position < index: self.move_direction(Direction.DOWN , UpperCamelCase) else: return else: return def __UpperCAmelCase ( self , UpperCamelCase = 0): if self.prompt: linebreak() forceWrite(self.prompt , "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n") lowerCamelCase__ = default_choice for i in range(len(self.choices)): self.print_choice(UpperCamelCase) forceWrite("\n") move_cursor(len(self.choices) - self.position , "UP") with cursor.hide(): while True: if in_colab: try: lowerCamelCase__ = int(builtins.input()) except ValueError: lowerCamelCase__ = default_choice else: lowerCamelCase__ = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1 , "UP") clear_line() self.write_choice(UpperCamelCase , "\n") return choice
426
0
'''simple docstring''' import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case : List[Any] = logging.getLogger(__name__) _snake_case : Union[str, Any] = """pytorch_model.bin""" @dataclasses.dataclass class A : lowercase_ = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) lowercase_ = dataclasses.field( default=__lowercase ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} ,) @dataclasses.dataclass class A : lowercase_ = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) lowercase_ = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) lowercase_ = dataclasses.field( default=__lowercase ,metadata={'help': 'A csv or a json file containing the validation data.'} ) lowercase_ = dataclasses.field( default=__lowercase ,metadata={'help': 'The name of the task to train on.'} ,) lowercase_ = dataclasses.field( default=__lowercase ,metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class A : lowercase_ = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) lowercase_ = dataclasses.field( default='accuracy' ,metadata={'help': 'The evaluation metric used for the task.'} ) lowercase_ = dataclasses.field( default='no' ,metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } ,) lowercase_ = dataclasses.field( default=10 ,metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} ,) lowercase_ = dataclasses.field( default=0.0 ,metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } ,) lowercase_ = dataclasses.field( default=__lowercase ,metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} ,) lowercase_ = dataclasses.field( default=__lowercase ,metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} ,) lowercase_ = dataclasses.field( default=__lowercase ,metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} ,) lowercase_ = dataclasses.field( default=0.0 ,metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} ,) lowercase_ = dataclasses.field( default=100 ,metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} ,) lowercase_ = dataclasses.field( default=__lowercase ,metadata={'help': 'Random seed for initialization.'} ,) def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : Dict , UpperCamelCase : List[str] ): '''simple docstring''' _a = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _a = dataset.filter(lambda UpperCamelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _a = dataset.sort('''probability''' , reverse=UpperCamelCase__ ) _a = dataset.select(range(UpperCamelCase__ ) ) _a = dataset.remove_columns(['''label''', '''probability'''] ) _a = dataset.rename_column('''prediction''' , '''label''' ) _a = dataset.map(lambda UpperCamelCase : {"label": idalabel[example["label"]]} ) _a = dataset.shuffle(seed=args.seed ) _a = os.path.join(UpperCamelCase__ , f'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def snake_case_ (UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : int , **UpperCamelCase : List[Any] ): '''simple docstring''' _a = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a = STModelArguments(model_name_or_path=UpperCamelCase__ ) _a = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _a = STTrainingArguments(output_dir=UpperCamelCase__ ) _a = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _a = {} _a = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a = args.train_file _a = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a = args.eval_file for key in data_files: _a = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], f'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: _a = extension else: assert extension == args.data_file_extension, f'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), f'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) _a = f'{args.output_dir}/self-train_iter-{{}}'.format _a = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _a = None _a = None _a = 0 _a = False # Show the progress bar _a = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _a = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a = os.path.join(UpperCamelCase__ , '''stage-1''' ) _a = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _a = os.path.join(UpperCamelCase__ , '''best-checkpoint''' , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a = os.path.join(UpperCamelCase__ , '''best-checkpoint''' ) _a = os.path.join(UpperCamelCase__ , '''stage-2''' ) # Update arguments_dict _a = model_path _a = data_files['''train'''] _a = current_output_dir _a = os.path.join(UpperCamelCase__ , '''best-checkpoint''' , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , UpperCamelCase__ ) _a = iteration _a = data_dir_format(iteration + 1 ) _a = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , '''best-checkpoint''' ) ) _a = config.idalabel _a = os.path.join(UpperCamelCase__ , '''eval_results_best-checkpoint.json''' ) _a = os.path.join(UpperCamelCase__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , '''r''' ) as f: _a = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _a = os.path.join(UpperCamelCase__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _a = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] _a = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , f'eval_results_iter-{iteration}.json' ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , f'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _a = os.path.join(UpperCamelCase__ , f'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a = eval_result if best_iteration is None: _a = new_iteration _a = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a = new_iteration _a = new_eval_result _a = 0 else: if new_eval_result == best_eval_result: _a = new_iteration _a = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , UpperCamelCase__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , f'eval_results_iter-{iteration}.json' ) , os.path.join(UpperCamelCase__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , f'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(UpperCamelCase__ , '''eval_results_best-iteration.json''' ) , )
22
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class a ( __lowercase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): """simple docstring""" super().__init__( features=_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase , streaming=_lowerCAmelCase , num_proc=_lowerCAmelCase , **_lowerCAmelCase , ) __SCREAMING_SNAKE_CASE: Any = Generator( cache_dir=_lowerCAmelCase , features=_lowerCAmelCase , generator=_lowerCAmelCase , gen_kwargs=_lowerCAmelCase , **_lowerCAmelCase , ) def snake_case_ ( self ): """simple docstring""" if self.streaming: __SCREAMING_SNAKE_CASE: List[str] = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: __SCREAMING_SNAKE_CASE: str = None __SCREAMING_SNAKE_CASE: List[Any] = None __SCREAMING_SNAKE_CASE: Tuple = None __SCREAMING_SNAKE_CASE: Optional[Any] = None self.builder.download_and_prepare( download_config=_lowerCAmelCase , download_mode=_lowerCAmelCase , verification_mode=_lowerCAmelCase , base_path=_lowerCAmelCase , num_proc=self.num_proc , ) __SCREAMING_SNAKE_CASE: List[str] = self.builder.as_dataset( split='''train''' , verification_mode=_lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset
202
0
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int]=1_3 , UpperCamelCase__ : Dict=7 , UpperCamelCase__ : str=True , UpperCamelCase__ : int=True , UpperCamelCase__ : int=True , UpperCamelCase__ : str=True , UpperCamelCase__ : List[Any]=9_9 , UpperCamelCase__ : int=6_4 , UpperCamelCase__ : Optional[int]=3_2 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : List[Any]=3_7 , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : Dict=5_1_2 , UpperCamelCase__ : Union[str, Any]=1_6 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : int=4 , UpperCamelCase__ : List[str]=None , ): '''simple docstring''' snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = embedding_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope def __magic_name__ ( self : Dict): '''simple docstring''' snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length]) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) snake_case__ = ids_tensor([self.batch_size] , self.num_choices) snake_case__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Any): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def __magic_name__ ( self : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : str): '''simple docstring''' snake_case__ = MobileBertModel(config=__UpperCamelCase) model.to(__UpperCamelCase) model.eval() snake_case__ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase) snake_case__ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase) snake_case__ = model(__UpperCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def __magic_name__ ( self : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str): '''simple docstring''' snake_case__ = MobileBertForMaskedLM(config=__UpperCamelCase) model.to(__UpperCamelCase) model.eval() snake_case__ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __magic_name__ ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str]): '''simple docstring''' snake_case__ = MobileBertForNextSentencePrediction(config=__UpperCamelCase) model.to(__UpperCamelCase) model.eval() snake_case__ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def __magic_name__ ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any]): '''simple docstring''' snake_case__ = MobileBertForPreTraining(config=__UpperCamelCase) model.to(__UpperCamelCase) model.eval() snake_case__ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , next_sentence_label=__UpperCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def __magic_name__ ( self : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int]): '''simple docstring''' snake_case__ = MobileBertForQuestionAnswering(config=__UpperCamelCase) model.to(__UpperCamelCase) model.eval() snake_case__ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __magic_name__ ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple): '''simple docstring''' snake_case__ = self.num_labels snake_case__ = MobileBertForSequenceClassification(__UpperCamelCase) model.to(__UpperCamelCase) model.eval() snake_case__ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __magic_name__ ( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple): '''simple docstring''' snake_case__ = self.num_labels snake_case__ = MobileBertForTokenClassification(config=__UpperCamelCase) model.to(__UpperCamelCase) model.eval() snake_case__ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __magic_name__ ( self : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any): '''simple docstring''' snake_case__ = self.num_choices snake_case__ = MobileBertForMultipleChoice(config=__UpperCamelCase) model.to(__UpperCamelCase) model.eval() snake_case__ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() snake_case__ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() snake_case__ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() snake_case__ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __magic_name__ ( self : int): '''simple docstring''' snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" _lowercase : Optional[int] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowercase : Any = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowercase : Optional[int] = True def __magic_name__ ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any]=False): '''simple docstring''' snake_case__ = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase) if return_labels: if model_class in get_values(__UpperCamelCase): snake_case__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCamelCase) snake_case__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase) return inputs_dict def __magic_name__ ( self : Tuple): '''simple docstring''' snake_case__ = MobileBertModelTester(self) snake_case__ = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7) def __magic_name__ ( self : List[str]): '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : Dict): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase) def __magic_name__ ( self : Dict): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase) def __magic_name__ ( self : List[str]): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase) def __magic_name__ ( self : Any): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase) def __magic_name__ ( self : List[str]): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase) def __magic_name__ ( self : Dict): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase) def __magic_name__ ( self : Any): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase) def __magic_name__ ( self : Union[str, Any]): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase) def _UpperCAmelCase ( a : List[Any] ): return torch.tensor( _A , dtype=torch.long , device=_A , ) a__ = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def __magic_name__ ( self : int): '''simple docstring''' snake_case__ = MobileBertModel.from_pretrained("""google/mobilebert-uncased""").to(__UpperCamelCase) snake_case__ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]]) with torch.no_grad(): snake_case__ = model(__UpperCamelCase)[0] snake_case__ = torch.Size((1, 9, 5_1_2)) self.assertEqual(output.shape , __UpperCamelCase) snake_case__ = torch.tensor( [ [ [-2.4_736_526E07, 8.2_691_656E04, 1.6_521_838E05], [-5.7_541_704E-01, 3.9_056_022E00, 4.4_011_507E00], [2.6_047_359E00, 1.5_677_652E00, -1.7_324_188E-01], ] ] , device=__UpperCamelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE snake_case__ = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE) snake_case__ = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE) self.assertTrue(lower_bound and upper_bound)
719
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging a__ = logging.get_logger(__name__) def _UpperCAmelCase ( a : Union[tf.Tensor, np.ndarray] ): if isinstance(a , np.ndarray ): return list(tensor.shape ) snake_case__ = tf.shape(a ) if tensor.shape == tf.TensorShape(a ): return dynamic snake_case__ = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(a )] def _UpperCAmelCase ( a : tf.Tensor , a : Optional[int] = None , a : Optional[str] = None ): return tf.nn.softmax(logits=logits + 1e-9 , axis=a , name=a ) def _UpperCAmelCase ( a : Optional[int] , a : Union[str, Any] , a : Dict , a : int=1e-5 , a : Dict=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(a , a ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized snake_case__ , snake_case__ = tf.nn.moments(a , axes=[axis] , keepdims=a ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis snake_case__ = [1] * inputs.shape.rank snake_case__ = shape_list(a )[axis] snake_case__ = tf.reshape(a , a ) snake_case__ = tf.reshape(a , a ) # Compute layer normalization using the batch_normalization # function. snake_case__ = tf.nn.batch_normalization( a , a , a , offset=a , scale=a , variance_epsilon=a , ) return outputs def _UpperCAmelCase ( a : Optional[int] , a : Dict=0 , a : List[Any]=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input snake_case__ = tf.shape(a ) snake_case__ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) snake_case__ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(a , a ) def _UpperCAmelCase ( a : tf.Tensor ): if not isinstance(a , tf.Tensor ): snake_case__ = tf.convert_to_tensor(a ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: snake_case__ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: snake_case__ = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) snake_case__ = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _UpperCAmelCase ( a : tf.Tensor , a : int , a : str = "input_ids" ): tf.debugging.assert_less( a , tf.cast(a , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(a )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def _UpperCAmelCase ( a : str , a : Tuple , a : Optional[int] ): snake_case__ = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. snake_case__ = [x for x in data if len(a ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) snake_case__ = np.asarray(a ) snake_case__ = 1 snake_case__ = np.array_split(a , a ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 snake_case__ = np.array_split(a , a ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(a ): snake_case__ = chunk_data else: snake_case__ = data def _UpperCAmelCase ( a : List[Any] , a : Optional[int] ): if name in group.attrs: snake_case__ = [n.decode("""utf8""" ) if hasattr(a , """decode""" ) else n for n in group.attrs[name]] else: snake_case__ = [] snake_case__ = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(a , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def _UpperCAmelCase ( a : Optional[int] ): def _expand_single_ad_tensor(a : Any ): if isinstance(a , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(a , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , a )
99
0
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = FlaxAutoencoderKL @property def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase : List[str] = 4 __lowercase : Tuple = 3 __lowercase : Any = (32, 32) __lowercase : Tuple = jax.random.PRNGKey(0 ) __lowercase : Tuple = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } __lowercase : str = self.dummy_input return init_dict, inputs_dict
149
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = '''align_text_model''' def __init__( self : int , __a : Optional[int]=30522 , __a : int=768 , __a : Optional[Any]=12 , __a : Any=12 , __a : Tuple=3072 , __a : Tuple="gelu" , __a : List[Any]=0.1 , __a : Optional[int]=0.1 , __a : Dict=512 , __a : List[Any]=2 , __a : Dict=0.02 , __a : Optional[int]=1E-12 , __a : int=0 , __a : Optional[int]="absolute" , __a : Tuple=True , **__a : Union[str, Any] , ) -> Any: """simple docstring""" super().__init__(**__a ) __lowercase : Tuple = vocab_size __lowercase : Dict = hidden_size __lowercase : Tuple = num_hidden_layers __lowercase : Union[str, Any] = num_attention_heads __lowercase : Optional[Any] = hidden_act __lowercase : Tuple = intermediate_size __lowercase : List[str] = hidden_dropout_prob __lowercase : List[str] = attention_probs_dropout_prob __lowercase : Any = max_position_embeddings __lowercase : str = type_vocab_size __lowercase : List[str] = initializer_range __lowercase : Optional[int] = layer_norm_eps __lowercase : Optional[int] = position_embedding_type __lowercase : Union[str, Any] = use_cache __lowercase : int = pad_token_id @classmethod def lowerCAmelCase ( cls : Tuple , __a : Union[str, os.PathLike] , **__a : Union[str, Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__a ) __lowercase , __lowercase : List[Any] = cls.get_config_dict(__a , **__a ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": __lowercase : Tuple = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__a , **__a ) class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''align_vision_model''' def __init__( self : List[str] , __a : int = 3 , __a : int = 600 , __a : float = 2.0 , __a : float = 3.1 , __a : int = 8 , __a : List[int] = [3, 3, 5, 3, 5, 5, 3] , __a : List[int] = [32, 16, 24, 40, 80, 112, 192] , __a : List[int] = [16, 24, 40, 80, 112, 192, 320] , __a : List[int] = [] , __a : List[int] = [1, 2, 2, 2, 1, 2, 1] , __a : List[int] = [1, 2, 2, 3, 3, 4, 1] , __a : List[int] = [1, 6, 6, 6, 6, 6, 6] , __a : float = 0.25 , __a : str = "swish" , __a : int = 2560 , __a : str = "mean" , __a : float = 0.02 , __a : float = 0.001 , __a : float = 0.99 , __a : float = 0.2 , **__a : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(**__a ) __lowercase : Any = num_channels __lowercase : Tuple = image_size __lowercase : Tuple = width_coefficient __lowercase : Any = depth_coefficient __lowercase : str = depth_divisor __lowercase : Union[str, Any] = kernel_sizes __lowercase : int = in_channels __lowercase : List[Any] = out_channels __lowercase : int = depthwise_padding __lowercase : Union[str, Any] = strides __lowercase : Optional[int] = num_block_repeats __lowercase : List[str] = expand_ratios __lowercase : int = squeeze_expansion_ratio __lowercase : str = hidden_act __lowercase : List[str] = hidden_dim __lowercase : Dict = pooling_type __lowercase : Any = initializer_range __lowercase : Tuple = batch_norm_eps __lowercase : int = batch_norm_momentum __lowercase : Tuple = drop_connect_rate __lowercase : Tuple = sum(__a ) * 4 @classmethod def lowerCAmelCase ( cls : str , __a : Union[str, os.PathLike] , **__a : Union[str, Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__a ) __lowercase , __lowercase : Optional[int] = cls.get_config_dict(__a , **__a ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": __lowercase : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__a , **__a ) class lowerCAmelCase ( __a ): '''simple docstring''' _A : Union[str, Any] = '''align''' _A : Optional[int] = True def __init__( self : Optional[Any] , __a : Optional[int]=None , __a : str=None , __a : int=640 , __a : List[Any]=1.0 , __a : Optional[int]=0.02 , **__a : List[Any] , ) -> Any: """simple docstring""" super().__init__(**__a ) if text_config is None: __lowercase : Optional[Any] = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: __lowercase : Dict = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) __lowercase : str = AlignTextConfig(**__a ) __lowercase : int = AlignVisionConfig(**__a ) __lowercase : str = projection_dim __lowercase : Optional[int] = temperature_init_value __lowercase : Dict = initializer_range @classmethod def lowerCAmelCase ( cls : List[Any] , __a : AlignTextConfig , __a : AlignVisionConfig , **__a : Any ) -> Any: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = copy.deepcopy(self.__dict__ ) __lowercase : Tuple = self.text_config.to_dict() __lowercase : List[Any] = self.vision_config.to_dict() __lowercase : List[str] = self.__class__.model_type return output
149
1
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class UpperCamelCase_ ( __UpperCAmelCase ): """simple docstring""" def lowerCamelCase_ ( self ): __lowerCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(UpperCAmelCase , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(UpperCAmelCase , """num_encoder_blocks""" ) ) class UpperCamelCase_ : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=6_4 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[2, 2, 2, 2] , UpperCAmelCase=[8, 4, 2, 1] , UpperCAmelCase=[1_6, 3_2, 6_4, 1_2_8] , UpperCAmelCase=[1, 4, 8, 1_6] , UpperCAmelCase=[1, 2, 4, 8] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=None , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = num_encoder_blocks __lowerCamelCase = sr_ratios __lowerCamelCase = depths __lowerCamelCase = hidden_sizes __lowerCamelCase = downsampling_rates __lowerCamelCase = num_attention_heads __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = scope def lowerCamelCase_ ( self ): __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ): return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = SegformerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase = model(UpperCAmelCase ) __lowerCamelCase = __lowerCamelCase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = self.num_labels __lowerCamelCase = SegformerForSemanticSegmentation(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) __lowerCamelCase = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = 1 __lowerCamelCase = SegformerForSemanticSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(UpperCAmelCase ) __lowerCamelCase = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertGreater(result.loss , 0.0 ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( __UpperCAmelCase ,__UpperCAmelCase ,unittest.TestCase ): """simple docstring""" A = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) A = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) A = True A = False A = False A = False def lowerCamelCase_ ( self ): __lowerCamelCase = SegformerModelTester(self ) __lowerCamelCase = SegformerConfigTester(self , config_class=UpperCAmelCase ) def lowerCamelCase_ ( self ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*UpperCAmelCase ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def lowerCamelCase_ ( self ): pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def lowerCamelCase_ ( self ): pass def lowerCamelCase_ ( self ): __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(UpperCAmelCase ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowerCamelCase_ ( self ): __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = True for model_class in self.all_model_classes: __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions __lowerCamelCase = sum(self.model_tester.depths ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCamelCase = True __lowerCamelCase = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # verify the first attentions (first block, first layer) __lowerCamelCase = (self.model_tester.image_size // 4) ** 2 __lowerCamelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) __lowerCamelCase = (self.model_tester.image_size // 3_2) ** 2 __lowerCamelCase = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) __lowerCamelCase = len(UpperCAmelCase ) # Check attention is always last and order is fine __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + 1 , len(UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # verify the first attentions (first block, first layer) __lowerCamelCase = (self.model_tester.image_size // 4) ** 2 __lowerCamelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def lowerCamelCase_ ( self ): def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = self.model_tester.num_encoder_blocks self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase_ ( self ): if not self.model_tester.is_training: return __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = True for model_class in self.all_model_classes: if model_class in get_values(UpperCAmelCase ): continue __lowerCamelCase = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() __lowerCamelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCamelCase = model(**UpperCAmelCase ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase_ ( self ): pass @slow def lowerCamelCase_ ( self ): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = SegformerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase_ ( self ): __lowerCamelCase = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=UpperCAmelCase , align=UpperCAmelCase , do_random_crop=UpperCAmelCase ) __lowerCamelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( UpperCAmelCase ) __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) __lowerCamelCase = encoded_inputs.pixel_values.to(UpperCAmelCase ) with torch.no_grad(): __lowerCamelCase = model(UpperCAmelCase ) __lowerCamelCase = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) __lowerCamelCase = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self ): __lowerCamelCase = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=UpperCAmelCase , align=UpperCAmelCase , do_random_crop=UpperCAmelCase ) __lowerCamelCase = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(UpperCAmelCase ) __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) __lowerCamelCase = encoded_inputs.pixel_values.to(UpperCAmelCase ) with torch.no_grad(): __lowerCamelCase = model(UpperCAmelCase ) __lowerCamelCase = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) __lowerCamelCase = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCAmelCase , atol=1E-1 ) ) @slow def lowerCamelCase_ ( self ): __lowerCamelCase = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=UpperCAmelCase , align=UpperCAmelCase , do_random_crop=UpperCAmelCase ) __lowerCamelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( UpperCAmelCase ) __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) __lowerCamelCase = encoded_inputs.pixel_values.to(UpperCAmelCase ) with torch.no_grad(): __lowerCamelCase = model(UpperCAmelCase ) __lowerCamelCase = outputs.logits.detach().cpu() __lowerCamelCase = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase , target_sizes=[(5_0_0, 3_0_0)] ) __lowerCamelCase = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase ) __lowerCamelCase = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase ) __lowerCamelCase = torch.Size((1_2_8, 1_2_8) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase )
717
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _a : List[Any] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def UpperCamelCase__ ( _A: Any ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def UpperCamelCase__ ( _A: Optional[Any] , _A: Optional[Any] ): '''simple docstring''' if args.student_type == "roberta": __lowerCamelCase = False elif args.student_type == "gpt2": __lowerCamelCase = False def UpperCamelCase__ ( _A: Dict , _A: Any ): '''simple docstring''' if args.student_type == "roberta": __lowerCamelCase = False def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=_A , required=_A , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=_A , required=_A , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=_A , choices=["""distilbert""", """roberta""", """gpt2"""] , required=_A , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=_A , required=_A , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=_A , type=_A , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=_A , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=_A , required=_A , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=_A , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=_A , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=_A , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=_A , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=_A , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=_A , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=_A , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=_A , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=_A , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=_A , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=_A , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=_A , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=_A , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=_A , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=_A , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=_A , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=_A , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5e-4 , type=_A , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1e-6 , type=_A , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=_A , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=_A , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=_A , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=_A , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=_A , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=_A , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=_A , default=500 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=_A , default=4000 , help="""Checkpoint interval.""" ) __lowerCamelCase = parser.parse_args() sanity_checks(_A ) # ARGS # init_gpu_params(_A ) set_seed(_A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(f'''Param: {args}''' ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(_A ) , _A , indent=4 ) git_log(args.dump_path ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = MODEL_CLASSES[args.student_type] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __lowerCamelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __lowerCamelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __lowerCamelCase = tokenizer.all_special_tokens.index(_A ) __lowerCamelCase = tokenizer.all_special_ids[idx] logger.info(f'''Special tokens {special_tok_ids}''' ) __lowerCamelCase = special_tok_ids __lowerCamelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'''Loading data from {args.data_file}''' ) with open(args.data_file , """rb""" ) as fp: __lowerCamelCase = pickle.load(_A ) if args.mlm: logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , """rb""" ) as fp: __lowerCamelCase = pickle.load(_A ) __lowerCamelCase = np.maximum(_A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __lowerCamelCase = 0.0 # do not predict special tokens __lowerCamelCase = torch.from_numpy(_A ) else: __lowerCamelCase = None __lowerCamelCase = LmSeqsDataset(params=_A , data=_A ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(f'''Loading student config from {args.student_config}''' ) __lowerCamelCase = student_config_class.from_pretrained(args.student_config ) __lowerCamelCase = True if args.student_pretrained_weights is not None: logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __lowerCamelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=_A ) else: __lowerCamelCase = student_model_class(_A ) if args.n_gpu > 0: student.to(f'''cuda:{args.local_rank}''' ) logger.info("""Student loaded.""" ) # TEACHER # __lowerCamelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_A ) if args.n_gpu > 0: teacher.to(f'''cuda:{args.local_rank}''' ) logger.info(f'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_A , _A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_A , _A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __lowerCamelCase = Distiller( params=_A , dataset=_A , token_probs=_A , student=_A , teacher=_A ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
571
0
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase__ , 'embed_dim' ) ) self.parent.assertTrue(hasattr(lowercase__ , 'num_heads' ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase__ , lowercase__=13 , lowercase__=64 , lowercase__=3 , lowercase__=[16, 48, 96] , lowercase__=[1, 3, 6] , lowercase__=[1, 2, 10] , lowercase__=[7, 3, 3] , lowercase__=[4, 2, 2] , lowercase__=[2, 1, 1] , lowercase__=[2, 2, 2] , lowercase__=[False, False, True] , lowercase__=[0.0, 0.0, 0.0] , lowercase__=0.0_2 , lowercase__=1E-12 , lowercase__=True , lowercase__=True , lowercase__=2 , ) -> int: SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : Tuple = batch_size SCREAMING_SNAKE_CASE : List[str] = image_size SCREAMING_SNAKE_CASE : int = patch_sizes SCREAMING_SNAKE_CASE : List[Any] = patch_stride SCREAMING_SNAKE_CASE : Tuple = patch_padding SCREAMING_SNAKE_CASE : str = is_training SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : Optional[int] = num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = embed_dim SCREAMING_SNAKE_CASE : Optional[Any] = num_heads SCREAMING_SNAKE_CASE : Optional[int] = stride_kv SCREAMING_SNAKE_CASE : Any = depth SCREAMING_SNAKE_CASE : str = cls_token SCREAMING_SNAKE_CASE : List[Any] = attention_drop_rate SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self ) -> List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ) -> Tuple: SCREAMING_SNAKE_CASE : Dict = CvtModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : str = model(lowercase__ ) SCREAMING_SNAKE_CASE : Dict = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image_size[0], image_size[1] for i in range(len(self.depth ) ): SCREAMING_SNAKE_CASE : Union[str, Any] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) SCREAMING_SNAKE_CASE : str = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Any = self.num_labels SCREAMING_SNAKE_CASE : str = CvtForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : str = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : List[str] = (CvtModel, CvtForImageClassification) if is_torch_available() else () snake_case__ : Any = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) snake_case__ : Tuple = False snake_case__ : str = False snake_case__ : Optional[Any] = False snake_case__ : Union[str, Any] = False snake_case__ : List[str] = False def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE : str = CvtModelTester(self ) SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 ) def _UpperCamelCase ( self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> Union[str, Any]: return @unittest.skip(reason='Cvt does not output attentions' ) def _UpperCamelCase ( self ) -> List[Any]: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def _UpperCamelCase ( self ) -> Union[str, Any]: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class(lowercase__ ) SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Tuple = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase__ ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def _UpperCamelCase ( self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE : List[Any] = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) SCREAMING_SNAKE_CASE : str = outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = len(self.model_tester.depth ) self.assertEqual(len(lowercase__ ) , lowercase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCamelCase ( self ) -> List[Any]: pass @slow def _UpperCamelCase ( self ) -> Optional[Any]: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Tuple = CvtModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def __lowerCAmelCase ( ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCamelCase ( self ) -> Tuple: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowercase__ ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(images=lowercase__ , return_tensors='pt' ).to(lowercase__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**lowercase__ ) # verify the logits SCREAMING_SNAKE_CASE : Dict = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) SCREAMING_SNAKE_CASE : Dict = torch.tensor([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
251
'''simple docstring''' def __lowerCAmelCase ( a_ = 1 , a_ = 1000 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Optional[int] = 0 for divide_by_number in range(a_ , digit + 1 ): SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : Any = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(a_ ): SCREAMING_SNAKE_CASE : List[Any] = len(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = divide_by_number else: has_been_divided.append(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
251
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A_ :Tuple = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) A_ :Tuple = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.weight", f"decoder.layers.{i}.sa_qcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.weight", f"decoder.layers.{i}.sa_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qpos_proj.weight", f"decoder.layers.{i}.sa_qpos_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kpos_proj.weight", f"decoder.layers.{i}.sa_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.weight", f"decoder.layers.{i}.sa_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.weight", f"decoder.layers.{i}.ca_qcontent_proj.weight") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.weight", f"decoder.layers.{i}.ca_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kpos_proj.weight", f"decoder.layers.{i}.ca_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.weight", f"decoder.layers.{i}.ca_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight", f"decoder.layers.{i}.ca_qpos_sine_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.bias", f"decoder.layers.{i}.sa_qcontent_proj.bias") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.bias", f"decoder.layers.{i}.sa_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_qpos_proj.bias", f"decoder.layers.{i}.sa_qpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_kpos_proj.bias", f"decoder.layers.{i}.sa_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.bias", f"decoder.layers.{i}.sa_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.bias", f"decoder.layers.{i}.ca_qcontent_proj.bias") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.bias", f"decoder.layers.{i}.ca_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_kpos_proj.bias", f"decoder.layers.{i}.ca_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.bias", f"decoder.layers.{i}.ca_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias", f"decoder.layers.{i}.ca_qpos_sine_proj.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def A ( a_ ,a_ ,a_ ) -> Optional[int]: __UpperCamelCase : List[Any] =state_dict.pop(a_ ) __UpperCamelCase : str =val def A ( a_ ) -> List[str]: __UpperCamelCase : List[Any] =OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __UpperCamelCase : Union[str, Any] =key.replace('backbone.0.body' ,'backbone.conv_encoder.model' ) __UpperCamelCase : Any =value else: __UpperCamelCase : Optional[Any] =value return new_state_dict def A ( a_ ,a_=False ) -> Any: __UpperCamelCase : Optional[int] ='' if is_panoptic: __UpperCamelCase : str ='conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __UpperCamelCase : Union[str, Any] =state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) __UpperCamelCase : Dict =state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase : Tuple =in_proj_weight[:256, :] __UpperCamelCase : Union[str, Any] =in_proj_bias[:256] __UpperCamelCase : str =in_proj_weight[256:512, :] __UpperCamelCase : List[str] =in_proj_bias[256:512] __UpperCamelCase : Union[str, Any] =in_proj_weight[-256:, :] __UpperCamelCase : List[Any] =in_proj_bias[-256:] def A ( ) -> int: __UpperCamelCase : Tuple ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase : Any =Image.open(requests.get(a_ ,stream=a_ ).raw ) return im @torch.no_grad() def A ( a_ ,a_ ) -> Optional[Any]: __UpperCamelCase : List[str] =ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __UpperCamelCase : int ='resnet101' if "dc5" in model_name: __UpperCamelCase : List[str] =True __UpperCamelCase : int ='panoptic' in model_name if is_panoptic: __UpperCamelCase : List[str] =250 else: __UpperCamelCase : Tuple =91 __UpperCamelCase : Optional[Any] ='huggingface/label-files' __UpperCamelCase : List[str] ='coco-detection-id2label.json' __UpperCamelCase : Optional[int] =json.load(open(hf_hub_download(a_ ,a_ ,repo_type='dataset' ) ,'r' ) ) __UpperCamelCase : Union[str, Any] ={int(a_ ): v for k, v in idalabel.items()} __UpperCamelCase : Union[str, Any] =idalabel __UpperCamelCase : int ={v: k for k, v in idalabel.items()} # load image processor __UpperCamelCase : List[str] ='coco_panoptic' if is_panoptic else 'coco_detection' __UpperCamelCase : Any =ConditionalDetrImageProcessor(format=a_ ) # prepare image __UpperCamelCase : str =prepare_img() __UpperCamelCase : Tuple =image_processor(images=a_ ,return_tensors='pt' ) __UpperCamelCase : Dict =encoding['pixel_values'] logger.info(F'Converting model {model_name}...' ) # load original model from torch hub __UpperCamelCase : str =torch.hub.load('DeppMeng/ConditionalDETR' ,a_ ,pretrained=a_ ).eval() __UpperCamelCase : int =conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __UpperCamelCase : Any ='conditional_detr.' + src rename_key(a_ ,a_ ,a_ ) __UpperCamelCase : Optional[Any] =rename_backbone_keys(a_ ) # query, key and value matrices need special treatment read_in_q_k_v(a_ ,is_panoptic=a_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __UpperCamelCase : Union[str, Any] ='conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): __UpperCamelCase : Dict =state_dict.pop(a_ ) __UpperCamelCase : List[str] =val elif "class_labels_classifier" in key or "bbox_predictor" in key: __UpperCamelCase : Dict =state_dict.pop(a_ ) __UpperCamelCase : Union[str, Any] =val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: __UpperCamelCase : Optional[Any] =state_dict.pop(a_ ) __UpperCamelCase : List[str] =val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): __UpperCamelCase : List[str] =state_dict.pop(a_ ) __UpperCamelCase : str =val # finally, create HuggingFace model and load state dict __UpperCamelCase : List[str] =ConditionalDetrForSegmentation(a_ ) if is_panoptic else ConditionalDetrForObjectDetection(a_ ) model.load_state_dict(a_ ) model.eval() model.push_to_hub(repo_id=a_ ,organization='DepuMeng' ,commit_message='Add model' ) # verify our conversion __UpperCamelCase : List[str] =conditional_detr(a_ ) __UpperCamelCase : Optional[Any] =model(a_ ) assert torch.allclose(outputs.logits ,original_outputs['pred_logits'] ,atol=1e-4 ) assert torch.allclose(outputs.pred_boxes ,original_outputs['pred_boxes'] ,atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs['pred_masks'] ,atol=1e-4 ) # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": A_ :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) A_ :Tuple = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
154
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: A_ :List[str] = None A_ :Dict = logging.get_logger(__name__) A_ :Tuple = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} A_ :Union[str, Any] = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } A_ :Union[str, Any] = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } A_ :Any = '''▁''' # Segments (not really needed) A_ :Tuple = 0 A_ :Union[str, Any] = 1 A_ :Tuple = 2 A_ :str = 3 A_ :int = 4 class __A ( a ): """simple docstring""" UpperCamelCase__ : List[str] =VOCAB_FILES_NAMES UpperCamelCase__ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Dict ="""left""" UpperCamelCase__ : int =XLNetTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<sep>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<cls>" , lowerCamelCase__="<mask>" , lowerCamelCase__=["<eop>", "<eod>"] , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Optional[Any] =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( vocab_file=lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) __UpperCamelCase : Union[str, Any] =3 __UpperCamelCase : Optional[int] =do_lower_case __UpperCamelCase : Optional[Any] =remove_space __UpperCamelCase : Union[str, Any] =keep_accents __UpperCamelCase : Optional[Any] =vocab_file __UpperCamelCase : List[str] =False if not self.vocab_file else True def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : List[str] =[self.sep_token_id] __UpperCamelCase : str =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : Tuple =[self.sep_token_id] __UpperCamelCase : Dict =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : Tuple =os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
154
1
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowerCAmelCase ( __lowerCAmelCase): __lowercase : List[Any] = '''umt5''' __lowercase : Union[str, Any] = ['''past_key_values'''] def __init__( self , __SCREAMING_SNAKE_CASE=25_0112 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=1024 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=128 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1E-6 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE="gated-gelu" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="T5Tokenizer" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: '''simple docstring''' super().__init__( is_encoder_decoder=__SCREAMING_SNAKE_CASE , tokenizer_class=__SCREAMING_SNAKE_CASE , tie_word_embeddings=__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __snake_case = vocab_size __snake_case = d_model __snake_case = d_kv __snake_case = d_ff __snake_case = num_layers __snake_case = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __snake_case = num_heads __snake_case = relative_attention_num_buckets __snake_case = relative_attention_max_distance __snake_case = dropout_rate __snake_case = layer_norm_epsilon __snake_case = initializer_factor __snake_case = feed_forward_proj __snake_case = use_cache __snake_case = self.feed_forward_proj.split('''-''' ) __snake_case = act_info[-1] __snake_case = act_info[0] == '''gated''' if len(__SCREAMING_SNAKE_CASE ) > 1 and act_info[0] != "gated" or len(__SCREAMING_SNAKE_CASE ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) if feed_forward_proj == "gated-gelu": __snake_case = '''gelu_new''' @property def lowerCAmelCase ( self ) -> int: '''simple docstring''' return self.d_model @property def lowerCAmelCase ( self ) -> Any: '''simple docstring''' return self.num_heads @property def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' return self.num_layers class lowerCAmelCase ( __lowerCAmelCase): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __snake_case = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: __snake_case = '''past_encoder_sequence + sequence''' __snake_case = {0: '''batch'''} __snake_case = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __snake_case = {0: '''batch''', 1: '''decoder_sequence'''} __snake_case = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def lowerCAmelCase ( self ) -> int: '''simple docstring''' return 13 @property def lowerCAmelCase ( self ) -> float: '''simple docstring''' return 5E-4
24
'''simple docstring''' def _UpperCamelCase (_lowerCamelCase : int )-> int: '''simple docstring''' __snake_case = abs(_lowerCamelCase ) __snake_case = 0 while n > 0: res += n % 10 n //= 10 return res def _UpperCamelCase (_lowerCamelCase : int )-> int: '''simple docstring''' __snake_case = abs(_lowerCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _UpperCamelCase (_lowerCamelCase : int )-> int: '''simple docstring''' return sum(int(_lowerCamelCase ) for c in str(abs(_lowerCamelCase ) ) ) def _UpperCamelCase ()-> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowerCamelCase : Callable , _lowerCamelCase : int ) -> None: __snake_case = f'''{func.__name__}({value})''' __snake_case = timeit(f'''__main__.{call}''' , setup='''import __main__''' ) print(f'''{call:56} = {func(_lowerCamelCase )} -- {timing:.4f} seconds''' ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_lowerCamelCase , _lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
24
1
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 0.0 UpperCamelCase__ = 1 UpperCamelCase__ = 1 UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = jnp.floataa def _A( self ): lowercase =[] lowercase =[] for i in range(self.num_layers ): lowercase =self.in_channels if i == 0 else self.out_channels lowercase =FlaxResnetBlockaD( in_channels=snake_case_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case_ ) lowercase =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(snake_case_ ) lowercase =resnets lowercase =attentions if self.add_downsample: lowercase =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): lowercase =() for resnet, attn in zip(self.resnets , self.attentions ): lowercase =resnet(snake_case_ , snake_case_ , deterministic=snake_case_ ) lowercase =attn(snake_case_ , snake_case_ , deterministic=snake_case_ ) output_states += (hidden_states,) if self.add_downsample: lowercase =self.downsamplers_a(snake_case_ ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 0.0 UpperCamelCase__ = 1 UpperCamelCase__ = True UpperCamelCase__ = jnp.floataa def _A( self ): lowercase =[] for i in range(self.num_layers ): lowercase =self.in_channels if i == 0 else self.out_channels lowercase =FlaxResnetBlockaD( in_channels=snake_case_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case_ ) lowercase =resnets if self.add_downsample: lowercase =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , snake_case_ , snake_case_ , snake_case_=True ): lowercase =() for resnet in self.resnets: lowercase =resnet(snake_case_ , snake_case_ , deterministic=snake_case_ ) output_states += (hidden_states,) if self.add_downsample: lowercase =self.downsamplers_a(snake_case_ ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 0.0 UpperCamelCase__ = 1 UpperCamelCase__ = 1 UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = jnp.floataa def _A( self ): lowercase =[] lowercase =[] for i in range(self.num_layers ): lowercase =self.in_channels if (i == self.num_layers - 1) else self.out_channels lowercase =self.prev_output_channel if i == 0 else self.out_channels lowercase =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case_ ) lowercase =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(snake_case_ ) lowercase =resnets lowercase =attentions if self.add_upsample: lowercase =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states lowercase =res_hidden_states_tuple[-1] lowercase =res_hidden_states_tuple[:-1] lowercase =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowercase =resnet(snake_case_ , snake_case_ , deterministic=snake_case_ ) lowercase =attn(snake_case_ , snake_case_ , deterministic=snake_case_ ) if self.add_upsample: lowercase =self.upsamplers_a(snake_case_ ) return hidden_states class __magic_name__ ( nn.Module ): UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 0.0 UpperCamelCase__ = 1 UpperCamelCase__ = True UpperCamelCase__ = jnp.floataa def _A( self ): lowercase =[] for i in range(self.num_layers ): lowercase =self.in_channels if (i == self.num_layers - 1) else self.out_channels lowercase =self.prev_output_channel if i == 0 else self.out_channels lowercase =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case_ ) lowercase =resnets if self.add_upsample: lowercase =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): for resnet in self.resnets: # pop res hidden states lowercase =res_hidden_states_tuple[-1] lowercase =res_hidden_states_tuple[:-1] lowercase =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowercase =resnet(snake_case_ , snake_case_ , deterministic=snake_case_ ) if self.add_upsample: lowercase =self.upsamplers_a(snake_case_ ) return hidden_states class __magic_name__ ( nn.Module ): UpperCamelCase__ = 42 UpperCamelCase__ = 0.0 UpperCamelCase__ = 1 UpperCamelCase__ = 1 UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = jnp.floataa def _A( self ): # there is always at least one resnet lowercase =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] lowercase =[] for _ in range(self.num_layers ): lowercase =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(snake_case_ ) lowercase =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(snake_case_ ) lowercase =resnets lowercase =attentions def __call__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): lowercase =self.resnets[0](snake_case_ , snake_case_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): lowercase =attn(snake_case_ , snake_case_ , deterministic=snake_case_ ) lowercase =resnet(snake_case_ , snake_case_ , deterministic=snake_case_ ) return hidden_states
145
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __magic_name__ : UpperCamelCase__ = LEDConfig UpperCamelCase__ = {} UpperCamelCase__ = 'gelu' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=False , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=20 , snake_case_=2 , snake_case_=1 , snake_case_=0 , snake_case_=4 , ): lowercase =parent lowercase =batch_size lowercase =seq_length lowercase =is_training lowercase =use_labels lowercase =vocab_size lowercase =hidden_size lowercase =num_hidden_layers lowercase =num_attention_heads lowercase =intermediate_size lowercase =hidden_dropout_prob lowercase =attention_probs_dropout_prob lowercase =max_position_embeddings lowercase =eos_token_id lowercase =pad_token_id lowercase =bos_token_id lowercase =attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after lowercase =self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests lowercase =( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _A( self ): lowercase =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase =tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) lowercase =prepare_led_inputs_dict(snake_case_ , snake_case_ , snake_case_ ) lowercase =tf.concat( [tf.zeros_like(snake_case_ )[:, :-1], tf.ones_like(snake_case_ )[:, -1:]] , axis=-1 , ) lowercase =global_attention_mask return config, inputs_dict def _A( self , snake_case_ , snake_case_ ): lowercase =TFLEDModel(config=snake_case_ ).get_decoder() lowercase =inputs_dict['''input_ids'''] lowercase =input_ids[:1, :] lowercase =inputs_dict['''attention_mask'''][:1, :] lowercase =1 # first forward pass lowercase =model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ ) lowercase , lowercase =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase =ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowercase =tf.concat([input_ids, next_tokens] , axis=-1 ) lowercase =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowercase =model(snake_case_ , attention_mask=snake_case_ )[0] lowercase =model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowercase =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowercase =output_from_no_past[:, -3:, random_slice_idx] lowercase =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case_ , snake_case_ , rtol=1E-3 ) def UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : List[str]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Any=None , lowercase_ : Any=None , ) -> Optional[int]: '''simple docstring''' if attention_mask is None: lowercase =tf.cast(tf.math.not_equal(lowercase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __magic_name__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCamelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCamelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCamelCase__ = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def _A( self ): lowercase =TFLEDModelTester(self ) lowercase =ConfigTester(self , config_class=snake_case_ ) def _A( self ): self.config_tester.run_common_tests() def _A( self ): lowercase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) def _A( self ): lowercase , lowercase =self.model_tester.prepare_config_and_inputs_for_common() lowercase =tf.zeros_like(inputs_dict['''attention_mask'''] ) lowercase =2 lowercase =tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) lowercase =True lowercase =self.model_tester.seq_length lowercase =self.model_tester.encoder_seq_length def check_decoder_attentions_output(snake_case_ ): lowercase =outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(snake_case_ ): lowercase =[t.numpy() for t in outputs.encoder_attentions] lowercase =[t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: lowercase =True lowercase =False lowercase =False lowercase =model_class(snake_case_ ) lowercase =model(self._prepare_for_class(snake_case_ , snake_case_ ) ) lowercase =len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: lowercase =model_class(snake_case_ ) lowercase =model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase =True lowercase =model_class(snake_case_ ) lowercase =model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine lowercase =True lowercase =True lowercase =model_class(snake_case_ ) lowercase =model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def _A( self ): pass def _A( self ): # TODO: Head-masking not yet implement pass def UpperCamelCase ( lowercase_ : List[str] ) -> Optional[int]: '''simple docstring''' return tf.constant(lowercase_ , dtype=tf.intaa ) _UpperCAmelCase : Any = 1e-4 @slow @require_tf class __magic_name__ ( unittest.TestCase ): def _A( self ): lowercase =TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here lowercase =_long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowercase =_long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowercase =prepare_led_inputs_dict(model.config , snake_case_ , snake_case_ ) lowercase =model(**snake_case_ )[0] lowercase =(1, 10_24, 7_68) self.assertEqual(output.shape , snake_case_ ) # change to expected output here lowercase =tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-3 ) def _A( self ): lowercase =TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here lowercase =_long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowercase =_long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowercase =prepare_led_inputs_dict(model.config , snake_case_ , snake_case_ ) lowercase =model(**snake_case_ )[0] lowercase =(1, 10_24, model.config.vocab_size) self.assertEqual(output.shape , snake_case_ ) # change to expected output here lowercase =tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-3 , rtol=1E-3 )
145
1
from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=A__ ): __lowerCamelCase = ["""note_seq"""] def __init__( self : Optional[Any] , *__a : Tuple , **__a : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["""note_seq"""] ) @classmethod def lowerCamelCase_ ( cls : Dict , *__a : List[str] , **__a : List[str] ): '''simple docstring''' requires_backends(cls , ["""note_seq"""] ) @classmethod def lowerCamelCase_ ( cls : Union[str, Any] , *__a : int , **__a : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["""note_seq"""] )
306
def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> int: '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def __lowerCAmelCase ( ) -> None: '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
306
1
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase=13 , __lowercase=32 , __lowercase=2 , __lowercase=3 , __lowercase=16 , __lowercase=[1, 2, 1] , __lowercase=[2, 2, 4] , __lowercase=2 , __lowercase=2.0 , __lowercase=True , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.1 , __lowercase="gelu" , __lowercase=False , __lowercase=True , __lowercase=0.0_2 , __lowercase=1e-5 , __lowercase=True , __lowercase=None , __lowercase=True , __lowercase=10 , __lowercase=8 , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = embed_dim __lowerCAmelCase = depths __lowerCAmelCase = num_heads __lowerCAmelCase = window_size __lowerCAmelCase = mlp_ratio __lowerCAmelCase = qkv_bias __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = drop_path_rate __lowerCAmelCase = hidden_act __lowerCAmelCase = use_absolute_embeddings __lowerCAmelCase = patch_norm __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range __lowerCAmelCase = is_training __lowerCAmelCase = scope __lowerCAmelCase = use_labels __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = encoder_stride def lowercase (self ): __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase (self ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowercase (self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = SwinvaModel(config=__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(__lowercase ) __lowerCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase (self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = SwinvaForMaskedImageModeling(config=__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(__lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = SwinvaForMaskedImageModeling(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase (self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = SwinvaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase (self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a__ ( __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __UpperCamelCase : Union[str, Any] = ( {'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification} if is_torch_available() else {} ) __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Any = False def lowercase (self ): __lowerCAmelCase = SwinvaModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__lowercase , embed_dim=37 ) def lowercase (self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def lowercase (self ): pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def lowercase (self ): pass def lowercase (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase , nn.Linear ) ) def lowercase (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__lowercase ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def lowercase (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __lowerCAmelCase = outputs.attentions __lowerCAmelCase = len(self.model_tester.depths ) self.assertEqual(len(__lowercase ) , __lowercase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = config.window_size**2 __lowerCAmelCase = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(__lowercase ) , __lowercase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __lowerCAmelCase = len(__lowercase ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__lowercase , __lowercase ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): __lowerCAmelCase = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __lowerCAmelCase = 2 self.assertEqual(out_len + added_hidden_states , len(__lowercase ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(__lowercase ) , __lowercase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def lowercase (self , __lowercase , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__lowercase ) , __lowercase ) # Swinv2 has a different seq_length __lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __lowerCAmelCase = outputs.reshaped_hidden_states self.assertEqual(len(__lowercase ) , __lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = reshaped_hidden_states[0].shape __lowerCAmelCase = ( reshaped_hidden_states[0].view(__lowercase , __lowercase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCAmelCase = True self.check_hidden_states_output(__lowercase , __lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True self.check_hidden_states_output(__lowercase , __lowercase , __lowercase , __lowercase ) def lowercase (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = 3 __lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCAmelCase = True self.check_hidden_states_output(__lowercase , __lowercase , __lowercase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True self.check_hidden_states_output(__lowercase , __lowercase , __lowercase , (padded_height, padded_width) ) def lowercase (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowercase ) def lowercase (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) @slow def lowercase (self ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = SwinvaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowercase (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(__lowercase ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=__lowercase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class a__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase (self ): return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def lowercase (self ): __lowerCAmelCase = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( __lowercase ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __lowerCAmelCase = image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**__lowercase ) # verify the logits __lowerCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowercase ) __lowerCAmelCase = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) )
719
'''simple docstring''' from __future__ import annotations def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = sorted(numsa + numsa) __lowerCAmelCase , __lowerCAmelCase = divmod(len(lowerCamelCase), 2) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : Union[str, Any] = [float(x) for x in input("""Enter the elements of first array: """).split()] _UpperCAmelCase : int = [float(x) for x in input("""Enter the elements of second array: """).split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
474
0
"""simple docstring""" from collections import deque from .hash_table import HashTable class A__ ( __lowercase): """simple docstring""" def __init__( self: Optional[int] , *__a: Union[str, Any] , **__a: Dict )-> List[Any]: super().__init__(*__a , **__a ) def a__ ( self: List[str] , __a: Optional[int] , __a: int )-> str: lowerCamelCase : Union[str, Any] = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__a ) lowerCamelCase : str = self.values[key] def a__ ( self: Union[str, Any] )-> List[str]: return ( sum(self.charge_factor - len(__a ) for slot in self.values ) / self.size_table * self.charge_factor ) def a__ ( self: str , __a: Optional[Any] , __a: List[Any]=None )-> Optional[int]: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__a ) == 0 ): return key return super()._collision_resolution(__a , __a )
222
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def snake_case ( ) -> Generator[int, None, None]: lowerCamelCase : dict[int, int] = {} lowerCamelCase : str = 2 while True: lowerCamelCase : int = factor_map.pop(UpperCamelCase__ , UpperCamelCase__ ) if factor: lowerCamelCase : List[Any] = factor + prime while x in factor_map: x += factor lowerCamelCase : int = factor else: lowerCamelCase : Optional[int] = prime yield prime prime += 1 def snake_case ( UpperCamelCase__ : float = 1E10 ) -> int: lowerCamelCase : Optional[int] = sieve() lowerCamelCase : List[str] = 1 while True: lowerCamelCase : Tuple = next(UpperCamelCase__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(UpperCamelCase__ ) n += 2 if __name__ == "__main__": print(solution())
222
1
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase ( _lowercase ): """simple docstring""" snake_case = ['''image_processor''', '''tokenizer'''] snake_case = '''BlipImageProcessor''' snake_case = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : str ,_SCREAMING_SNAKE_CASE : str ,_SCREAMING_SNAKE_CASE : Any ) -> List[Any]: '''simple docstring''' A = False super().__init__(A_ ,A_ ) A = self.image_processor def __call__( self : Dict ,_SCREAMING_SNAKE_CASE : ImageInput = None ,_SCREAMING_SNAKE_CASE : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,_SCREAMING_SNAKE_CASE : bool = True ,_SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = False ,_SCREAMING_SNAKE_CASE : Union[bool, str, TruncationStrategy] = None ,_SCREAMING_SNAKE_CASE : Optional[int] = None ,_SCREAMING_SNAKE_CASE : int = 0 ,_SCREAMING_SNAKE_CASE : Optional[int] = None ,_SCREAMING_SNAKE_CASE : Optional[bool] = None ,_SCREAMING_SNAKE_CASE : bool = False ,_SCREAMING_SNAKE_CASE : bool = False ,_SCREAMING_SNAKE_CASE : bool = False ,_SCREAMING_SNAKE_CASE : bool = False ,_SCREAMING_SNAKE_CASE : bool = False ,_SCREAMING_SNAKE_CASE : bool = True ,_SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None ,**_SCREAMING_SNAKE_CASE : Tuple ,) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: A = self.tokenizer A = self.tokenizer( text=A_ ,add_special_tokens=A_ ,padding=A_ ,truncation=A_ ,max_length=A_ ,stride=A_ ,pad_to_multiple_of=A_ ,return_attention_mask=A_ ,return_overflowing_tokens=A_ ,return_special_tokens_mask=A_ ,return_offsets_mapping=A_ ,return_token_type_ids=A_ ,return_length=A_ ,verbose=A_ ,return_tensors=A_ ,**A_ ,) return text_encoding # add pixel_values A = self.image_processor(A_ ,return_tensors=A_ ) if text is not None: A = self.tokenizer( text=A_ ,add_special_tokens=A_ ,padding=A_ ,truncation=A_ ,max_length=A_ ,stride=A_ ,pad_to_multiple_of=A_ ,return_attention_mask=A_ ,return_overflowing_tokens=A_ ,return_special_tokens_mask=A_ ,return_offsets_mapping=A_ ,return_token_type_ids=A_ ,return_length=A_ ,verbose=A_ ,return_tensors=A_ ,**A_ ,) else: A = None if text_encoding is not None: encoding_image_processor.update(A_ ) return encoding_image_processor def A( self : int ,*_SCREAMING_SNAKE_CASE : Any ,**_SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*A_ ,**A_ ) def A( self : List[str] ,*_SCREAMING_SNAKE_CASE : str ,**_SCREAMING_SNAKE_CASE : Any ) -> Any: '''simple docstring''' return self.tokenizer.decode(*A_ ,**A_ ) @property def A( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' A = self.tokenizer.model_input_names A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
700
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def snake_case ( UpperCAmelCase : List[Any] ): if "model" in orig_key: A = orig_key.replace('model.', '' ) if "norm1" in orig_key: A = orig_key.replace('norm1', 'attention.output.LayerNorm' ) if "norm2" in orig_key: A = orig_key.replace('norm2', 'output.LayerNorm' ) if "norm" in orig_key: A = orig_key.replace('norm', 'LayerNorm' ) if "transformer" in orig_key: A = orig_key.split('.' )[0].split('_' )[-1] A = orig_key.replace(f'transformer_{layer_num}', f'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: A = orig_key.replace('mha.attn', 'attention.self' ) if "mha" in orig_key: A = orig_key.replace('mha', 'attention' ) if "W_q" in orig_key: A = orig_key.replace('W_q', 'self.query' ) if "W_k" in orig_key: A = orig_key.replace('W_k', 'self.key' ) if "W_v" in orig_key: A = orig_key.replace('W_v', 'self.value' ) if "ff1" in orig_key: A = orig_key.replace('ff1', 'intermediate.dense' ) if "ff2" in orig_key: A = orig_key.replace('ff2', 'output.dense' ) if "ff" in orig_key: A = orig_key.replace('ff', 'output.dense' ) if "mlm_class" in orig_key: A = orig_key.replace('mlm.mlm_class', 'cls.predictions.decoder' ) if "mlm" in orig_key: A = orig_key.replace('mlm', 'cls.predictions.transform' ) if "cls" not in orig_key: A = 'yoso.' + orig_key return orig_key def snake_case ( UpperCAmelCase : Tuple, UpperCAmelCase : str ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(UpperCAmelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: A = val A = orig_state_dict['cls.predictions.decoder.bias'] A = torch.arange(UpperCAmelCase ).expand((1, -1) ) + 2 return orig_state_dict def snake_case ( UpperCAmelCase : int, UpperCAmelCase : Union[str, Any], UpperCAmelCase : str ): A = torch.load(UpperCAmelCase, map_location='cpu' )['model_state_dict'] A = YosoConfig.from_json_file(UpperCAmelCase ) A = YosoForMaskedLM(UpperCAmelCase ) A = convert_checkpoint_helper(config.max_position_embeddings, UpperCAmelCase ) print(model.load_state_dict(UpperCAmelCase ) ) model.eval() model.save_pretrained(UpperCAmelCase ) print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
110
0
from __future__ import annotations from functools import lru_cache from math import ceil lowerCamelCase__ : int = 1_0_0 lowerCamelCase__ : Optional[Any] = set(range(3, NUM_PRIMES, 2)) primes.add(2) lowerCamelCase__ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def UpperCamelCase ( lowercase_ ) -> set[int]: '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ : set[int] = set() lowercase__ : int lowercase__ : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( lowercase_ = 50_00 ) -> int | None: '''simple docstring''' for number_to_partition in range(1 , lowercase_ ): if len(partition(lowercase_ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
12
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCAmelCase_ ( self ): __A , __A : str = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=_A , dtype=jnp.bfloataa ) __A , __A : Dict = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=_A , from_pt=_A , dtype=jnp.bfloataa ) __A : Optional[Any] = controlnet_params __A : Optional[int] = 'bird' __A : List[str] = jax.device_count() __A : Any = pipe.prepare_text_inputs([prompts] * num_samples ) __A : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) __A : List[str] = pipe.prepare_image_inputs([canny_image] * num_samples ) __A : List[str] = jax.random.PRNGKey(0 ) __A : List[str] = jax.random.split(_A , jax.device_count() ) __A : int = replicate(_A ) __A : Optional[Any] = shard(_A ) __A : List[str] = shard(_A ) __A : str = pipe( prompt_ids=_A , image=_A , params=_A , prng_seed=_A , num_inference_steps=50 , jit=_A , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) __A : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __A : Dict = images[0, 253:256, 253:256, -1] __A : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A : List[str] = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self ): __A , __A : List[Any] = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=_A , dtype=jnp.bfloataa ) __A , __A : Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=_A , from_pt=_A , dtype=jnp.bfloataa ) __A : Optional[int] = controlnet_params __A : Tuple = 'Chef in the kitchen' __A : Optional[int] = jax.device_count() __A : Optional[int] = pipe.prepare_text_inputs([prompts] * num_samples ) __A : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) __A : Dict = pipe.prepare_image_inputs([pose_image] * num_samples ) __A : int = jax.random.PRNGKey(0 ) __A : Dict = jax.random.split(_A , jax.device_count() ) __A : str = replicate(_A ) __A : Union[str, Any] = shard(_A ) __A : List[Any] = shard(_A ) __A : Any = pipe( prompt_ids=_A , image=_A , params=_A , prng_seed=_A , num_inference_steps=50 , jit=_A , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) __A : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __A : List[Any] = images[0, 253:256, 253:256, -1] __A : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A : Optional[Any] = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
239
0
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=99 , __UpperCAmelCase=0 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase="last" , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Any: A : int = parent A : Union[str, Any] = batch_size A : Union[str, Any] = seq_length A : Any = is_training A : List[Any] = use_input_lengths A : Optional[int] = use_token_type_ids A : Optional[int] = use_labels A : str = gelu_activation A : int = sinusoidal_embeddings A : Tuple = causal A : Any = asm A : str = n_langs A : str = vocab_size A : List[str] = n_special A : Optional[int] = hidden_size A : Any = num_hidden_layers A : int = num_attention_heads A : Optional[Any] = hidden_dropout_prob A : Any = attention_probs_dropout_prob A : Dict = max_position_embeddings A : Optional[int] = type_vocab_size A : int = type_sequence_label_size A : List[str] = initializer_range A : Optional[Any] = num_labels A : Optional[Any] = num_choices A : List[Any] = summary_type A : int = use_proj A : Optional[int] = scope def snake_case ( self ) -> Union[str, Any]: A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : str = random_attention_mask([self.batch_size, self.seq_length] ) A : List[Any] = None if self.use_input_lengths: A : Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A : Tuple = None if self.use_token_type_ids: A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A : Dict = None A : Union[str, Any] = None A : Tuple = None if self.use_labels: A : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A : str = ids_tensor([self.batch_size] , 2 ).float() A : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) A : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def snake_case ( self ) -> Optional[Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: A : Union[str, Any] = FlaubertModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A : Optional[Any] = model(__UpperCAmelCase , lengths=__UpperCAmelCase , langs=__UpperCAmelCase ) A : Dict = model(__UpperCAmelCase , langs=__UpperCAmelCase ) A : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> int: A : List[Any] = FlaubertWithLMHeadModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A : Optional[int] = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: A : Dict = FlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A : Tuple = model(__UpperCAmelCase ) A : Optional[int] = model(__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: A : Tuple = FlaubertForQuestionAnswering(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A : Optional[Any] = model(__UpperCAmelCase ) A : Optional[Any] = model( __UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , cls_index=__UpperCAmelCase , is_impossible=__UpperCAmelCase , p_mask=__UpperCAmelCase , ) A : int = model( __UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , cls_index=__UpperCAmelCase , is_impossible=__UpperCAmelCase , ) (A ) : Union[str, Any] = result_with_labels.to_tuple() A : Any = model(__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase ) (A ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> int: A : Dict = FlaubertForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A : Dict = model(__UpperCAmelCase ) A : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> int: A : List[Any] = self.num_labels A : str = FlaubertForTokenClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: A : List[str] = self.num_choices A : Optional[int] = FlaubertForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A : Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self ) -> List[Any]: A : List[str] = self.prepare_config_and_inputs() ( A ) : Dict = config_and_inputs A : Any = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Dict = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase_ : Optional[int] = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[int]: A : Tuple = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": A : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) A : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def snake_case ( self ) -> Optional[Any]: A : List[Any] = FlaubertModelTester(self ) A : Optional[int] = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def snake_case ( self ) -> str: A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def snake_case ( self ) -> Dict: A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def snake_case ( self ) -> Tuple: A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__UpperCAmelCase ) def snake_case ( self ) -> int: A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def snake_case ( self ) -> List[str]: A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def snake_case ( self ) -> Optional[int]: A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__UpperCAmelCase ) def snake_case ( self ) -> Optional[int]: A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__UpperCAmelCase ) @slow def snake_case ( self ) -> List[Any]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : List[Any] = FlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @slow @require_torch_gpu def snake_case ( self ) -> List[str]: A : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return A : int = True A : Any = model_class(config=__UpperCAmelCase ) A : Any = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) A : str = torch.jit.trace( __UpperCAmelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , '''traced_model.pt''' ) ) A : Any = torch.jit.load(os.path.join(__UpperCAmelCase , '''traced_model.pt''' ) , map_location=__UpperCAmelCase ) loaded(inputs_dict['''input_ids'''].to(__UpperCAmelCase ) , inputs_dict['''attention_mask'''].to(__UpperCAmelCase ) ) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ) -> Optional[int]: A : Dict = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) A : List[str] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): A : List[str] = model(__UpperCAmelCase )[0] A : str = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , __UpperCAmelCase ) A : List[Any] = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
709
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient lowercase : Union[str, Any] = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def snake_case__ ( lowerCamelCase_ ): A : Optional[Any] = test_results.split(''' ''' ) A : List[str] = 0 A : str = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. A : Optional[int] = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def snake_case__ ( lowerCamelCase_ ): A : Any = {} A : List[str] = None A : Dict = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): A : int = True A : List[str] = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): A : Optional[int] = line A : int = False return failures class __lowercase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: A : Tuple = title A : List[Any] = doc_test_results['''time_spent'''].split(''',''' )[0] A : List[Any] = doc_test_results['''success'''] A : Optional[Any] = doc_test_results['''failures'''] A : str = self.n_success + self.n_failures # Failures and success of the modeling tests A : Optional[int] = doc_test_results @property def snake_case ( self ) -> str: A : List[str] = [self._time_spent] A : Dict = 0 for time in time_spent: A : Optional[Any] = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__UpperCAmelCase ) == 1: A : List[str] = [0, 0, time_parts[0]] A , A , A : Union[str, Any] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds A , A , A : Union[str, Any] = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return f'{int(__UpperCAmelCase )}h{int(__UpperCAmelCase )}m{int(__UpperCAmelCase )}s' @property def snake_case ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def snake_case ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def snake_case ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' f' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def snake_case ( self ) -> Dict: A : Optional[int] = 40 A : Dict = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} A : List[str] = '''''' for category, failures in category_failures.items(): if len(__UpperCAmelCase ) == 0: continue if report != "": report += "\n\n" report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__UpperCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'The following examples had failures:\n\n\n{report}\n', }, } @property def snake_case ( self ) -> str: A : Any = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__UpperCAmelCase ) @staticmethod def snake_case ( ) -> Dict: A : int = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(__UpperCAmelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=__UpperCAmelCase , ) def snake_case ( self ) -> Optional[Any]: print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) A : Dict = f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else '''All tests passed.''' A : Any = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=__UpperCAmelCase , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: A : Optional[int] = '''''' for key, value in failures.items(): A : Optional[int] = value[:2_00] + ''' [Truncated]''' if len(__UpperCAmelCase ) > 2_50 else value failures_text += f'*{key}*\n_{value}_\n\n' A : Optional[Any] = job_name A : List[str] = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: A : Union[str, Any] = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def snake_case ( self ) -> str: if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) A : Union[str, Any] = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) A : str = sorted(self.doc_test_results.items() , key=lambda __UpperCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): A : List[str] = f'*Num failures* :{len(job_result["failed"] )} \n' A : Union[str, Any] = job_result['''failures'''] A : str = self.get_reply_blocks(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , text=__UpperCAmelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=f'Results for {job}' , blocks=__UpperCAmelCase , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def snake_case__ ( ): A : Optional[int] = os.environ['''GITHUB_RUN_ID'''] A : Optional[Any] = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' A : Any = requests.get(lowerCamelCase_ ).json() A : Optional[Any] = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) A : Optional[int] = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(lowerCamelCase_ ): A : str = requests.get(url + F'&page={i + 2}' ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def snake_case__ ( lowerCamelCase_ ): A : Any = {} if os.path.exists(lowerCamelCase_ ): A : Tuple = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: A : Any = f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}.' ) from e return _artifact def snake_case__ ( ): class __lowercase : """simple docstring""" def __init__( self , __UpperCAmelCase ) -> Tuple: A : Dict = name A : Dict = [] def __str__( self ) -> int: return self.name def snake_case ( self , __UpperCAmelCase ) -> List[str]: self.paths.append({'''name''': self.name, '''path''': path} ) A : Dict[str, Artifact] = {} A : Any = filter(os.path.isdir , os.listdir() ) for directory in directories: A : Optional[int] = directory if artifact_name not in _available_artifacts: A : Any = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": lowercase : Dict = get_job_links() lowercase : Union[str, Any] = retrieve_available_artifacts() lowercase : Any = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' lowercase : int = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job lowercase : Union[str, Any] = github_actions_job_links.get("run_doctests") lowercase : List[str] = available_artifacts["doc_tests_gpu_test_reports"].paths[0] lowercase : Optional[Any] = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: lowercase , lowercase , lowercase : Union[str, Any] = handle_test_results(artifact["stats"]) lowercase : Optional[int] = failed lowercase : str = success lowercase : int = time_spent[1:-1] + ", " lowercase : Union[str, Any] = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): lowercase : Union[str, Any] = line.replace("FAILED ", "") lowercase : Any = line.split()[0].replace("\n", "") if "::" in line: lowercase , lowercase : Tuple = line.split("::") else: lowercase , lowercase : int = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): lowercase : Tuple = docs[file_regex] doc_test_results[category]["failed"].append(test) lowercase : List[Any] = all_failures[test] if test in all_failures else "N/A" lowercase : List[str] = failure break lowercase : Optional[int] = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
423
0
"""simple docstring""" from __future__ import annotations def __a ( A , A ) -> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((A__) , (A__)) = extended_euclid(A , a % b ) A__ = a // b return (y, x - k * y) def __a ( A , A , A , A ) -> int: '''simple docstring''' ((A__) , (A__)) = extended_euclid(A , A ) A__ = na * na A__ = ra * x * na + ra * y * na return (n % m + m) % m def __a ( A , A ) -> int: '''simple docstring''' ((A__) , (A__)) = extended_euclid(A , A ) if b < 0: A__ = (b % n + n) % n return b def __a ( A , A , A , A ) -> int: '''simple docstring''' A__ , A__ = invert_modulo(A , A ), invert_modulo(A , A ) A__ = na * na A__ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
337
"""simple docstring""" import os import pytest from attr import dataclass __UpperCAmelCase ="""us-east-1""" # defaults region @dataclass class lowerCAmelCase__ : lowercase__ : str lowercase__ : List[Any] = """arn:aws:iam::558105141721:role/sagemaker_execution_role""" lowercase__ : Union[str, Any] = { """task_name""": """mnli""", """per_device_train_batch_size""": 16, """per_device_eval_batch_size""": 16, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 5_00, """save_steps""": 55_00, } lowercase__ : List[str] = {**hyperparameters, """max_steps""": 10_00} @property def lowercase_ ( self ): '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowercase_ ( self ): '''simple docstring''' return f"""{self.framework}-transfromers-test""" @property def lowercase_ ( self ): '''simple docstring''' return f"""./tests/sagemaker/scripts/{self.framework}""" @property def lowercase_ ( self ): '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def __a ( A ) -> int: '''simple docstring''' A__ = SageMakerTestEnvironment(framework=request.cls.framework )
337
1
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a : List[str] = logging.get_logger(__name__) a : Tuple = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ : str = field( default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__ )} ) SCREAMING_SNAKE_CASE__ : str = field( default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) SCREAMING_SNAKE_CASE__ : int = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE__ : int = field( default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) SCREAMING_SNAKE_CASE__ : int = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) SCREAMING_SNAKE_CASE__ : int = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) SCREAMING_SNAKE_CASE__ : bool = field( default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) SCREAMING_SNAKE_CASE__ : bool = field( default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) SCREAMING_SNAKE_CASE__ : float = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) SCREAMING_SNAKE_CASE__ : int = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) SCREAMING_SNAKE_CASE__ : int = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) SCREAMING_SNAKE_CASE__ : int = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = "train" SCREAMING_SNAKE_CASE__ : Tuple = "dev" class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : SquadDataTrainingArguments SCREAMING_SNAKE_CASE__ : List[SquadFeatures] SCREAMING_SNAKE_CASE__ : Split SCREAMING_SNAKE_CASE__ : bool def __init__( self , snake_case , snake_case , snake_case = None , snake_case = Split.train , snake_case = False , snake_case = None , snake_case = "pt" , ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = args UpperCAmelCase : Optional[int] = is_language_sensitive UpperCAmelCase : Tuple = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(snake_case , snake_case ): try: UpperCAmelCase : int = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) UpperCAmelCase : Optional[Any] = mode # Load data features from cache or dataset file UpperCAmelCase : int = "v2" if args.version_2_with_negative else "v1" UpperCAmelCase : Optional[int] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : List[Any] = cached_features_file + ".lock" with FileLock(snake_case ): if os.path.exists(snake_case ) and not args.overwrite_cache: UpperCAmelCase : Optional[int] = time.time() UpperCAmelCase : List[str] = torch.load(snake_case ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. UpperCAmelCase : Tuple = self.old_features["features"] UpperCAmelCase : Dict = self.old_features.get("dataset" , snake_case ) UpperCAmelCase : Union[str, Any] = self.old_features.get("examples" , snake_case ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" " future run" ) else: if mode == Split.dev: UpperCAmelCase : str = self.processor.get_dev_examples(args.data_dir ) else: UpperCAmelCase : Optional[int] = self.processor.get_train_examples(args.data_dir ) UpperCAmelCase , UpperCAmelCase : int = squad_convert_examples_to_features( examples=self.examples , tokenizer=snake_case , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=snake_case , ) UpperCAmelCase : int = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , snake_case , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self , snake_case ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.features[i] UpperCAmelCase : Optional[int] = torch.tensor(feature.input_ids , dtype=torch.long ) UpperCAmelCase : Any = torch.tensor(feature.attention_mask , dtype=torch.long ) UpperCAmelCase : int = torch.tensor(feature.token_type_ids , dtype=torch.long ) UpperCAmelCase : Optional[int] = torch.tensor(feature.cls_index , dtype=torch.long ) UpperCAmelCase : Optional[int] = torch.tensor(feature.p_mask , dtype=torch.float ) UpperCAmelCase : str = torch.tensor(feature.is_impossible , dtype=torch.float ) UpperCAmelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: UpperCAmelCase : Tuple = torch.tensor(feature.start_position , dtype=torch.long ) UpperCAmelCase : str = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
609
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() UpperCAmelCase : Dict = SamImageProcessor() UpperCAmelCase : Tuple = SamProcessor(snake_case ) processor.save_pretrained(self.tmpdirname ) def A_ ( self , **snake_case ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case ).image_processor def A_ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] UpperCAmelCase : Union[str, Any] = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase : Tuple = self.get_image_processor(do_normalize=snake_case , padding_value=1.0 ) UpperCAmelCase : str = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=snake_case , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = self.get_image_processor() UpperCAmelCase : Tuple = SamProcessor(image_processor=snake_case ) UpperCAmelCase : str = self.prepare_image_inputs() UpperCAmelCase : Dict = image_processor(snake_case , return_tensors="np" ) UpperCAmelCase : str = processor(images=snake_case , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = self.get_image_processor() UpperCAmelCase : Dict = SamProcessor(image_processor=snake_case ) UpperCAmelCase : Tuple = [torch.ones((1, 3, 5, 5) )] UpperCAmelCase : int = [[1_7_6_4, 2_6_4_6]] UpperCAmelCase : Optional[int] = [[6_8_3, 1_0_2_4]] UpperCAmelCase : str = processor.post_process_masks(snake_case , snake_case , snake_case ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) UpperCAmelCase : Union[str, Any] = processor.post_process_masks( snake_case , torch.tensor(snake_case ) , torch.tensor(snake_case ) ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) # should also work with np UpperCAmelCase : Optional[int] = [np.ones((1, 3, 5, 5) )] UpperCAmelCase : Union[str, Any] = processor.post_process_masks(snake_case , np.array(snake_case ) , np.array(snake_case ) ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) UpperCAmelCase : List[str] = [[1, 0], [0, 1]] with self.assertRaises(snake_case ): UpperCAmelCase : str = processor.post_process_masks(snake_case , np.array(snake_case ) , np.array(snake_case ) ) @require_vision @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = tempfile.mkdtemp() UpperCAmelCase : Optional[int] = SamImageProcessor() UpperCAmelCase : str = SamProcessor(snake_case ) processor.save_pretrained(self.tmpdirname ) def A_ ( self , **snake_case ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case ).image_processor def A_ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] UpperCAmelCase : Any = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[int] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.get_image_processor(do_normalize=snake_case , padding_value=1.0 ) UpperCAmelCase : str = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=snake_case , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[Any] = self.get_image_processor() UpperCAmelCase : Union[str, Any] = SamProcessor(image_processor=snake_case ) UpperCAmelCase : List[str] = self.prepare_image_inputs() UpperCAmelCase : Union[str, Any] = image_processor(snake_case , return_tensors="np" ) UpperCAmelCase : Any = processor(images=snake_case , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.get_image_processor() UpperCAmelCase : List[Any] = SamProcessor(image_processor=snake_case ) UpperCAmelCase : Union[str, Any] = [tf.ones((1, 3, 5, 5) )] UpperCAmelCase : Optional[int] = [[1_7_6_4, 2_6_4_6]] UpperCAmelCase : int = [[6_8_3, 1_0_2_4]] UpperCAmelCase : str = processor.post_process_masks(snake_case , snake_case , snake_case , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) UpperCAmelCase : int = processor.post_process_masks( snake_case , tf.convert_to_tensor(snake_case ) , tf.convert_to_tensor(snake_case ) , return_tensors="tf" , ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) # should also work with np UpperCAmelCase : Union[str, Any] = [np.ones((1, 3, 5, 5) )] UpperCAmelCase : Tuple = processor.post_process_masks( snake_case , np.array(snake_case ) , np.array(snake_case ) , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) UpperCAmelCase : Union[str, Any] = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): UpperCAmelCase : Any = processor.post_process_masks( snake_case , np.array(snake_case ) , np.array(snake_case ) , return_tensors="tf" ) @require_vision @require_torchvision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = tempfile.mkdtemp() UpperCAmelCase : Tuple = SamImageProcessor() UpperCAmelCase : Optional[int] = SamProcessor(snake_case ) processor.save_pretrained(self.tmpdirname ) def A_ ( self , **snake_case ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case ).image_processor def A_ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] UpperCAmelCase : int = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = self.get_image_processor() UpperCAmelCase : int = SamProcessor(image_processor=snake_case ) UpperCAmelCase : int = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) UpperCAmelCase : Tuple = [tf.convert_to_tensor(snake_case )] UpperCAmelCase : Dict = [torch.tensor(snake_case )] UpperCAmelCase : List[Any] = [[1_7_6_4, 2_6_4_6]] UpperCAmelCase : List[Any] = [[6_8_3, 1_0_2_4]] UpperCAmelCase : Union[str, Any] = processor.post_process_masks( snake_case , snake_case , snake_case , return_tensors="tf" ) UpperCAmelCase : int = processor.post_process_masks( snake_case , snake_case , snake_case , return_tensors="pt" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[Any] = self.get_image_processor() UpperCAmelCase : str = SamProcessor(image_processor=snake_case ) UpperCAmelCase : int = self.prepare_image_inputs() UpperCAmelCase : Optional[Any] = image_processor(snake_case , return_tensors="pt" )["pixel_values"].numpy() UpperCAmelCase : Optional[int] = processor(images=snake_case , return_tensors="pt" )["pixel_values"].numpy() UpperCAmelCase : Optional[Any] = image_processor(snake_case , return_tensors="tf" )["pixel_values"].numpy() UpperCAmelCase : Union[str, Any] = processor(images=snake_case , return_tensors="tf" )["pixel_values"].numpy() self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertTrue(np.allclose(snake_case , snake_case ) )
609
1
from ... import PretrainedConfig __A = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class _A ( UpperCamelCase ): """simple docstring""" lowerCamelCase : Dict = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowerCamelCase : Union[str, Any] = 'nezha' def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple=21128 , __SCREAMING_SNAKE_CASE : Union[str, Any]=768 , __SCREAMING_SNAKE_CASE : Any=12 , __SCREAMING_SNAKE_CASE : List[str]=12 , __SCREAMING_SNAKE_CASE : List[Any]=3072 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : int=512 , __SCREAMING_SNAKE_CASE : Optional[Any]=64 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : List[str]=1e-12 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Tuple=0 , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : Tuple=3 , __SCREAMING_SNAKE_CASE : Tuple=True , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Any: super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =vocab_size __UpperCAmelCase =hidden_size __UpperCAmelCase =num_hidden_layers __UpperCAmelCase =num_attention_heads __UpperCAmelCase =hidden_act __UpperCAmelCase =intermediate_size __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =attention_probs_dropout_prob __UpperCAmelCase =max_position_embeddings __UpperCAmelCase =max_relative_position __UpperCAmelCase =type_vocab_size __UpperCAmelCase =initializer_range __UpperCAmelCase =layer_norm_eps __UpperCAmelCase =classifier_dropout __UpperCAmelCase =use_cache
68
from __future__ import annotations def lowercase__ ( A_: list[list[int]] ) -> int: """simple docstring""" for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(A_ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(A_ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
68
1
def _a ( lowerCamelCase__ = 1_00_00_00 ) -> int: lowerCamelCase_ : Tuple = 1 lowerCamelCase_ : List[Any] = 1 lowerCamelCase_ : Optional[int] = {1: 1} for inputa in range(2 , lowerCamelCase__ ): lowerCamelCase_ : str = 0 lowerCamelCase_ : Tuple = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowerCamelCase_ : Union[str, Any] = (3 * number) + 1 counter += 1 if inputa not in counters: lowerCamelCase_ : List[str] = counter if counter > pre_counter: lowerCamelCase_ : Any = inputa lowerCamelCase_ : Any = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
144
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase__ : lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) }, ) lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(UpperCAmelCase )}, ) lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) }, ) lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) lowerCamelCase_ : bool = field( default=UpperCAmelCase, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, ) lowerCamelCase_ : str = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) lowerCamelCase_ : bool = field( default=UpperCAmelCase, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) def UpperCAmelCase_ (self : Any ) -> List[str]: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class lowerCamelCase__ : lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCamelCase_ : Optional[str] = field(default=UpperCAmelCase, metadata={'help': 'The input training data file (a text file).'} ) lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'}, ) lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={'help': 'An optional input train ref data file for whole word masking in Chinese.'}, ) lowerCamelCase_ : Optional[str] = field( default=UpperCAmelCase, metadata={'help': 'An optional input validation ref data file for whole word masking in Chinese.'}, ) lowerCamelCase_ : bool = field( default=UpperCAmelCase, metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCamelCase_ : Optional[int] = field( default=5, metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' }, ) lowerCamelCase_ : Optional[int] = field( default=UpperCAmelCase, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated. Default to the max input length of the model.' ) }, ) lowerCamelCase_ : Optional[int] = field( default=UpperCAmelCase, metadata={'help': 'The number of processes to use for the preprocessing.'}, ) lowerCamelCase_ : float = field( default=0.1_5, metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) lowerCamelCase_ : bool = field( default=UpperCAmelCase, metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) }, ) def UpperCAmelCase_ (self : List[str] ) -> Optional[int]: """simple docstring""" if self.train_file is not None: lowerCamelCase_ : List[str] = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowerCamelCase_ : Optional[Any] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def _a ( lowerCamelCase__ , lowerCamelCase__ ) -> Any: with open(lowerCamelCase__ , 'r' , encoding='utf-8' ) as f: lowerCamelCase_ : Any = [json.loads(lowerCamelCase__ ) for line in f.read().splitlines() if (len(lowerCamelCase__ ) > 0 and not line.isspace())] assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) lowerCamelCase_ : str = {c: dataset[c] for c in dataset.column_names} lowerCamelCase_ : List[Any] = refs return Dataset.from_dict(lowerCamelCase__ ) def _a ( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Tuple = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCamelCase_ : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , lowerCamelCase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ : Optional[int] = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowerCamelCase_ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[:{data_args.validation_split_percentage}%]' , ) lowerCamelCase_ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[{data_args.validation_split_percentage}%:]' , ) else: lowerCamelCase_ : List[str] = {} if data_args.train_file is not None: lowerCamelCase_ : int = data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ : str = data_args.validation_file lowerCamelCase_ : str = data_args.train_file.split('.' )[-1] if extension == "txt": lowerCamelCase_ : Optional[int] = 'text' lowerCamelCase_ : List[str] = load_dataset(lowerCamelCase__ , data_files=lowerCamelCase__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ : Optional[Any] = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase_ : Tuple = AutoConfig.from_pretrained(model_args.config_name , **lowerCamelCase__ ) elif model_args.model_name_or_path: lowerCamelCase_ : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowerCamelCase__ ) else: lowerCamelCase_ : Any = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) lowerCamelCase_ : Optional[int] = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowerCamelCase__ ) elif model_args.model_name_or_path: lowerCamelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowerCamelCase__ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: lowerCamelCase_ : List[Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) lowerCamelCase_ : Union[str, Any] = AutoModelForMaskedLM.from_config(lowerCamelCase__ ) model.resize_token_embeddings(len(lowerCamelCase__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowerCamelCase_ : Dict = datasets['train'].column_names else: lowerCamelCase_ : List[str] = datasets['validation'].column_names lowerCamelCase_ : Any = 'text' if 'text' in column_names else column_names[0] lowerCamelCase_ : List[Any] = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCamelCase__ ): # Remove empty lines lowerCamelCase_ : List[str] = [line for line in examples['text'] if len(lowerCamelCase__ ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=data_args.max_seq_length ) lowerCamelCase_ : Any = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowerCamelCase_ : Dict = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowerCamelCase_ : Tuple = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowerCamelCase_ : Optional[int] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowerCamelCase_ : int = False # Data collator # This one will take care of randomly masking the tokens. lowerCamelCase_ : Tuple = DataCollatorForWholeWordMask(tokenizer=lowerCamelCase__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCamelCase_ : Optional[Any] = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCamelCase_ : List[str] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowerCamelCase_ : int = model_args.model_name_or_path else: lowerCamelCase_ : Union[str, Any] = None lowerCamelCase_ : Tuple = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ : Union[str, Any] = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCamelCase__ , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation lowerCamelCase_ : Dict = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCamelCase_ : Optional[Any] = trainer.evaluate() lowerCamelCase_ : Optional[int] = math.exp(eval_output['eval_loss'] ) lowerCamelCase_ : Dict = perplexity lowerCamelCase_ : Dict = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCamelCase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) return results def _a ( lowerCamelCase__ ) -> Any: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
144
1
from __future__ import annotations def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase = None ) -> list[list[str]]: '''simple docstring''' lowerCamelCase__: int = word_bank or [] # create a table lowerCamelCase__: int = len(_UpperCamelCase ) + 1 lowerCamelCase__: list[list[list[str]]] = [] for _ in range(_UpperCamelCase ): table.append([] ) # seed value lowerCamelCase__: Tuple = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCamelCase )] == word: lowerCamelCase__: list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCamelCase )]: combination.reverse() return table[len(_UpperCamelCase )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
306
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( A__ , unittest.TestCase ): __lowerCamelCase = LayoutLMTokenizer __lowerCamelCase = LayoutLMTokenizerFast __lowerCamelCase = True __lowerCamelCase = True def lowerCamelCase_ ( self : int ): '''simple docstring''' super().setUp() lowerCamelCase__: Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCamelCase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCamelCase_ ( self : int , **__a : Union[str, Any] ): '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCamelCase_ ( self : List[Any] , __a : List[str] ): '''simple docstring''' lowerCamelCase__: str = """UNwant\u00E9d,running""" lowerCamelCase__: Any = """unwanted, running""" return input_text, output_text def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: List[str] = self.tokenizer_class(self.vocab_file ) lowerCamelCase__: Tuple = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__a , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [7, 4, 5, 10, 8, 9] ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' pass
306
1
"""simple docstring""" from __future__ import annotations def UpperCamelCase_ ( lowerCAmelCase__ : list[int] ) -> int: """simple docstring""" lowerCAmelCase_ : List[Any] = len(lowerCAmelCase__ ) // 2 # choose the middle 3 elements lowerCAmelCase_ : Optional[int] = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
317
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCamelCase__ ( lowercase_, lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = VQModel _SCREAMING_SNAKE_CASE = """sample""" @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=(3_2, 3_2) ): lowerCAmelCase_ : Tuple = 4 lowerCAmelCase_ : Optional[Any] = 3 lowerCAmelCase_ : int = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return (3, 3_2, 3_2) @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): return (3, 3_2, 3_2) def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : Union[str, Any] = { 'block_out_channels': [3_2, 6_4], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } lowerCAmelCase_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): pass def SCREAMING_SNAKE_CASE__ ( self : str ): pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ ,lowerCAmelCase_ : Optional[Any] = VQModel.from_pretrained('fusing/vqgan-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : Any = VQModel.from_pretrained('fusing/vqgan-dummy' ) model.to(SCREAMING_SNAKE_CASE_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCAmelCase_ : int = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) lowerCAmelCase_ : Dict = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): lowerCAmelCase_ : int = model(SCREAMING_SNAKE_CASE_ ).sample lowerCAmelCase_ : Union[str, Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase_ : int = torch.tensor([-0.01_53, -0.40_44, -0.18_80, -0.51_61, -0.24_18, -0.40_72, -0.16_12, -0.06_33, -0.01_43] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) )
317
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case : Optional[int] = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[str] = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : str = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
566
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels UpperCamelCase_ : Optional[int] = object() # For specifying empty leaf dict `{}` UpperCamelCase_ : Optional[int] = object() def __a ( _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Optional[Any] ) -> Optional[Any]: """simple docstring""" _snake_case = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(_UpperCamelCase ) - len(_UpperCamelCase ) + 1 ): _snake_case = [x.match(_UpperCamelCase ) for x, y in zip(_UpperCamelCase , ks[i:] )] if matches and all(_UpperCamelCase ): return True return False def __a ( _UpperCamelCase: Optional[Any] ) -> Union[str, Any]: """simple docstring""" def replace(_UpperCamelCase: Tuple , _UpperCamelCase: List[str] ): for rule, replacement in rules: if _match(_UpperCamelCase , _UpperCamelCase ): return replacement return val return replace def __a ( ) -> Any: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , _UpperCamelCase )), (("transformer", "wte", "embedding"), P("mp" , _UpperCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(_UpperCamelCase , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , _UpperCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(_UpperCamelCase , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , _UpperCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( _UpperCamelCase: Union[str, Any] ) -> Any: """simple docstring""" _snake_case = _get_partition_rules() _snake_case = _replacement_rules(_UpperCamelCase ) _snake_case = {k: _unmatched for k in flatten_dict(_UpperCamelCase )} _snake_case = {k: replace(_UpperCamelCase , _UpperCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(_UpperCamelCase ) )
185
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class a__ : lowerCamelCase__: Optional[int] = None lowerCamelCase__: List[Any] = False lowerCamelCase__: int = False lowerCamelCase__: List[Any] = False lowerCamelCase__: List[Any] = None lowerCamelCase__: Dict = None lowerCamelCase__: Dict = False lowerCamelCase__: List[Any] = False lowerCamelCase__: Union[str, Any] = False lowerCamelCase__: Dict = True lowerCamelCase__: int = None lowerCamelCase__: List[str] = 1 lowerCamelCase__: List[str] = None lowerCamelCase__: int = False lowerCamelCase__: Any = None lowerCamelCase__: Dict = None def UpperCAmelCase( self : Optional[int] ): return self.__class__(**{k: copy.deepcopy(A__ ) for k, v in self.__dict__.items()} )
700
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class a__ ( lowerCAmelCase_ ): def __init__( self : List[str] , lowerCamelCase_ : CLIPSegForImageSegmentation , lowerCamelCase_ : CLIPSegProcessor , lowerCamelCase_ : AutoencoderKL , lowerCamelCase_ : CLIPTextModel , lowerCamelCase_ : CLIPTokenizer , lowerCamelCase_ : UNetaDConditionModel , lowerCamelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase_ : StableDiffusionSafetyChecker , lowerCamelCase_ : CLIPImageProcessor , ): super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: a_ : Dict = ( F'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' F''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' """to update the config accordingly as leaving `steps_offset` might led to incorrect results""" """ in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,""" """ it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`""" """ file""" ) deprecate("""steps_offset!=1""" , """1.0.0""" , lowerCamelCase_ , standard_warn=lowerCamelCase_ ) a_ : Union[str, Any] = dict(scheduler.config ) a_ : Optional[int] = 1 a_ : int = FrozenDict(lowerCamelCase_ ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: a_ : List[str] = ( F'''The configuration file of this scheduler: {scheduler} has not set the configuration''' """ `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make""" """ sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to""" """ incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face""" """ Hub, it would be very nice if you could open a Pull request for the""" """ `scheduler/scheduler_config.json` file""" ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , lowerCamelCase_ , standard_warn=lowerCamelCase_ ) a_ : List[str] = dict(scheduler.config ) a_ : List[str] = True a_ : str = FrozenDict(lowerCamelCase_ ) if safety_checker is None: logger.warning( F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=lowerCamelCase_ , segmentation_processor=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , ) def UpperCAmelCase( self : Tuple , lowerCamelCase_ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory a_ : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase_ ) def UpperCAmelCase( self : str ): self.enable_attention_slicing(lowerCamelCase_ ) def UpperCAmelCase( self : Any ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) a_ : Any = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase_ , lowerCamelCase_ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase( self : int ): if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Any , lowerCamelCase_ : Union[str, List[str]] , lowerCamelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , lowerCamelCase_ : str , lowerCamelCase_ : int = 5_1_2 , lowerCamelCase_ : int = 5_1_2 , lowerCamelCase_ : int = 5_0 , lowerCamelCase_ : float = 7.5 , lowerCamelCase_ : Optional[Union[str, List[str]]] = None , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : Optional[torch.Generator] = None , lowerCamelCase_ : Optional[torch.FloatTensor] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : Any , ): a_ : str = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) a_ : List[str] = self.segmentation_model(**lowerCamelCase_ ) a_ : str = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() a_ : Optional[int] = self.numpy_to_pil(lowerCamelCase_ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask a_ : Any = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , )
478
0
'''simple docstring''' import operator as op def a_ ( lowerCamelCase : Dict ): lowerCAmelCase = [] lowerCAmelCase = lambda lowerCamelCase , lowerCamelCase : int(x / y ) # noqa: E731 integer division operation lowerCAmelCase = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(snake_case__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(snake_case__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(snake_case__ ) , sep=' | ' ) else: lowerCAmelCase = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(snake_case__ ) , sep=' | ' ) lowerCAmelCase = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(snake_case__ ) , sep=' | ' ) stack.append( str(opr[x](int(snake_case__ ) , int(snake_case__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(snake_case__ ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": __snake_case =input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
133
"""simple docstring""" import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase ): _a = GPTSwaTokenizer _a = False _a = True _a = False def __lowercase ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase = GPTSwaTokenizer(lowerCAmelCase , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : Union[str, Any] , lowerCAmelCase : Tuple ): lowerCAmelCase = """This is a test""" lowerCAmelCase = """This is a test""" return input_text, output_text def __lowercase ( self : List[Any] ): lowerCAmelCase = """<s>""" lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def __lowercase ( self : Any ): lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(lowerCAmelCase ) , 2000 ) def __lowercase ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = GPTSwaTokenizer(lowerCAmelCase ) lowerCAmelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [465, 287, 265, 631, 842] ) lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( lowerCAmelCase , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on lowerCAmelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) # fmt: off self.assertListEqual( lowerCAmelCase , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def __lowercase ( self : int ): lowerCAmelCase = GPTSwaTokenizer(lowerCAmelCase ) lowerCAmelCase = ["""This is a test""", """I was born in 92000, and this is falsé."""] lowerCAmelCase = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(lowerCAmelCase , lowerCAmelCase ): self.assertListEqual(tokenizer.encode_fast(lowerCAmelCase ) , lowerCAmelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(tokenizer.decode_fast(lowerCAmelCase ) , lowerCAmelCase ) @slow def __lowercase ( self : Any ): lowerCAmelCase = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off lowerCAmelCase = {"""input_ids""": [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=lowerCAmelCase , )
169
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase : str = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowercase : Optional[int] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.weight", F"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias")) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( F"transformer.decoder.layers.{i}.cross_attn.out_proj.weight", F"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( F"transformer.decoder.layers.{i}.cross_attn.out_proj.bias", F"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F"transformer.decoder.layers.{i}.sa_qcontent_proj.weight", F"decoder.layers.{i}.sa_qcontent_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_kcontent_proj.weight", F"decoder.layers.{i}.sa_kcontent_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_qpos_proj.weight", F"decoder.layers.{i}.sa_qpos_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_kpos_proj.weight", F"decoder.layers.{i}.sa_kpos_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.sa_v_proj.weight", F"decoder.layers.{i}.sa_v_proj.weight")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_qcontent_proj.weight", F"decoder.layers.{i}.ca_qcontent_proj.weight") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_kcontent_proj.weight", F"decoder.layers.{i}.ca_kcontent_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_kpos_proj.weight", F"decoder.layers.{i}.ca_kpos_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.ca_v_proj.weight", F"decoder.layers.{i}.ca_v_proj.weight")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight", F"decoder.layers.{i}.ca_qpos_sine_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_qcontent_proj.bias", F"decoder.layers.{i}.sa_qcontent_proj.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_kcontent_proj.bias", F"decoder.layers.{i}.sa_kcontent_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.sa_qpos_proj.bias", F"decoder.layers.{i}.sa_qpos_proj.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.sa_kpos_proj.bias", F"decoder.layers.{i}.sa_kpos_proj.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.sa_v_proj.bias", F"decoder.layers.{i}.sa_v_proj.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_qcontent_proj.bias", F"decoder.layers.{i}.ca_qcontent_proj.bias") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_kcontent_proj.bias", F"decoder.layers.{i}.ca_kcontent_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.ca_kpos_proj.bias", F"decoder.layers.{i}.ca_kpos_proj.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.ca_v_proj.bias", F"decoder.layers.{i}.ca_v_proj.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias", F"decoder.layers.{i}.ca_qpos_sine_proj.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): A : Any = state_dict.pop(lowerCamelCase_ ) A : str = val def snake_case__ ( lowerCamelCase_ ): A : Optional[int] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A : Dict = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A : Dict = value else: A : Optional[int] = value return new_state_dict def snake_case__ ( lowerCamelCase_ , lowerCamelCase_=False ): A : Dict = '''''' if is_panoptic: A : str = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A : List[str] = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) A : Union[str, Any] = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A : List[Any] = in_proj_weight[:256, :] A : Union[str, Any] = in_proj_bias[:256] A : Optional[int] = in_proj_weight[256:512, :] A : str = in_proj_bias[256:512] A : str = in_proj_weight[-256:, :] A : int = in_proj_bias[-256:] def snake_case__ ( ): A : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A : Dict = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): A : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: A : Any = '''resnet101''' if "dc5" in model_name: A : Any = True A : str = '''panoptic''' in model_name if is_panoptic: A : Union[str, Any] = 250 else: A : Any = 91 A : Optional[int] = '''huggingface/label-files''' A : Union[str, Any] = '''coco-detection-id2label.json''' A : Optional[Any] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='''dataset''' ) , '''r''' ) ) A : List[str] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} A : List[Any] = idalabel A : Dict = {v: k for k, v in idalabel.items()} # load image processor A : Tuple = '''coco_panoptic''' if is_panoptic else '''coco_detection''' A : Dict = ConditionalDetrImageProcessor(format=lowerCamelCase_ ) # prepare image A : Optional[Any] = prepare_img() A : str = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ) A : Union[str, Any] = encoding['''pixel_values'''] logger.info(F'Converting model {model_name}...' ) # load original model from torch hub A : Optional[Any] = torch.hub.load('''DeppMeng/ConditionalDETR''' , lowerCamelCase_ , pretrained=lowerCamelCase_ ).eval() A : Any = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: A : Union[str, Any] = '''conditional_detr.''' + src rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) A : str = rename_backbone_keys(lowerCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase_ , is_panoptic=lowerCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A : List[str] = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): A : int = state_dict.pop(lowerCamelCase_ ) A : str = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A : Optional[int] = state_dict.pop(lowerCamelCase_ ) A : List[Any] = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: A : Optional[Any] = state_dict.pop(lowerCamelCase_ ) A : List[str] = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A : str = state_dict.pop(lowerCamelCase_ ) A : Tuple = val # finally, create HuggingFace model and load state dict A : Dict = ConditionalDetrForSegmentation(lowerCamelCase_ ) if is_panoptic else ConditionalDetrForObjectDetection(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) model.eval() model.push_to_hub(repo_id=lowerCamelCase_ , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion A : Union[str, Any] = conditional_detr(lowerCamelCase_ ) A : int = model(lowerCamelCase_ ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) lowercase : Any = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
700
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = '''facebook/bart-large-mnli''' UpperCAmelCase_ : Optional[int] = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) UpperCAmelCase_ : Optional[Any] = '''text_classifier''' UpperCAmelCase_ : str = AutoTokenizer UpperCAmelCase_ : int = AutoModelForSequenceClassification UpperCAmelCase_ : Union[str, Any] = ['''text''', ['''text''']] UpperCAmelCase_ : Tuple = ['''text'''] def snake_case ( self ) -> List[str]: super().setup() A : int = self.model.config A : List[str] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): A : Dict = int(__UpperCAmelCase ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: A : List[str] = labels return self.pre_processor( [text] * len(__UpperCAmelCase ) , [f'This example is {label}' for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def snake_case ( self , __UpperCAmelCase ) -> Tuple: A : int = outputs.logits A : int = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
423
0
def __snake_case ( _UpperCamelCase ) -> int: _a = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __snake_case ( _UpperCamelCase = 1_00 ) -> int: _a = 1 _a = 2 for i in range(2 , max_n + 1 ): _a = pre_numerator _a = 2 * i // 3 if i % 3 == 0 else 1 _a = cur_numerator _a = e_cont * pre_numerator + temp return sum_digits(_UpperCamelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
487
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> Any: _a = old_name if "patch_embed" in old_name: _a , _a , _a = old_name.split('''.''' ) if layer == "0": _a = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": _a = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": _a = old_name.replace('''3''' , '''convolution2''' ) else: _a = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(R'''\d\.\d''' , _UpperCamelCase ): _a = R'''\b\d{2}\b''' if bool(re.search(_UpperCamelCase , _UpperCamelCase ) ): _a = re.search(R'''\d\.\d\d.''' , _UpperCamelCase ).group() else: _a = re.search(R'''\d\.\d.''' , _UpperCamelCase ).group() if int(match[0] ) < 6: _a = old_name.replace(_UpperCamelCase , '''''' ) _a = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) _a = '''intermediate_stages.''' + trimmed_name else: _a = old_name.replace(_UpperCamelCase , '''''' ) if int(match[2] ) < num_meta4D_last_stage: _a = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: _a = str(int(match[2] ) - num_meta4D_last_stage ) _a = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: _a = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: _a = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: _a = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: _a = trimmed_name.replace('''fc2''' , '''linear_out''' ) _a = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(R'''.\d.''' , _UpperCamelCase ): _a = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: _a = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): _a = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): _a = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: _a = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: _a = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: _a = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: _a = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": _a = new_name.replace('''norm''' , '''layernorm''' ) _a = '''efficientformer.''' + new_name else: _a = '''efficientformer.encoder.''' + new_name return new_name def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> str: for key in checkpoint.copy().keys(): _a = checkpoint.pop(_UpperCamelCase ) _a = val return checkpoint def __snake_case ( ) -> int: _a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return image def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: _a = torch.load(_UpperCamelCase , map_location='''cpu''' )['''model'''] _a = EfficientFormerConfig.from_json_file(_UpperCamelCase ) _a = EfficientFormerForImageClassificationWithTeacher(_UpperCamelCase ) _a = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) _a = config.depths[-1] - config.num_metaad_blocks + 1 _a = convert_torch_checkpoint(_UpperCamelCase , _UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() _a = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image _a = prepare_img() _a = 2_56 _a = 2_24 _a = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) _a = processor(images=_UpperCamelCase , return_tensors='''pt''' ).pixel_values # original processing pipeline _a = Compose( [ Resize(_UpperCamelCase , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(_UpperCamelCase ), ToTensor(), Normalize(_UpperCamelCase , _UpperCamelCase ), ] ) _a = image_transforms(_UpperCamelCase ).unsqueeze(0 ) assert torch.allclose(_UpperCamelCase , _UpperCamelCase ) _a = model(_UpperCamelCase ) _a = outputs.logits _a = (1, 10_00) if "l1" in model_name: _a = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28] ) assert torch.allclose(logits[0, :10] , _UpperCamelCase , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: _a = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27] ) assert torch.allclose(logits[0, :10] , _UpperCamelCase , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: _a = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78] ) assert logits.shape == expected_shape else: raise ValueError( f"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7" ) # Save Checkpoints Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) processor.save_pretrained(_UpperCamelCase ) print(f"Processor successfuly saved at {pytorch_dump_path}" ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}" , commit_message='''Add model''' , use_temp_dir=_UpperCamelCase , ) processor.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}" , commit_message='''Add image processor''' , use_temp_dir=_UpperCamelCase , ) if __name__ == "__main__": lowerCamelCase :Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) lowerCamelCase :int = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
487
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def a ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" ) __lowerCAmelCase = AutoTokenizer.from_pretrained("""google/mt5-small""" ) __lowerCAmelCase = tokenizer("""Hello there""" , return_tensors="""tf""" ).input_ids __lowerCAmelCase = tokenizer("""Hi I am""" , return_tensors="""tf""" ).input_ids __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ).loss __lowerCAmelCase = -tf.math.reduce_mean(SCREAMING_SNAKE_CASE__ ).numpy() __lowerCAmelCase = -2_1.2_2_8_1_6_8 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
330
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : int = 10_00 ) -> int: '''simple docstring''' __lowerCAmelCase = -1 __lowerCAmelCase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __lowerCAmelCase = (n * n - 2 * a * n) // (2 * n - 2 * a) __lowerCAmelCase = n - a - b if c * c == (a * a + b * b): __lowerCAmelCase = a * b * c if candidate >= product: __lowerCAmelCase = candidate return product if __name__ == "__main__": print(f'{solution() = }')
330
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): @property def a_ ( self ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def a_ ( self ) -> Optional[int]: UpperCAmelCase = self.dummy_uncond_unet UpperCAmelCase = ScoreSdeVeScheduler() UpperCAmelCase = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_ ) sde_ve.to(lowercase_ ) sde_ve.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=lowercase_ ).images UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=lowercase_ , return_dict=lowercase_ )[ 0 ] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a_ ( self ) -> str: UpperCAmelCase = 'google/ncsnpp-church-256' UpperCAmelCase = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase = ScoreSdeVeScheduler.from_pretrained(lowercase_ ) UpperCAmelCase = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_ ) sde_ve.to(lowercase_ ) sde_ve.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sde_ve(num_inference_steps=1_0 , output_type='numpy' , generator=lowercase_ ).images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) UpperCAmelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
373
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : List[str] = "sew-d" def __init__( self , lowercase_=3_2 , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_=2 , lowercase_=5_1_2 , lowercase_=2_5_6 , lowercase_=True , lowercase_=True , lowercase_=("p2c", "c2p") , lowercase_="layer_norm" , lowercase_="gelu_python" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.1 , lowercase_=0.0_2 , lowercase_=1E-7 , lowercase_=1E-5 , lowercase_="group" , lowercase_="gelu" , lowercase_=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase_=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase_=False , lowercase_=1_2_8 , lowercase_=1_6 , lowercase_=True , lowercase_=0.0_5 , lowercase_=1_0 , lowercase_=2 , lowercase_=0.0 , lowercase_=1_0 , lowercase_=0 , lowercase_="mean" , lowercase_=False , lowercase_=False , lowercase_=2_5_6 , lowercase_=0 , lowercase_=1 , lowercase_=2 , **lowercase_ , ) -> Dict: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) UpperCAmelCase = hidden_size UpperCAmelCase = feat_extract_norm UpperCAmelCase = feat_extract_activation UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = conv_bias UpperCAmelCase = num_conv_pos_embeddings UpperCAmelCase = num_conv_pos_embedding_groups UpperCAmelCase = len(self.conv_dim ) UpperCAmelCase = num_hidden_layers UpperCAmelCase = intermediate_size UpperCAmelCase = squeeze_factor UpperCAmelCase = max_position_embeddings UpperCAmelCase = position_buckets UpperCAmelCase = share_att_key UpperCAmelCase = relative_attention UpperCAmelCase = norm_rel_ebd UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = hidden_act UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = feat_proj_dropout UpperCAmelCase = final_dropout UpperCAmelCase = layer_norm_eps UpperCAmelCase = feature_layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks # ctc loss UpperCAmelCase = ctc_loss_reduction UpperCAmelCase = ctc_zero_infinity # sequence classification UpperCAmelCase = use_weighted_layer_sum UpperCAmelCase = classifier_proj_size @property def a_ ( self ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
373
1
def __A ( _lowercase ): '''simple docstring''' if length <= 0 or not isinstance(a_ , a_ ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(a_ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
712
def __A ( _lowercase = 1_00_00_00 ): '''simple docstring''' _A = 1 _A = 1 _A = {1: 1} for inputa in range(2 , _lowercase ): _A = 0 _A = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _A = (3 * number) + 1 counter += 1 if inputa not in counters: _A = counter if counter > pre_counter: _A = inputa _A = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
62
0
import os from collections.abc import Iterator def __UpperCAmelCase ( UpperCAmelCase = "." )-> int: """simple docstring""" for dir_path, dir_names, filenames in os.walk(UpperCAmelCase ): lowercase = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(UpperCAmelCase, UpperCAmelCase ).lstrip('''./''' ) def __UpperCAmelCase ( UpperCAmelCase )-> Union[str, Any]: """simple docstring""" return f'{i * " "}*' if i else "\n##" def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase )-> Optional[int]: """simple docstring""" lowercase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(f'{md_prefix(UpperCAmelCase )} {new_part.replace("_", " " ).title()}' ) return new_path def __UpperCAmelCase ( UpperCAmelCase = "." )-> Tuple: """simple docstring""" lowercase = '''''' for filepath in sorted(good_file_paths(UpperCAmelCase ) ): lowercase ,lowercase = os.path.split(UpperCAmelCase ) if filepath != old_path: lowercase = print_path(UpperCAmelCase, UpperCAmelCase ) lowercase = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase = f'{filepath}/{filename}'.replace(''' ''', '''%20''' ) lowercase = os.path.splitext(filename.replace('''_''', ''' ''' ).title() )[0] print(f'{md_prefix(UpperCAmelCase )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md(".")
604
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _SCREAMING_SNAKE_CASE : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class _snake_case ( datasets.BuilderConfig ): lowerCAmelCase_ : int = 1_0000 lowerCAmelCase_ : Optional[List[str]] = None lowerCAmelCase_ : Optional[datasets.Features] = None class _snake_case ( datasets.ArrowBasedBuilder ): lowerCAmelCase_ : Tuple = ParquetConfig def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) snake_case_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a__ , (str, list, tuple) ): snake_case_ = data_files if isinstance(a__ , a__ ): snake_case_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case_ = [dl_manager.iter_files(a__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] snake_case_ = [] for split_name, files in data_files.items(): if isinstance(a__ , a__ ): snake_case_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case_ = [dl_manager.iter_files(a__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a__ ): with open(a__ , "rb" ) as f: snake_case_ = datasets.Features.from_arrow_schema(pq.read_schema(a__ ) ) break splits.append(datasets.SplitGenerator(name=a__ , gen_kwargs={"files": files} ) ) return splits def lowerCAmelCase__ ( self , a__ ) -> pa.Table: '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example snake_case_ = table_cast(a__ , self.info.features.arrow_schema ) return pa_table def lowerCAmelCase__ ( self , a__ ) -> List[Any]: '''simple docstring''' snake_case_ = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(a__ ) ): with open(a__ , "rb" ) as f: snake_case_ = pq.ParquetFile(a__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): snake_case_ = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'{file_idx}_{batch_idx}', self._cast_table(a__ ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(a__ )}: {e}' ) raise
400
0
'''simple docstring''' import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): try: _snake_case : int = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _snake_case : str = default else: # KEY is set, convert it to True or False. try: _snake_case : Optional[int] = strtobool(__lowerCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value lowercase_ : str = parse_flag_from_env('''RUN_SLOW''', default=False) def A__( __lowerCAmelCase ): return unittest.skip('Test was skipped' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(_run_slow_tests , 'test is slow' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(__lowerCAmelCase ) def A__( __lowerCAmelCase=None , __lowerCAmelCase=None ): if test_case is None: return partial(__lowerCAmelCase , version=__lowerCAmelCase ) return unittest.skipUnless(is_torch_version('>=' , __lowerCAmelCase ) , F'''test requires torch version >= {version}''' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(__lowerCAmelCase ) lowercase_ : Optional[Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def A__( __lowerCAmelCase ): return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(__lowerCAmelCase ) class lowercase ( unittest.TestCase ): """simple docstring""" _UpperCamelCase : List[Any] = True @classmethod def __UpperCAmelCase ( cls : List[Any] ): '''simple docstring''' _snake_case : str = tempfile.mkdtemp() @classmethod def __UpperCAmelCase ( cls : int ): '''simple docstring''' if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowerCamelCase_ ) class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : str ): '''simple docstring''' super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Union[mock.Mock, List[mock.Mock]] ): '''simple docstring''' _snake_case : Tuple = mocks if isinstance(lowerCamelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def A__( __lowerCAmelCase ): _snake_case : List[Any] = AcceleratorState() _snake_case : Union[str, Any] = tensor[None].clone().to(state.device ) _snake_case : str = gather(__lowerCAmelCase ).cpu() _snake_case : Optional[int] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __lowerCAmelCase ): return False return True class lowercase : """simple docstring""" def __init__( self : str , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' _snake_case : List[str] = returncode _snake_case : Optional[Any] = stdout _snake_case : str = stderr async def A__( __lowerCAmelCase , __lowerCAmelCase ): while True: _snake_case : Optional[Any] = await stream.readline() if line: callback(__lowerCAmelCase ) else: break async def A__( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=False ): if echo: print('\nRunning: ' , ' '.join(__lowerCAmelCase ) ) _snake_case : Dict = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__lowerCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__lowerCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _snake_case : List[str] = [] _snake_case : Optional[int] = [] def tee(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="" ): _snake_case : Tuple = line.decode('utf-8' ).rstrip() sink.append(__lowerCAmelCase ) if not quiet: print(__lowerCAmelCase , __lowerCAmelCase , file=__lowerCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stderr , label='stderr:' ) ) ), ] , timeout=__lowerCAmelCase , ) return _RunOutput(await p.wait() , __lowerCAmelCase , __lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=1_80 , __lowerCAmelCase=False , __lowerCAmelCase=True ): _snake_case : Optional[int] = asyncio.get_event_loop() _snake_case : Tuple = loop.run_until_complete( _stream_subprocess(__lowerCAmelCase , env=__lowerCAmelCase , stdin=__lowerCAmelCase , timeout=__lowerCAmelCase , quiet=__lowerCAmelCase , echo=__lowerCAmelCase ) ) _snake_case : Optional[int] = ' '.join(__lowerCAmelCase ) if result.returncode > 0: _snake_case : Optional[int] = '\n'.join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) return result class lowercase ( a_ ): """simple docstring""" pass def A__( __lowerCAmelCase , __lowerCAmelCase=False ): try: _snake_case : Optional[Any] = subprocess.check_output(__lowerCAmelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__lowerCAmelCase , 'decode' ): _snake_case : List[Any] = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'''Command `{' '.join(__lowerCAmelCase )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
717
def A__( __lowerCAmelCase ): assert column_title.isupper() _snake_case : List[Any] = 0 _snake_case : List[str] = len(__lowerCAmelCase ) - 1 _snake_case : Dict = 0 while index >= 0: _snake_case : List[str] = (ord(column_title[index] ) - 64) * pow(26 , __lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
652
0
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever _lowerCAmelCase = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ): super().__init__( lowerCAmelCase_ , question_encoder_tokenizer=lowerCAmelCase_ , generator_tokenizer=lowerCAmelCase_ , index=lowerCAmelCase_ , init_retrieval=lowerCAmelCase_ , ) A_ : str = None def lowerCamelCase(self , lowerCAmelCase_ ): logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually A_ : List[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port A_ : Tuple = str(distributed_port + 1 ) A_ : Any = dist.new_group(ranks=lowerCAmelCase_ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowerCamelCase(self ): return dist.get_rank(group=self.process_group ) == 0 def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=torch.floataa ): A_ : Tuple = torch.empty(lowerCAmelCase_ , dtype=lowerCAmelCase_ ) dist.scatter(lowerCAmelCase_ , src=0 , scatter_list=lowerCAmelCase_ , group=self.process_group ) return target_tensor def lowerCamelCase(self ): A_ : Optional[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names A_ : List[Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , lowerCAmelCase_ ) return ifname def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ ): # single GPU training if not dist.is_initialized(): A_ , A_ : Tuple = self._main_retrieve(lowerCAmelCase_ , lowerCAmelCase_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase_ ) # distributed training A_ : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic A_ : str = None if self._is_main(): A_ : Union[str, Any] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(lowerCAmelCase_ )] dist.gather(torch.tensor(lowerCAmelCase_ ) , dst=0 , gather_list=lowerCAmelCase_ , group=self.process_group ) # scatter logic A_ : List[Any] = question_hidden_states.shape[0] A_ : Optional[Any] = [] A_ : Dict = [] if self._is_main(): assert len(lowerCAmelCase_ ) == world_size A_ , A_ : List[Any] = self._main_retrieve(torch.cat(lowerCAmelCase_ ).numpy() , lowerCAmelCase_ ) A_ , A_ : int = torch.tensor(lowerCAmelCase_ ), torch.tensor(lowerCAmelCase_ ) A_ : Tuple = self._chunk_tensor(lowerCAmelCase_ , lowerCAmelCase_ ) A_ : Tuple = self._chunk_tensor(lowerCAmelCase_ , lowerCAmelCase_ ) A_ : str = self._scattered(lowerCAmelCase_ , [n_queries, n_docs] , target_type=torch.intaa ) A_ : int = self._scattered(lowerCAmelCase_ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCAmelCase_ )
180
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def __UpperCamelCase ( snake_case__ ): return 1.0 / (1.0 + np.exp(-_outputs )) def __UpperCamelCase ( snake_case__ ): A_ : Union[str, Any] = np.max(_outputs , axis=-1 , keepdims=snake_case__ ) A_ : str = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=snake_case__ ) class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : Any = """sigmoid""" _A : Any = """softmax""" _A : Union[str, Any] = """none""" @add_end_docstrings( _SCREAMING_SNAKE_CASE , R""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : Optional[int] = False _A : Dict = ClassificationFunction.NONE def __init__(self , **lowerCAmelCase_ ): super().__init__(**lowerCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def lowerCamelCase(self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_="" , **lowerCAmelCase_ ): # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" A_ : Union[str, Any] = tokenizer_kwargs A_ : List[str] = {} if hasattr(self.model.config , """return_all_scores""" ) and return_all_scores is None: A_ : Optional[int] = self.model.config.return_all_scores if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or top_k is None: A_ : Dict = top_k A_ : Any = False elif return_all_scores is not None: warnings.warn( """`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of""" """ `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.""" , lowerCAmelCase_ , ) if return_all_scores: A_ : List[Any] = None else: A_ : List[str] = 1 if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A_ : str = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: A_ : List[str] = function_to_apply return preprocess_params, {}, postprocess_params def __call__(self , *lowerCAmelCase_ , **lowerCAmelCase_ ): A_ : List[str] = super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. A_ : Union[str, Any] = """top_k""" not in kwargs if isinstance(args[0] , lowerCAmelCase_ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def lowerCamelCase(self , lowerCAmelCase_ , **lowerCAmelCase_ ): A_ : Union[str, Any] = self.framework if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return self.tokenizer(**lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) == 1 and isinstance(inputs[0] , lowerCAmelCase_ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( """The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a""" """ dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.""" ) return self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase(self , lowerCAmelCase_ ): return self.model(**lowerCAmelCase_ ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=1 , lowerCAmelCase_=True ): # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: A_ : Optional[Any] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: A_ : Tuple = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , """function_to_apply""" ) and function_to_apply is None: A_ : Any = self.model.config.function_to_apply else: A_ : Dict = ClassificationFunction.NONE A_ : Optional[Any] = model_outputs["""logits"""][0] A_ : Tuple = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: A_ : str = sigmoid(lowerCAmelCase_ ) elif function_to_apply == ClassificationFunction.SOFTMAX: A_ : Dict = softmax(lowerCAmelCase_ ) elif function_to_apply == ClassificationFunction.NONE: A_ : Optional[int] = outputs else: raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} A_ : Optional[Any] = [ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(lowerCAmelCase_ ) ] if not _legacy: dict_scores.sort(key=lambda lowerCAmelCase_ : x["score"] , reverse=lowerCAmelCase_ ) if top_k is not None: A_ : str = dict_scores[:top_k] return dict_scores
180
1
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = model.config __A = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 1_6, 3_2] , window_size=original_config.window_size , embed_dim=1_2_8 , ) __A = MBartConfig( is_decoder=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , add_cross_attention=__UpperCamelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCamelCase , add_final_layer_norm=__UpperCamelCase , ) return encoder_config, decoder_config def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if "encoder.model" in name: __A = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: __A = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: __A = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __A = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: __A = '''encoder.''' + name if "attn.proj" in name: __A = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: __A = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __A = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __A = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __A = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __A = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": __A = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": __A = '''encoder.layernorm.bias''' return name def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" for key in orig_state_dict.copy().keys(): __A = orig_state_dict.pop(__UpperCamelCase ) if "qkv" in key: __A = key.split('''.''' ) __A = int(key_split[3] ) __A = int(key_split[5] ) __A = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __A = val[:dim, :] __A = val[dim : dim * 2, :] __A = val[-dim:, :] else: __A = val[:dim] __A = val[dim : dim * 2] __A = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __A = val return orig_state_dict def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=False ): """simple docstring""" __A = DonutModel.from_pretrained(__UpperCamelCase ).eval() # load HuggingFace model __A , __A = get_configs(__UpperCamelCase ) __A = DonutSwinModel(__UpperCamelCase ) __A = MBartForCausalLM(__UpperCamelCase ) __A = VisionEncoderDecoderModel(encoder=__UpperCamelCase , decoder=__UpperCamelCase ) model.eval() __A = original_model.state_dict() __A = convert_state_dict(__UpperCamelCase , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # verify results on scanned document __A = load_dataset('''hf-internal-testing/example-documents''' ) __A = dataset['''test'''][0]['''image'''].convert('''RGB''' ) __A = XLMRobertaTokenizerFast.from_pretrained(__UpperCamelCase , from_slow=__UpperCamelCase ) __A = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __A = DonutProcessor(__UpperCamelCase , __UpperCamelCase ) __A = processor(__UpperCamelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __A = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __A = '''When is the coffee break?''' __A = task_prompt.replace('''{user_input}''' , __UpperCamelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __A = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __A = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __A = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __A = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __A = '''hello world''' else: raise ValueError('''Model name not supported''' ) __A = original_model.decoder.tokenizer(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors='''pt''' )[ '''input_ids''' ] __A = original_model.encoder.model.patch_embed(__UpperCamelCase ) __A , __A = model.encoder.embeddings(__UpperCamelCase ) assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) # verify encoder hidden states __A = original_model.encoder(__UpperCamelCase ) __A = model.encoder(__UpperCamelCase ).last_hidden_state assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-2 ) # verify decoder hidden states __A = original_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).logits __A = model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase ).logits assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) lowercase_ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
215
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any], _lowerCamelCase : int, _lowerCamelCase : List[Any]=7, _lowerCamelCase : Any=3, _lowerCamelCase : List[Any]=18, _lowerCamelCase : str=30, _lowerCamelCase : List[Any]=4_00, _lowerCamelCase : List[str]=True, _lowerCamelCase : List[Any]=None, _lowerCamelCase : Union[str, Any]=True, _lowerCamelCase : List[str]=False, _lowerCamelCase : str=True, _lowerCamelCase : int=True, _lowerCamelCase : List[str]=[0.5, 0.5, 0.5], _lowerCamelCase : Union[str, Any]=[0.5, 0.5, 0.5], ): '''simple docstring''' __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size if size is not None else {'''height''': 18, '''width''': 20} __A = do_thumbnail __A = do_align_axis __A = do_pad __A = do_normalize __A = image_mean __A = image_std def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = DonutImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = DonutImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''do_thumbnail''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''do_pad''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''image_std''' ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''height''': 18, '''width''': 20} ) __A = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __A = self.image_processing_class.from_dict(self.image_processor_dict, size=(42, 84) ) self.assertEqual(image_processor.size, {'''height''': 84, '''width''': 42} ) def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' pass @is_flaky() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester, equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, Image.Image ) # Test not batched input __A = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) @is_flaky() def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester, equal_resolution=_lowerCamelCase, numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) @is_flaky() def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester, equal_resolution=_lowerCamelCase, torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), )
215
1
"""simple docstring""" from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase__ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=30 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : str=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : List[Any]=10 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Dict=None , ) -> str: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : int ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = TFViTModel(config=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ = self.image_size // 2 UpperCAmelCase_ = pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ = model(_UpperCAmelCase , interpolate_pos_encoding=_UpperCAmelCase , training=_UpperCAmelCase ) UpperCAmelCase_ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowercase__ ( self : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = TFViTForImageClassification(_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ = self.image_size // 2 UpperCAmelCase_ = pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ = model(_UpperCAmelCase , interpolate_pos_encoding=_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = TFViTForImageClassification(_UpperCAmelCase ) UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () UpperCamelCase = ( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = TFViTModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' pass def lowercase__ ( self : str ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , tf.keras.layers.Layer ) ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowercase__ ( self : int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowercase__ ( self : int ) -> Any: '''simple docstring''' UpperCAmelCase_ = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 )
82
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowerCamelCase = False class lowercase__ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Dict ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = "A painting of a squirrel eating a burger " UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained(_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = generator.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = "A painting of a squirrel eating a burger " UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images UpperCAmelCase_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
82
1
'''simple docstring''' from string import ascii_uppercase lowerCamelCase__ = {char: i for i, char in enumerate(ascii_uppercase)} lowerCamelCase__ = dict(enumerate(ascii_uppercase)) def _SCREAMING_SNAKE_CASE( snake_case_ : str , snake_case_ : str ) ->str: '''simple docstring''' _lowercase : List[str] = len(snake_case_ ) _lowercase : Any = 0 while True: if x == i: _lowercase : str = 0 if len(snake_case_ ) == len(snake_case_ ): break key += key[i] i += 1 return key def _SCREAMING_SNAKE_CASE( snake_case_ : str , snake_case_ : str ) ->str: '''simple docstring''' _lowercase : int = '''''' _lowercase : Optional[Any] = 0 for letter in message: if letter == " ": cipher_text += " " else: _lowercase : Optional[Any] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def _SCREAMING_SNAKE_CASE( snake_case_ : str , snake_case_ : str ) ->str: '''simple docstring''' _lowercase : Any = '''''' _lowercase : Union[str, Any] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: _lowercase : List[Any] = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def _SCREAMING_SNAKE_CASE( ) ->None: '''simple docstring''' _lowercase : int = '''THE GERMAN ATTACK''' _lowercase : Union[str, Any] = '''SECRET''' _lowercase : Optional[Any] = generate_key(snake_case_ , snake_case_ ) _lowercase : int = cipher_text(snake_case_ , snake_case_ ) print(F"Encrypted Text = {s}" ) print(F"Original Text = {original_text(snake_case_ , snake_case_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
411
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowercase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : str = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) _lowercase : List[str] = { '''input_ids''': tf.convert_to_tensor([[0, 2_646, 10_269, 83, 99_942, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } _lowercase : Any = model(UpperCamelCase_ )['''last_hidden_state'''] _lowercase : List[Any] = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice. _lowercase : Optional[int] = tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
411
1
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int snake_case__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): a__: Optional[datasets.Features] = None def lowerCamelCase_ ( UpperCAmelCase_ : "pyspark.sql.DataFrame" , UpperCAmelCase_ : List[int] , ): import pyspark def generate_fn(): lowercase : List[Any] = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: lowercase : Union[str, Any] = df_with_partition_id.select('''*''' ).where(f'''part_id = {partition_id}''' ).drop('''part_id''' ) lowercase : Optional[int] = partition_df.collect() lowercase : Optional[Any] = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class UpperCAmelCase ( _BaseExamplesIterable ): def __init__( self : List[str] , lowerCAmelCase : "pyspark.sql.DataFrame" , lowerCAmelCase : Dict=None , ): lowercase : List[Any] = df lowercase : Tuple = partition_order or range(self.df.rdd.getNumPartitions() ) lowercase : int = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : str ): yield from self.generate_examples_fn() def _lowerCAmelCase ( self : Any , lowerCAmelCase : np.random.Generator ): lowercase : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCAmelCase ) return SparkExamplesIterable(self.df , partition_order=lowerCAmelCase ) def _lowerCAmelCase ( self : str , lowerCAmelCase : int , lowerCAmelCase : int ): lowercase : Tuple = self.split_shard_indices_by_worker(lowerCAmelCase , lowerCAmelCase ) return SparkExamplesIterable(self.df , partition_order=lowerCAmelCase ) @property def _lowerCAmelCase ( self : Optional[int] ): return len(self.partition_order ) class UpperCAmelCase ( datasets.DatasetBuilder ): a__: Union[str, Any] = SparkConfig def __init__( self : Dict , lowerCAmelCase : "pyspark.sql.DataFrame" , lowerCAmelCase : str = None , lowerCAmelCase : str = None , **lowerCAmelCase : Tuple , ): import pyspark lowercase : Union[str, Any] = pyspark.sql.SparkSession.builder.getOrCreate() lowercase : Optional[Any] = df lowercase : str = working_dir super().__init__( cache_dir=lowerCAmelCase , config_name=str(self.df.semanticHash() ) , **lowerCAmelCase , ) def _lowerCAmelCase ( self : List[str] ): # Returns the path of the created file. def create_cache_and_write_probe(lowerCAmelCase : Optional[Any] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=lowerCAmelCase ) lowercase : Optional[Any] = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCAmelCase , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowercase : Any = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(lowerCAmelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def _lowerCAmelCase ( self : Dict ): return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase : datasets.download.download_manager.DownloadManager ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def _lowerCAmelCase ( self : Dict , lowerCAmelCase : Any ): import pyspark def get_arrow_batch_size(lowerCAmelCase : str ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) lowercase : Union[str, Any] = self.df.count() lowercase : List[Any] = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowercase : Optional[int] = ( self.df.limit(lowerCAmelCase ) .repartition(1 ) .mapInArrow(lowerCAmelCase , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowercase : Optional[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowercase : List[str] = min(lowerCAmelCase , int(approx_total_size / max_shard_size ) ) lowercase : Dict = self.df.repartition(lowerCAmelCase ) def _lowerCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : int , ): import pyspark lowercase : Union[str, Any] = ParquetWriter if file_format == '''parquet''' else ArrowWriter lowercase : Any = os.path.join(self._working_dir , os.path.basename(lowerCAmelCase ) ) if self._working_dir else fpath lowercase : Tuple = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowercase : int = self.config.features lowercase : Any = self._writer_batch_size lowercase : str = self._fs.storage_options def write_arrow(lowerCAmelCase : int ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowercase : int = pyspark.TaskContext().taskAttemptId() lowercase : List[Any] = next(lowerCAmelCase , lowerCAmelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) lowercase : int = 0 lowercase : int = writer_class( features=lowerCAmelCase , path=working_fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , writer_batch_size=lowerCAmelCase , storage_options=lowerCAmelCase , embed_local_files=lowerCAmelCase , ) lowercase : Optional[Any] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCAmelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowercase , lowercase : Dict = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 lowercase : Tuple = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , writer_batch_size=lowerCAmelCase , storage_options=lowerCAmelCase , embed_local_files=lowerCAmelCase , ) lowercase : int = pa.Table.from_batches([batch] ) writer.write_table(lowerCAmelCase ) if writer._num_bytes > 0: lowercase , lowercase : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCAmelCase ) ): lowercase : Optional[int] = os.path.join(os.path.dirname(lowerCAmelCase ) , os.path.basename(lowerCAmelCase ) ) shutil.move(lowerCAmelCase , lowerCAmelCase ) lowercase : List[str] = ( self.df.mapInArrow(lowerCAmelCase , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase : "datasets.SplitGenerator" , lowerCAmelCase : str = "arrow" , lowerCAmelCase : Optional[Union[str, int]] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Tuple , ): self._validate_cache_dir() lowercase : Optional[Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCAmelCase ) lowercase : int = not is_remote_filesystem(self._fs ) lowercase : Dict = os.path.join if is_local else posixpath.join lowercase : List[str] = '''-TTTTT-SSSSS-of-NNNNN''' lowercase : Dict = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowercase : List[str] = path_join(self._output_dir , lowerCAmelCase ) lowercase : Union[str, Any] = 0 lowercase : int = 0 lowercase : List[Any] = 0 lowercase : int = [] lowercase : Tuple = [] for task_id, content in self._prepare_split_single(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCAmelCase ) lowercase : str = total_num_examples lowercase : Optional[int] = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowercase : Dict = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowercase : List[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , ): rename( lowerCAmelCase , fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , fpath.replace('''TTTTT-SSSSS''' , f'''{global_shard_id:05d}''' ).replace('''NNNNN''' , f'''{total_shards:05d}''' ) , ) lowercase : int = [] lowercase : List[str] = 0 for i in range(len(lowerCAmelCase ) ): lowercase , lowercase : List[str] = task_id_and_num_shards[i] for shard_id in range(lowerCAmelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCAmelCase , len(lowerCAmelCase ) ).map(lambda lowerCAmelCase : _rename_shard(*lowerCAmelCase ) ).collect() else: # don't use any pattern lowercase : List[str] = 0 lowercase : Tuple = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , fpath.replace(lowerCAmelCase , '''''' ) , ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase : "datasets.SplitGenerator" , ): return SparkExamplesIterable(self.df )
583
from PIL import Image def lowerCamelCase_ ( UpperCAmelCase_ : Image , UpperCAmelCase_ : int ): lowercase : str = (2_59 * (level + 2_55)) / (2_55 * (2_59 - level)) def contrast(UpperCAmelCase_ : int ) -> int: return int(1_28 + factor * (c - 1_28) ) return img.point(UpperCAmelCase_ ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change contrast to 170 snake_case__ = change_contrast(img, 1_70) cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
583
1
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) SCREAMING_SNAKE_CASE_ = pytest.mark.integration @pytest.mark.parametrize("path" , ["paws", "csv"] ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any , lowerCAmelCase: int ) -> str: inspect_dataset(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : List[str] = path + ".py" assert script_name in os.listdir(_UpperCAmelCase ) assert "__pycache__" not in os.listdir(_UpperCAmelCase ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path" , ["accuracy"] ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] ) -> Optional[int]: inspect_metric(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : Dict = path + ".py" assert script_name in os.listdir(_UpperCAmelCase ) assert "__pycache__" not in os.listdir(_UpperCAmelCase ) @pytest.mark.parametrize( "path, config_name, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] , lowerCAmelCase: Dict , lowerCAmelCase: List[Any] ) -> Any: _UpperCAmelCase : Union[str, Any] = get_dataset_config_info(_UpperCAmelCase , config_name=_UpperCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: str ) -> Tuple: with pytest.raises(_UpperCAmelCase ): get_dataset_config_info(_UpperCAmelCase , config_name=_UpperCAmelCase ) @pytest.mark.parametrize( "path, expected" , [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] , ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] , lowerCAmelCase: int ) -> Dict: _UpperCAmelCase : Any = get_dataset_config_names(_UpperCAmelCase ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" , [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] , ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: Any , lowerCAmelCase: Dict ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = get_dataset_infos(_UpperCAmelCase ) assert list(infos.keys() ) == expected_configs _UpperCAmelCase : str = expected_configs[0] assert expected_config in infos _UpperCAmelCase : List[str] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple , lowerCAmelCase: str , lowerCAmelCase: List[str] ) -> str: _UpperCAmelCase : Any = get_dataset_infos(_UpperCAmelCase ) assert expected_config in infos _UpperCAmelCase : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict , lowerCAmelCase: Optional[int] , lowerCAmelCase: List[Any] ) -> int: with pytest.raises(_UpperCAmelCase ): get_dataset_split_names(_UpperCAmelCase , config_name=_UpperCAmelCase )
716
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: Tuple , lowerCAmelCase: Any=None , **lowerCAmelCase: Any ) -> Dict: _UpperCAmelCase : Optional[Any] = [x.strip() for x in open(lowerCAmelCase ).readlines()] _UpperCAmelCase : str = [x.strip() for x in open(lowerCAmelCase ).readlines()][: len(lowerCAmelCase )] _UpperCAmelCase : str = calculate_rouge(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) if save_path is not None: save_json(lowerCAmelCase , lowerCAmelCase , indent=lowerCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
467
0
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
19
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _A ( _lowerCAmelCase = "isbn/0140328726" ): """simple docstring""" __lowercase =olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: __lowercase =f"""{olid} is not a valid Open Library olid""" raise ValueError(_lowerCAmelCase ) return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json() def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase ={ 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } __lowercase ={better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __lowercase =[ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] __lowercase =data['First sentence']['value'] for key, value in data.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowercase =', '.join(_lowerCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCamelCase = input("""\nEnter the ISBN code to search (or 'quit' to stop): """).strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f"Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.") continue print(f"\nSearching Open Library for ISBN: {isbn}...\n") try: lowerCamelCase = summarize_book(get_openlibrary_data(f"isbn/{isbn}")) print("""\n""".join(f"{key}: {value}" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f"Sorry, there are no results for ISBN: {isbn}.")
474
0
from math import sqrt def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = 0 for i in range(1 , int(sqrt(UpperCamelCase__ ) + 1 ) ): if n % i == 0 and i != sqrt(UpperCamelCase__ ): total += i + n // i elif i == sqrt(UpperCamelCase__ ): total += i return total - n def lowerCamelCase ( SCREAMING_SNAKE_CASE = 10_000 ): '''simple docstring''' __UpperCamelCase :Any = sum( i for i in range(1 , UpperCamelCase__ ) if sum_of_divisors(sum_of_divisors(UpperCamelCase__ ) ) == i and sum_of_divisors(UpperCamelCase__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
703
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Union[str, Any] = None a__ : Tuple = None @property def UpperCamelCase__ ( self) -> Any: return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :str = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(__lowercase , '''feature_size''')) self.assertTrue(hasattr(__lowercase , '''sampling_rate''')) self.assertTrue(hasattr(__lowercase , '''padding_value''')) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :str = self.feat_extract_tester.prepare_inputs_for_common() __UpperCamelCase :Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) __UpperCamelCase :Optional[Any] = feat_extract.model_input_names[0] __UpperCamelCase :Union[str, Any] = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(__lowercase) == len(__lowercase) for x, y in zip(__lowercase , processed_features[input_name]))) __UpperCamelCase :Any = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__lowercase) __UpperCamelCase :Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type='''np''') __UpperCamelCase :Any = processed_features[input_name] if len(batch_features_input.shape) < 3: __UpperCamelCase :Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def UpperCamelCase__ ( self) -> int: __UpperCamelCase :Dict = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__lowercase) __UpperCamelCase :Tuple = self.feature_extraction_class(**self.feat_extract_dict) __UpperCamelCase :str = feat_extract.model_input_names[0] __UpperCamelCase :Optional[Any] = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''') __UpperCamelCase :Union[str, Any] = processed_features[input_name] if len(batch_features_input.shape) < 3: __UpperCamelCase :str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :str = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__lowercase) __UpperCamelCase :str = self.feature_extraction_class(**self.feat_extract_dict) __UpperCamelCase :Union[str, Any] = feat_extract.model_input_names[0] __UpperCamelCase :Optional[Any] = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''') __UpperCamelCase :int = processed_features[input_name] if len(batch_features_input.shape) < 3: __UpperCamelCase :List[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def UpperCamelCase__ ( self , __lowercase=False) -> Dict: def _inputs_have_equal_length(__lowercase): __UpperCamelCase :List[str] = len(input[0]) for input_slice in input[1:]: if len(__lowercase) != length: return False return True def _inputs_are_equal(__lowercase , __lowercase): if len(__lowercase) != len(__lowercase): return False for input_slice_a, input_slice_a in zip(__lowercase , __lowercase): if not np.allclose(np.asarray(__lowercase) , np.asarray(__lowercase) , atol=1E-3): return False return True __UpperCamelCase :List[str] = self.feature_extraction_class(**self.feat_extract_dict) __UpperCamelCase :Optional[int] = self.feat_extract_tester.prepare_inputs_for_common(numpify=__lowercase) __UpperCamelCase :Any = feat_extract.model_input_names[0] __UpperCamelCase :Optional[Any] = BatchFeature({input_name: speech_inputs}) __UpperCamelCase :Optional[Any] = self.feat_extract_tester.seq_length_diff __UpperCamelCase :Union[str, Any] = self.feat_extract_tester.max_seq_length + pad_diff __UpperCamelCase :Tuple = self.feat_extract_tester.min_seq_length __UpperCamelCase :Optional[int] = self.feat_extract_tester.batch_size __UpperCamelCase :Any = self.feat_extract_tester.feature_size # test padding for List[int] + numpy __UpperCamelCase :List[Any] = feat_extract.pad(__lowercase , padding=__lowercase) __UpperCamelCase :Tuple = input_a[input_name] __UpperCamelCase :int = feat_extract.pad(__lowercase , padding='''longest''') __UpperCamelCase :int = input_a[input_name] __UpperCamelCase :Optional[Any] = feat_extract.pad(__lowercase , padding='''max_length''' , max_length=len(speech_inputs[-1])) __UpperCamelCase :Dict = input_a[input_name] __UpperCamelCase :List[Any] = feat_extract.pad(__lowercase , padding='''longest''' , return_tensors='''np''') __UpperCamelCase :Optional[int] = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(__lowercase): feat_extract.pad(__lowercase , padding='''max_length''')[input_name] __UpperCamelCase :Any = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=__lowercase , return_tensors='''np''') __UpperCamelCase :Tuple = input_a[input_name] self.assertFalse(_inputs_have_equal_length(__lowercase)) self.assertTrue(_inputs_have_equal_length(__lowercase)) self.assertTrue(_inputs_have_equal_length(__lowercase)) self.assertTrue(_inputs_are_equal(__lowercase , __lowercase)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy __UpperCamelCase :int = feat_extract.pad(__lowercase , pad_to_multiple_of=10) __UpperCamelCase :Tuple = input_a[input_name] __UpperCamelCase :Optional[int] = feat_extract.pad(__lowercase , padding='''longest''' , pad_to_multiple_of=10) __UpperCamelCase :Tuple = input_a[input_name] __UpperCamelCase :str = feat_extract.pad( __lowercase , padding='''max_length''' , pad_to_multiple_of=10 , max_length=__lowercase) __UpperCamelCase :Any = input_a[input_name] __UpperCamelCase :List[str] = feat_extract.pad( __lowercase , padding='''max_length''' , pad_to_multiple_of=10 , max_length=__lowercase , return_tensors='''np''' , ) __UpperCamelCase :List[str] = input_a[input_name] self.assertTrue(all(len(__lowercase) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(__lowercase , __lowercase)) __UpperCamelCase :str = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(__lowercase) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct __UpperCamelCase :Optional[Any] = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1E-3) def UpperCamelCase__ ( self , __lowercase=False) -> Dict: def _inputs_have_equal_length(__lowercase): __UpperCamelCase :Dict = len(input[0]) for input_slice in input[1:]: if len(__lowercase) != length: return False return True def _inputs_are_equal(__lowercase , __lowercase): if len(__lowercase) != len(__lowercase): return False for input_slice_a, input_slice_a in zip(__lowercase , __lowercase): if not np.allclose(np.asarray(__lowercase) , np.asarray(__lowercase) , atol=1E-3): return False return True __UpperCamelCase :str = self.feature_extraction_class(**self.feat_extract_dict) __UpperCamelCase :Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=__lowercase) __UpperCamelCase :Tuple = feat_extract.model_input_names[0] __UpperCamelCase :Dict = BatchFeature({input_name: speech_inputs}) # truncate to smallest __UpperCamelCase :List[Any] = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=len(speech_inputs[0]) , truncation=__lowercase) __UpperCamelCase :str = input_a[input_name] __UpperCamelCase :Optional[int] = feat_extract.pad(__lowercase , padding='''max_length''' , max_length=len(speech_inputs[0])) __UpperCamelCase :List[str] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__lowercase)) self.assertFalse(_inputs_have_equal_length(__lowercase)) # truncate to smallest with np __UpperCamelCase :Union[str, Any] = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=len(speech_inputs[0]) , return_tensors='''np''' , truncation=__lowercase , ) __UpperCamelCase :List[Any] = input_a[input_name] __UpperCamelCase :int = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=len(speech_inputs[0]) , return_tensors='''np''') __UpperCamelCase :Optional[Any] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__lowercase)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__lowercase)) # truncate to middle __UpperCamelCase :Optional[Any] = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=len(speech_inputs[1]) , truncation=__lowercase , return_tensors='''np''' , ) __UpperCamelCase :Dict = input_a[input_name] __UpperCamelCase :str = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=len(speech_inputs[1]) , truncation=__lowercase) __UpperCamelCase :Union[str, Any] = input_a[input_name] __UpperCamelCase :Optional[Any] = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=len(speech_inputs[1]) , return_tensors='''np''') __UpperCamelCase :Union[str, Any] = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(__lowercase)) self.assertTrue(_inputs_have_equal_length(__lowercase)) self.assertTrue(_inputs_are_equal(__lowercase , __lowercase)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__lowercase)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(__lowercase): feat_extract.pad(__lowercase , truncation=__lowercase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__lowercase): feat_extract.pad(__lowercase , padding='''longest''' , truncation=__lowercase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__lowercase): feat_extract.pad(__lowercase , padding='''longest''' , truncation=__lowercase)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(__lowercase): feat_extract.pad(__lowercase , padding='''max_length''' , truncation=__lowercase)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy __UpperCamelCase :Dict = 12 __UpperCamelCase :str = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=__lowercase , truncation=__lowercase , ) __UpperCamelCase :List[Any] = input_a[input_name] __UpperCamelCase :Tuple = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=__lowercase , ) __UpperCamelCase :Any = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of __UpperCamelCase :Optional[Any] = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: __UpperCamelCase :Dict = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(__lowercase)) self.assertFalse(_inputs_have_equal_length(__lowercase)) def UpperCamelCase__ ( self) -> Any: self._check_padding(numpify=__lowercase) def UpperCamelCase__ ( self) -> Dict: self._check_padding(numpify=__lowercase) def UpperCamelCase__ ( self) -> Any: self._check_truncation(numpify=__lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: self._check_truncation(numpify=__lowercase) @require_torch def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :int = self.feature_extraction_class(**self.feat_extract_dict) __UpperCamelCase :Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common() __UpperCamelCase :str = feat_extract.model_input_names[0] __UpperCamelCase :int = BatchFeature({input_name: speech_inputs}) __UpperCamelCase :List[str] = feat_extract.pad(__lowercase , padding='''longest''' , return_tensors='''np''')[input_name] __UpperCamelCase :List[Any] = feat_extract.pad(__lowercase , padding='''longest''' , return_tensors='''pt''')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2) @require_tf def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :int = self.feature_extraction_class(**self.feat_extract_dict) __UpperCamelCase :Any = self.feat_extract_tester.prepare_inputs_for_common() __UpperCamelCase :Any = feat_extract.model_input_names[0] __UpperCamelCase :Union[str, Any] = BatchFeature({input_name: speech_inputs}) __UpperCamelCase :str = feat_extract.pad(__lowercase , padding='''longest''' , return_tensors='''np''')[input_name] __UpperCamelCase :Optional[Any] = feat_extract.pad(__lowercase , padding='''longest''' , return_tensors='''tf''')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2) def UpperCamelCase__ ( self) -> str: __UpperCamelCase :List[Any] = self.feat_extract_dict __UpperCamelCase :Dict = True __UpperCamelCase :Dict = self.feature_extraction_class(**__lowercase) __UpperCamelCase :List[Any] = self.feat_extract_tester.prepare_inputs_for_common() __UpperCamelCase :Any = [len(__lowercase) for x in speech_inputs] __UpperCamelCase :int = feat_extract.model_input_names[0] __UpperCamelCase :Optional[int] = BatchFeature({input_name: speech_inputs}) __UpperCamelCase :Union[str, Any] = feat_extract.pad(__lowercase , padding='''longest''' , return_tensors='''np''') self.assertIn('''attention_mask''' , __lowercase) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , __lowercase) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Optional[int] = self.feat_extract_dict __UpperCamelCase :Optional[int] = True __UpperCamelCase :Dict = self.feature_extraction_class(**__lowercase) __UpperCamelCase :List[str] = self.feat_extract_tester.prepare_inputs_for_common() __UpperCamelCase :List[Any] = [len(__lowercase) for x in speech_inputs] __UpperCamelCase :List[Any] = feat_extract.model_input_names[0] __UpperCamelCase :int = BatchFeature({input_name: speech_inputs}) __UpperCamelCase :Dict = min(__lowercase) __UpperCamelCase :Union[str, Any] = feat_extract.pad( __lowercase , padding='''max_length''' , max_length=__lowercase , truncation=__lowercase , return_tensors='''np''') self.assertIn('''attention_mask''' , __lowercase) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
452
0