code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Union[str, Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[int] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
476
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : '''simple docstring''' def __init__(self , __a , __a=12 , __a=7 , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=32 , __a=2 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=512 , __a=0.02 , __a=0 , __a=None , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_input_mask UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = projection_dim UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = initializer_range UpperCAmelCase__ = scope UpperCAmelCase__ = bos_token_id def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase__ = input_mask.numpy() UpperCAmelCase__ , UpperCAmelCase__ = input_mask.shape UpperCAmelCase__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__a ): UpperCAmelCase__ = 1 UpperCAmelCase__ = 0 UpperCAmelCase__ = self.get_config() return config, input_ids, tf.convert_to_tensor(__a ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFBlipTextModel(config=__a ) UpperCAmelCase__ = model(__a , attention_mask=__a , training=__a ) UpperCAmelCase__ = model(__a , training=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (TFBlipTextModel,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = BlipTextModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase__ (self ) -> int: """simple docstring""" pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass @slow def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = TFBlipTextModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self , __a=True ) -> str: """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=__a )
146
0
"""simple docstring""" import math def __a ( _lowercase ): """simple docstring""" lowerCamelCase__ : Tuple = [] lowerCamelCase__ : Optional[Any] = 2 lowerCamelCase__ : Dict = int(math.sqrt(_lowercase ) ) # Size of every segment lowerCamelCase__ : int = [True] * (end + 1) lowerCamelCase__ : Tuple = [] while start <= end: if temp[start] is True: in_prime.append(_lowercase ) for i in range(start * start , end + 1 , _lowercase ): lowerCamelCase__ : Any = False start += 1 prime += in_prime lowerCamelCase__ : str = end + 1 lowerCamelCase__ : Union[str, Any] = min(2 * end , _lowercase ) while low <= n: lowerCamelCase__ : Union[str, Any] = [True] * (high - low + 1) for each in in_prime: lowerCamelCase__ : Optional[Any] = math.floor(low / each ) * each if t < low: t += each for j in range(_lowercase , high + 1 , _lowercase ): lowerCamelCase__ : int = False for j in range(len(_lowercase ) ): if temp[j] is True: prime.append(j + low ) lowerCamelCase__ : str = high + 1 lowerCamelCase__ : Any = min(high + end , _lowercase ) return prime print(sieve(10**6))
708
"""simple docstring""" def __a ( _lowercase ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") UpperCAmelCase : Tuple = int(input("Enter number: ").strip()) print(f'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
121
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''Salesforce/blip-vqa-base''': '''https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json''', '''Salesforce/blip-vqa-capfit-large''': ( '''https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json''' ), '''Salesforce/blip-image-captioning-base''': ( '''https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json''' ), '''Salesforce/blip-image-captioning-large''': ( '''https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json''' ), '''Salesforce/blip-itm-base-coco''': '''https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json''', '''Salesforce/blip-itm-large-coco''': '''https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json''', '''Salesforce/blip-itm-base-flikr''': '''https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json''', '''Salesforce/blip-itm-large-flikr''': ( '''https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json''' ), } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[str] = """blip_text_model""" def __init__( self , snake_case=3_0524 , snake_case=768 , snake_case=768 , snake_case=3072 , snake_case=768 , snake_case=12 , snake_case=8 , snake_case=512 , snake_case="gelu" , snake_case=1E-12 , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=3_0522 , snake_case=2 , snake_case=0 , snake_case=102 , snake_case=True , snake_case=True , **snake_case , ): super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , sep_token_id=snake_case , **snake_case , ) lowercase = vocab_size lowercase = hidden_size lowercase = encoder_hidden_size lowercase = intermediate_size lowercase = projection_dim lowercase = hidden_dropout_prob lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = max_position_embeddings lowercase = layer_norm_eps lowercase = hidden_act lowercase = initializer_range lowercase = attention_probs_dropout_prob lowercase = is_decoder lowercase = use_cache @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , **snake_case ): cls._set_token_in_kwargs(snake_case ) lowercase , lowercase = cls.get_config_dict(snake_case , **snake_case ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": lowercase = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case , **snake_case ) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Tuple = """blip_vision_model""" def __init__( self , snake_case=768 , snake_case=3072 , snake_case=512 , snake_case=12 , snake_case=12 , snake_case=384 , snake_case=16 , snake_case="gelu" , snake_case=1E-5 , snake_case=0.0 , snake_case=1E-10 , **snake_case , ): super().__init__(**snake_case ) lowercase = hidden_size lowercase = intermediate_size lowercase = projection_dim lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = patch_size lowercase = image_size lowercase = initializer_range lowercase = attention_dropout lowercase = layer_norm_eps lowercase = hidden_act @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , **snake_case ): cls._set_token_in_kwargs(snake_case ) lowercase , lowercase = cls.get_config_dict(snake_case , **snake_case ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": lowercase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case , **snake_case ) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Optional[int] = """blip""" _UpperCamelCase : Tuple = True def __init__( self , snake_case=None , snake_case=None , snake_case=512 , snake_case=2.6_592 , snake_case=256 , **snake_case , ): super().__init__(**snake_case ) if text_config is None: lowercase = {} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: lowercase = {} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) lowercase = BlipTextConfig(**snake_case ) lowercase = BlipVisionConfig(**snake_case ) lowercase = self.vision_config.hidden_size lowercase = projection_dim lowercase = logit_scale_init_value lowercase = 1.0 lowercase = 0.02 lowercase = image_text_hidden_size @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , snake_case , **snake_case ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.text_config.to_dict() lowercase = self.vision_config.to_dict() lowercase = self.__class__.model_type return output
84
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 2_0_0_0_0_0_0 ): """simple docstring""" snake_case_ : Optional[Any] = [0 for i in range(n + 1 )] snake_case_ : int = 1 snake_case_ : str = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Optional[int] = 1 snake_case_ : Any = 0 for i in range(SCREAMING_SNAKE_CASE__ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'''{solution() = }''')
480
0
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowercase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release: # old versions of hfh don't url-encode the file path snake_case__ : Optional[int] =quote(SCREAMING_SNAKE_CASE ) return hfh.hf_hub_url(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' , revision=SCREAMING_SNAKE_CASE )
408
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class _lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" lowerCAmelCase__ ='''openai-gpt''' lowerCAmelCase__ ={ '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , __SCREAMING_SNAKE_CASE=4_0478 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE="cls_index" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.1 , **__SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" snake_case__ : Optional[Any] =vocab_size snake_case__ : Optional[int] =n_positions snake_case__ : Union[str, Any] =n_embd snake_case__ : Dict =n_layer snake_case__ : Dict =n_head snake_case__ : Optional[int] =afn snake_case__ : Tuple =resid_pdrop snake_case__ : str =embd_pdrop snake_case__ : Tuple =attn_pdrop snake_case__ : Optional[int] =layer_norm_epsilon snake_case__ : Any =initializer_range snake_case__ : List[str] =summary_type snake_case__ : Dict =summary_use_proj snake_case__ : Any =summary_activation snake_case__ : Optional[Any] =summary_first_dropout snake_case__ : Tuple =summary_proj_to_labels super().__init__(**__SCREAMING_SNAKE_CASE )
408
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _a : Optional[int] = logging.get_logger(__name__) _a : Optional[Any] = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class _UpperCAmelCase ( _A ): """simple docstring""" def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) if config is None: assert isinstance(self.model , _lowerCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) lowerCAmelCase__ :int = self.model.config else: lowerCAmelCase__ :Tuple = config lowerCAmelCase__ :List[str] = data_args lowerCAmelCase__ :Any = self.config.tgt_vocab_size if isinstance(self.config , _lowerCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' " padding.." ) if self.args.label_smoothing == 0: lowerCAmelCase__ :Any = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowerCAmelCase__ :Optional[int] = label_smoothed_nll_loss def snake_case_ ( self , _lowerCAmelCase ): '''simple docstring''' if self.optimizer is None: lowerCAmelCase__ :Any = ["bias", "LayerNorm.weight"] lowerCAmelCase__ :Any = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] lowerCAmelCase__ :Optional[int] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowerCAmelCase__ :Any = Adafactor lowerCAmelCase__ :Any = {"scale_parameter": False, "relative_step": False} else: lowerCAmelCase__ :Tuple = AdamW lowerCAmelCase__ :int = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } lowerCAmelCase__ :List[Any] = self.args.learning_rate if self.sharded_ddp: lowerCAmelCase__ :Optional[int] = OSS( params=_lowerCAmelCase , optim=_lowerCAmelCase , **_lowerCAmelCase , ) else: lowerCAmelCase__ :List[Any] = optimizer_cls(_lowerCAmelCase , **_lowerCAmelCase ) if self.lr_scheduler is None: lowerCAmelCase__ :List[Any] = self._get_lr_scheduler(_lowerCAmelCase ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def snake_case_ ( self , _lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowerCAmelCase__ :Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowerCAmelCase__ :int = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: lowerCAmelCase__ :Any = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_lowerCAmelCase ) return scheduler def snake_case_ ( self ): '''simple docstring''' if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowerCAmelCase__ :Tuple = model(**_lowerCAmelCase , use_cache=_lowerCAmelCase )[0] lowerCAmelCase__ :int = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models lowerCAmelCase__ ,lowerCAmelCase__ :Optional[Any] = model(**_lowerCAmelCase , labels=_lowerCAmelCase , use_cache=_lowerCAmelCase )[:2] else: # compute label smoothed loss lowerCAmelCase__ :Optional[int] = model(**_lowerCAmelCase , use_cache=_lowerCAmelCase )[0] lowerCAmelCase__ :Tuple = torch.nn.functional.log_softmax(_lowerCAmelCase , dim=-1 ) lowerCAmelCase__ ,lowerCAmelCase__ :Optional[int] = self.loss_fn(_lowerCAmelCase , _lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = inputs.pop("labels" ) lowerCAmelCase__ ,lowerCAmelCase__ :Dict = self._compute_loss(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return loss def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self._prepare_inputs(_lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowerCAmelCase__ :str = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **_lowerCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowerCAmelCase__ :List[Any] = self._pad_tensors_to_max_len(_lowerCAmelCase , gen_kwargs["max_length"] ) lowerCAmelCase__ :Tuple = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data lowerCAmelCase__ ,lowerCAmelCase__ :Any = self._compute_loss(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowerCAmelCase__ :Tuple = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowerCAmelCase__ :Union[str, Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowerCAmelCase__ :Optional[Any] = self._pad_tensors_to_max_len(_lowerCAmelCase , gen_kwargs["max_length"] ) return (loss, logits, labels) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' # If PAD token is not defined at least EOS token has to be defined lowerCAmelCase__ :Any = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" f''' padded to `max_length`={max_length}''' ) lowerCAmelCase__ :Tuple = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) lowerCAmelCase__ :Any = tensor return padded_tensor
145
from collections import Counter from timeit import timeit def snake_case__ ( UpperCAmelCase : str = "" , ): return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def snake_case__ ( UpperCAmelCase : str = "" ): if len(UpperCAmelCase ) == 0: return True lowerCAmelCase__ :List[str] = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowerCAmelCase__ :dict[str, int] = {} for character in lower_case_input_str: lowerCAmelCase__ :Tuple = character_freq_dict.get(UpperCAmelCase , 0 ) + 1 lowerCAmelCase__ :Dict = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def snake_case__ ( UpperCAmelCase : str = "" ): print("\nFor string = " , UpperCAmelCase , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(UpperCAmelCase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(UpperCAmelCase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": _a : Any = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a : Tuple = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
145
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[str] = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
417
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class lowerCamelCase__ ( snake_case_ ): """simple docstring""" def __init__( self ) -> List[str]: # test for the above condition self.test() def _lowerCamelCase ( self ) -> int: _A : List[Any] = 0 _A : List[str] = False while not completed: if counter == 1: self.reset() _A : Dict = self.advance() if not self.does_advance(UpperCAmelCase__ ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) _A , _A , _A : List[Any] = self.update(UpperCAmelCase__ ) counter += 1 if counter > 1_0_0_0_0: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def _lowerCamelCase ( self ) -> int: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _lowerCamelCase ( self , UpperCAmelCase__ ) -> Any: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _lowerCamelCase ( self , UpperCAmelCase__ ) -> List[str]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _lowerCamelCase ( self ) -> Optional[int]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _lowerCamelCase ( self ) -> str: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _lowerCamelCase ( self , UpperCAmelCase__=False ) -> Dict: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class lowerCamelCase__ ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase__ ) -> Optional[Any]: super(UpperCAmelCase__ , self ).__init__() if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or len(UpperCAmelCase__ ) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) _A : Union[str, Any] = token_ids _A : Dict = len(self.token_ids ) _A : Union[str, Any] = -1 # the index of the currently fulfilled step _A : str = False def _lowerCamelCase ( self ) -> Union[str, Any]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def _lowerCamelCase ( self , UpperCAmelCase__ ) -> str: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase__ )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def _lowerCamelCase ( self , UpperCAmelCase__ ) -> Dict: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase__ )}""" ) _A : str = False _A : int = False _A : List[str] = False if self.does_advance(UpperCAmelCase__ ): self.fulfilled_idx += 1 _A : Optional[Any] = True if self.fulfilled_idx == (self.seqlen - 1): _A : List[str] = True _A : Union[str, Any] = completed else: # failed to make progress. _A : Optional[int] = True self.reset() return stepped, completed, reset def _lowerCamelCase ( self ) -> List[str]: _A : List[str] = False _A : int = 0 def _lowerCamelCase ( self ) -> Union[str, Any]: return self.seqlen - (self.fulfilled_idx + 1) def _lowerCamelCase ( self , UpperCAmelCase__=False ) -> str: _A : Tuple = PhrasalConstraint(self.token_ids ) if stateful: _A : Optional[Any] = self.seqlen _A : Any = self.fulfilled_idx _A : Dict = self.completed return new_constraint class lowerCamelCase__ : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=True ) -> Optional[int]: _A : int = max([len(UpperCAmelCase__ ) for one in nested_token_ids] ) _A : int = {} for token_ids in nested_token_ids: _A : Any = root for tidx, token_id in enumerate(UpperCAmelCase__ ): if token_id not in level: _A : Tuple = {} _A : Optional[int] = level[token_id] if no_subsets and self.has_subsets(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F""" {nested_token_ids}.""" ) _A : str = root def _lowerCamelCase ( self , UpperCAmelCase__ ) -> str: _A : Tuple = self.trie for current_token in current_seq: _A : Any = start[current_token] _A : List[Any] = list(start.keys() ) return next_tokens def _lowerCamelCase ( self , UpperCAmelCase__ ) -> List[str]: _A : int = self.next_tokens(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) == 0 def _lowerCamelCase ( self , UpperCAmelCase__ ) -> Union[str, Any]: _A : Dict = list(root.values() ) if len(UpperCAmelCase__ ) == 0: return 1 else: return sum([self.count_leaves(UpperCAmelCase__ ) for nn in next_nodes] ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: _A : Dict = self.count_leaves(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) != leaf_count class lowerCamelCase__ ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase__ ) -> Any: super(UpperCAmelCase__ , self ).__init__() if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or len(UpperCAmelCase__ ) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for token_ids in nested_token_ids ): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) _A : List[str] = DisjunctiveTrie(UpperCAmelCase__ ) _A : List[Any] = nested_token_ids _A : Tuple = self.trie.max_height _A : Any = [] _A : List[str] = False def _lowerCamelCase ( self ) -> List[Any]: _A : List[str] = self.trie.next_tokens(self.current_seq ) if len(UpperCAmelCase__ ) == 0: return None else: return token_list def _lowerCamelCase ( self , UpperCAmelCase__ ) -> Dict: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase__ )}""" ) _A : Dict = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def _lowerCamelCase ( self , UpperCAmelCase__ ) -> int: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase__ )}""" ) _A : int = False _A : Tuple = False _A : List[Any] = False if self.does_advance(UpperCAmelCase__ ): self.current_seq.append(UpperCAmelCase__ ) _A : Tuple = True else: _A : str = True self.reset() _A : Optional[int] = self.trie.reached_leaf(self.current_seq ) _A : List[str] = completed return stepped, completed, reset def _lowerCamelCase ( self ) -> List[Any]: _A : str = False _A : Any = [] def _lowerCamelCase ( self ) -> Any: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def _lowerCamelCase ( self , UpperCAmelCase__=False ) -> Union[str, Any]: _A : int = DisjunctiveConstraint(self.token_ids ) if stateful: _A : Optional[Any] = self.seqlen _A : Tuple = self.current_seq _A : List[str] = self.completed return new_constraint class lowerCamelCase__ : """simple docstring""" def __init__( self , UpperCAmelCase__ ) -> int: _A : Tuple = constraints # max # of steps required to fulfill a given constraint _A : List[Any] = max([c.seqlen for c in constraints] ) _A : Optional[int] = len(UpperCAmelCase__ ) _A : int = False self.init_state() def _lowerCamelCase ( self ) -> Any: _A : Optional[Any] = [] _A : Any = None _A : List[Any] = [constraint.copy(stateful=UpperCAmelCase__ ) for constraint in self.constraints] def _lowerCamelCase ( self ) -> List[str]: _A : Optional[Any] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def _lowerCamelCase ( self ) -> Dict: _A : List[str] = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _A : Dict = constraint.advance() if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): token_list.append(UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): token_list.extend(UpperCAmelCase__ ) else: _A : Tuple = self.inprogress_constraint.advance() if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): token_list.append(UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): token_list.extend(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) == 0: return None else: return token_list def _lowerCamelCase ( self , UpperCAmelCase__ ) -> List[str]: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _A , _A : List[str] = self.add(UpperCAmelCase__ ) # the entire list of constraints are fulfilled if self.completed: break def _lowerCamelCase ( self , UpperCAmelCase__ ) -> Tuple: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" ) _A , _A : Tuple = False, False if self.completed: _A : Optional[Any] = True _A : str = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _A , _A , _A : Optional[Any] = self.inprogress_constraint.update(UpperCAmelCase__ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCAmelCase__ ) ) _A : List[Any] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _A : List[Any] = None if len(self.pending_constraints ) == 0: # we're done! _A : List[str] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(UpperCAmelCase__ ): _A , _A , _A : Tuple = pending_constraint.update(UpperCAmelCase__ ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(UpperCAmelCase__ ) _A : Any = None if not complete and stepped: _A : List[str] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _A : Optional[int] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _A : Tuple = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def _lowerCamelCase ( self , UpperCAmelCase__=True ) -> Optional[int]: _A : Optional[Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _A : List[str] = [ constraint.copy(stateful=UpperCAmelCase__ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _A : int = self.inprogress_constraint.copy(stateful=UpperCAmelCase__ ) _A : Tuple = [constraint.copy() for constraint in self.pending_constraints] return new_state
417
1
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int ) -> Optional[int]: if num <= 0: raise ValueError("""Input must be a positive integer""" ) snake_case = [True] * (num + 1) snake_case = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowerCamelCase_ ): snake_case = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
369
def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : int = (boundary[1] - boundary[0]) / steps lowerCAmelCase__ : Optional[int] = boundary[0] lowerCAmelCase__ : int = boundary[1] lowerCAmelCase__ : Tuple = make_points(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ : str = 0.0 y += (h / 2.0) * f(lowerCamelCase_) for i in x_i: # print(i) y += h * f(lowerCamelCase_) y += (h / 2.0) * f(lowerCamelCase_) return y def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] ,lowerCamelCase_ : Dict ,lowerCamelCase_ : Dict): '''simple docstring''' lowerCAmelCase__ : Dict = a + h while x < (b - h): yield x lowerCAmelCase__ : Any = x + h def lowerCAmelCase__ ( lowerCamelCase_ : str): # enter your function here '''simple docstring''' lowerCAmelCase__ : List[str] = (x - 0) * (x - 0) return y def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 0.0 # Lower bound of integration lowerCAmelCase__ : Optional[int] = 1.0 # Upper bound of integration lowerCAmelCase__ : List[str] = 10.0 # define number of steps or resolution lowerCAmelCase__ : Dict = [a, b] # define boundary of integration lowerCAmelCase__ : Any = method_a(lowerCamelCase_ ,lowerCamelCase_) print(f"""y = {y}""") if __name__ == "__main__": main()
647
0
"""simple docstring""" def snake_case ( UpperCamelCase__ : list , UpperCamelCase__ : int , UpperCamelCase__ : int = 0 , UpperCamelCase__ : int = 0 ) -> Union[str, Any]: lowerCamelCase : int = right or len(A__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(A__ , A__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
713
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : """simple docstring""" def __init__( self: Optional[Any] , __a: Union[str, Any] , __a: Optional[Any]=13 , __a: Optional[Any]=32 , __a: Dict=3 , __a: int=4 , __a: Dict=[10, 20, 30, 40] , __a: int=[2, 2, 3, 2] , __a: Any=True , __a: List[Any]=True , __a: Any=37 , __a: Optional[int]="gelu" , __a: List[str]=10 , __a: Optional[int]=0.02 , __a: Dict=["stage2", "stage3", "stage4"] , __a: List[str]=[2, 3, 4] , __a: List[str]=None , )-> Union[str, Any]: lowerCamelCase : Optional[int] = parent lowerCamelCase : Optional[int] = batch_size lowerCamelCase : Any = image_size lowerCamelCase : Tuple = num_channels lowerCamelCase : str = num_stages lowerCamelCase : List[str] = hidden_sizes lowerCamelCase : str = depths lowerCamelCase : Dict = is_training lowerCamelCase : Optional[Any] = use_labels lowerCamelCase : List[str] = intermediate_size lowerCamelCase : List[str] = hidden_act lowerCamelCase : List[str] = num_labels lowerCamelCase : Union[str, Any] = initializer_range lowerCamelCase : List[Any] = out_features lowerCamelCase : Optional[Any] = out_indices lowerCamelCase : int = scope def a__ ( self: str )-> Optional[Any]: lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : Dict = None if self.use_labels: lowerCamelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase : Any = self.get_config() return config, pixel_values, labels def a__ ( self: Dict )-> Union[str, Any]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a__ ( self: Optional[Any] , __a: List[Any] , __a: Any , __a: int )-> List[Any]: lowerCamelCase : Optional[int] = ConvNextModel(config=__a ) model.to(__a ) model.eval() lowerCamelCase : Any = model(__a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self: int , __a: Union[str, Any] , __a: List[Any] , __a: Tuple )-> Optional[int]: lowerCamelCase : str = ConvNextForImageClassification(__a ) model.to(__a ) model.eval() lowerCamelCase : Any = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self: List[Any] , __a: Any , __a: Optional[int] , __a: Tuple )-> List[str]: lowerCamelCase : List[str] = ConvNextBackbone(config=__a ) model.to(__a ) model.eval() lowerCamelCase : int = model(__a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase : Tuple = None lowerCamelCase : List[str] = ConvNextBackbone(config=__a ) model.to(__a ) model.eval() lowerCamelCase : List[Any] = model(__a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self: Optional[Any] )-> Any: lowerCamelCase : List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase : Tuple = config_and_inputs lowerCamelCase : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A__ ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" snake_case__ : int =( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) snake_case__ : str =( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) snake_case__ : Union[str, Any] =True snake_case__ : Optional[int] =False snake_case__ : Tuple =False snake_case__ : Union[str, Any] =False snake_case__ : Tuple =False def a__ ( self: Optional[Any] )-> Union[str, Any]: lowerCamelCase : Tuple = ConvNextModelTester(self ) lowerCamelCase : List[Any] = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def a__ ( self: Optional[int] )-> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self: Optional[int] )-> Optional[Any]: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def a__ ( self: int )-> Dict: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def a__ ( self: Dict )-> Optional[Any]: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def a__ ( self: int )-> List[Any]: pass def a__ ( self: Union[str, Any] )-> int: lowerCamelCase , lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Any = model_class(__a ) lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] lowerCamelCase : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def a__ ( self: Optional[int] )-> str: lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def a__ ( self: str )-> int: lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__a ) def a__ ( self: int )-> Optional[int]: def check_hidden_states_output(__a: Tuple , __a: int , __a: Tuple ): lowerCamelCase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): lowerCamelCase : Tuple = model(**self._prepare_for_class(__a , __a ) ) lowerCamelCase : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase , lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : List[Any] = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : Tuple = True check_hidden_states_output(__a , __a , __a ) def a__ ( self: Dict )-> Optional[Any]: lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def a__ ( self: Optional[Any] )-> Tuple: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : str = ConvNextModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case ( ) -> Optional[int]: lowerCamelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A__ ( unittest.TestCase): """simple docstring""" @cached_property def a__ ( self: Dict )-> Union[str, Any]: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def a__ ( self: List[str] )-> Dict: lowerCamelCase : Tuple = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(__a ) lowerCamelCase : Dict = self.default_image_processor lowerCamelCase : Union[str, Any] = prepare_img() lowerCamelCase : Optional[Any] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): lowerCamelCase : Any = model(**__a ) # verify the logits lowerCamelCase : Union[str, Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __a ) lowerCamelCase : Tuple = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) @require_torch class A__ ( unittest.TestCase , __lowercase): """simple docstring""" snake_case__ : Union[str, Any] =(ConvNextBackbone,) if is_torch_available() else () snake_case__ : Optional[Any] =ConvNextConfig snake_case__ : Optional[Any] =False def a__ ( self: List[str] )-> int: lowerCamelCase : Dict = ConvNextModelTester(self )
42
0
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __snake_case = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" _a : List[str] = '''sequence-classification''' def __init__( self , lowerCamelCase__ ) -> List[Any]: if type(lowerCamelCase__ ) == dict: lowercase__ : Dict = Namespace(**lowerCamelCase__ ) lowercase__ : Any = glue_output_modes[hparams.task] lowercase__ : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(lowerCamelCase__ , lowerCamelCase__ , self.mode ) def UpperCAmelCase__( self , **lowerCamelCase__ ) -> int: return self.model(**lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: lowercase__ : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase__ : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowercase__ : List[Any] = self(**lowerCamelCase__ ) lowercase__ : Dict = outputs[0] lowercase__ : Optional[Any] = self.trainer.lr_schedulers[0]["""scheduler"""] lowercase__ : Optional[Any] = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCAmelCase__( self ) -> int: lowercase__ : int = self.hparams lowercase__ : int = processors[args.task]() lowercase__ : List[str] = processor.get_labels() for mode in ["train", "dev"]: lowercase__ : str = self._feature_file(lowerCamelCase__ ) if os.path.exists(lowerCamelCase__ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , lowerCamelCase__ ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) lowercase__ : Union[str, Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) lowercase__ : Any = convert_examples_to_features( lowerCamelCase__ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , lowerCamelCase__ ) torch.save(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ) -> DataLoader: lowercase__ : Optional[int] = """dev""" if mode == """test""" else mode lowercase__ : Union[str, Any] = self._feature_file(lowerCamelCase__ ) logger.info("""Loading features from cached file %s""" , lowerCamelCase__ ) lowercase__ : List[Any] = torch.load(lowerCamelCase__ ) lowercase__ : Tuple = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : Optional[int] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) lowercase__ : Optional[Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": lowercase__ : Any = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": lowercase__ : Any = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , batch_size=lowerCamelCase__ , shuffle=lowerCamelCase__ , ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: lowercase__ : Union[str, Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase__ : Tuple = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowercase__ : Tuple = self(**lowerCamelCase__ ) lowercase__ , lowercase__ : int = outputs[:2] lowercase__ : Any = logits.detach().cpu().numpy() lowercase__ : int = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCAmelCase__( self , lowerCamelCase__ ) -> tuple: lowercase__ : Dict = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() lowercase__ : List[str] = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": lowercase__ : Dict = np.argmax(lowerCamelCase__ , axis=1 ) elif self.hparams.glue_output_mode == "regression": lowercase__ : Optional[Any] = np.squeeze(lowerCamelCase__ ) lowercase__ : Dict = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) lowercase__ : Tuple = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : List[Any] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , lowerCamelCase__ , lowerCamelCase__ )} lowercase__ : List[Any] = dict(results.items() ) lowercase__ : Optional[int] = results return ret, preds_list, out_label_list def UpperCAmelCase__( self , lowerCamelCase__ ) -> dict: lowercase__ , lowercase__ , lowercase__ : Tuple = self._eval_end(lowerCamelCase__ ) lowercase__ : Dict = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCAmelCase__( self , lowerCamelCase__ ) -> dict: lowercase__ , lowercase__ , lowercase__ : Tuple = self._eval_end(lowerCamelCase__ ) lowercase__ : Optional[int] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCAmelCase__( lowerCamelCase__ , lowerCamelCase__ ) -> str: BaseTransformer.add_model_specific_args(lowerCamelCase__ , lowerCamelCase__ ) parser.add_argument( """--max_seq_length""" , default=128 , type=lowerCamelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=lowerCamelCase__ , required=lowerCamelCase__ , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=lowerCamelCase__ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser def _lowerCamelCase ( ): lowercase__ : Optional[int] = argparse.ArgumentParser() add_generic_args(lowerCamelCase__ , os.getcwd() ) lowercase__ : Tuple = GLUETransformer.add_model_specific_args(lowerCamelCase__ , os.getcwd() ) lowercase__ : str = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowercase__ : str = os.path.join( """./results""" , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) lowercase__ : Optional[Any] = GLUETransformer(lowerCamelCase__ ) lowercase__ : Optional[int] = generic_train(lowerCamelCase__ , lowerCamelCase__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowercase__ : Any = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCamelCase__ ) ) lowercase__ : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCamelCase__ ) if __name__ == "__main__": main()
200
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __snake_case = 'src/transformers' __snake_case = 'docs/source/en' __snake_case = '.' def _lowerCamelCase ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any ): with open(lowerCamelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase__ : List[str] = f.readlines() # Find the start prompt. lowercase__ : str = 0 while not lines[start_index].startswith(lowerCamelCase__ ): start_index += 1 start_index += 1 lowercase__ : Optional[Any] = start_index while not lines[end_index].startswith(lowerCamelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __snake_case = 'Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. __snake_case = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') __snake_case = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __snake_case = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. __snake_case = direct_transformers_import(TRANSFORMERS_PATH) def _lowerCamelCase ( lowerCamelCase__ : List[Any] ): lowercase__ : Union[str, Any] = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , lowerCamelCase__ ) return [m.group(0 ) for m in matches] def _lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int ): lowercase__ : Any = 2 if text == """✅""" or text == """❌""" else len(lowerCamelCase__ ) lowercase__ : int = (width - text_length) // 2 lowercase__ : List[str] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _lowerCamelCase ( ): lowercase__ : List[str] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase__ : Optional[int] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase__ : str = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase__ : Tuple = collections.defaultdict(lowerCamelCase__ ) lowercase__ : Optional[Any] = collections.defaultdict(lowerCamelCase__ ) lowercase__ : Optional[int] = collections.defaultdict(lowerCamelCase__ ) lowercase__ : Dict = collections.defaultdict(lowerCamelCase__ ) lowercase__ : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCamelCase__ ): lowercase__ : Optional[Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase__ : List[Any] = slow_tokenizers lowercase__ : List[str] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase__ : Tuple = fast_tokenizers lowercase__ : str = attr_name[:-13] elif _re_tf_models.match(lowerCamelCase__ ) is not None: lowercase__ : Tuple = tf_models lowercase__ : List[Any] = _re_tf_models.match(lowerCamelCase__ ).groups()[0] elif _re_flax_models.match(lowerCamelCase__ ) is not None: lowercase__ : List[Any] = flax_models lowercase__ : List[Any] = _re_flax_models.match(lowerCamelCase__ ).groups()[0] elif _re_pt_models.match(lowerCamelCase__ ) is not None: lowercase__ : Union[str, Any] = pt_models lowercase__ : Optional[int] = _re_pt_models.match(lowerCamelCase__ ).groups()[0] if lookup_dict is not None: while len(lowerCamelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase__ : Tuple = True break # Try again after removing the last word in the name lowercase__ : Union[str, Any] = """""".join(camel_case_split(lowerCamelCase__ )[:-1] ) # Let's build that table! lowercase__ : Union[str, Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase__ : List[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase__ : str = [len(lowerCamelCase__ ) + 2 for c in columns] lowercase__ : Tuple = max([len(lowerCamelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase__ : List[Any] = """|""" + """|""".join([_center_text(lowerCamelCase__ , lowerCamelCase__ ) for c, w in zip(lowerCamelCase__ , lowerCamelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase__ : List[Any] = {True: """✅""", False: """❌"""} for name in model_names: lowercase__ : int = model_name_to_prefix[name] lowercase__ : List[str] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCamelCase__ , lowerCamelCase__ ) for l, w in zip(lowerCamelCase__ , lowerCamelCase__ )] ) + "|\n" return table def _lowerCamelCase ( lowerCamelCase__ : Union[str, Any]=False ): lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = _find_text_in_file( filename=os.path.join(lowerCamelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase__ : Union[str, Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCamelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __snake_case = parser.parse_args() check_model_table(args.fix_and_overwrite)
200
1
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class a_ ( unittest.TestCase ): def __init__( self : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Optional[Any]=5_6 , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : str=9_9 , __lowerCAmelCase : Optional[Any]=3_2 , __lowerCAmelCase : str=2 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Dict=7 , __lowerCAmelCase : Any="gelu_new" , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : List[Any]=5_1_2 , __lowerCAmelCase : Optional[Any]=1_6 , __lowerCAmelCase : int=2 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : List[Any]="block_sparse" , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : List[Any]=3 , ): __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_attention_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_choices __snake_case = rescale_embeddings __snake_case = attention_type __snake_case = use_bias __snake_case = block_size __snake_case = num_random_blocks def lowercase__ ( self : Any ): __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_attention_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self : Tuple ): __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class a_ ( UpperCAmelCase__ , unittest.TestCase ): lowercase_ : int = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowercase_ : str = False lowercase_ : Optional[int] = False def lowercase__ ( self : str ): __snake_case = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase__ ( self : int ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase__ ( self : int ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase__ ( self : Any ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase__ ( self : str ): super().test_hidden_states_output() @slow def lowercase__ ( self : str ): for model_class_name in self.all_model_classes: __snake_case = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(__lowerCAmelCase ) def lowercase__ ( self : Optional[Any] ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase__ ( self : List[str] ): __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = model_class(__lowerCAmelCase ) @jax.jit def model_jitted(__lowerCAmelCase : List[str] , __lowerCAmelCase : Any=None , **__lowerCAmelCase : str ): return model(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase , **__lowerCAmelCase ) with self.subTest('JIT Enabled' ): __snake_case = model_jitted(**__lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __snake_case = model_jitted(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase__ ( self : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any]=1E-5 , __lowerCAmelCase : str="outputs" , __lowerCAmelCase : Any=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
701
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( UpperCAmelCase__ ): lowercase_ : int = ['''image_processor''', '''tokenizer'''] lowercase_ : Dict = '''AutoImageProcessor''' lowercase_ : Dict = '''AutoTokenizer''' def __init__( self : int , __lowerCAmelCase : Any=None , __lowerCAmelCase : Tuple=None , **__lowerCAmelCase : List[Any] ): __snake_case = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __lowerCAmelCase , ) __snake_case = kwargs.pop('feature_extractor' ) __snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = self.image_processor __snake_case = False def __call__( self : Dict , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : List[str] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__lowerCAmelCase , **__lowerCAmelCase ) __snake_case = kwargs.pop('images' , __lowerCAmelCase ) __snake_case = kwargs.pop('text' , __lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: __snake_case = args[0] __snake_case = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: __snake_case = self.image_processor(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) if text is not None: __snake_case = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: __snake_case = encodings['input_ids'] return inputs def lowercase__ ( self : str , *__lowerCAmelCase : str , **__lowerCAmelCase : Tuple ): return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def lowercase__ ( self : Union[str, Any] , *__lowerCAmelCase : Dict , **__lowerCAmelCase : Any ): return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @contextmanager def lowercase__ ( self : Any ): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) __snake_case = True __snake_case = self.tokenizer yield __snake_case = self.image_processor __snake_case = False def lowercase__ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : List[Any]=None ): if added_vocab is None: __snake_case = self.tokenizer.get_added_vocab() __snake_case = {} while tokens: __snake_case = re.search(r'<s_(.*?)>' , __lowerCAmelCase , re.IGNORECASE ) if start_token is None: break __snake_case = start_token.group(1 ) __snake_case = re.search(rF'</s_{key}>' , __lowerCAmelCase , re.IGNORECASE ) __snake_case = start_token.group() if end_token is None: __snake_case = tokens.replace(__lowerCAmelCase , '' ) else: __snake_case = end_token.group() __snake_case = re.escape(__lowerCAmelCase ) __snake_case = re.escape(__lowerCAmelCase ) __snake_case = re.search(F'{start_token_escaped}(.*?){end_token_escaped}' , __lowerCAmelCase , re.IGNORECASE ) if content is not None: __snake_case = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node __snake_case = self.tokenajson(__lowerCAmelCase , is_inner_value=__lowerCAmelCase , added_vocab=__lowerCAmelCase ) if value: if len(__lowerCAmelCase ) == 1: __snake_case = value[0] __snake_case = value else: # leaf nodes __snake_case = [] for leaf in content.split(r'<sep/>' ): __snake_case = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": __snake_case = leaf[1:-2] # for categorical special tokens output[key].append(__lowerCAmelCase ) if len(output[key] ) == 1: __snake_case = output[key][0] __snake_case = tokens[tokens.find(__lowerCAmelCase ) + len(__lowerCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=__lowerCAmelCase , added_vocab=__lowerCAmelCase ) if len(__lowerCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowercase__ ( self : Dict ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __lowerCAmelCase , ) return self.image_processor_class @property def lowercase__ ( self : Union[str, Any] ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __lowerCAmelCase , ) return self.image_processor
427
0
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Optional[int] = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class UpperCAmelCase ( a_ , unittest.TestCase ): """simple docstring""" A__ : Tuple = AlbertTokenizer A__ : Tuple = AlbertTokenizerFast A__ : Optional[Any] = True A__ : int = True A__ : List[Any] = True def _lowercase ( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase : Optional[Any] = AlbertTokenizer(_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self , _snake_case ) -> int: _UpperCamelCase : int = '''this is a test''' _UpperCamelCase : Optional[Any] = '''this is a test''' return input_text, output_text def _lowercase ( self ) -> Optional[Any]: _UpperCamelCase : List[str] = '''<pad>''' _UpperCamelCase : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def _lowercase ( self ) -> Union[str, Any]: _UpperCamelCase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''▁eloquent''' ) self.assertEqual(len(_snake_case ) , 30000 ) def _lowercase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _lowercase ( self ) -> Dict: if not self.test_rust_tokenizer: return _UpperCamelCase : Any = self.get_tokenizer() _UpperCamelCase : Tuple = self.get_rust_tokenizer() _UpperCamelCase : Dict = '''I was born in 92000, and this is falsé.''' _UpperCamelCase : Union[str, Any] = tokenizer.tokenize(_snake_case ) _UpperCamelCase : str = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) _UpperCamelCase : List[str] = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) _UpperCamelCase : str = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) _UpperCamelCase : str = self.get_rust_tokenizer() _UpperCamelCase : Tuple = tokenizer.encode(_snake_case ) _UpperCamelCase : Any = rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def _lowercase ( self ) -> List[Any]: _UpperCamelCase : Dict = AlbertTokenizer(_snake_case , keep_accents=_snake_case ) _UpperCamelCase : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_snake_case , ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [48, 25, 21, 1289] ) _UpperCamelCase : str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _snake_case , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) _UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual(_snake_case , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) _UpperCamelCase : Dict = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual( _snake_case , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def _lowercase ( self ) -> Tuple: _UpperCamelCase : int = AlbertTokenizer(_snake_case ) _UpperCamelCase : int = tokenizer.encode('''sequence builders''' ) _UpperCamelCase : List[Any] = tokenizer.encode('''multi-sequence build''' ) _UpperCamelCase : str = tokenizer.build_inputs_with_special_tokens(_snake_case ) _UpperCamelCase : str = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _lowercase ( self ) -> str: # fmt: off _UpperCamelCase : str = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
683
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : List[Any] = logging.get_logger(__name__) def snake_case__ ( UpperCamelCase ) -> Tuple: _UpperCamelCase : str = '''huggingface/label-files''' _UpperCamelCase : Optional[Any] = '''imagenet-1k-id2label.json''' _UpperCamelCase : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase ,UpperCamelCase ,repo_type='''dataset''' ) ,'''r''' ) ) _UpperCamelCase : Optional[int] = {int(UpperCamelCase ): v for k, v in idalabel.items()} _UpperCamelCase : Dict = {v: k for k, v in idalabel.items()} _UpperCamelCase : Optional[Any] = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" _UpperCamelCase : Union[str, Any] = BitConfig( conv_layer=UpperCamelCase ,num_labels=10_00 ,idalabel=UpperCamelCase ,labelaid=UpperCamelCase ,) return config def snake_case__ ( UpperCamelCase ) -> str: if "stem.conv" in name: _UpperCamelCase : Any = name.replace('''stem.conv''' ,'''bit.embedder.convolution''' ) if "blocks" in name: _UpperCamelCase : Union[str, Any] = name.replace('''blocks''' ,'''layers''' ) if "head.fc" in name: _UpperCamelCase : Optional[Any] = name.replace('''head.fc''' ,'''classifier.1''' ) if name.startswith('''norm''' ): _UpperCamelCase : Any = '''bit.''' + name if "bit" not in name and "classifier" not in name: _UpperCamelCase : List[Any] = '''bit.encoder.''' + name return name def snake_case__ ( ) -> Optional[int]: _UpperCamelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase : List[str] = Image.open(requests.get(UpperCamelCase ,stream=UpperCamelCase ).raw ) return im @torch.no_grad() def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase=False ) -> List[Any]: _UpperCamelCase : str = get_config(UpperCamelCase ) # load original model from timm _UpperCamelCase : int = create_model(UpperCamelCase ,pretrained=UpperCamelCase ) timm_model.eval() # load state_dict of original model _UpperCamelCase : int = timm_model.state_dict() for key in state_dict.copy().keys(): _UpperCamelCase : int = state_dict.pop(UpperCamelCase ) _UpperCamelCase : Any = val.squeeze() if '''head''' in key else val # load HuggingFace model _UpperCamelCase : List[str] = BitForImageClassification(UpperCamelCase ) model.eval() model.load_state_dict(UpperCamelCase ) # create image processor _UpperCamelCase : Optional[int] = create_transform(**resolve_data_config({} ,model=UpperCamelCase ) ) _UpperCamelCase : Any = transform.transforms _UpperCamelCase : List[str] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } _UpperCamelCase : List[str] = BitImageProcessor( do_resize=UpperCamelCase ,size={'''shortest_edge''': timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=UpperCamelCase ,crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} ,do_normalize=UpperCamelCase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) _UpperCamelCase : str = prepare_img() _UpperCamelCase : Dict = transform(UpperCamelCase ).unsqueeze(0 ) _UpperCamelCase : Dict = processor(UpperCamelCase ,return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(UpperCamelCase ,UpperCamelCase ) # verify logits with torch.no_grad(): _UpperCamelCase : Optional[int] = model(UpperCamelCase ) _UpperCamelCase : Optional[int] = outputs.logits print('''Logits:''' ,logits[0, :3] ) print('''Predicted class:''' ,model.config.idalabel[logits.argmax(-1 ).item()] ) _UpperCamelCase : List[Any] = timm_model(UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCamelCase ,outputs.logits ,atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": _UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) _UpperCAmelCase : Optional[int] = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
683
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case: int = logging.get_logger(__name__) def _snake_case ( A_ : Optional[Any] ): """simple docstring""" if isinstance(A_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(A_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(A_ ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = ["pixel_values"] def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = PILImageResampling.BILINEAR , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = True , lowerCAmelCase_ = 1 / 2_55 , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): '''simple docstring''' super().__init__(**lowerCAmelCase_ ) a_ : Dict = size if size is not None else {"""shortest_edge""": 2_24} a_ : Union[str, Any] = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) a_ : Tuple = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} a_ : List[Any] = get_size_dict(lowerCAmelCase_ , param_name="""crop_size""" ) a_ : List[Any] = do_resize a_ : int = size a_ : Dict = do_center_crop a_ : int = crop_size a_ : Union[str, Any] = resample a_ : Optional[int] = do_rescale a_ : Optional[int] = rescale_factor a_ : Dict = do_normalize a_ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a_ : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = PILImageResampling.BILINEAR , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): '''simple docstring''' a_ : List[Any] = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" in size: a_ : Optional[int] = get_resize_output_image_size(lowerCAmelCase_ , size["""shortest_edge"""] , default_to_square=lowerCAmelCase_ ) elif "height" in size and "width" in size: a_ : int = (size["""height"""], size["""width"""]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): '''simple docstring''' a_ : Optional[Any] = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCAmelCase_ , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): '''simple docstring''' return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): '''simple docstring''' return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , ): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. a_ : List[str] = to_numpy_array(lowerCAmelCase_ ) if do_resize: a_ : Optional[Any] = self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) if do_center_crop: a_ : str = self.center_crop(lowerCAmelCase_ , size=lowerCAmelCase_ ) if do_rescale: a_ : int = self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) if do_normalize: a_ : Dict = self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) a_ : str = to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) return image def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ): '''simple docstring''' a_ : Any = do_resize if do_resize is not None else self.do_resize a_ : Dict = resample if resample is not None else self.resample a_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop a_ : Any = do_rescale if do_rescale is not None else self.do_rescale a_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor a_ : Dict = do_normalize if do_normalize is not None else self.do_normalize a_ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean a_ : List[str] = image_std if image_std is not None else self.image_std a_ : Union[str, Any] = size if size is not None else self.size a_ : Optional[Any] = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) a_ : List[str] = crop_size if crop_size is not None else self.crop_size a_ : int = get_size_dict(lowerCAmelCase_ , param_name="""crop_size""" ) if not valid_images(lowerCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) a_ : List[Any] = make_batched(lowerCAmelCase_ ) a_ : int = [ [ self._preprocess_image( image=lowerCAmelCase_ , do_resize=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , do_center_crop=lowerCAmelCase_ , crop_size=lowerCAmelCase_ , do_rescale=lowerCAmelCase_ , rescale_factor=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ , image_mean=lowerCAmelCase_ , image_std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , ) for img in video ] for video in videos ] a_ : Optional[int] = {"""pixel_values""": videos} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
460
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _snake_case ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join a_ : List[str] = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , A_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _snake_case ( ): """simple docstring""" assert _test_patching.open is open a_ : Tuple = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , A_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _snake_case ( ): """simple docstring""" a_ : Any = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , A_ ): pass def _snake_case ( ): """simple docstring""" a_ : int = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , A_ ) is None with patch_submodule(_test_patching , """len""" , A_ ): assert _test_patching.len is mock assert _test_patching.len is len def _snake_case ( ): """simple docstring""" a_ : List[str] = """__test_patch_submodule_start_and_stop_mock__""" a_ : int = patch_submodule(_test_patching , """open""" , A_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _snake_case ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join a_ : Any = """__test_patch_submodule_successive_join__""" a_ : Optional[Any] = """__test_patch_submodule_successive_dirname__""" a_ : Optional[int] = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , A_ ): with patch_submodule(_test_patching , """os.rename""" , A_ ): with patch_submodule(_test_patching , """os.path.dirname""" , A_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , A_ ): with patch_submodule(_test_patching , """os.path.join""" , A_ ): with patch_submodule(_test_patching , """os.path.dirname""" , A_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _snake_case ( ): """simple docstring""" a_ : Optional[int] = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , A_ ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , A_ ): pass
460
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case = { '''configuration_blenderbot_small''': [ '''BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotSmallConfig''', '''BlenderbotSmallOnnxConfig''', ], '''tokenization_blenderbot_small''': ['''BlenderbotSmallTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ['''BlenderbotSmallTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotSmallForCausalLM''', '''BlenderbotSmallForConditionalGeneration''', '''BlenderbotSmallModel''', '''BlenderbotSmallPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''TFBlenderbotSmallForConditionalGeneration''', '''TFBlenderbotSmallModel''', '''TFBlenderbotSmallPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''FlaxBlenderbotSmallForConditionalGeneration''', '''FlaxBlenderbotSmallModel''', '''FlaxBlenderbotSmallPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __snake_case = logging.getLogger(__name__) @dataclass class lowercase ( A__ ): """simple docstring""" _a = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) _a = field(default=A__ , metadata={'help': 'Whether to SortishSamler or not.'} ) _a = field( default=A__ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) _a = field(default=A__ , metadata={'help': 'whether to use adafactor'} ) _a = field( default=A__ , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) _a = field( default=A__ , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) _a = field(default=A__ , metadata={'help': 'Dropout probability. Goes into model.config.'} ) _a = field( default=A__ , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) _a = field( default='linear' , metadata={'help': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
189
0
from functools import reduce UpperCAmelCase__ = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def A ( _UpperCAmelCase : str = N ) -> int: '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _UpperCAmelCase , _UpperCAmelCase : str(int(_UpperCAmelCase ) * int(_UpperCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(_UpperCAmelCase ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
721
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
0
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } A_ = { "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } A_ = { "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def __UpperCAmelCase ( UpperCAmelCase )-> Optional[Any]: """simple docstring""" lowercase = set() lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase = char lowercase = set(UpperCAmelCase ) return pairs class __lowercase ( _A ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Union[str, Any]="</s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : int="<unk>" , __lowerCamelCase : Optional[int]="<pad>" , __lowerCamelCase : Any="<mask>" , **__lowerCamelCase : int , ) -> Any: '''simple docstring''' super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , **__lowerCamelCase , ) lowercase = vocab_file lowercase = merges_file lowercase = {} lowercase = 0 lowercase = 1 lowercase = 2 lowercase = 3 self.add_from_file(__lowerCamelCase ) lowercase = {v: k for k, v in self.encoder.items()} with open(__lowerCamelCase , encoding='''utf-8''' ) as merges_handle: lowercase = merges_handle.read().split('''\n''' )[:-1] lowercase = [tuple(merge.split()[:-1] ) for merge in merges] lowercase = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) lowercase = {} def __a ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase = [self.cls_token_id] lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def __a ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : int ) -> str: '''simple docstring''' return len(self.encoder ) def __a ( self : int ) -> Any: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : int , __lowerCamelCase : Any ) -> Optional[int]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase = tuple(__lowerCamelCase ) lowercase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowercase = get_pairs(__lowerCamelCase ) if not pairs: return token while True: lowercase = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase ,lowercase = bigram lowercase = [] lowercase = 0 while i < len(__lowerCamelCase ): try: lowercase = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase = tuple(__lowerCamelCase ) lowercase = new_word if len(__lowerCamelCase ) == 1: break else: lowercase = get_pairs(__lowerCamelCase ) lowercase = '''@@ '''.join(__lowerCamelCase ) lowercase = word[:-4] lowercase = word return word def __a ( self : List[str] , __lowerCamelCase : Tuple ) -> List[Any]: '''simple docstring''' lowercase = [] lowercase = re.findall(r'''\S+\n?''' , __lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(''' ''' ) ) ) return split_tokens def __a ( self : Tuple , __lowerCamelCase : List[Any] ) -> Any: '''simple docstring''' return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def __a ( self : str , __lowerCamelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(__lowerCamelCase , self.unk_token ) def __a ( self : Optional[Any] , __lowerCamelCase : Any ) -> List[str]: '''simple docstring''' lowercase = ''' '''.join(__lowerCamelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def __a ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.merges_file , __lowerCamelCase ) return out_vocab_file, out_merge_file def __a ( self : str , __lowerCamelCase : List[str] ) -> List[str]: '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ): try: with open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(__lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' ) return lowercase = f.readlines() for lineTmp in lines: lowercase = lineTmp.strip() lowercase = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) lowercase = line[:idx] lowercase = len(self.encoder )
604
0
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( a__ ): def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any]=1_3 , SCREAMING_SNAKE_CASE__ : Dict=7 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : Tuple=9_9 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : str=3_2 , SCREAMING_SNAKE_CASE__ : Dict=5 , SCREAMING_SNAKE_CASE__ : Tuple=4 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_1_2 , SCREAMING_SNAKE_CASE__ : int=1_2 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Tuple=0.02 , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE__ : str="last" , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , ) -> Union[str, Any]: a_ : Union[str, Any] = parent a_ : int = batch_size a_ : Union[str, Any] = seq_length a_ : Tuple = is_training a_ : int = use_input_lengths a_ : List[str] = use_token_type_ids a_ : List[Any] = use_labels a_ : Union[str, Any] = gelu_activation a_ : int = sinusoidal_embeddings a_ : Union[str, Any] = causal a_ : Any = asm a_ : Union[str, Any] = n_langs a_ : int = vocab_size a_ : str = n_special a_ : Optional[int] = hidden_size a_ : Dict = num_hidden_layers a_ : Union[str, Any] = num_attention_heads a_ : Tuple = hidden_dropout_prob a_ : str = attention_probs_dropout_prob a_ : Tuple = max_position_embeddings a_ : List[str] = type_vocab_size a_ : Dict = type_sequence_label_size a_ : Dict = initializer_range a_ : Optional[int] = num_labels a_ : Tuple = num_choices a_ : List[str] = summary_type a_ : Union[str, Any] = use_proj a_ : List[Any] = scope def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: a_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : str = random_attention_mask([self.batch_size, self.seq_length] ) a_ : Union[str, Any] = None if self.use_input_lengths: a_ : Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length a_ : Union[str, Any] = None if self.use_token_type_ids: a_ : int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) a_ : Any = None a_ : Union[str, Any] = None a_ : List[Any] = None if self.use_labels: a_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : Optional[Any] = ids_tensor([self.batch_size] , 2 ).float() a_ : str = ids_tensor([self.batch_size] , self.num_choices ) a_ : Union[str, Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , ) -> Tuple: a_ : List[Any] = FlaubertModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ : Dict = model(lowercase__ , lengths=lowercase__ , langs=lowercase__ ) a_ : Dict = model(lowercase__ , langs=lowercase__ ) a_ : Union[str, Any] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , ) -> Any: a_ : List[str] = FlaubertWithLMHeadModel(lowercase__ ) model.to(lowercase__ ) model.eval() a_ : Optional[int] = model(lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , ) -> Tuple: a_ : List[Any] = FlaubertForQuestionAnsweringSimple(lowercase__ ) model.to(lowercase__ ) model.eval() a_ : List[str] = model(lowercase__ ) a_ : Tuple = model(lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , ) -> str: a_ : Union[str, Any] = FlaubertForQuestionAnswering(lowercase__ ) model.to(lowercase__ ) model.eval() a_ : int = model(lowercase__ ) a_ : Dict = model( lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , cls_index=lowercase__ , is_impossible=lowercase__ , p_mask=lowercase__ , ) a_ : str = model( lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , cls_index=lowercase__ , is_impossible=lowercase__ , ) (a_ ) : Tuple = result_with_labels.to_tuple() a_ : List[Any] = model(lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ ) (a_ ) : Dict = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , ) -> Dict: a_ : Any = FlaubertForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() a_ : List[str] = model(lowercase__ ) a_ : str = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> Optional[Any]: a_ : Tuple = self.num_labels a_ : Union[str, Any] = FlaubertForTokenClassification(lowercase__ ) model.to(lowercase__ ) model.eval() a_ : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , ) -> int: a_ : str = self.num_choices a_ : List[Any] = FlaubertForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ : Dict = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: a_ : Any = self.prepare_config_and_inputs() ( a_ ) : Optional[int] = config_and_inputs a_ : Dict = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( a__ , a__ , unittest.TestCase ): snake_case__ : Optional[int] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) snake_case__ : int = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=False ) -> List[Any]: a_ : Optional[int] = super()._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": a_ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) a_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: a_ : Dict = FlaubertModelTester(self ) a_ : Optional[int] = ConfigTester(self , config_class=lowercase__ , emb_dim=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: a_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: a_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: a_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : List[str] = FlaubertModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: a_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return a_ : List[str] = True a_ : List[Any] = model_class(config=lowercase__ ) a_ : str = self._prepare_for_class(lowercase__ , lowercase__ ) a_ : int = torch.jit.trace( lowercase__ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ , os.path.join(lowercase__ , 'traced_model.pt' ) ) a_ : Dict = torch.jit.load(os.path.join(lowercase__ , 'traced_model.pt' ) , map_location=lowercase__ ) loaded(inputs_dict['input_ids'].to(lowercase__ ) , inputs_dict['attention_mask'].to(lowercase__ ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: a_ : Tuple = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' ) a_ : int = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) with torch.no_grad(): a_ : str = model(lowercase__ )[0] a_ : int = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowercase__ ) a_ : List[Any] = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1E-4 ) )
703
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets UpperCAmelCase_ : int = datasets.logging.get_logger(__name__) UpperCAmelCase_ : Dict = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' UpperCAmelCase_ : Tuple = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' UpperCAmelCase_ : Optional[Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def SCREAMING_SNAKE_CASE_ ( __A : List[str] , __A : Any , __A : List[Any]=False , __A : Tuple=False , __A : Any=True , __A : Any=False , __A : Any="dummy_doc" ) -> List[str]: """simple docstring""" a_ : List[str] = {doc: key_lines} a_ : Optional[Any] = {doc: sys_lines} a_ : List[Any] = {} a_ : Tuple = 0 a_ : List[str] = 0 a_ : Union[str, Any] = 0 a_ : List[Any] = 0 a_ : List[str] = 0 a_ : Union[str, Any] = 0 a_ , a_ : List[Any] = reader.get_doc_mentions(__A , key_doc_lines[doc] , __A ) key_singletons_num += singletons_num if NP_only or min_span: a_ : Union[str, Any] = reader.set_annotated_parse_trees(__A , key_doc_lines[doc] , __A , __A ) a_ , a_ : Union[str, Any] = reader.get_doc_mentions(__A , sys_doc_lines[doc] , __A ) sys_singletons_num += singletons_num if NP_only or min_span: a_ : Dict = reader.set_annotated_parse_trees(__A , key_doc_lines[doc] , __A , __A ) if remove_nested: a_ , a_ : Optional[Any] = reader.remove_nested_coref_mentions(__A , __A ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters a_ , a_ : Optional[Any] = reader.remove_nested_coref_mentions(__A , __A ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters a_ : int = reader.get_mention_assignments(__A , __A ) a_ : List[Any] = reader.get_mention_assignments(__A , __A ) a_ : List[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def SCREAMING_SNAKE_CASE_ ( __A : str , __A : Optional[int] , __A : Optional[Any] , __A : Optional[int] , __A : Tuple , __A : Dict , __A : Optional[int] ) -> List[Any]: """simple docstring""" a_ : int = get_coref_infos(__A , __A , __A , __A , __A , __A ) a_ : List[Any] = {} a_ : int = 0 a_ : Optional[int] = 0 for name, metric in metrics: a_ , a_ , a_ : Tuple = evaluator.evaluate_documents(__A , __A , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , F"""Recall: {recall * 1_00:.2f}""" , F""" Precision: {precision * 1_00:.2f}""" , F""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: a_ : List[str] = (conll / 3) * 1_00 logger.info(F"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def SCREAMING_SNAKE_CASE_ ( __A : int ) -> Dict: """simple docstring""" a_ : List[Any] = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: a_ : List[Any] = line.split()[5] if not parse_col == "-": a_ : List[Any] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : int=False ) -> Tuple: a_ : List[str] = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: a_ : Union[str, Any] = util.check_gold_parse_annotation(SCREAMING_SNAKE_CASE__ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" a_ : List[Any] = evaluate( key_lines=SCREAMING_SNAKE_CASE__ , sys_lines=SCREAMING_SNAKE_CASE__ , metrics=SCREAMING_SNAKE_CASE__ , NP_only=SCREAMING_SNAKE_CASE__ , remove_nested=SCREAMING_SNAKE_CASE__ , keep_singletons=SCREAMING_SNAKE_CASE__ , min_span=SCREAMING_SNAKE_CASE__ , ) return score
443
0
import os # Precomputes a list of the 100 first triangular numbers lowercase__ =[int(0.5 * n * (n + 1)) for n in range(1, 101)] def __UpperCamelCase ( ): __a : Optional[int] = os.path.dirname(os.path.realpath(_UpperCamelCase ) ) __a : Optional[int] = os.path.join(_UpperCamelCase , '''words.txt''' ) __a : Dict = '''''' with open(_UpperCamelCase ) as f: __a : Optional[Any] = f.readline() __a : Optional[Any] = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] __a : List[str] = [ word for word in [sum(ord(_UpperCamelCase ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCamelCase ) if __name__ == "__main__": print(solution())
521
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") lowercase__ : List[str] = logging.getLogger(__name__) @dataclass class lowerCamelCase : '''simple docstring''' lowerCAmelCase__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) lowerCAmelCase__ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class lowerCamelCase : '''simple docstring''' lowerCAmelCase__ = field(default=lowerCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase__ ( self : Tuple ) ->str: if self.train_file is not None: UpperCAmelCase_ = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCAmelCase_ = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowerCamelCase : '''simple docstring''' lowerCAmelCase__ = 42 lowerCAmelCase__ = True lowerCAmelCase__ = None lowerCAmelCase__ = None def __call__( self : int , UpperCAmelCase__ : int ) ->List[str]: UpperCAmelCase_ = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ = [feature.pop(UpperCAmelCase__ ) for feature in features] UpperCAmelCase_ = len(UpperCAmelCase__ ) UpperCAmelCase_ = len(features[0]['''input_ids'''] ) UpperCAmelCase_ = [ [{k: v[i] for k, v in feature.items()} for i in range(UpperCAmelCase__ )] for feature in features ] UpperCAmelCase_ = list(chain(*UpperCAmelCase__ ) ) UpperCAmelCase_ = self.tokenizer.pad( UpperCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten UpperCAmelCase_ = {k: v.view(UpperCAmelCase__ , UpperCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels UpperCAmelCase_ = torch.tensor(UpperCAmelCase__ , dtype=torch.intaa ) return batch def __lowerCamelCase ( ): '''simple docstring''' UpperCAmelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase_ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) datasets.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCAmelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCAmelCase_ = {} if data_args.train_file is not None: UpperCAmelCase_ = data_args.train_file if data_args.validation_file is not None: UpperCAmelCase_ = data_args.validation_file UpperCAmelCase_ = data_args.train_file.split('''.''' )[-1] UpperCAmelCase_ = load_dataset( _UpperCamelCase , data_files=_UpperCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCAmelCase_ = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCAmelCase_ = [F"""ending{i}""" for i in range(4 )] UpperCAmelCase_ = '''sent1''' UpperCAmelCase_ = '''sent2''' if data_args.max_seq_length is None: UpperCAmelCase_ = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) UpperCAmelCase_ = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) UpperCAmelCase_ = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_UpperCamelCase : List[str] ): UpperCAmelCase_ = [[context] * 4 for context in examples[context_name]] UpperCAmelCase_ = examples[question_header_name] UpperCAmelCase_ = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_UpperCamelCase ) ] # Flatten out UpperCAmelCase_ = list(chain(*_UpperCamelCase ) ) UpperCAmelCase_ = list(chain(*_UpperCamelCase ) ) # Tokenize UpperCAmelCase_ = tokenizer( _UpperCamelCase , _UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_UpperCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) UpperCAmelCase_ = raw_datasets['''train'''] if data_args.max_train_samples is not None: UpperCAmelCase_ = min(len(_UpperCamelCase ) , data_args.max_train_samples ) UpperCAmelCase_ = train_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): UpperCAmelCase_ = train_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) UpperCAmelCase_ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: UpperCAmelCase_ = min(len(_UpperCamelCase ) , data_args.max_eval_samples ) UpperCAmelCase_ = eval_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): UpperCAmelCase_ = eval_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCAmelCase_ = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_UpperCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_UpperCamelCase : List[str] ): UpperCAmelCase_ , UpperCAmelCase_ = eval_predictions UpperCAmelCase_ = np.argmax(_UpperCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCAmelCase_ = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , compute_metrics=_UpperCamelCase , ) # Training if training_args.do_train: UpperCAmelCase_ = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase_ = last_checkpoint UpperCAmelCase_ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCAmelCase_ = train_result.metrics UpperCAmelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCamelCase ) ) UpperCAmelCase_ = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics('''train''' , _UpperCamelCase ) trainer.save_metrics('''train''' , _UpperCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ = trainer.evaluate() UpperCAmelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCamelCase ) UpperCAmelCase_ = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics('''eval''' , _UpperCamelCase ) trainer.save_metrics('''eval''' , _UpperCamelCase ) UpperCAmelCase_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) def __lowerCamelCase ( _UpperCamelCase : List[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
390
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , )->Optional[int]: '''simple docstring''' A_ : Tuple = parent A_ : int = 13 A_ : Dict = 7 A_ : List[Any] = 30 A_ : Any = self.seq_length + self.mem_len A_ : List[Any] = 15 A_ : List[Any] = True A_ : Union[str, Any] = True A_ : List[Any] = 99 A_ : str = [10, 50, 80] A_ : Optional[int] = 32 A_ : List[Any] = 32 A_ : Optional[Any] = 4 A_ : str = 8 A_ : List[str] = 128 A_ : Dict = 2 A_ : Dict = 2 A_ : Any = None A_ : Optional[Any] = 1 A_ : List[str] = 0 A_ : str = 3 A_ : List[str] = self.vocab_size - 1 A_ : Dict = 0.0_1 def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : str = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Tuple = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def _snake_case ( self )->int: '''simple docstring''' random.seed(self.seed ) tf.random.set_seed(self.seed ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' A_ : Tuple = TFTransfoXLModel(_SCREAMING_SNAKE_CASE ) A_ , A_ : int = model(_SCREAMING_SNAKE_CASE ).to_tuple() A_ : List[Any] = {'''input_ids''': input_ids_a, '''mems''': mems_a} A_ , A_ : List[str] = model(_SCREAMING_SNAKE_CASE ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' A_ : Union[str, Any] = TFTransfoXLLMHeadModel(_SCREAMING_SNAKE_CASE ) A_ , A_ : Dict = model(_SCREAMING_SNAKE_CASE ).to_tuple() A_ : List[str] = {'''input_ids''': input_ids_a, '''labels''': lm_labels} A_ , A_ : Any = model(_SCREAMING_SNAKE_CASE ).to_tuple() A_ , A_ : Any = model([input_ids_a, mems_a] ).to_tuple() A_ : List[Any] = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} A_ , A_ : List[str] = model(_SCREAMING_SNAKE_CASE ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' A_ : Optional[Any] = TFTransfoXLForSequenceClassification(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Dict = self.prepare_config_and_inputs() ((A_) , (A_) , (A_) , (A_)) : Optional[Any] = config_and_inputs A_ : List[Any] = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class _lowerCamelCase ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) snake_case = () if is_tf_available() else () snake_case = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented snake_case = False snake_case = False snake_case = False snake_case = False def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Dict = TFTransfoXLModelTester(self ) A_ : str = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , d_embed=37 ) def _snake_case ( self )->Any: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self )->Union[str, Any]: '''simple docstring''' self.model_tester.set_seed() A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Dict: '''simple docstring''' self.model_tester.set_seed() A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ , A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: A_ : Optional[int] = model_class(_SCREAMING_SNAKE_CASE ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: A_ : Union[str, Any] = model.get_output_embeddings() assert isinstance(_SCREAMING_SNAKE_CASE , tf.keras.layers.Layer ) A_ : Tuple = model.get_bias() assert name is None else: A_ : Dict = model.get_output_embeddings() assert x is None A_ : Tuple = model.get_bias() assert name is None def _snake_case ( self )->Dict: '''simple docstring''' pass @slow def _snake_case ( self )->Any: '''simple docstring''' for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = TFTransfoXLModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def _snake_case ( self )->Any: '''simple docstring''' pass @require_tf class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : List[Any] = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off A_ : Tuple = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off A_ : Union[str, Any] = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> A_ : Tuple = model.generate(_SCREAMING_SNAKE_CASE , max_length=200 , do_sample=_SCREAMING_SNAKE_CASE ) self.assertListEqual(output_ids[0].numpy().tolist() , _SCREAMING_SNAKE_CASE )
152
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = ["input_values", "padding_mask"] def __init__( self , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 2_4000 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->Dict: '''simple docstring''' super().__init__(feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) A_ : Dict = chunk_length_s A_ : Any = overlap @property def _snake_case ( self )->Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _snake_case ( self )->Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , )->BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs A_ : int = True A_ : str = bool( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : int = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): A_ : Optional[int] = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): A_ : List[Any] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: A_ : Optional[int] = [np.asarray(_SCREAMING_SNAKE_CASE ).T] # verify inputs are valid for idx, example in enumerate(_SCREAMING_SNAKE_CASE ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) A_ : int = None A_ : Optional[Any] = BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: A_ : List[str] = min(array.shape[0] for array in raw_audio ) A_ : int = int(np.floor(max_length / self.chunk_stride ) ) A_ : str = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: A_ : Optional[int] = max(array.shape[0] for array in raw_audio ) A_ : Any = int(np.ceil(max_length / self.chunk_stride ) ) A_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length A_ : Dict = '''max_length''' else: A_ : str = input_values # normal padding on batch if padded_inputs is None: A_ : Dict = self.pad( _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) if padding: A_ : Any = padded_inputs.pop('''attention_mask''' ) A_ : str = [] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: A_ : int = example[..., None] input_values.append(example.T ) A_ : Union[str, Any] = input_values if return_tensors is not None: A_ : str = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return padded_inputs
152
1
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ : List[str] = logging.get_logger(__name__) class _UpperCAmelCase : def __init__( self : List[Any] , lowercase_ : List[str] , lowercase_ : Dict ): snake_case_ : Any = question_encoder snake_case_ : Dict = generator snake_case_ : Tuple = self.question_encoder def _snake_case ( self : int , lowercase_ : str ): if os.path.isfile(lowercase_ ): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) snake_case_ : Any = os.path.join(lowercase_ , '''question_encoder_tokenizer''' ) snake_case_ : str = os.path.join(lowercase_ , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(lowercase_ ) self.generator.save_pretrained(lowercase_ ) @classmethod def _snake_case ( cls : str , lowercase_ : Optional[Any] , **lowercase_ : Dict ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer snake_case_ : Any = kwargs.pop('''config''' , lowercase_ ) if config is None: snake_case_ : Tuple = RagConfig.from_pretrained(lowercase_ ) snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained( lowercase_ , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) snake_case_ : Any = AutoTokenizer.from_pretrained( lowercase_ , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=lowercase_ , generator=lowercase_ ) def __call__( self : List[str] , *lowercase_ : Optional[Any] , **lowercase_ : Dict ): return self.current_tokenizer(*lowercase_ , **lowercase_ ) def _snake_case ( self : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ): return self.generator.batch_decode(*lowercase_ , **lowercase_ ) def _snake_case ( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ): return self.generator.decode(*lowercase_ , **lowercase_ ) def _snake_case ( self : List[str] ): snake_case_ : Union[str, Any] = self.question_encoder def _snake_case ( self : Tuple ): snake_case_ : str = self.generator def _snake_case ( self : Any , lowercase_ : List[Any] , lowercase_ : Union[str, Any] = None , lowercase_ : List[Any] = None , lowercase_ : int = None , lowercase_ : Tuple = "longest" , lowercase_ : Any = None , lowercase_ : str = True , **lowercase_ : int , ): warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , lowercase_ , ) if max_length is None: snake_case_ : int = self.current_tokenizer.model_max_length snake_case_ : int = self( lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , max_length=lowercase_ , padding=lowercase_ , truncation=lowercase_ , **lowercase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case_ : int = self.current_tokenizer.model_max_length snake_case_ : Dict = self( text_target=lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , **lowercase_ , ) snake_case_ : List[Any] = labels["""input_ids"""] return model_inputs
123
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _lowerCamelCase ={ """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
681
0
'''simple docstring''' from __future__ import annotations def __A ( a_ : Any ,a_ : Union[str, Any] ): lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : list[int] = [] lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = sum(__SCREAMING_SNAKE_CASE ) create_state_space_tree(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) return result def __A ( a_ : Any ,a_ : Union[str, Any] ,a_ : List[Any] ,a_ : List[str] ,a_ : int ,a_ : Optional[int] ,): if sum(__SCREAMING_SNAKE_CASE ) > max_sum or (remaining_nums_sum + sum(__SCREAMING_SNAKE_CASE )) < max_sum: return if sum(__SCREAMING_SNAKE_CASE ) == max_sum: result.append(__SCREAMING_SNAKE_CASE ) return for index in range(__SCREAMING_SNAKE_CASE ,len(__SCREAMING_SNAKE_CASE ) ): create_state_space_tree( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,index + 1 ,[*path, nums[index]] ,__SCREAMING_SNAKE_CASE ,remaining_nums_sum - nums[index] ,) lowerCAmelCase = [3, 34, 4, 12, 5, 2] lowerCAmelCase = 9 lowerCAmelCase = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
704
'''simple docstring''' import numpy as np def __A ( a_ : np.array ): return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
551
0
import math from collections.abc import Iterator from itertools import takewhile def _lowercase( __a : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowercase( ): a__ =2 while True: if is_prime(__a ): yield num num += 1 def _lowercase( __a : int = 200_0000 ): return sum(takewhile(lambda __a : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"""{solution() = }""")
20
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _SCREAMING_SNAKE_CASE = ["""text""", """image""", """audio"""] def lowercase( UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): inputs.append(create_inputs(UpperCamelCase_ ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def lowercase( UpperCamelCase_ ) -> Tuple: '''simple docstring''' UpperCamelCase = [] for output in outputs: if isinstance(UpperCamelCase_ , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(UpperCamelCase_ , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(UpperCamelCase_ , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class SCREAMING_SNAKE_CASE_ : def lowerCamelCase_ ( self : int ): """simple docstring""" self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) UpperCamelCase = self.tool.inputs for _input in inputs: if isinstance(_input , lowerCamelCase_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) UpperCamelCase = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = create_inputs(self.tool.inputs ) UpperCamelCase = self.tool(*lowerCamelCase_ ) # There is a single output if len(self.tool.outputs ) == 1: UpperCamelCase = [outputs] self.assertListEqual(output_types(lowerCamelCase_ ) , self.tool.outputs ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = create_inputs(self.tool.inputs ) UpperCamelCase = self.tool(*lowerCamelCase_ ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase = [outputs] self.assertEqual(len(lowerCamelCase_ ) , len(self.tool.outputs ) ) for output, output_type in zip(lowerCamelCase_ , self.tool.outputs ): UpperCamelCase = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_ ) ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = create_inputs(self.tool.inputs ) UpperCamelCase = [] for _input, input_type in zip(lowerCamelCase_ , self.tool.inputs ): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error UpperCamelCase = self.tool(*lowerCamelCase_ ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase = [outputs] self.assertEqual(len(lowerCamelCase_ ) , len(self.tool.outputs ) )
537
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Any ) -> int: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __a = str(bin(__snake_case ) )[2:] # remove the leading "0b" __a = str(bin(__snake_case ) )[2:] # remove the leading "0b" __a = max(len(__snake_case ) , len(__snake_case ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__snake_case ) , b_binary.zfill(__snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
704
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SpeechTaTokenizer __UpperCAmelCase : Tuple = False __UpperCAmelCase : Dict = True def __UpperCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing __a = SpeechTaTokenizer(_a ) __a = AddedToken('''<mask>''' , lstrip=_a , rstrip=_a ) __a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self , _a ): __a = '''this is a test''' __a = '''this is a test''' return input_text, output_text def __UpperCAmelCase ( self , _a , _a=False , _a=20 , _a=5 ): __a , __a = self.get_input_output_texts(_a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = tokenizer.decode(_a , clean_up_tokenization_spaces=_a ) return text, ids def __UpperCAmelCase ( self ): __a = '''<pad>''' __a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __UpperCAmelCase ( self ): __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-4] , '''œ''' ) self.assertEqual(vocab_keys[-2] , '''<mask>''' ) self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''' ) self.assertEqual(len(_a ) , 81 ) def __UpperCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def __UpperCAmelCase ( self ): __a = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __a = tokenizer.vocab_size __a = len(_a ) self.assertNotEqual(_a , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __a = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] __a = tokenizer.add_tokens(_a ) __a = tokenizer.vocab_size __a = len(_a ) self.assertNotEqual(_a , 0 ) self.assertEqual(_a , _a ) self.assertEqual(_a , len(_a ) ) self.assertEqual(_a , all_size + len(_a ) ) __a = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=_a ) self.assertGreaterEqual(len(_a ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) __a = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} __a = tokenizer.add_special_tokens(_a ) __a = tokenizer.vocab_size __a = len(_a ) self.assertNotEqual(_a , 0 ) self.assertEqual(_a , _a ) self.assertEqual(_a , len(_a ) ) self.assertEqual(_a , all_size_a + len(_a ) ) __a = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=_a ) self.assertGreaterEqual(len(_a ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a = self.get_tokenizer() __a = tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(_a , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) __a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) __a = tokenizer.convert_tokens_to_ids(_a ) # fmt: off self.assertListEqual(_a , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on __a = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def __UpperCAmelCase ( self ): # Use custom sequence because this tokenizer does not handle numbers. __a = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off __a = { '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=_a , )
65
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : int = logging.get_logger(__name__) def lowercase__( A , A=False ): snake_case__ : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowercase__( A , A , A=False ): for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Any = '' else: snake_case__ : str = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Optional[int] = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) snake_case__ : Tuple = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Any = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Union[str, Any] = in_proj_bias[: config.hidden_size] snake_case__ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : List[Any] = in_proj_bias[-config.hidden_size :] def lowercase__( A ): snake_case__ : List[str] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(A , A ) def lowercase__( A , A , A ): snake_case__ : str = dct.pop(A ) snake_case__ : int = val def lowercase__( ): snake_case__ : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : List[str] = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def lowercase__( A , A ): snake_case__ : Optional[int] = ViTConfig() snake_case__ : Union[str, Any] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case__ : str = True snake_case__ : List[str] = int(vit_name[-1_2:-1_0] ) snake_case__ : List[Any] = int(vit_name[-9:-6] ) else: snake_case__ : str = 1_0_0_0 snake_case__ : Dict = 'huggingface/label-files' snake_case__ : List[Any] = 'imagenet-1k-id2label.json' snake_case__ : List[str] = json.load(open(hf_hub_download(A , A , repo_type='dataset' ) , 'r' ) ) snake_case__ : Dict = {int(A ): v for k, v in idalabel.items()} snake_case__ : Union[str, Any] = idalabel snake_case__ : str = {v: k for k, v in idalabel.items()} snake_case__ : Dict = int(vit_name[-6:-4] ) snake_case__ : Tuple = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): snake_case__ : Optional[Any] = 1_9_2 snake_case__ : List[Any] = 7_6_8 snake_case__ : Tuple = 1_2 snake_case__ : Tuple = 3 elif vit_name[9:].startswith('small' ): snake_case__ : str = 3_8_4 snake_case__ : Tuple = 1_5_3_6 snake_case__ : List[Any] = 1_2 snake_case__ : Any = 6 else: pass else: if vit_name[4:].startswith('small' ): snake_case__ : Optional[int] = 7_6_8 snake_case__ : List[str] = 2_3_0_4 snake_case__ : List[str] = 8 snake_case__ : Optional[Any] = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): snake_case__ : int = 1_0_2_4 snake_case__ : Union[str, Any] = 4_0_9_6 snake_case__ : Union[str, Any] = 2_4 snake_case__ : List[str] = 1_6 elif vit_name[4:].startswith('huge' ): snake_case__ : Dict = 1_2_8_0 snake_case__ : Tuple = 5_1_2_0 snake_case__ : Any = 3_2 snake_case__ : Dict = 1_6 # load original model from timm snake_case__ : Tuple = timm.create_model(A , pretrained=A ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : str = timm_model.state_dict() if base_model: remove_classification_head_(A ) snake_case__ : Union[str, Any] = create_rename_keys(A , A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_q_k_v(A , A , A ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ : Any = ViTModel(A ).eval() else: snake_case__ : Tuple = ViTForImageClassification(A ).eval() model.load_state_dict(A ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case__ : Optional[Any] = DeiTImageProcessor(size=config.image_size ) else: snake_case__ : List[str] = ViTImageProcessor(size=config.image_size ) snake_case__ : List[Any] = image_processor(images=prepare_img() , return_tensors='pt' ) snake_case__ : Any = encoding['pixel_values'] snake_case__ : Union[str, Any] = model(A ) if base_model: snake_case__ : Optional[Any] = timm_model.forward_features(A ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(A , outputs.pooler_output , atol=1e-3 ) else: snake_case__ : List[str] = timm_model(A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A , outputs.logits , atol=1e-3 ) Path(A ).mkdir(exist_ok=A ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCamelCase : Dict = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
170
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowercase__( A ): if "model" in orig_key: snake_case__ : Any = orig_key.replace('model.' , '' ) if "norm1" in orig_key: snake_case__ : Optional[int] = orig_key.replace('norm1' , 'attention.output.LayerNorm' ) if "norm2" in orig_key: snake_case__ : Tuple = orig_key.replace('norm2' , 'output.LayerNorm' ) if "norm" in orig_key: snake_case__ : List[Any] = orig_key.replace('norm' , 'LayerNorm' ) if "transformer" in orig_key: snake_case__ : Tuple = orig_key.split('.' )[0].split('_' )[-1] snake_case__ : Optional[Any] = orig_key.replace(f'''transformer_{layer_num}''' , f'''encoder.layer.{layer_num}''' ) if "mha.attn" in orig_key: snake_case__ : Union[str, Any] = orig_key.replace('mha.attn' , 'attention.self' ) if "mha" in orig_key: snake_case__ : Optional[Any] = orig_key.replace('mha' , 'attention' ) if "W_q" in orig_key: snake_case__ : Optional[int] = orig_key.replace('W_q' , 'self.query' ) if "W_k" in orig_key: snake_case__ : List[Any] = orig_key.replace('W_k' , 'self.key' ) if "W_v" in orig_key: snake_case__ : str = orig_key.replace('W_v' , 'self.value' ) if "ff1" in orig_key: snake_case__ : int = orig_key.replace('ff1' , 'intermediate.dense' ) if "ff2" in orig_key: snake_case__ : str = orig_key.replace('ff2' , 'output.dense' ) if "ff" in orig_key: snake_case__ : Union[str, Any] = orig_key.replace('ff' , 'output.dense' ) if "mlm_class" in orig_key: snake_case__ : int = orig_key.replace('mlm.mlm_class' , 'cls.predictions.decoder' ) if "mlm" in orig_key: snake_case__ : Optional[int] = orig_key.replace('mlm' , 'cls.predictions.transform' ) if "cls" not in orig_key: snake_case__ : Optional[int] = 'yoso.' + orig_key return orig_key def lowercase__( A , A ): for key in orig_state_dict.copy().keys(): snake_case__ : Optional[Any] = orig_state_dict.pop(A ) if ("pooler" in key) or ("sen_class" in key): continue else: snake_case__ : Optional[Any] = val snake_case__ : Tuple = orig_state_dict['cls.predictions.decoder.bias'] snake_case__ : Optional[Any] = torch.arange(A ).expand((1, -1) ) + 2 return orig_state_dict def lowercase__( A , A , A ): snake_case__ : Tuple = torch.load(A , map_location='cpu' )['model_state_dict'] snake_case__ : Union[str, Any] = YosoConfig.from_json_file(A ) snake_case__ : Optional[int] = YosoForMaskedLM(A ) snake_case__ : str = convert_checkpoint_helper(config.max_position_embeddings , A ) print(model.load_state_dict(A ) ) model.eval() model.save_pretrained(A ) print(f'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Optional[Any] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
170
1
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase="attention" ) ->Any: """simple docstring""" __magic_name__ : List[Any] = params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] __magic_name__ : Optional[Any] = params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] __magic_name__ : Tuple = params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] __magic_name__ : Any = params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase=False ) ->Union[str, Any]: """simple docstring""" if split_mlp_wi: __magic_name__ : Optional[Any] = params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] __magic_name__ : Optional[int] = params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] __magic_name__ : str = (wi_a, wi_a) else: __magic_name__ : Optional[int] = params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] __magic_name__ : Union[str, Any] = params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) ->List[Any]: """simple docstring""" return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def lowerCAmelCase ( UpperCAmelCase, *, UpperCAmelCase, UpperCAmelCase ) ->int: """simple docstring""" __magic_name__ : Dict = traverse_util.flatten_dict(variables['''target'''] ) __magic_name__ : int = {'''/'''.join(UpperCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __magic_name__ : Any = '''encoder/layers_0/mlp/wi_0/kernel''' in old print('''Split MLP:''', UpperCAmelCase ) __magic_name__ : Optional[int] = collections.OrderedDict() # Shared embeddings. __magic_name__ : int = old['''token_embedder/embedding'''] # Encoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). __magic_name__ : List[str] = tax_layer_norm_lookup(UpperCAmelCase, UpperCAmelCase, '''encoder''', '''pre_attention_layer_norm''' ) __magic_name__ : List[Any] = tax_attention_lookup(UpperCAmelCase, UpperCAmelCase, '''encoder''', '''attention''' ) __magic_name__ : str = layer_norm __magic_name__ : List[str] = k.T __magic_name__ : Union[str, Any] = o.T __magic_name__ : Optional[Any] = q.T __magic_name__ : Optional[Any] = v.T # Block i, layer 1 (MLP). __magic_name__ : Dict = tax_layer_norm_lookup(UpperCAmelCase, UpperCAmelCase, '''encoder''', '''pre_mlp_layer_norm''' ) __magic_name__ : Dict = tax_mlp_lookup(UpperCAmelCase, UpperCAmelCase, '''encoder''', UpperCAmelCase ) __magic_name__ : int = layer_norm if split_mlp_wi: __magic_name__ : Union[str, Any] = wi[0].T __magic_name__ : Optional[Any] = wi[1].T else: __magic_name__ : int = wi.T __magic_name__ : Union[str, Any] = wo.T __magic_name__ : int = old[ '''encoder/relpos_bias/rel_embedding''' ].T __magic_name__ : int = old['''encoder/encoder_norm/scale'''] if not is_encoder_only: # Decoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). __magic_name__ : Any = tax_layer_norm_lookup(UpperCAmelCase, UpperCAmelCase, '''decoder''', '''pre_self_attention_layer_norm''' ) __magic_name__ : Optional[Any] = tax_attention_lookup(UpperCAmelCase, UpperCAmelCase, '''decoder''', '''self_attention''' ) __magic_name__ : Optional[int] = layer_norm __magic_name__ : int = k.T __magic_name__ : List[Any] = o.T __magic_name__ : List[str] = q.T __magic_name__ : List[Any] = v.T # Block i, layer 1 (Cross Attention). __magic_name__ : List[Any] = tax_layer_norm_lookup(UpperCAmelCase, UpperCAmelCase, '''decoder''', '''pre_cross_attention_layer_norm''' ) __magic_name__ : int = tax_attention_lookup(UpperCAmelCase, UpperCAmelCase, '''decoder''', '''encoder_decoder_attention''' ) __magic_name__ : Optional[Any] = layer_norm __magic_name__ : int = k.T __magic_name__ : Dict = o.T __magic_name__ : Optional[Any] = q.T __magic_name__ : Dict = v.T # Block i, layer 2 (MLP). __magic_name__ : Union[str, Any] = tax_layer_norm_lookup(UpperCAmelCase, UpperCAmelCase, '''decoder''', '''pre_mlp_layer_norm''' ) __magic_name__ : Tuple = tax_mlp_lookup(UpperCAmelCase, UpperCAmelCase, '''decoder''', UpperCAmelCase ) __magic_name__ : Any = layer_norm if split_mlp_wi: __magic_name__ : str = wi[0].T __magic_name__ : Union[str, Any] = wi[1].T else: __magic_name__ : Union[str, Any] = wi.T __magic_name__ : str = wo.T __magic_name__ : int = old['''decoder/decoder_norm/scale'''] __magic_name__ : Optional[Any] = old[ '''decoder/relpos_bias/rel_embedding''' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __magic_name__ : str = old['''decoder/logits_dense/kernel'''].T return new def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase ) ->Dict: """simple docstring""" __magic_name__ : int = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __magic_name__ : Dict = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __magic_name__ : int = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) __magic_name__ : List[Any] = state_dict['''shared.weight'''] return state_dict def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) ->Tuple: """simple docstring""" __magic_name__ : int = checkpoints.load_tax_checkpoint(UpperCAmelCase ) __magic_name__ : Optional[Any] = convert_tax_to_pytorch(UpperCAmelCase, num_layers=config.num_layers, is_encoder_only=UpperCAmelCase ) __magic_name__ : Optional[Any] = make_state_dict(UpperCAmelCase, UpperCAmelCase ) model.load_state_dict(UpperCAmelCase, strict=UpperCAmelCase ) def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = False ) ->Optional[Any]: """simple docstring""" __magic_name__ : int = TaConfig.from_json_file(UpperCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __magic_name__ : str = TaEncoderModel(UpperCAmelCase ) else: __magic_name__ : List[Any] = TaForConditionalGeneration(UpperCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(UpperCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCAmelCase ) print('''Done''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) lowercase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
713
from __future__ import annotations class A__ : def __init__( self , lowerCamelCase ) -> None: """simple docstring""" __magic_name__ : List[str] = data __magic_name__ : Node | None = None __magic_name__ : Node | None = None def lowerCAmelCase ( UpperCAmelCase ) ->None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowerCAmelCase ( UpperCAmelCase ) ->int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ), depth_of_tree(tree.right ) ) if tree else 0 def lowerCAmelCase ( UpperCAmelCase ) ->bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowerCAmelCase ( ) ->None: # Main function for testing. """simple docstring""" __magic_name__ : Tuple = Node(1 ) __magic_name__ : Union[str, Any] = Node(2 ) __magic_name__ : Tuple = Node(3 ) __magic_name__ : List[str] = Node(4 ) __magic_name__ : str = Node(5 ) __magic_name__ : List[Any] = Node(6 ) __magic_name__ : Optional[int] = Node(7 ) __magic_name__ : str = Node(8 ) __magic_name__ : str = Node(9 ) print(is_full_binary_tree(UpperCAmelCase ) ) print(depth_of_tree(UpperCAmelCase ) ) print('''Tree is: ''' ) display(UpperCAmelCase ) if __name__ == "__main__": main()
336
0
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : List[Any] = "EncodecFeatureExtractor" lowercase : str = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , _A , _A ): '''simple docstring''' super().__init__(_A , _A ) _SCREAMING_SNAKE_CASE =self.feature_extractor _SCREAMING_SNAKE_CASE =False def UpperCamelCase_ ( self , _A=None , _A=None , _A=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=_A , language=_A , no_timestamps=_A ) def __call__( self , *_A , **_A ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_A , **_A ) _SCREAMING_SNAKE_CASE =kwargs.pop('''audio''' , _A ) _SCREAMING_SNAKE_CASE =kwargs.pop('''sampling_rate''' , _A ) _SCREAMING_SNAKE_CASE =kwargs.pop('''text''' , _A ) if len(_A ) > 0: _SCREAMING_SNAKE_CASE =args[0] _SCREAMING_SNAKE_CASE =args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: _SCREAMING_SNAKE_CASE =self.tokenizer(_A , **_A ) if audio is not None: _SCREAMING_SNAKE_CASE =self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if audio is None: return inputs elif text is None: return audio_inputs else: _SCREAMING_SNAKE_CASE =audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: _SCREAMING_SNAKE_CASE =audio_inputs['''padding_mask'''] return inputs def UpperCamelCase_ ( self , *_A , **_A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =kwargs.pop('''audio''' , _A ) _SCREAMING_SNAKE_CASE =kwargs.pop('''padding_mask''' , _A ) if len(_A ) > 0: _SCREAMING_SNAKE_CASE =args[0] _SCREAMING_SNAKE_CASE =args[1:] if audio_values is not None: return self._decode_audio(_A , padding_mask=_A ) else: return self.tokenizer.batch_decode(*_A , **_A ) def UpperCamelCase_ ( self , *_A , **_A ): '''simple docstring''' return self.tokenizer.decode(*_A , **_A ) def UpperCamelCase_ ( self , _A , _A = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE =to_numpy(_A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =audio_values.shape if padding_mask is None: return list(_A ) _SCREAMING_SNAKE_CASE =to_numpy(_A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _SCREAMING_SNAKE_CASE =seq_len - padding_mask.shape[-1] _SCREAMING_SNAKE_CASE =1 - self.feature_extractor.padding_value _SCREAMING_SNAKE_CASE =np.pad(_A , ((0, 0), (0, difference)) , '''constant''' , constant_values=_A ) _SCREAMING_SNAKE_CASE =audio_values.tolist() for i in range(_A ): _SCREAMING_SNAKE_CASE =np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _SCREAMING_SNAKE_CASE =sliced_audio.reshape(_A , -1 ) return audio_values
255
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(_A , '''num_attention_heads''' ) ) class __UpperCAmelCase : '''simple docstring''' def __init__( self , _A , _A=1_3 , _A=6_4 , _A=3 , _A=3 , _A=2 , _A=1 , _A=1_6 , _A=[1_2_8, 2_5_6, 3_8_4] , _A=[4, 6, 8] , _A=[2, 3, 4] , _A=[1_6, 1_6, 1_6] , _A=0 , _A=[2, 2, 2] , _A=[2, 2, 2] , _A=0.02 , _A=True , _A=True , _A=2 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =kernel_size _SCREAMING_SNAKE_CASE =stride _SCREAMING_SNAKE_CASE =padding _SCREAMING_SNAKE_CASE =hidden_sizes _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =depths _SCREAMING_SNAKE_CASE =key_dim _SCREAMING_SNAKE_CASE =drop_path_rate _SCREAMING_SNAKE_CASE =patch_size _SCREAMING_SNAKE_CASE =attention_ratio _SCREAMING_SNAKE_CASE =mlp_ratio _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =[ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =num_labels _SCREAMING_SNAKE_CASE =initializer_range def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.num_labels ) _SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def UpperCamelCase_ ( self , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =LevitModel(config=_A ) model.to(_A ) model.eval() _SCREAMING_SNAKE_CASE =model(_A ) _SCREAMING_SNAKE_CASE =(self.image_size, self.image_size) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =image_size[0], image_size[1] for _ in range(4 ): _SCREAMING_SNAKE_CASE =floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) _SCREAMING_SNAKE_CASE =floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def UpperCamelCase_ ( self , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =LevitForImageClassification(_A ) model.to(_A ) model.eval() _SCREAMING_SNAKE_CASE =model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =config_and_inputs _SCREAMING_SNAKE_CASE ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): '''simple docstring''' lowercase : Optional[Any] = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowercase : Optional[int] = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase : str = False lowercase : Dict = False lowercase : Optional[Any] = False lowercase : str = False lowercase : Any = False def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =LevitModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=3_7 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self ): '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(_A ) _SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] _SCREAMING_SNAKE_CASE =['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def UpperCamelCase_ ( self ): '''simple docstring''' def check_hidden_states_output(_A , _A , _A ): _SCREAMING_SNAKE_CASE =model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**self._prepare_for_class(_A , _A ) ) _SCREAMING_SNAKE_CASE =outputs.hidden_states _SCREAMING_SNAKE_CASE =len(self.model_tester.depths ) + 1 self.assertEqual(len(_A ) , _A ) _SCREAMING_SNAKE_CASE =(self.model_tester.image_size, self.model_tester.image_size) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =image_size[0], image_size[1] for _ in range(4 ): _SCREAMING_SNAKE_CASE =floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) _SCREAMING_SNAKE_CASE =floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE =True check_hidden_states_output(_A , _A , _A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self , _A , _A , _A=False ): '''simple docstring''' _SCREAMING_SNAKE_CASE =super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) def UpperCamelCase_ ( self ): '''simple docstring''' if not self.model_tester.is_training: return _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_A ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue _SCREAMING_SNAKE_CASE =model_class(_A ) model.to(_A ) model.train() _SCREAMING_SNAKE_CASE =self._prepare_for_class(_A , _A , return_labels=_A ) _SCREAMING_SNAKE_CASE =model(**_A ).loss loss.backward() def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: if model_class in get_values(_A ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue _SCREAMING_SNAKE_CASE =model_class(_A ) model.gradient_checkpointing_enable() model.to(_A ) model.train() _SCREAMING_SNAKE_CASE =self._prepare_for_class(_A , _A , return_labels=_A ) _SCREAMING_SNAKE_CASE =model(**_A ).loss loss.backward() def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =[ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_A ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): _SCREAMING_SNAKE_CASE =problem_type['''title'''] _SCREAMING_SNAKE_CASE =problem_type['''num_labels'''] _SCREAMING_SNAKE_CASE =model_class(_A ) model.to(_A ) model.train() _SCREAMING_SNAKE_CASE =self._prepare_for_class(_A , _A , return_labels=_A ) if problem_type["num_labels"] > 1: _SCREAMING_SNAKE_CASE =inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) _SCREAMING_SNAKE_CASE =inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_A ) as warning_list: _SCREAMING_SNAKE_CASE =model(**_A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE =LevitModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _lowerCAmelCase() -> Tuple: _SCREAMING_SNAKE_CASE =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _A ) _SCREAMING_SNAKE_CASE =self.default_image_processor _SCREAMING_SNAKE_CASE =prepare_img() _SCREAMING_SNAKE_CASE =image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**_A ) # verify the logits _SCREAMING_SNAKE_CASE =torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _A ) _SCREAMING_SNAKE_CASE =torch.tensor([1.0448, -0.3745, -1.8317] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
255
1
def _lowercase ( a_ : str ,a_ : int ) -> list: '''simple docstring''' __magic_name__ = word.split() def justify(a_ : list ,a_ : int ,a_ : int ) -> str: __magic_name__ = max_width - width __magic_name__ = len(a_ ) if len(a_ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: __magic_name__ = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] __magic_name__ = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] __magic_name__ = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(a_ ): num_spaces_between_words_list[i] += 1 __magic_name__ = [] for i in range(a_ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(a_ ) __magic_name__ = [] __magic_name__ = [] __magic_name__ = 0 for word in words: if width + len(a_ ) + len(a_ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(a_ ) width += len(a_ ) else: # justify the line and add it to result answer.append(justify(a_ ,a_ ,a_ ) ) # reset new line and new width __magic_name__, __magic_name__ = [word], len(a_ ) __magic_name__ = max_width - width - len(a_ ) answer.append(' '.join(a_ ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
184
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self: Optional[Any] , *, __UpperCamelCase: int = 4 , __UpperCamelCase: int = 7_68 , __UpperCamelCase: int , __UpperCamelCase: Any , ): '''simple docstring''' super().__init__() __magic_name__ = nn.Parameter(torch.zeros(__UpperCamelCase ) ) # parameters for additional clip time embeddings __magic_name__ = nn.Linear(__UpperCamelCase , __UpperCamelCase ) __magic_name__ = nn.Linear(__UpperCamelCase , __UpperCamelCase ) # parameters for encoder hidden states __magic_name__ = clip_extra_context_tokens __magic_name__ = nn.Linear( __UpperCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __magic_name__ = nn.Linear(__UpperCamelCase , __UpperCamelCase ) __magic_name__ = nn.LayerNorm(__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: List[str] , *, __UpperCamelCase: Union[str, Any] , __UpperCamelCase: str , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Any ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __magic_name__ = image_embeddings.shape[0] __magic_name__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __magic_name__ = classifier_free_guidance_embeddings.expand( __UpperCamelCase , -1 ) __magic_name__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __magic_name__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __magic_name__ = self.embedding_proj(__UpperCamelCase ) __magic_name__ = self.clip_image_embeddings_project_to_time_embeddings(__UpperCamelCase ) __magic_name__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __magic_name__ = self.clip_extra_context_tokens_proj(__UpperCamelCase ) __magic_name__ = clip_extra_context_tokens.reshape(__UpperCamelCase , -1 , self.clip_extra_context_tokens ) __magic_name__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) __magic_name__ = self.encoder_hidden_states_proj(__UpperCamelCase ) __magic_name__ = self.text_encoder_hidden_states_norm(__UpperCamelCase ) __magic_name__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
184
1
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] ): """simple docstring""" super().__init__() _lowerCAmelCase = nn.Linear(3 , 4 ) _lowerCAmelCase = nn.BatchNormad(4 ) _lowerCAmelCase = nn.Linear(4 , 5 ) def a ( self : str , __lowerCAmelCase : str ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__lowerCAmelCase ) ) ) class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" def a ( self : int , __lowerCAmelCase : int , *__lowerCAmelCase : Tuple , **__lowerCAmelCase : List[str] ): """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" def a ( self : int , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): """simple docstring""" return output + 1 class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def a ( self : Any ): """simple docstring""" _lowerCAmelCase = ModelForTest() _lowerCAmelCase = ModelHook() add_hook_to_module(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(test_model._hf_hook , __lowerCAmelCase ) self.assertTrue(hasattr(__lowerCAmelCase , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(__lowerCAmelCase ) self.assertFalse(hasattr(__lowerCAmelCase , '_hf_hook' ) ) self.assertFalse(hasattr(__lowerCAmelCase , '_old_forward' ) ) def a ( self : Tuple ): """simple docstring""" _lowerCAmelCase = ModelForTest() _lowerCAmelCase = ModelHook() add_hook_to_module(__lowerCAmelCase , __lowerCAmelCase ) add_hook_to_module(__lowerCAmelCase , __lowerCAmelCase , append=__lowerCAmelCase ) self.assertEqual(isinstance(test_model._hf_hook , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__lowerCAmelCase , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(__lowerCAmelCase ) self.assertFalse(hasattr(__lowerCAmelCase , '_hf_hook' ) ) self.assertFalse(hasattr(__lowerCAmelCase , '_old_forward' ) ) def a ( self : List[str] ): """simple docstring""" _lowerCAmelCase = ModelForTest() _lowerCAmelCase = torch.randn(2 , 3 ) _lowerCAmelCase = test_model(x + 1 ) _lowerCAmelCase = test_model(x + 2 ) _lowerCAmelCase = PreForwardHook() add_hook_to_module(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = test_model(__lowerCAmelCase ) self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _lowerCAmelCase = PreForwardHook() add_hook_to_module(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = test_model(__lowerCAmelCase ) self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks _lowerCAmelCase = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = test_model(__lowerCAmelCase ) assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-5 ) def a ( self : Union[str, Any] ): """simple docstring""" _lowerCAmelCase = ModelForTest() _lowerCAmelCase = torch.randn(2 , 3 ) _lowerCAmelCase = test_model(__lowerCAmelCase ) _lowerCAmelCase = PostForwardHook() add_hook_to_module(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = test_model(__lowerCAmelCase ) self.assertTrue(torch.allclose(__lowerCAmelCase , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _lowerCAmelCase = PostForwardHook() add_hook_to_module(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = test_model(__lowerCAmelCase ) self.assertTrue(torch.allclose(__lowerCAmelCase , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks _lowerCAmelCase = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = test_model(__lowerCAmelCase ) assert torch.allclose(__lowerCAmelCase , output + 2 , atol=1e-5 ) def a ( self : str ): """simple docstring""" _lowerCAmelCase = ModelForTest() _lowerCAmelCase = torch.randn(2 , 3 ) _lowerCAmelCase = test_model(__lowerCAmelCase ) _lowerCAmelCase = PostForwardHook() add_hook_to_module(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = test_model(__lowerCAmelCase ) self.assertTrue(torch.allclose(__lowerCAmelCase , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _lowerCAmelCase = True _lowerCAmelCase = test_model(__lowerCAmelCase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a ( self : Tuple ): """simple docstring""" _lowerCAmelCase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _lowerCAmelCase = torch.randn(2 , 3 ) _lowerCAmelCase = model(__lowerCAmelCase ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__lowerCAmelCase , AlignDevicesHook(io_same_device=__lowerCAmelCase ) ) _lowerCAmelCase = torch.randn(2 , 3 ).to(0 ) _lowerCAmelCase = model(__lowerCAmelCase ) self.assertEqual(output.device , torch.device(0 ) ) def a ( self : List[str] ): """simple docstring""" _lowerCAmelCase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices _lowerCAmelCase = {'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True} add_hook_to_module(model.lineara , AlignDevicesHook(**__lowerCAmelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__lowerCAmelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__lowerCAmelCase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device _lowerCAmelCase = torch.device(hook_kwargs['execution_device'] ) self.assertEqual(model.batchnorm.running_mean.device , __lowerCAmelCase ) _lowerCAmelCase = torch.randn(2 , 3 ) _lowerCAmelCase = model(__lowerCAmelCase ) self.assertEqual(output.device , __lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload _lowerCAmelCase = { 'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True, 'offload_buffers': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__lowerCAmelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__lowerCAmelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__lowerCAmelCase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) _lowerCAmelCase = torch.randn(2 , 3 ) _lowerCAmelCase = model(__lowerCAmelCase ) self.assertEqual(output.device , __lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def a ( self : List[str] ): """simple docstring""" _lowerCAmelCase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices _lowerCAmelCase = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook(__lowerCAmelCase , execution_device=__lowerCAmelCase , offload=__lowerCAmelCase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device _lowerCAmelCase = torch.device(__lowerCAmelCase ) self.assertEqual(model.batchnorm.running_mean.device , __lowerCAmelCase ) _lowerCAmelCase = torch.randn(2 , 3 ) _lowerCAmelCase = model(__lowerCAmelCase ) self.assertEqual(output.device , __lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook(__lowerCAmelCase , execution_device=__lowerCAmelCase , offload=__lowerCAmelCase , offload_buffers=__lowerCAmelCase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) _lowerCAmelCase = torch.randn(2 , 3 ) _lowerCAmelCase = model(__lowerCAmelCase ) self.assertEqual(output.device , __lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def a ( self : List[Any] ): """simple docstring""" _lowerCAmelCase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices _lowerCAmelCase = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook( __lowerCAmelCase , execution_device=__lowerCAmelCase , offload=__lowerCAmelCase , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device _lowerCAmelCase = torch.device(__lowerCAmelCase ) self.assertEqual(model.batchnorm.running_mean.device , __lowerCAmelCase ) _lowerCAmelCase = torch.randn(2 , 3 ) _lowerCAmelCase = model(__lowerCAmelCase ) self.assertEqual(output.device , __lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook( __lowerCAmelCase , execution_device=__lowerCAmelCase , offload=__lowerCAmelCase , weights_map=model.state_dict() , offload_buffers=__lowerCAmelCase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) _lowerCAmelCase = torch.randn(2 , 3 ) _lowerCAmelCase = model(__lowerCAmelCase ) self.assertEqual(output.device , __lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) )
309
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = ["image_processor", "tokenizer"] __A = "FlavaImageProcessor" __A = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Dict , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : int ): """simple docstring""" _lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __lowerCAmelCase , ) _lowerCAmelCase = kwargs.pop('feature_extractor' ) _lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = self.image_processor def __call__( self : Union[str, Any] , __lowerCAmelCase : Optional[ImageInput] = None , __lowerCAmelCase : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , __lowerCAmelCase : Union[bool, str, TruncationStrategy] = False , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : int = 0 , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , **__lowerCAmelCase : Union[str, Any] , ): """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) if images is not None: _lowerCAmelCase = self.image_processor( __lowerCAmelCase , return_image_mask=__lowerCAmelCase , return_codebook_pixels=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) if text is not None and images is not None: encoding.update(__lowerCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def a ( self : Any , *__lowerCAmelCase : str , **__lowerCAmelCase : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def a ( self : List[str] , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def a ( self : List[str] ): """simple docstring""" _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def a ( self : Optional[int] ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __lowerCAmelCase , ) return self.image_processor_class @property def a ( self : Any ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __lowerCAmelCase , ) return self.image_processor
309
1
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): UpperCAmelCase = ['''image_processor''', '''tokenizer'''] UpperCAmelCase = '''Pix2StructImageProcessor''' UpperCAmelCase = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , __UpperCamelCase , __UpperCamelCase ) -> int: _a = False super().__init__(__UpperCamelCase , __UpperCamelCase ) def __call__( self , __UpperCamelCase=None , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = 2_048 , __UpperCamelCase = 0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , ) -> BatchEncoding: if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: _a = self.tokenizer _a = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _a = self.image_processor( __UpperCamelCase , return_tensors=__UpperCamelCase , max_patches=__UpperCamelCase , **__UpperCamelCase ) else: # add pixel_values and bbox _a = self.image_processor( __UpperCamelCase , return_tensors=__UpperCamelCase , max_patches=__UpperCamelCase , header_text=__UpperCamelCase , **__UpperCamelCase ) if text is not None and not self.image_processor.is_vqa: _a = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) if "attention_mask" in text_encoding: _a = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: _a = text_encoding.pop("input_ids" ) else: _a = None if text_encoding is not None: encoding_image_processor.update(__UpperCamelCase ) return encoding_image_processor def a_ ( self , *__UpperCamelCase , **__UpperCamelCase ) -> List[str]: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def a_ ( self , *__UpperCamelCase , **__UpperCamelCase ) -> List[str]: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def a_ ( self ) -> Optional[Any]: _a = self.tokenizer.model_input_names _a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
276
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
276
1
'''simple docstring''' import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowercase = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def __A ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __SCREAMING_SNAKE_CASE : Any = get_sagemaker_input() else: __SCREAMING_SNAKE_CASE : List[str] = get_cluster_input() return config def __A ( _SCREAMING_SNAKE_CASE : Tuple=None ): """simple docstring""" if subparsers is not None: __SCREAMING_SNAKE_CASE : Union[str, Any] = subparsers.add_parser("config" , description=lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser("Accelerate config command" , description=lowerCAmelCase__ ) parser.add_argument( "--config_file" , default=lowerCAmelCase__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have " "such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed " "with \'huggingface\'." ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase__ ) return parser def __A ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = get_user_input() if args.config_file is not None: __SCREAMING_SNAKE_CASE : Any = args.config_file else: if not os.path.isdir(lowerCAmelCase__ ): os.makedirs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(lowerCAmelCase__ ) else: config.to_yaml_file(lowerCAmelCase__ ) print(f'accelerate configuration saved at {config_file}' ) def __A ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = config_command_parser() __SCREAMING_SNAKE_CASE : Any = parser.parse_args() config_command(lowerCAmelCase__ ) if __name__ == "__main__": main()
211
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : List[str] ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_A , ) assert hasattr(self , '''env''' ) def lowercase_ ( self : List[Any] , _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = f"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings UpperCAmelCase__ : int = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_A , instance_count=_A , instance_type=self.instance_type , debugger_hook_config=_A , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_A , py_version='''py36''' , ) def lowercase_ ( self : Optional[int] , _A : Any ): '''simple docstring''' TrainingJobAnalytics(_A ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def lowercase_ ( self : Optional[int] , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.create_estimator(_A ) # run training estimator.fit() # result dataframe UpperCAmelCase__ : Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase__ : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) UpperCAmelCase__ : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase__ : Any = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _A )
75
0
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Union[str, Any] = split_dict._to_yaml_list() assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) UpperCAmelCase__ : Optional[Any] = SplitDict._from_yaml_list(UpperCamelCase__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase__ : Any = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase__ : Optional[int] = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=UpperCamelCase__ ), SplitInfo(dataset_name="""my_dataset""" )] ) def _UpperCamelCase ( UpperCamelCase__ ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase__ : Any = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
113
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _snake_case ( yaml.SafeLoader ): def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : Dict = [self.constructed_objects[key_node] for key_node, _ in node.value] UpperCAmelCase__ : List[str] = [tuple(_lowerCamelCase) if isinstance(_lowerCamelCase , _lowerCamelCase) else key for key in keys] UpperCAmelCase__ : List[str] = Counter(_lowerCamelCase) UpperCAmelCase__ : Any = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''') def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=False): UpperCAmelCase__ : List[str] = super().construct_mapping(_lowerCamelCase , deep=_lowerCamelCase) self._check_no_duplicates_on_constructed_node(_lowerCamelCase) return mapping def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Tuple = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: UpperCAmelCase__ : Dict = full_content[1:].index("""---""" ) + 1 UpperCAmelCase__ : List[Any] = """\n""".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(UpperCamelCase__ ) class _snake_case ( a__ ): # class attributes lowerCAmelCase :str = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def snake_case__ ( cls , _lowerCamelCase): with open(_lowerCamelCase , encoding="""utf-8""") as readme_file: UpperCAmelCase__ , UpperCAmelCase__ : Any = _split_yaml_from_readme(readme_file.read()) if yaml_string is not None: return cls.from_yaml_string(_lowerCamelCase) else: return cls() def snake_case__ ( self , _lowerCamelCase): if path.exists(): with open(_lowerCamelCase , encoding="""utf-8""") as readme_file: UpperCAmelCase__ : int = readme_file.read() else: UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Union[str, Any] = self._to_readme(_lowerCamelCase) with open(_lowerCamelCase , """w""" , encoding="""utf-8""") as readme_file: readme_file.write(_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase = None): if readme_content is not None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = _split_yaml_from_readme(_lowerCamelCase) UpperCAmelCase__ : str = """---\n""" + self.to_yaml_string() + """---\n""" + content else: UpperCAmelCase__ : Optional[int] = """---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def snake_case__ ( cls , _lowerCamelCase): UpperCAmelCase__ : List[str] = yaml.load(_lowerCamelCase , Loader=_NoDuplicateSafeLoader) or {} # Convert the YAML keys to DatasetMetadata fields UpperCAmelCase__ : List[str] = { (key.replace("""-""" , """_""") if key.replace("""-""" , """_""") in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_lowerCamelCase) def snake_case__ ( self): return yaml.safe_dump( { (key.replace("""_""" , """-""") if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=_lowerCamelCase , allow_unicode=_lowerCamelCase , encoding="""utf-8""" , ).decode("""utf-8""") __A ={ 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser __A =ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') __A =ap.parse_args() __A =Path(args.readme_filepath) __A =DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
113
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a : '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int]=13 , __snake_case : List[str]=7 , __snake_case : Optional[int]=True , __snake_case : Union[str, Any]=True , __snake_case : Any=True , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=99 , __snake_case : Any=16 , __snake_case : Optional[int]=36 , __snake_case : Tuple=6 , __snake_case : List[Any]=6 , __snake_case : Tuple=6 , __snake_case : List[str]=37 , __snake_case : Optional[int]="gelu" , __snake_case : List[str]=0.1 , __snake_case : str=0.1 , __snake_case : int=5_12 , __snake_case : List[str]=16 , __snake_case : str=2 , __snake_case : str=0.02 , __snake_case : int=3 , __snake_case : Optional[Any]=4 , __snake_case : Any=None , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = embedding_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_hidden_groups UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope def lowerCamelCase_ ( self : Dict ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = None if self.use_token_type_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : Dict ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCamelCase_ ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : str , __snake_case : int ): UpperCAmelCase_ = AlbertModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) UpperCAmelCase_ = model(__snake_case , token_type_ids=__snake_case ) UpperCAmelCase_ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase_ ( self : Optional[Any] , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Tuple ): UpperCAmelCase_ = AlbertForPreTraining(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , sentence_order_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCamelCase_ ( self : List[str] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ): UpperCAmelCase_ = AlbertForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : List[Any] , __snake_case : Optional[Any] , __snake_case : int , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ): UpperCAmelCase_ = AlbertForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Optional[int] , __snake_case : Dict , __snake_case : Dict , __snake_case : int , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = AlbertForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Any , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , __snake_case : List[str] , __snake_case : Any ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = AlbertForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Any , __snake_case : Dict , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : int ): UpperCAmelCase_ = self.num_choices UpperCAmelCase_ = AlbertForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : Tuple ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( UpperCAmelCase_ ) = config_and_inputs UpperCAmelCase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase : Tuple = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase : str = True def lowerCamelCase_ ( self : Tuple , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Tuple=False ): UpperCAmelCase_ = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class in get_values(__snake_case ): UpperCAmelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def lowerCamelCase_ ( self : List[str] ): UpperCAmelCase_ = AlbertModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def lowerCamelCase_ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Optional[Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowerCamelCase_ ( self : List[str] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__snake_case ) def lowerCamelCase_ ( self : Any ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def lowerCamelCase_ ( self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def lowerCamelCase_ ( self : Optional[Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def lowerCamelCase_ ( self : Any ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ = type self.model_tester.create_and_check_model(*__snake_case ) @slow def lowerCamelCase_ ( self : Any ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AlbertModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class a ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase_ ( self : Optional[int] ): UpperCAmelCase_ = AlbertModel.from_pretrained('''albert-base-v2''' ) UpperCAmelCase_ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) UpperCAmelCase_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase_ = model(__snake_case , attention_mask=__snake_case )[0] UpperCAmelCase_ = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase_ = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __snake_case , atol=1E-4 ) )
144
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowerCamelCase__ : Dict =FunnelTokenizer lowerCamelCase__ : Tuple =FunnelTokenizerFast lowerCamelCase__ : Optional[int] =True lowerCamelCase__ : Optional[Any] =True def lowercase ( self ) -> List[str]: """simple docstring""" super().setUp() __magic_name__ : Optional[int] = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __magic_name__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase ( self , **lowerCamelCase ) -> Optional[Any]: """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowercase ( self , **lowerCamelCase ) -> List[str]: """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowercase ( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __magic_name__ : str = '''UNwant\u00E9d,running''' __magic_name__ : Tuple = '''unwanted, running''' return input_text, output_text def lowercase ( self ) -> str: """simple docstring""" __magic_name__ : Any = self.tokenizer_class(self.vocab_file ) __magic_name__ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowerCamelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [7, 4, 5, 10, 8, 9] ) def lowercase ( self ) -> Tuple: """simple docstring""" __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCamelCase ) for tokenizer in tokenizers: __magic_name__ : str = tokenizer('''UNwant\u00E9d,running''' ) __magic_name__ : List[Any] = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) __magic_name__ : Dict = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
154
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : str = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class A ( a , a ): __UpperCAmelCase : List[str] = """swin""" __UpperCAmelCase : Any = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , snake_case_=2_2_4 , snake_case_=4 , snake_case_=3 , snake_case_=9_6 , snake_case_=[2, 2, 6, 2] , snake_case_=[3, 6, 1_2, 2_4] , snake_case_=7 , snake_case_=4.0 , snake_case_=True , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_="gelu" , snake_case_=False , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=3_2 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) _a = image_size _a = patch_size _a = num_channels _a = embed_dim _a = depths _a = len(snake_case_ ) _a = num_heads _a = window_size _a = mlp_ratio _a = qkv_bias _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = drop_path_rate _a = hidden_act _a = use_absolute_embeddings _a = layer_norm_eps _a = initializer_range _a = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _a = int(embed_dim * 2 ** (len(snake_case_ ) - 1) ) _a = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(snake_case_ ) + 1 )] _a , _a = get_aligned_output_features_output_indices( out_features=snake_case_ , out_indices=snake_case_ , stage_names=self.stage_names ) class A ( a ): __UpperCAmelCase : Tuple = version.parse("""1.11""" ) @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __lowerCAmelCase ( self ) -> float: return 1E-4
691
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A : def __init__( self , snake_case_ ) -> Optional[int]: _a = str(id_ ) _a = None _a = None _a = [] _a = {} # {vertex:distance} def __lt__( self , snake_case_ ) -> Optional[Any]: return self.key < other.key def __repr__( self ) -> Union[str, Any]: return self.id def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: self.neighbors.append(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: _a = weight def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : str ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], lowerCamelCase__ ) graph[b - 1].add_edge(graph[a - 1], lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): _a = [] for u in graph: _a = math.inf _a = None _a = 0 _a = graph[:] while q: _a = min(lowerCamelCase__ ) q.remove(lowerCamelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] for i in range(1, len(lowerCamelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): for u in graph: _a = math.inf _a = None _a = 0 _a = list(lowerCamelCase__ ) hq.heapify(lowerCamelCase__ ) while h: _a = hq.heappop(lowerCamelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] hq.heapify(lowerCamelCase__ ) for i in range(1, len(lowerCamelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowercase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
691
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
67
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''T''') class __snake_case ( Generic[T]): def __init__( self : int , __lowerCAmelCase : T ): """simple docstring""" _lowerCamelCase : Optional[int] = data _lowerCamelCase : Node[T] | None = None def __str__( self : Optional[Any] ): """simple docstring""" return f'''{self.data}''' class __snake_case ( Generic[T]): def __init__( self : int ): """simple docstring""" _lowerCamelCase : Node[T] | None = None def __iter__( self : str ): """simple docstring""" _lowerCamelCase : List[str] = self.top while node: yield node.data _lowerCamelCase : Any = node.next def __str__( self : int ): """simple docstring""" return "->".join([str(__lowerCAmelCase ) for item in self] ) def __len__( self : int ): """simple docstring""" return len(tuple(iter(self ) ) ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return self.top is None def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : T ): """simple docstring""" _lowerCamelCase : Tuple = Node(__lowerCAmelCase ) if not self.is_empty(): _lowerCamelCase : Optional[int] = self.top _lowerCamelCase : List[str] = node def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top , __lowerCAmelCase ) _lowerCamelCase : Any = self.top _lowerCamelCase : Any = self.top.next return pop_node.data def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : List[str] = None if __name__ == "__main__": from doctest import testmod testmod()
83
0
import torch from diffusers import DiffusionPipeline class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : Any ) -> Dict: """simple docstring""" super().__init__() self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) def __call__( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) __lowercase = 1 __lowercase = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample __lowercase = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample __lowercase = scheduler_output - scheduler_output + torch.ones_like(lowerCamelCase__ ) return result
362
import os def _A( UpperCamelCase__ : str = "matrix.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(UpperCamelCase__ ) , UpperCamelCase__ ) ) as in_file: __lowercase = in_file.read() __lowercase = [[int(UpperCamelCase__ ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] __lowercase = [[0 for cell in row] for row in grid] __lowercase = len(grid[0] ) __lowercase = [[0 for i in range(UpperCamelCase__ )] for j in range(UpperCamelCase__ )] __lowercase = grid[0][0] for i in range(1 , UpperCamelCase__ ): __lowercase = grid[0][i] + dp[0][i - 1] for i in range(1 , UpperCamelCase__ ): __lowercase = grid[i][0] + dp[i - 1][0] for i in range(1 , UpperCamelCase__ ): for j in range(1 , UpperCamelCase__ ): __lowercase = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"""{solution() = }""")
362
1
from math import factorial def lowerCamelCase_ ( lowerCAmelCase__ : int = 100 ) -> int: '''simple docstring''' return sum(map(lowerCAmelCase__ , str(factorial(lowerCAmelCase__ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
106
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase__ ( A__ ): """simple docstring""" a = 42 a = None def UpperCAmelCase_ ( _A , _A=0.9_9_9 , _A="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -1_2.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) SCREAMING_SNAKE_CASE__ = [] for i in range(_A ): SCREAMING_SNAKE_CASE__ = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) ) return torch.tensor(_A , dtype=torch.floataa ) class UpperCAmelCase__ ( A__ , A__ ): """simple docstring""" a = 1 @register_to_config def __init__( self : Dict , __lowerCamelCase : int = 1000 , __lowerCamelCase : float = 0.0001 , __lowerCamelCase : float = 0.02 , __lowerCamelCase : str = "linear" , __lowerCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : int = 0 , __lowerCamelCase : str = "epsilon" , __lowerCamelCase : float = 1.0 , **__lowerCamelCase : str , ) -> Optional[Any]: if kwargs.get('''set_alpha_to_one''' , __lowerCamelCase ) is not None: SCREAMING_SNAKE_CASE__ = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __lowerCamelCase , standard_warn=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = kwargs['''set_alpha_to_one'''] if trained_betas is not None: SCREAMING_SNAKE_CASE__ = torch.tensor(__lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": SCREAMING_SNAKE_CASE__ = torch.linspace(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. SCREAMING_SNAKE_CASE__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __lowerCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule SCREAMING_SNAKE_CASE__ = betas_for_alpha_bar(__lowerCamelCase ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) SCREAMING_SNAKE_CASE__ = 1.0 - self.betas SCREAMING_SNAKE_CASE__ = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. SCREAMING_SNAKE_CASE__ = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE__ = 1.0 # setable values SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = torch.from_numpy(np.arange(0 , __lowerCamelCase ).copy().astype(np.intaa ) ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Optional[int] = None ) -> torch.FloatTensor: return sample def lowercase_ ( self : int , __lowerCamelCase : int , __lowerCamelCase : Union[str, torch.device] = None ) -> Union[str, Any]: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) SCREAMING_SNAKE_CASE__ = num_inference_steps SCREAMING_SNAKE_CASE__ = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE__ = (np.arange(0 , __lowerCamelCase ) * step_ratio).round().copy().astype(np.intaa ) SCREAMING_SNAKE_CASE__ = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase ) self.timesteps += self.config.steps_offset def lowercase_ ( self : List[Any] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : int , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : float = 0.0 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) SCREAMING_SNAKE_CASE__ = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process SCREAMING_SNAKE_CASE__ = self.alphas_cumprod[timestep] SCREAMING_SNAKE_CASE__ = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) SCREAMING_SNAKE_CASE__ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 SCREAMING_SNAKE_CASE__ = model_output elif self.config.prediction_type == "sample": SCREAMING_SNAKE_CASE__ = model_output SCREAMING_SNAKE_CASE__ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output SCREAMING_SNAKE_CASE__ = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: SCREAMING_SNAKE_CASE__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE__ = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE__ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__lowerCamelCase , pred_original_sample=__lowerCamelCase ) def __len__( self : List[str] ) -> Union[str, Any]: return self.config.num_train_timesteps
493
0
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
240
from __future__ import annotations from decimal import Decimal from numpy import array def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[float]] ) -> list[list[float]]: __lowerCAmelCase : Optional[int] = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(SCREAMING_SNAKE_CASE ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __lowerCAmelCase : Optional[int] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements __lowerCAmelCase : List[Any] = [[0.0, 0.0], [0.0, 0.0]] __lowerCAmelCase , __lowerCAmelCase : str = matrix[1][1], matrix[0][0] __lowerCAmelCase , __lowerCAmelCase : str = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(SCREAMING_SNAKE_CASE ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(SCREAMING_SNAKE_CASE ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __lowerCAmelCase : Union[str, Any] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix __lowerCAmelCase : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __lowerCAmelCase : Optional[int] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __lowerCAmelCase : str = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __lowerCAmelCase : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __lowerCAmelCase : Any = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __lowerCAmelCase : List[str] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __lowerCAmelCase : Dict = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __lowerCAmelCase : Optional[Any] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __lowerCAmelCase : Tuple = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __lowerCAmelCase : Tuple = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __lowerCAmelCase : Optional[Any] = array(SCREAMING_SNAKE_CASE ) for i in range(3 ): for j in range(3 ): __lowerCAmelCase : List[Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __lowerCAmelCase : List[Any] = array(SCREAMING_SNAKE_CASE ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(SCREAMING_SNAKE_CASE ) # Calculate the inverse of the matrix return [[float(d(SCREAMING_SNAKE_CASE ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
240
1
'''simple docstring''' import os import sys A_ : Dict = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) A_ : Optional[Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase__ ( *__magic_name__ : str , **__magic_name__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase__ ( *__magic_name__ : int , **__magic_name__ : int ) -> str: '''simple docstring''' return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase__ ( *__magic_name__ : List[str] , **__magic_name__ : int ) -> Optional[Any]: '''simple docstring''' return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase__ ( *__magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ) -> List[str]: '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase__ ( *__magic_name__ : List[str] , **__magic_name__ : Dict ) -> Tuple: '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase__ ( *__magic_name__ : Dict , **__magic_name__ : Tuple ) -> Union[str, Any]: '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase__ ( *__magic_name__ : Dict , **__magic_name__ : Tuple ) -> int: '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
38
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A_ : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A_ : str = 250004 A_ : str = 250020 @require_sentencepiece @require_tokenizers class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MBartTokenizer lowerCamelCase__ = MBartTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def __UpperCamelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self ): snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) snake_case__ : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case__ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case__ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def __UpperCamelCase ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case__ : Optional[int] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = tempfile.mkdtemp() snake_case__ : int = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) snake_case__ : List[str] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way snake_case__ : Tuple = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True snake_case__ : Any = tempfile.mkdtemp() snake_case__ : Optional[int] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) snake_case__ : int = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way snake_case__ : List[Any] = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False snake_case__ : Dict = tempfile.mkdtemp() snake_case__ : Union[str, Any] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case__ : Dict = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = '''facebook/mbart-large-en-ro''' lowerCamelCase__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] lowerCamelCase__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] lowerCamelCase__ = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def __UpperCamelCase ( cls ): snake_case__ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) snake_case__ : Any = 1 return cls def __UpperCamelCase ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 2_5_0_0_2_0 ) def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): self.assertIn(__SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids ) snake_case__ : List[str] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] snake_case__ : List[Any] = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = ["""this is gunna be a long sentence """ * 2_0] assert isinstance(src_text[0] , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = 1_0 snake_case__ : int = self.tokenizer(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = tempfile.mkdtemp() snake_case__ : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = MBartTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __SCREAMING_SNAKE_CASE ) @require_torch def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) snake_case__ : int = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) snake_case__ : List[str] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) snake_case__ : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.tokenizer(self.src_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=3 , return_tensors="""pt""" ) snake_case__ : Optional[int] = self.tokenizer( text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=1_0 , return_tensors="""pt""" ) snake_case__ : str = targets["""input_ids"""] snake_case__ : Optional[Any] = shift_tokens_right(__SCREAMING_SNAKE_CASE , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , { # A, test, EOS, en_XX """input_ids""": [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 2_5_0_0_0_1, } , )
38
1
'''simple docstring''' def _lowerCamelCase ( lowercase : list , lowercase : list , lowercase : int ) -> List[str]: _a = len(_lowerCamelCase ) _a = [[0] * n for i in range(_lowerCamelCase )] for i in range(_lowerCamelCase ): _a = y_points[i] for i in range(2 , _lowerCamelCase ): for j in range(_lowerCamelCase , _lowerCamelCase ): _a = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Any , lowercase : str ) -> str: # Return True if there is node that has not iterated. _a = [False] * len(lowercase ) _a = [s] _a = True while queue: _a = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase ) _a = True _a = u return visited[t] def _lowerCamelCase ( lowercase : Dict , lowercase : Optional[Any] , lowercase : Dict ) -> Union[str, Any]: _a = [-1] * (len(lowercase )) _a = 0 _a = [] _a = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase , lowercase , lowercase , lowercase ): _a = float("Inf" ) _a = sink while s != source: # Find the minimum value in select path _a = min(lowercase , graph[parent[s]][s] ) _a = parent[s] max_flow += path_flow _a = sink while v != source: _a = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _a = parent[v] for i in range(len(lowercase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
521
0
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : int ) -> Optional[Any]: # Initialise PyTorch model lowercase : Union[str, Any] =BigBirdConfig.from_json_file(__magic_name__ ) print(f'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: lowercase : Union[str, Any] =BigBirdForQuestionAnswering(__magic_name__ ) else: lowercase : Optional[Any] =BigBirdForPreTraining(__magic_name__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__magic_name__ , __magic_name__ , is_trivia_qa=__magic_name__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__magic_name__ ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) UpperCamelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
92
def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): """simple docstring""" while b: a , a :int = b, a % b return a def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(UpperCAmelCase_ , a % b ) def __lowerCamelCase ( ): """simple docstring""" print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
445
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowercase_ = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class _snake_case ( unittest.TestCase): UpperCamelCase__ : Dict =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase__ : int =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCamelCase__ : Optional[int] ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCamelCase__ : Optional[Any] ={ config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def A__ ( self : Dict, __lowercase : Optional[int], __lowercase : Optional[Any], __lowercase : Dict ): lowercase__ = ZeroShotClassificationPipeline( model=__snake_case, tokenizer=__snake_case, candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def A__ ( self : int, __lowercase : str, __lowercase : List[Any] ): lowercase__ = classifier("Who are you voting for in 2020?", candidate_labels="politics" ) self.assertEqual(__snake_case, {"sequence": ANY(__snake_case ), "labels": [ANY(__snake_case )], "scores": [ANY(__snake_case )]} ) # No kwarg lowercase__ = classifier("Who are you voting for in 2020?", ["politics"] ) self.assertEqual(__snake_case, {"sequence": ANY(__snake_case ), "labels": [ANY(__snake_case )], "scores": [ANY(__snake_case )]} ) lowercase__ = classifier("Who are you voting for in 2020?", candidate_labels=["politics"] ) self.assertEqual(__snake_case, {"sequence": ANY(__snake_case ), "labels": [ANY(__snake_case )], "scores": [ANY(__snake_case )]} ) lowercase__ = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health" ) self.assertEqual( __snake_case, {"sequence": ANY(__snake_case ), "labels": [ANY(__snake_case ), ANY(__snake_case )], "scores": [ANY(__snake_case ), ANY(__snake_case )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ), 1.0 ) lowercase__ = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"] ) self.assertEqual( __snake_case, {"sequence": ANY(__snake_case ), "labels": [ANY(__snake_case ), ANY(__snake_case )], "scores": [ANY(__snake_case ), ANY(__snake_case )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ), 1.0 ) lowercase__ = classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}" ) self.assertEqual(__snake_case, {"sequence": ANY(__snake_case ), "labels": [ANY(__snake_case )], "scores": [ANY(__snake_case )]} ) # https://github.com/huggingface/transformers/issues/13846 lowercase__ = classifier(["I am happy"], ["positive", "negative"] ) self.assertEqual( __snake_case, [ {"sequence": ANY(__snake_case ), "labels": [ANY(__snake_case ), ANY(__snake_case )], "scores": [ANY(__snake_case ), ANY(__snake_case )]} for i in range(1 ) ], ) lowercase__ = classifier(["I am happy", "I am sad"], ["positive", "negative"] ) self.assertEqual( __snake_case, [ {"sequence": ANY(__snake_case ), "labels": [ANY(__snake_case ), ANY(__snake_case )], "scores": [ANY(__snake_case ), ANY(__snake_case )]} for i in range(2 ) ], ) with self.assertRaises(__snake_case ): classifier("", candidate_labels="politics" ) with self.assertRaises(__snake_case ): classifier(__snake_case, candidate_labels="politics" ) with self.assertRaises(__snake_case ): classifier("Who are you voting for in 2020?", candidate_labels="" ) with self.assertRaises(__snake_case ): classifier("Who are you voting for in 2020?", candidate_labels=__snake_case ) with self.assertRaises(__snake_case ): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="Not formatting template", ) with self.assertRaises(__snake_case ): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template=__snake_case, ) self.run_entailment_id(__snake_case ) def A__ ( self : Dict, __lowercase : Pipeline ): lowercase__ = zero_shot_classifier.model.config lowercase__ = config.labelaid lowercase__ = zero_shot_classifier.entailment_id lowercase__ = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id, -1 ) lowercase__ = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id, 0 ) lowercase__ = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id, 0 ) lowercase__ = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id, 2 ) lowercase__ = original_labelaid self.assertEqual(__snake_case, zero_shot_classifier.entailment_id ) @require_torch def A__ ( self : str ): lowercase__ = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"] ) @require_torch def A__ ( self : Optional[Any] ): lowercase__ = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) lowercase__ = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(__snake_case ), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @require_tf def A__ ( self : Union[str, Any] ): lowercase__ = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf", ) lowercase__ = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(__snake_case ), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @slow @require_torch def A__ ( self : Dict ): lowercase__ = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt" ) lowercase__ = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(__snake_case ), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) lowercase__ = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__snake_case, ) self.assertEqual( nested_simplify(__snake_case ), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def A__ ( self : Tuple ): lowercase__ = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf" ) lowercase__ = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(__snake_case ), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) lowercase__ = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__snake_case, ) self.assertEqual( nested_simplify(__snake_case ), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, )
704
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
37
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __snake_case = {'configuration_vit': ['VIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTConfig', 'ViTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['ViTFeatureExtractor'] __snake_case = ['ViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'VIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTForImageClassification', 'ViTForMaskedImageModeling', 'ViTModel', 'ViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'TFViTForImageClassification', 'TFViTModel', 'TFViTPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'FlaxViTForImageClassification', 'FlaxViTModel', 'FlaxViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
200
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: __snake_case = None try: import msvcrt except ImportError: __snake_case = None try: import fcntl except ImportError: __snake_case = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: __snake_case = OSError # Data # ------------------------------------------------ __snake_case = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] __snake_case = '3.0.12' __snake_case = None def _lowerCamelCase ( ): global _logger lowercase__ : Tuple = _logger or logging.getLogger(__name__ ) return _logger class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" def __init__( self , lowerCamelCase__ ) -> Optional[int]: lowercase__ : Union[str, Any] = lock_file return None def __str__( self ) -> List[Any]: lowercase__ : Tuple = F'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class _SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , lowerCamelCase__ ) -> Optional[Any]: lowercase__ : str = lock return None def __enter__( self ) -> List[Any]: return self.lock def __exit__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: self.lock.release() return None class _SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=-1 , lowerCamelCase__=None ) -> Optional[Any]: lowercase__ : List[Any] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long lowercase__ : Union[str, Any] = self.hash_filename_if_too_long(lowerCamelCase__ , lowerCamelCase__ ) # The path to the lock file. lowercase__ : int = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowercase__ : Dict = None # The default timeout value. lowercase__ : Optional[Any] = timeout # We use this lock primarily for the lock counter. lowercase__ : Optional[int] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowercase__ : Union[str, Any] = 0 return None @property def UpperCAmelCase__( self ) -> List[str]: return self._lock_file @property def UpperCAmelCase__( self ) -> Union[str, Any]: return self._timeout @timeout.setter def UpperCAmelCase__( self , lowerCamelCase__ ) -> Optional[Any]: lowercase__ : Union[str, Any] = float(lowerCamelCase__ ) return None def UpperCAmelCase__( self ) -> Tuple: raise NotImplementedError() def UpperCAmelCase__( self ) -> Tuple: raise NotImplementedError() @property def UpperCAmelCase__( self ) -> str: return self._lock_file_fd is not None def UpperCAmelCase__( self , lowerCamelCase__=None , lowerCamelCase__=0.05 ) -> List[str]: # Use the default timeout, if no timeout is provided. if timeout is None: lowercase__ : int = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowercase__ : Tuple = id(self ) lowercase__ : Any = self._lock_file lowercase__ : Union[str, Any] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(F'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( F'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(lowerCamelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowercase__ : Any = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def UpperCAmelCase__( self , lowerCamelCase__=False ) -> int: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowercase__ : Tuple = id(self ) lowercase__ : int = self._lock_file logger().debug(F'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() lowercase__ : str = 0 logger().debug(F'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self ) -> Dict: self.acquire() return self def __exit__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: self.release() return None def __del__( self ) -> int: self.release(force=lowerCamelCase__ ) return None def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: lowercase__ : Optional[int] = os.path.basename(lowerCamelCase__ ) if len(lowerCamelCase__ ) > max_length and max_length > 0: lowercase__ : Union[str, Any] = os.path.dirname(lowerCamelCase__ ) lowercase__ : List[Any] = str(hash(lowerCamelCase__ ) ) lowercase__ : Optional[int] = filename[: max_length - len(lowerCamelCase__ ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(lowerCamelCase__ , lowerCamelCase__ ) else: return path class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=-1 , lowerCamelCase__=None ) -> Tuple: from .file_utils import relative_to_absolute_path super().__init__(lowerCamelCase__ , timeout=lowerCamelCase__ , max_filename_length=lowerCamelCase__ ) lowercase__ : List[Any] = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def UpperCAmelCase__( self ) -> Tuple: lowercase__ : Union[str, Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowercase__ : Dict = os.open(self._lock_file , lowerCamelCase__ ) except OSError: pass else: try: msvcrt.locking(lowerCamelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowerCamelCase__ ) else: lowercase__ : Optional[Any] = fd return None def UpperCAmelCase__( self ) -> List[Any]: lowercase__ : int = self._lock_file_fd lowercase__ : Any = None msvcrt.locking(lowerCamelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(lowerCamelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=-1 , lowerCamelCase__=None ) -> List[str]: lowercase__ : Optional[Any] = os.statvfs(os.path.dirname(lowerCamelCase__ ) ).f_namemax super().__init__(lowerCamelCase__ , timeout=lowerCamelCase__ , max_filename_length=lowerCamelCase__ ) def UpperCAmelCase__( self ) -> str: lowercase__ : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC lowercase__ : List[Any] = os.open(self._lock_file , lowerCamelCase__ ) try: fcntl.flock(lowerCamelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCamelCase__ ) else: lowercase__ : Any = fd return None def UpperCAmelCase__( self ) -> str: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition lowercase__ : Optional[int] = self._lock_file_fd lowercase__ : Optional[Any] = None fcntl.flock(lowerCamelCase__ , fcntl.LOCK_UN ) os.close(lowerCamelCase__ ) return None class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" def UpperCAmelCase__( self ) -> List[str]: lowercase__ : Tuple = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowercase__ : Any = os.open(self._lock_file , lowerCamelCase__ ) except OSError: pass else: lowercase__ : Union[str, Any] = fd return None def UpperCAmelCase__( self ) -> Tuple: os.close(self._lock_file_fd ) lowercase__ : Optional[Any] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None __snake_case = None if msvcrt: __snake_case = WindowsFileLock elif fcntl: __snake_case = UnixFileLock else: __snake_case = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
200
1
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class _a ( __a ): """simple docstring""" def __lt__( self : Any , lowercase_ : Dict ): '''simple docstring''' return self[-1] < other[-1] def __eq__( self : Any , lowercase_ : int ): '''simple docstring''' return self[-1] == other[-1] def A_ ( SCREAMING_SNAKE_CASE_ ) ->list: lowercase_ = [] # sort into stacks for element in collection: lowercase_ = Stack([element] ) lowercase_ = bisect_left(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if i != len(SCREAMING_SNAKE_CASE_ ): stacks[i].append(SCREAMING_SNAKE_CASE_ ) else: stacks.append(SCREAMING_SNAKE_CASE_ ) # use a heap-based merge to merge stack efficiently lowercase_ = merge(*(reversed(SCREAMING_SNAKE_CASE_ ) for stack in stacks) ) return collection if __name__ == "__main__": __snake_case = input("""Enter numbers separated by a comma:\n""").strip() __snake_case = [int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
702
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __snake_case = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ """text-classification""", """language-modeling""", """summarization""", """token-classification""", """question-answering""", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __snake_case = logging.getLogger() def A_ ( ) ->List[str]: lowercase_ = argparse.ArgumentParser() parser.add_argument("""-f""" ) lowercase_ = parser.parse_args() return args.f def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="eval" ) ->Optional[int]: lowercase_ = os.path.join(SCREAMING_SNAKE_CASE_ , f"""{split}_results.json""" ) if os.path.exists(SCREAMING_SNAKE_CASE_ ): with open(SCREAMING_SNAKE_CASE_ , """r""" ) as f: return json.load(SCREAMING_SNAKE_CASE_ ) raise ValueError(f"""can't find {path}""" ) __snake_case = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( __a ): """simple docstring""" def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.get_auto_remove_tmp_dir() lowercase_ = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(lowercase_ , """argv""" , lowercase_ ): run_flax_glue.main() lowercase_ = get_results(lowercase_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.get_auto_remove_tmp_dir() lowercase_ = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(lowercase_ , """argv""" , lowercase_ ): run_clm_flax.main() lowercase_ = get_results(lowercase_ ) self.assertLess(result["""eval_perplexity"""] , 100 ) @slow def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.get_auto_remove_tmp_dir() lowercase_ = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(lowercase_ , """argv""" , lowercase_ ): run_summarization_flax.main() lowercase_ = get_results(lowercase_ , split="""test""" ) self.assertGreaterEqual(result["""test_rouge1"""] , 10 ) self.assertGreaterEqual(result["""test_rouge2"""] , 2 ) self.assertGreaterEqual(result["""test_rougeL"""] , 7 ) self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 ) @slow def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.get_auto_remove_tmp_dir() lowercase_ = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(lowercase_ , """argv""" , lowercase_ ): run_mlm_flax.main() lowercase_ = get_results(lowercase_ ) self.assertLess(result["""eval_perplexity"""] , 42 ) @slow def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.get_auto_remove_tmp_dir() lowercase_ = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(lowercase_ , """argv""" , lowercase_ ): run_ta_mlm_flax.main() lowercase_ = get_results(lowercase_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.4_2 ) @slow def lowerCamelCase__ ( self : int ): '''simple docstring''' lowercase_ = 7 if get_gpu_count() > 1 else 2 lowercase_ = self.get_auto_remove_tmp_dir() lowercase_ = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(lowercase_ , """argv""" , lowercase_ ): run_flax_ner.main() lowercase_ = get_results(lowercase_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertGreaterEqual(result["""eval_f1"""] , 0.3 ) @slow def lowerCamelCase__ ( self : Any ): '''simple docstring''' lowercase_ = self.get_auto_remove_tmp_dir() lowercase_ = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(lowercase_ , """argv""" , lowercase_ ): run_qa.main() lowercase_ = get_results(lowercase_ ) self.assertGreaterEqual(result["""eval_f1"""] , 30 ) self.assertGreaterEqual(result["""eval_exact"""] , 30 )
603
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[Any] = { '''uw-madison/mra-base-512-4''': '''https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json''', } class lowerCamelCase_( A_ ): '''simple docstring''' lowercase__ : Union[str, Any] = 'mra' def __init__( self , lowerCamelCase__=5_0_2_6_5 , lowerCamelCase__=7_6_8 , lowerCamelCase__=1_2 , lowerCamelCase__=1_2 , lowerCamelCase__=3_0_7_2 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=5_1_2 , lowerCamelCase__=1 , lowerCamelCase__=0.0_2 , lowerCamelCase__=1e-5 , lowerCamelCase__="absolute" , lowerCamelCase__=4 , lowerCamelCase__="full" , lowerCamelCase__=0 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , **lowerCamelCase__ , ): super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) _lowerCamelCase = vocab_size _lowerCamelCase = max_position_embeddings _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = initializer_range _lowerCamelCase = type_vocab_size _lowerCamelCase = layer_norm_eps _lowerCamelCase = position_embedding_type _lowerCamelCase = block_per_row _lowerCamelCase = approx_mode _lowerCamelCase = initial_prior_first_n_blocks _lowerCamelCase = initial_prior_diagonal_n_blocks
661
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor UpperCamelCase__ = logging.get_logger(__name__) class UpperCAmelCase__ ( A_ ): '''simple docstring''' def __init__( self : int , *UpperCamelCase : Optional[Any] , **UpperCamelCase : int ): """simple docstring""" warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
322
0
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ = tf.data.AUTOTUNE def lowercase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Optional[Any] = argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=_UpperCamelCase , default="roberta-base" , help="The model config to use. Note that we don\'t copy the model\'s weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=_UpperCamelCase , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=_UpperCamelCase , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=_UpperCamelCase , help="Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=_UpperCamelCase , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=_UpperCamelCase , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=_UpperCamelCase , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=_UpperCamelCase , default=2**18 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=_UpperCamelCase , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=_UpperCamelCase , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=_UpperCamelCase , default=1e-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=_UpperCamelCase , default=1e-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=_UpperCamelCase , default=512 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=_UpperCamelCase , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=_UpperCamelCase , required=_UpperCamelCase , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=_UpperCamelCase , help="Model ID to upload to on the Hugging Face Hub." ) SCREAMING_SNAKE_CASE_ :Dict = parser.parse_args() return args def lowercase ( a ): '''simple docstring''' try: if args.tpu_name: SCREAMING_SNAKE_CASE_ :str = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: SCREAMING_SNAKE_CASE_ :Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(_UpperCamelCase ) tf.tpu.experimental.initialize_tpu_system(_UpperCamelCase ) return tpu def lowercase ( a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :List[str] = 0 for file in file_list: SCREAMING_SNAKE_CASE_ :str = file.split("/" )[-1] SCREAMING_SNAKE_CASE_ :Tuple = re.search(R"-\d+-(\d+)\.tfrecord" , _UpperCamelCase ).group(1 ) SCREAMING_SNAKE_CASE_ :List[str] = int(_UpperCamelCase ) num_samples += sample_count return num_samples def lowercase ( a , a , a , a , a , a=None ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Any = count_samples(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ :int = tf.data.Dataset.from_tensor_slices(_UpperCamelCase ) if shuffle: SCREAMING_SNAKE_CASE_ :List[Any] = dataset.shuffle(len(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ :Dict = tf.data.TFRecordDataset(_UpperCamelCase , num_parallel_reads=_UpperCamelCase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here SCREAMING_SNAKE_CASE_ :Optional[Any] = dataset.apply(tf.data.experimental.assert_cardinality(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ :List[str] = dataset.map(_UpperCamelCase , num_parallel_calls=_UpperCamelCase ) if shuffle: assert shuffle_buffer_size is not None SCREAMING_SNAKE_CASE_ :int = dataset.shuffle(args.shuffle_buffer_size ) SCREAMING_SNAKE_CASE_ :Dict = dataset.batch(_UpperCamelCase , drop_remainder=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = dataset.map(_UpperCamelCase , num_parallel_calls=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ :Tuple = dataset.prefetch(_UpperCamelCase ) return dataset def lowercase ( a ): '''simple docstring''' if not args.no_tpu: SCREAMING_SNAKE_CASE_ :List[str] = initialize_tpu(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ :List[Any] = tf.distribute.TPUStrategy(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ :List[str] = tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) SCREAMING_SNAKE_CASE_ :Tuple = AutoTokenizer.from_pretrained(args.tokenizer ) SCREAMING_SNAKE_CASE_ :str = AutoConfig.from_pretrained(args.pretrained_model_config ) SCREAMING_SNAKE_CASE_ :Any = tokenizer.vocab_size SCREAMING_SNAKE_CASE_ :int = tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F"No .tfrecord files found in {args.train_dataset}." ) SCREAMING_SNAKE_CASE_ :Any = tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F"No .tfrecord files found in {args.eval_dataset}." ) SCREAMING_SNAKE_CASE_ :List[Any] = count_samples(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ :Optional[int] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) SCREAMING_SNAKE_CASE_ :Optional[int] = steps_per_epoch * args.num_epochs with strategy.scope(): SCREAMING_SNAKE_CASE_ :List[str] = TFAutoModelForMaskedLM.from_config(_UpperCamelCase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :int = create_optimizer( num_train_steps=_UpperCamelCase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=_UpperCamelCase , metrics=["accuracy"] ) def decode_fn(a ): SCREAMING_SNAKE_CASE_ :List[str] = { "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(_UpperCamelCase , _UpperCamelCase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. SCREAMING_SNAKE_CASE_ :Dict = DataCollatorForLanguageModeling( tokenizer=_UpperCamelCase , mlm_probability=args.mlm_probability , mlm=_UpperCamelCase , return_tensors="tf" ) def mask_with_collator(a ): # TF really needs an isin() function SCREAMING_SNAKE_CASE_ :Optional[Any] = ( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Dict = data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(_UpperCamelCase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=_UpperCamelCase , ) return batch SCREAMING_SNAKE_CASE_ :Optional[Any] = args.per_replica_batch_size * strategy.num_replicas_in_sync SCREAMING_SNAKE_CASE_ :int = prepare_dataset( _UpperCamelCase , decode_fn=_UpperCamelCase , mask_fn=_UpperCamelCase , batch_size=_UpperCamelCase , shuffle=_UpperCamelCase , shuffle_buffer_size=args.shuffle_buffer_size , ) SCREAMING_SNAKE_CASE_ :List[Any] = prepare_dataset( _UpperCamelCase , decode_fn=_UpperCamelCase , mask_fn=_UpperCamelCase , batch_size=_UpperCamelCase , shuffle=_UpperCamelCase , ) SCREAMING_SNAKE_CASE_ :Any = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=_UpperCamelCase ) ) model.fit( _UpperCamelCase , validation_data=_UpperCamelCase , epochs=args.num_epochs , callbacks=_UpperCamelCase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = parse_args() main(args)
721
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class _UpperCAmelCase ( lowercase ): lowerCamelCase_ : Union[str, Any] = """xmod""" def __init__( self : Tuple , UpperCAmelCase : Tuple=3_05_22 , UpperCAmelCase : Any=7_68 , UpperCAmelCase : Any=12 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : List[str]=30_72 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Tuple=5_12 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Dict=1E-12 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Tuple="absolute" , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=None , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=False , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=("en_XX",) , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[Any] = vocab_size SCREAMING_SNAKE_CASE_ :Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE_ :Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ :Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ :Any = hidden_act SCREAMING_SNAKE_CASE_ :Dict = intermediate_size SCREAMING_SNAKE_CASE_ :Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ :List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ :List[str] = max_position_embeddings SCREAMING_SNAKE_CASE_ :Tuple = type_vocab_size SCREAMING_SNAKE_CASE_ :List[str] = initializer_range SCREAMING_SNAKE_CASE_ :Any = layer_norm_eps SCREAMING_SNAKE_CASE_ :str = position_embedding_type SCREAMING_SNAKE_CASE_ :Any = use_cache SCREAMING_SNAKE_CASE_ :str = classifier_dropout SCREAMING_SNAKE_CASE_ :List[str] = pre_norm SCREAMING_SNAKE_CASE_ :List[str] = adapter_reduction_factor SCREAMING_SNAKE_CASE_ :int = adapter_layer_norm SCREAMING_SNAKE_CASE_ :Dict = adapter_reuse_layer_norm SCREAMING_SNAKE_CASE_ :Optional[Any] = ln_before_adapter SCREAMING_SNAKE_CASE_ :List[Any] = list(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[Any] = default_language class _UpperCAmelCase ( lowercase ): @property def _snake_case ( self : Any): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ :Dict = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE_ :Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
140
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case : List[Any] = logging.get_logger(__name__) def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : Dict=False , UpperCamelCase : str=False , UpperCamelCase : str=False ): '''simple docstring''' _a = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'transformer.blocks.{i}.norm1.weight', f'vilt.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'transformer.blocks.{i}.norm1.bias', f'vilt.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'transformer.blocks.{i}.attn.proj.weight', f'vilt.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'transformer.blocks.{i}.attn.proj.bias', f'vilt.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'transformer.blocks.{i}.norm2.weight', f'vilt.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'transformer.blocks.{i}.norm2.bias', f'vilt.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'transformer.blocks.{i}.mlp.fc1.weight', f'vilt.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'transformer.blocks.{i}.mlp.fc1.bias', f'vilt.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'transformer.blocks.{i}.mlp.fc2.weight', f'vilt.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'transformer.blocks.{i}.mlp.fc2.bias', f'vilt.encoder.layer.{i}.output.dense.bias') ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict ): '''simple docstring''' for i in range(config.num_hidden_layers ): _a = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _a = state_dict.pop(f'transformer.blocks.{i}.attn.qkv.weight' ) _a = state_dict.pop(f'transformer.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _a = in_proj_weight[ : config.hidden_size, : ] _a = in_proj_bias[: config.hidden_size] _a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _a = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _a = in_proj_weight[ -config.hidden_size :, : ] _a = in_proj_bias[-config.hidden_size :] def snake_case_ (UpperCamelCase : Optional[int] ): '''simple docstring''' _a = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) def snake_case_ (UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : int ): '''simple docstring''' _a = dct.pop(UpperCamelCase ) _a = val @torch.no_grad() def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : int ): '''simple docstring''' _a = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=UpperCamelCase ) _a = False _a = False _a = False _a = False if "vqa" in checkpoint_url: _a = True _a = 3129 _a = '''huggingface/label-files''' _a = '''vqa2-id2label.json''' _a = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) _a = {int(UpperCamelCase ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} _a = ViltForQuestionAnswering(UpperCamelCase ) elif "nlvr" in checkpoint_url: _a = True _a = 2 _a = {0: '''False''', 1: '''True'''} _a = {v: k for k, v in config.idalabel.items()} _a = 3 _a = ViltForImagesAndTextClassification(UpperCamelCase ) elif "irtr" in checkpoint_url: _a = True _a = ViltForImageAndTextRetrieval(UpperCamelCase ) elif "mlm_itm" in checkpoint_url: _a = True _a = ViltForMaskedLM(UpperCamelCase ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys _a = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location='''cpu''' )['''state_dict'''] _a = create_rename_keys(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) for src, dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) read_in_q_k_v(UpperCamelCase , UpperCamelCase ) if mlm_model or irtr_model: _a = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _a , _a = model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(UpperCamelCase ) # Define processor _a = ViltImageProcessor(size=384 ) _a = BertTokenizer.from_pretrained('''bert-base-uncased''' ) _a = ViltProcessor(UpperCamelCase , UpperCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _a = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=UpperCamelCase ).raw ) _a = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=UpperCamelCase ).raw ) _a = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) _a = processor(UpperCamelCase , UpperCamelCase , return_tensors='''pt''' ) _a = processor(UpperCamelCase , UpperCamelCase , return_tensors='''pt''' ) _a = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _a = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=UpperCamelCase ).raw ) if mlm_model: _a = '''a bunch of [MASK] laying on a [MASK].''' else: _a = '''How many cats are there?''' _a = processor(UpperCamelCase , UpperCamelCase , return_tensors='''pt''' ) _a = model(**UpperCamelCase ) # Verify outputs if mlm_model: _a = torch.Size([1, 11, 3_0522] ) _a = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , UpperCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _a = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _a = torch.Size([1, 3129] ) _a = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , UpperCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _a = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _a = torch.Size([1, 2] ) _a = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(f'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _snake_case : List[str] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
22
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __a ( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" with open(__UpperCAmelCase ) as metadata_file: lowerCamelCase_ : int = json.load(__UpperCAmelCase ) lowerCamelCase_ : Optional[Any] = LukeConfig(use_entity_aware_attention=__UpperCAmelCase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path lowerCamelCase_ : Optional[Any] = torch.load(__UpperCAmelCase , map_location="cpu" ) # Load the entity vocab file lowerCamelCase_ : Dict = load_entity_vocab(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks lowerCamelCase_ : str = AddedToken("<ent>" , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) lowerCamelCase_ : Optional[int] = AddedToken("<ent2>" , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(__UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = LukeTokenizer.from_pretrained(__UpperCAmelCase ) # Initialize the embeddings of the special tokens lowerCamelCase_ : Tuple = state_dict["embeddings.word_embeddings.weight"] lowerCamelCase_ : Any = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) lowerCamelCase_ : Dict = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) lowerCamelCase_ : List[Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowerCamelCase_ : Optional[int] = f"encoder.layer.{layer_index}.attention.self." lowerCamelCase_ : Union[str, Any] = state_dict[prefix + matrix_name] lowerCamelCase_ : int = state_dict[prefix + matrix_name] lowerCamelCase_ : Optional[int] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowerCamelCase_ : Union[str, Any] = state_dict["entity_embeddings.entity_embeddings.weight"] lowerCamelCase_ : Any = entity_emb[entity_vocab["[MASK]"]] lowerCamelCase_ : Tuple = LukeModel(config=__UpperCAmelCase ).eval() lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) if not (len(__UpperCAmelCase ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f"Missing keys {', '.join(__UpperCAmelCase )}. Expected only missing embeddings.position_ids" ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" f" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}" ) # Check outputs lowerCamelCase_ : List[str] = LukeTokenizer.from_pretrained(__UpperCAmelCase , task="entity_classification" ) lowerCamelCase_ : List[str] = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) lowerCamelCase_ : List[Any] = (39, 42) lowerCamelCase_ : Dict = tokenizer(__UpperCAmelCase , entity_spans=[span] , add_prefix_space=__UpperCAmelCase , return_tensors="pt" ) lowerCamelCase_ : Optional[int] = model(**__UpperCAmelCase ) # Verify word hidden states if model_size == "large": lowerCamelCase_ : Union[str, Any] = torch.Size((1, 42, 1024) ) lowerCamelCase_ : List[Any] = torch.tensor( [[0.0_1_3_3, 0.0_8_6_5, 0.0_0_9_5], [0.3_0_9_3, -0.2_5_7_6, -0.7_4_1_8], [-0.1_7_2_0, -0.2_1_1_7, -0.2_8_6_9]] ) else: # base lowerCamelCase_ : List[str] = torch.Size((1, 42, 768) ) lowerCamelCase_ : Tuple = torch.tensor([[0.0_0_3_7, 0.1_3_6_8, -0.0_0_9_1], [0.1_0_9_9, 0.3_3_2_9, -0.1_0_9_5], [0.0_7_6_5, 0.5_3_3_5, 0.1_1_7_9]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": lowerCamelCase_ : Optional[Any] = torch.Size((1, 1, 1024) ) lowerCamelCase_ : List[str] = torch.tensor([[0.0_4_6_6, -0.0_1_0_6, -0.0_1_7_9]] ) else: # base lowerCamelCase_ : int = torch.Size((1, 1, 768) ) lowerCamelCase_ : Any = torch.tensor([[0.1_4_5_7, 0.1_0_4_4, 0.0_1_7_4]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(__UpperCAmelCase ) ) model.save_pretrained(__UpperCAmelCase ) def __a ( __UpperCAmelCase : Tuple ) -> str: """simple docstring""" lowerCamelCase_ : Tuple = {} with open(__UpperCAmelCase , "r" , encoding="utf-8" ) as f: for index, line in enumerate(__UpperCAmelCase ): lowerCamelCase_ , lowerCamelCase_ : int = line.rstrip().split("\t" ) lowerCamelCase_ : Union[str, Any] = index return entity_vocab if __name__ == "__main__": snake_case_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) snake_case_ : int = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
488
0
"""simple docstring""" def _snake_case ( _snake_case : Tuple ) -> Dict: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): _A = F'''Input value of [number={number}] must be an integer''' raise TypeError(_lowerCamelCase ) if number < 0: return False _A = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" a = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' a = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] a = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
505
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __a: Tuple = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "The column name of the images in the files."} ) SCREAMING_SNAKE_CASE = field(default=a__ , metadata={"help": "A folder containing the training data."} ) SCREAMING_SNAKE_CASE = field(default=a__ , metadata={"help": "A folder containing the validation data."} ) SCREAMING_SNAKE_CASE = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Optional[int] = {} if self.train_dir is not None: lowercase__ : List[str] = self.train_dir if self.validation_dir is not None: lowercase__ : Optional[Any] = self.validation_dir lowercase__ : Tuple = data_files if data_files else None @dataclass class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default=a__ , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) SCREAMING_SNAKE_CASE = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) SCREAMING_SNAKE_CASE = field(default=a__ , metadata={"help": "Name or path of preprocessor config."} ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) SCREAMING_SNAKE_CASE = field( default=0.75 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "Whether or not to train with normalized pixel values as target."} ) @dataclass class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = field( default=1e-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} ) def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : List[str] = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def __UpperCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , UpperCAmelCase , UpperCAmelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase ) transformers.utils.logging.set_verbosity(UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowercase__ : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. lowercase__ : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase__ : int = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase ) and data_args.train_val_split > 0.0: lowercase__ : Any = ds['''train'''].train_test_split(data_args.train_val_split ) lowercase__ : str = split['''train'''] lowercase__ : List[str] = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : Tuple = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: lowercase__ : str = ViTMAEConfig.from_pretrained(model_args.config_name , **UpperCAmelCase ) elif model_args.model_name_or_path: lowercase__ : int = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase ) else: lowercase__ : Tuple = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowercase__ : Optional[Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase ) elif model_args.model_name_or_path: lowercase__ : Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase ) else: lowercase__ : List[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: lowercase__ : str = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowercase__ : Any = ViTMAEForPreTraining(UpperCAmelCase ) if training_args.do_train: lowercase__ : Tuple = ds['''train'''].column_names else: lowercase__ : Optional[Any] = ds['''validation'''].column_names if data_args.image_column_name is not None: lowercase__ : List[str] = data_args.image_column_name elif "image" in column_names: lowercase__ : Optional[int] = '''image''' elif "img" in column_names: lowercase__ : List[Any] = '''img''' else: lowercase__ : Tuple = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowercase__ : List[str] = image_processor.size['''shortest_edge'''] else: lowercase__ : Optional[int] = (image_processor.size['''height'''], image_processor.size['''width''']) lowercase__ : List[Any] = Compose( [ Lambda(lambda UpperCAmelCase : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(UpperCAmelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(UpperCAmelCase ): lowercase__ : Tuple = [transforms(UpperCAmelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowercase__ : int = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowercase__ : Any = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase ) # Compute absolute learning rate lowercase__ : int = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowercase__ : Tuple = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer lowercase__ : Union[str, Any] = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: lowercase__ : Any = None if training_args.resume_from_checkpoint is not None: lowercase__ : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ : int = last_checkpoint lowercase__ : List[Any] = trainer.train(resume_from_checkpoint=UpperCAmelCase ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase__ : Optional[int] = trainer.evaluate() trainer.log_metrics('''eval''' , UpperCAmelCase ) trainer.save_metrics('''eval''' , UpperCAmelCase ) # Write model card and (optionally) push to hub lowercase__ : Any = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase ) else: trainer.create_model_card(**UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
152
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = KandinskyVaaControlnetImgaImgPipeline SCREAMING_SNAKE_CASE = ["image_embeds", "negative_image_embeds", "image", "hint"] SCREAMING_SNAKE_CASE = ["image_embeds", "negative_image_embeds", "image", "hint"] SCREAMING_SNAKE_CASE = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] SCREAMING_SNAKE_CASE = False @property def _lowerCAmelCase( self ) -> Optional[int]: return 32 @property def _lowerCAmelCase( self ) -> Optional[Any]: return 32 @property def _lowerCAmelCase( self ) -> List[Any]: return self.time_input_dim @property def _lowerCAmelCase( self ) -> int: return self.time_input_dim * 4 @property def _lowerCAmelCase( self ) -> List[str]: return 100 @property def _lowerCAmelCase( self ) -> List[str]: torch.manual_seed(0 ) lowercase__ : str = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase__ : Optional[int] = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def _lowerCAmelCase( self ) -> str: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowerCAmelCase( self ) -> Any: torch.manual_seed(0 ) lowercase__ : str = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase( self ) -> Any: lowercase__ : List[Any] = self.dummy_unet lowercase__ : Optional[int] = self.dummy_movq lowercase__ : List[str] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowercase__ : Union[str, Any] = DDIMScheduler(**__lowerCAmelCase ) lowercase__ : List[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Dict: lowercase__ : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase__ : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCAmelCase ) # create init_image lowercase__ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase__ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ : int = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint lowercase__ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) if str(__lowerCAmelCase ).startswith('''mps''' ): lowercase__ : Dict = torch.manual_seed(__lowerCAmelCase ) else: lowercase__ : Dict = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase__ : Dict = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Optional[int] = '''cpu''' lowercase__ : Dict = self.get_dummy_components() lowercase__ : List[str] = self.pipeline_class(**__lowerCAmelCase ) lowercase__ : Any = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : int = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase__ : List[Any] = output.images lowercase__ : str = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase__ : List[Any] = image[0, -3:, -3:, -1] lowercase__ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ : int = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase( self ) -> Tuple: lowercase__ : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) lowercase__ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase__ : List[Any] = init_image.resize((512, 512) ) lowercase__ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) lowercase__ : str = torch.from_numpy(np.array(__lowerCAmelCase ) ).float() / 2_5_5.0 lowercase__ : List[str] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowercase__ : Union[str, Any] = '''A robot, 4k photo''' lowercase__ : int = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase__ : Dict = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) lowercase__ : Optional[Any] = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ , lowercase__ : Optional[Any] = pipe_prior( __lowerCAmelCase , image=__lowerCAmelCase , strength=0.8_5 , generator=__lowerCAmelCase , negative_prompt='''''' , ).to_tuple() lowercase__ : Tuple = pipeline( image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , hint=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
152
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Optional[Any] = logging.get_logger(__name__) a : List[str] = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' __lowercase : str = 'xlm-roberta-xl' def __init__( self , __lowercase=250880 , __lowercase=2560 , __lowercase=36 , __lowercase=32 , __lowercase=10240 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=514 , __lowercase=1 , __lowercase=0.02 , __lowercase=1e-05 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = use_cache UpperCAmelCase__ = classifier_dropout class _UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' @property def A__ ( self ): if self.task == "multiple-choice": UpperCAmelCase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
701
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->str: UpperCAmelCase__ = OmegaConf.load(_SCREAMING_SNAKE_CASE ) if display: print(yaml.dump(OmegaConf.to_container(_SCREAMING_SNAKE_CASE ) ) ) return config def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->List[Any]: if conf_path is None: UpperCAmelCase__ = """./model_checkpoints/vqgan_only.yaml""" UpperCAmelCase__ = load_config(_SCREAMING_SNAKE_CASE , display=_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = VQModel(**config.model.params ) if ckpt_path is None: UpperCAmelCase__ = """./model_checkpoints/vqgan_only.pt""" UpperCAmelCase__ = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE ) if ".ckpt" in ckpt_path: UpperCAmelCase__ = sd["""state_dict"""] model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) del sd return model def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = model.encode(_SCREAMING_SNAKE_CASE ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) UpperCAmelCase__ = model.decode(_SCREAMING_SNAKE_CASE ) return xrec def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->int: UpperCAmelCase__ , UpperCAmelCase__ = string.rsplit(""".""" , 1 ) if reload: UpperCAmelCase__ = importlib.import_module(_SCREAMING_SNAKE_CASE ) importlib.reload(_SCREAMING_SNAKE_CASE ) return getattr(importlib.import_module(_SCREAMING_SNAKE_CASE , package=_SCREAMING_SNAKE_CASE ) , cls ) def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->str: if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True ) ->str: UpperCAmelCase__ = instantiate_from_config(_SCREAMING_SNAKE_CASE ) if sd is not None: model.load_state_dict(_SCREAMING_SNAKE_CASE ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: # load the specified checkpoint if ckpt: UpperCAmelCase__ = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" ) UpperCAmelCase__ = pl_sd["""global_step"""] print(F'''loaded model from global step {global_step}.''' ) else: UpperCAmelCase__ = {"""state_dict""": None} UpperCAmelCase__ = None UpperCAmelCase__ = load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=_SCREAMING_SNAKE_CASE , eval_mode=_SCREAMING_SNAKE_CASE )["""model"""] return model, global_step
422
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Any = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
273
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case: Optional[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = "timm_backbone" def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=3 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , **lowerCAmelCase_ , ): '''simple docstring''' super().__init__(**lowerCAmelCase_ ) a_ : Optional[Any] = backbone a_ : Union[str, Any] = num_channels a_ : str = features_only a_ : Any = use_pretrained_backbone a_ : Tuple = True a_ : Tuple = out_indices if out_indices is not None else (-1,)
577
0
"""simple docstring""" from __future__ import annotations def lowercase_ ( _lowerCamelCase: Dict ) -> bool: '''simple docstring''' __lowerCamelCase : Any = str(__UpperCAmelCase ) return len(__UpperCAmelCase ) == 9 and set(__UpperCAmelCase ) == set("123456789" ) def lowercase_ ( ) -> int | None: '''simple docstring''' for base_num in range(9999 , 4999 , -1 ): __lowerCamelCase : List[str] = 100002 * base_num if is_9_pandigital(__UpperCAmelCase ): return candidate for base_num in range(333 , 99 , -1 ): __lowerCamelCase : Union[str, Any] = 1002003 * base_num if is_9_pandigital(__UpperCAmelCase ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
713
"""simple docstring""" import gc import threading import time import psutil import torch class _snake_case : def __init__( self : str ): __lowerCamelCase : Optional[Any] = psutil.Process() __lowerCamelCase : List[Any] = False def lowerCamelCase__ ( self : str ): __lowerCamelCase : List[Any] = -1 while True: __lowerCamelCase : Union[str, Any] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Optional[Any] = True __lowerCamelCase : Union[str, Any] = threading.Thread(target=self.peak_monitor ) __lowerCamelCase : Optional[Any] = True self.thread.start() def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : str = False self.thread.join() return self.cpu_memory_peak __A = PeakCPUMemory() def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase : Any = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCamelCase : Optional[int] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __lowerCamelCase : int = torch.cuda.memory_allocated(_lowerCamelCase ) torch.cuda.reset_peak_memory_stats() return measures def lowercase_ ( _lowerCamelCase: Optional[Any] ) -> Tuple: '''simple docstring''' __lowerCamelCase : Tuple = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCamelCase : Dict = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 __lowerCamelCase : Tuple = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __lowerCamelCase : Any = (torch.cuda.memory_allocated(_lowerCamelCase ) - start_measures[str(_lowerCamelCase )]) / 2**20 __lowerCamelCase : Optional[int] = (torch.cuda.max_memory_allocated(_lowerCamelCase ) - start_measures[str(_lowerCamelCase )]) / 2**20 return measures def lowercase_ ( _lowerCamelCase: int , _lowerCamelCase: List[Any] ) -> Optional[int]: '''simple docstring''' print(F"""{description}:""" ) print(F"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(_lowerCamelCase )]:.2f}MiB""" ) __lowerCamelCase : List[Any] = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
366
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): _lowerCAmelCase = n - k # Calculate C(n,k) for i in range(SCREAMING_SNAKE_CASE_ ): result *= n - i result //= i + 1 return result def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , SCREAMING_SNAKE_CASE_ ) // (node_count + 1) def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if n < 0: raise ValueError("factorial() not defined for negative values" ) _lowerCAmelCase = 1 for i in range(1 , n + 1 ): result *= i return result def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return catalan_number(SCREAMING_SNAKE_CASE_ ) * factorial(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
18
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 snake_case = get_tests_dir('''fixtures/dummy-config.json''') class UpperCAmelCase ( unittest.TestCase ): def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = 0 def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''' ) ) def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = AutoConfig.from_pretrained('''bert-base-uncased''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = AutoConfig.for_model('''roberta''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _snake_case = os.path.join(__lowerCamelCase , '''fake-roberta''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , '''config.json''' ) , '''w''' ) as f: f.write(json.dumps({} ) ) _snake_case = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertEqual(type(__lowerCamelCase ) , __lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" try: AutoConfig.register('''custom''' , __lowerCamelCase ) # Wrong model type will raise an error with self.assertRaises(__lowerCamelCase ): AutoConfig.register('''model''' , __lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoConfig.register('''bert''' , __lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _snake_case = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase ) _snake_case = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" with self.assertRaisesRegex( __lowerCamelCase , '''bert-base is not a local folder and is not a valid model identifier''' ): _snake_case = AutoConfig.from_pretrained('''bert-base''' ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( __lowerCamelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _snake_case = AutoConfig.from_pretrained(__lowerCamelCase , revision='''aaaaaa''' ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( __lowerCamelCase , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): _snake_case = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''' ) def __UpperCAmelCase ( self : str ): """simple docstring""" # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowerCamelCase ): _snake_case = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCamelCase ): _snake_case = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__lowerCamelCase ) _snake_case = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase ) _snake_case = AutoConfig.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase ) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''' ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : List[Any] = '''new-model''' try: AutoConfig.register('''new-model''' , __lowerCamelCase ) # If remote code is not set, the default is to use local _snake_case = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote code is disabled, we load the local one. _snake_case = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote is enabled, we load from the Hub _snake_case = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
103
0
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->str: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) A__ : str = str(bin(UpperCAmelCase__ ) )[2:] # remove the leading "0b" A__ : List[Any] = str(bin(UpperCAmelCase__ ) )[2:] # remove the leading "0b" A__ : List[str] = max(len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase__ ), b_binary.zfill(UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
702
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. A_ = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case_ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case_ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: snake_case_ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: snake_case_ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Tuple = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) A__ : Dict = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(snake_case ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) A__ : Optional[int] = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(snake_case ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) A__ : Any = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(snake_case ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) A__ : Optional[Any] = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(snake_case ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior A__ : str = text_classifier("""This is great !""" , return_all_scores=snake_case ) self.assertEqual(nested_simplify(snake_case ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) A__ : int = text_classifier("""This is great !""" , return_all_scores=snake_case ) self.assertEqual( nested_simplify(snake_case ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) A__ : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=snake_case ) self.assertEqual( nested_simplify(snake_case ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) A__ : Optional[int] = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=snake_case ) self.assertEqual( nested_simplify(snake_case ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def _UpperCamelCase ( self : int ): '''simple docstring''' import torch A__ : Tuple = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) A__ : List[str] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(snake_case ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : str = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) A__ : Optional[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(snake_case ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : Optional[int] = pipeline("""text-classification""" ) A__ : Optional[int] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(snake_case ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) A__ : Optional[Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(snake_case ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) A__ : Dict = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(snake_case ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : Union[str, Any] = pipeline("""text-classification""" , framework="""tf""" ) A__ : Dict = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(snake_case ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) A__ : Optional[int] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(snake_case ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) A__ : Tuple = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(snake_case ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Any , snake_case : List[Any] , snake_case : Any ): '''simple docstring''' A__ : Union[str, Any] = TextClassificationPipeline(model=snake_case , tokenizer=snake_case ) return text_classifier, ["HuggingFace is in", "This is another test"] def _UpperCamelCase ( self : int , snake_case : Union[str, Any] , snake_case : Dict ): '''simple docstring''' A__ : List[str] = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 A__ : int = """HuggingFace is in""" A__ : List[Any] = text_classifier(snake_case ) self.assertEqual(nested_simplify(snake_case ) , [{"""label""": ANY(snake_case ), """score""": ANY(snake_case )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) A__ : Any = ["""HuggingFace is in """, """Paris is in France"""] A__ : Any = text_classifier(snake_case ) self.assertEqual( nested_simplify(snake_case ) , [{"""label""": ANY(snake_case ), """score""": ANY(snake_case )}, {"""label""": ANY(snake_case ), """score""": ANY(snake_case )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format A__ : List[Any] = text_classifier(snake_case , top_k=snake_case ) A__ : Tuple = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(snake_case ) , [[{"""label""": ANY(snake_case ), """score""": ANY(snake_case )}] * N, [{"""label""": ANY(snake_case ), """score""": ANY(snake_case )}] * N] , ) A__ : Optional[Any] = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} A__ : Union[str, Any] = text_classifier(snake_case ) self.assertEqual( nested_simplify(snake_case ) , {"""label""": ANY(snake_case ), """score""": ANY(snake_case )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. A__ : Tuple = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(snake_case ): text_classifier(snake_case ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility A__ : List[Any] = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(snake_case ) , [{"""label""": ANY(snake_case ), """score""": ANY(snake_case )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
498
0
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance SCREAMING_SNAKE_CASE = 6_3_7_8_1_3_7.0 SCREAMING_SNAKE_CASE = 6_3_5_6_7_5_2.3_1_4_2_4_5 SCREAMING_SNAKE_CASE = 6_3_7_8_1_3_7 def snake_case_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): UpperCAmelCase__ : List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude UpperCAmelCase__ : List[str] = atan((1 - flattening) * tan(radians(lowercase__ ) ) ) UpperCAmelCase__ : str = atan((1 - flattening) * tan(radians(lowercase__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius UpperCAmelCase__ : Any = haversine_distance(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values UpperCAmelCase__ : Any = (b_lata + b_lata) / 2 UpperCAmelCase__ : str = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) UpperCAmelCase__ : Dict = (sin(lowercase__ ) ** 2) * (cos(lowercase__ ) ** 2) UpperCAmelCase__ : Optional[Any] = cos(sigma / 2 ) ** 2 UpperCAmelCase__ : int = (sigma - sin(lowercase__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) UpperCAmelCase__ : Optional[int] = (cos(lowercase__ ) ** 2) * (sin(lowercase__ ) ** 2) UpperCAmelCase__ : Optional[Any] = sin(sigma / 2 ) ** 2 UpperCAmelCase__ : str = (sigma + sin(lowercase__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
199
'''simple docstring''' from math import factorial SCREAMING_SNAKE_CASE = {str(digit): factorial(digit) for digit in range(1_0)} def snake_case_ ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ): raise TypeError("Parameter number must be int" ) if number < 0: raise ValueError("Parameter number must be greater than or equal to 0" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(lowercase__ ) ) def snake_case_ ( lowercase__ = 6_0 , lowercase__ = 1_0_0_0_0_0_0 ): if not isinstance(lowercase__ , lowercase__ ) or not isinstance(lowercase__ , lowercase__ ): raise TypeError("Parameters chain_length and number_limit must be int" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( "Parameters chain_length and number_limit must be greater than 0" ) # the counter for the chains with the exact desired length UpperCAmelCase__ : Union[str, Any] = 0 # the cached sizes of the previous chains UpperCAmelCase__ : dict[int, int] = {} for start_chain_element in range(1 , lowercase__ ): # The temporary set will contain the elements of the chain UpperCAmelCase__ : Any = set() UpperCAmelCase__ : int = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. UpperCAmelCase__ : List[str] = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(lowercase__ ) chain_set_length += 1 UpperCAmelCase__ : List[str] = digit_factorial_sum(lowercase__ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] UpperCAmelCase__ : List[str] = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution()}')
199
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class A__ ( unittest.TestCase ): def __init__( self : List[str] , a : str , a : List[Any]=7 , a : Dict=3 , a : Optional[Any]=18 , a : List[Any]=30 , a : Union[str, Any]=400 , a : Tuple=True , a : Optional[int]=32 , a : Dict=True , ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : str = batch_size lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : Dict = image_size lowerCAmelCase__ : List[str] = min_resolution lowerCAmelCase__ : int = max_resolution lowerCAmelCase__ : Any = do_resize lowerCAmelCase__ : Tuple = size_divisor lowerCAmelCase__ : Optional[Any] = do_rescale def _lowerCamelCase ( self : Dict ): '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class A__ ( __magic_name__ , unittest.TestCase ): lowercase = GLPNImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = GLPNImageProcessingTester(self ) @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size_divisor' ) ) self.assertTrue(hasattr(a , 'resample' ) ) self.assertTrue(hasattr(a , 'do_rescale' ) ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCAmelCase__ : Tuple = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCAmelCase__ : Tuple = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
709
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """sentencepiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, """tokenizer_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/tokenizer.json""", }, } lowerCamelCase__ = { """google/rembert""": 256, } lowerCamelCase__ = """▁""" class A__ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = RemBertTokenizer def __init__( self : Optional[Any] , a : str=None , a : Any=None , a : List[Any]=True , a : str=True , a : Dict=False , a : Dict="[CLS]" , a : int="[SEP]" , a : Tuple="<unk>" , a : Optional[Any]="[SEP]" , a : Tuple="<pad>" , a : Dict="[CLS]" , a : Optional[Any]="[MASK]" , **a : str , ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( a , tokenizer_file=a , do_lower_case=a , remove_space=a , keep_accents=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , **a , ) lowerCAmelCase__ : int = do_lower_case lowerCAmelCase__ : int = remove_space lowerCAmelCase__ : List[Any] = keep_accents lowerCAmelCase__ : Optional[Any] = vocab_file lowerCAmelCase__ : Union[str, Any] = False if not self.vocab_file else True def _lowerCamelCase ( self : Dict , a : List[int] , a : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : Dict = [self.sep_token_id] lowerCAmelCase__ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self : str , a : List[int] , a : Optional[List[int]] = None , a : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a )) + [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1] def _lowerCamelCase ( self : List[Any] , a : List[int] , a : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : Tuple = [self.sep_token_id] lowerCAmelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self : Tuple , a : str , a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(a ): logger.error('Vocabulary path ({}) should be a directory'.format(a ) ) return lowerCAmelCase__ : int = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
69
0
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase_ ( unittest.TestCase ): @property def _snake_case ( self ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _lowerCAmelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , ) return model @property def _snake_case ( self ) -> Any: torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.dummy_uncond_unet _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = self.dummy_vq_model _lowerCAmelCase = LDMPipeline(unet=_lowerCAmelCase , vqvae=_lowerCAmelCase , scheduler=_lowerCAmelCase ) ldm.to(_lowerCAmelCase ) ldm.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = ldm(generator=_lowerCAmelCase , num_inference_steps=2 , output_type="numpy" ).images _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = ldm(generator=_lowerCAmelCase , num_inference_steps=2 , output_type="numpy" , return_dict=_lowerCAmelCase )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) _lowerCAmelCase = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> List[str]: _lowerCAmelCase = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(_lowerCAmelCase ) ldm.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = ldm(generator=_lowerCAmelCase , num_inference_steps=5 , output_type="numpy" ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCAmelCase = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447] ) _lowerCAmelCase = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
18
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
18
1
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any]=13 , __lowerCAmelCase : Dict=[30, 30] , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : Dict=True , __lowerCAmelCase : str=True , __lowerCAmelCase : Any=32 , __lowerCAmelCase : Union[str, Any]=5 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : Any=37 , __lowerCAmelCase : Optional[Any]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : str=10 , __lowerCAmelCase : str=0.0_2 , __lowerCAmelCase : Any=3 , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : List[Any]=8 , __lowerCAmelCase : Optional[Any]=10 , ) -> Dict: """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = scope A__ = n_targets A__ = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ = num_patches + 1 + self.num_detection_tokens def a_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ = [] for i in range(self.batch_size ): A__ = {} A__ = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__lowerCAmelCase ) A__ = torch.rand(self.n_targets , 4 , device=__lowerCAmelCase ) labels.append(__lowerCAmelCase ) A__ = self.get_config() return config, pixel_values, labels def a_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def a_ ( self : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple ) -> int: """simple docstring""" A__ = YolosModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def a_ ( self : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" A__ = YolosForObjectDetection(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(pixel_values=__lowerCAmelCase ) A__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ = model(pixel_values=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def a_ ( self : Dict ) -> Any: """simple docstring""" A__ = self.prepare_config_and_inputs() A__ = config_and_inputs A__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A (_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __lowerCamelCase : int = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) __lowerCamelCase : Tuple = False __lowerCamelCase : str = False __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Optional[int] = False def a_ ( self : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any=False ) -> str: """simple docstring""" A__ = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ = [] for i in range(self.model_tester.batch_size ): A__ = {} A__ = torch.ones( size=(self.model_tester.n_targets,) , device=__lowerCAmelCase , dtype=torch.long ) A__ = torch.ones( self.model_tester.n_targets , 4 , device=__lowerCAmelCase , dtype=torch.float ) labels.append(__lowerCAmelCase ) A__ = labels return inputs_dict def a_ ( self : Any ) -> Optional[int]: """simple docstring""" A__ = YolosModelTester(self ) A__ = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def a_ ( self : int ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : List[str] ) -> List[Any]: """simple docstring""" pass def a_ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def a_ ( self : str ) -> Optional[Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(__lowerCAmelCase ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def a_ ( self : Any ) -> int: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def a_ ( self : Optional[int] ) -> Any: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True # in YOLOS, the seq_len is different A__ = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) A__ = outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) A__ = outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ = len(__lowerCAmelCase ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) A__ = 1 self.assertEqual(out_len + added_hidden_states , len(__lowerCAmelCase ) ) A__ = outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def a_ ( self : Dict ) -> Tuple: """simple docstring""" def check_hidden_states_output(__lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ): A__ = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) A__ = outputs.hidden_states A__ = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) # YOLOS has a different seq_length A__ = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : int ) -> Any: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__lowerCAmelCase ) @slow def a_ ( self : Any ) -> int: """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = YolosModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def __lowerCamelCase ( ) -> Dict: """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A (unittest.TestCase ): '''simple docstring''' @cached_property def a_ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""" ) if is_vision_available() else None @slow def a_ ( self : List[str] ) -> Dict: """simple docstring""" A__ = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""" ).to(__lowerCAmelCase ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): A__ = model(inputs.pixel_values ) # verify outputs A__ = torch.Size((1, 1_00, 92) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) A__ = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__lowerCAmelCase , ) A__ = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) ) # verify postprocessing A__ = image_processor.post_process_object_detection( __lowerCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__lowerCAmelCase ) A__ = [75, 75, 17, 63, 17] A__ = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__lowerCAmelCase ) self.assertEqual(len(results["""scores"""] ) , 5 ) self.assertTrue(torch.allclose(results["""scores"""] , __lowerCAmelCase , atol=1e-4 ) ) self.assertSequenceEqual(results["""labels"""].tolist() , __lowerCAmelCase ) self.assertTrue(torch.allclose(results["""boxes"""][0, :] , __lowerCAmelCase ) )
715
from ...configuration_utils import PretrainedConfig from ...utils import logging A : int = logging.get_logger(__name__) A : Optional[Any] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Optional[int] = '''visual_bert''' def __init__( self : int , __lowerCAmelCase : Optional[Any]=3_05_22 , __lowerCAmelCase : Dict=7_68 , __lowerCAmelCase : List[str]=5_12 , __lowerCAmelCase : List[str]=12 , __lowerCAmelCase : Tuple=12 , __lowerCAmelCase : Optional[Any]=30_72 , __lowerCAmelCase : Optional[int]="gelu" , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : Optional[int]=5_12 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : str=0.0_2 , __lowerCAmelCase : List[Any]=1e-12 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : str=True , __lowerCAmelCase : Dict=1 , __lowerCAmelCase : Dict=0 , __lowerCAmelCase : Optional[Any]=2 , **__lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = visual_embedding_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = type_vocab_size A__ = layer_norm_eps A__ = bypass_transformer A__ = special_visual_initialize
247
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowercase_: str = logging.get_logger(__name__) def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : str = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["""stage2""", """stage3""", """stage4"""] , ) snake_case__ : Dict = DetaConfig( backbone_config=UpperCAmelCase_ , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=UpperCAmelCase_ , with_box_refine=UpperCAmelCase_ , two_stage=UpperCAmelCase_ , ) # set labels snake_case__ : Optional[int] = """huggingface/label-files""" if "o365" in model_name: snake_case__ : List[Any] = 366 snake_case__ : Dict = """object365-id2label.json""" else: snake_case__ : List[str] = 91 snake_case__ : List[str] = """coco-detection-id2label.json""" snake_case__ : Tuple = num_labels snake_case__ : Tuple = json.load(open(cached_download(hf_hub_url(UpperCAmelCase_ , UpperCAmelCase_ , repo_type="""dataset""")) , """r""")) snake_case__ : str = {int(UpperCAmelCase_): v for k, v in idalabel.items()} snake_case__ : Optional[int] = idalabel snake_case__ : Optional[Any] = {v: k for k, v in idalabel.items()} return config def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : str = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""")) rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""")) rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""")) rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""")) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight')) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias')) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table')) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index')) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight')) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias')) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight')) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias')) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight')) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias')) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight')) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias')) if i < 3: rename_keys.append((F'backbone.0.body.layers.{i}.downsample.reduction.weight', F'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight')) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.weight', F'model.backbone.model.encoder.layers.{i}.downsample.norm.weight')) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.bias', F'model.backbone.model.encoder.layers.{i}.downsample.norm.bias')) rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""")) rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""")) rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""")) rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""")) rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""")) rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""")) # transformer encoder for i in range(config.encoder_layers): rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', F'model.encoder.layers.{i}.self_attn.sampling_offsets.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', F'model.encoder.layers.{i}.self_attn.sampling_offsets.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', F'model.encoder.layers.{i}.self_attn.attention_weights.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', F'model.encoder.layers.{i}.self_attn.attention_weights.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.weight', F'model.encoder.layers.{i}.self_attn.value_proj.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.bias', F'model.encoder.layers.{i}.self_attn.value_proj.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.weight', F'model.encoder.layers.{i}.self_attn.output_proj.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.bias', F'model.encoder.layers.{i}.self_attn.output_proj.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.weight', F'model.encoder.layers.{i}.self_attn_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'model.encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'model.encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'model.encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'model.encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'model.encoder.layers.{i}.fc2.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'model.encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'model.encoder.layers.{i}.final_layer_norm.bias')) # transformer decoder for i in range(config.decoder_layers): rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', F'model.decoder.layers.{i}.encoder_attn.attention_weights.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', F'model.decoder.layers.{i}.encoder_attn.attention_weights.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', F'model.decoder.layers.{i}.encoder_attn.value_proj.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', F'model.decoder.layers.{i}.encoder_attn.value_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', F'model.decoder.layers.{i}.encoder_attn.output_proj.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', F'model.decoder.layers.{i}.encoder_attn.output_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.weight', F'model.decoder.layers.{i}.encoder_attn_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'model.decoder.layers.{i}.encoder_attn_layer_norm.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'model.decoder.layers.{i}.self_attn.out_proj.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'model.decoder.layers.{i}.self_attn.out_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.weight', F'model.decoder.layers.{i}.self_attn_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.bias', F'model.decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'model.decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'model.decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'model.decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'model.decoder.layers.{i}.fc2.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'model.decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'model.decoder.layers.{i}.final_layer_norm.bias')) # fmt: on return rename_keys def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" snake_case__ : List[Any] = dct.pop(UpperCAmelCase_) snake_case__ : int = val def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" snake_case__ : Union[str, Any] = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): snake_case__ : Union[str, Any] = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case__ : Tuple = state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight') snake_case__ : Optional[Any] = state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict snake_case__ : Any = in_proj_weight[:dim, :] snake_case__ : Dict = in_proj_bias[: dim] snake_case__ : int = in_proj_weight[ dim : dim * 2, : ] snake_case__ : Dict = in_proj_bias[ dim : dim * 2 ] snake_case__ : Dict = in_proj_weight[ -dim :, : ] snake_case__ : Any = in_proj_bias[-dim :] # fmt: on def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" snake_case__ : Optional[int] = config.d_model for i in range(config.decoder_layers): # read in weights + bias of input projection layer of self-attention snake_case__ : Optional[int] = state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_weight') snake_case__ : int = state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_bias') # next, add query, keys and values (in that order) to the state dict snake_case__ : int = in_proj_weight[:hidden_size, :] snake_case__ : Tuple = in_proj_bias[:hidden_size] snake_case__ : Optional[Any] = in_proj_weight[ hidden_size : hidden_size * 2, : ] snake_case__ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] snake_case__ : List[str] = in_proj_weight[-hidden_size:, :] snake_case__ : Union[str, Any] = in_proj_bias[-hidden_size:] def _lowercase ( ): """simple docstring""" snake_case__ : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : List[str] = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_).raw) return im @torch.no_grad() def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" snake_case__ : int = get_deta_config(UpperCAmelCase_) # load original state dict if model_name == "deta-swin-large": snake_case__ : Optional[int] = hf_hub_download(repo_id="""nielsr/deta-checkpoints""" , filename="""adet_swin_ft.pth""") elif model_name == "deta-swin-large-o365": snake_case__ : Tuple = hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""" , filename="""deta_swin_pt_o365.pth""") else: raise ValueError(F'Model name {model_name} not supported') snake_case__ : Any = torch.load(UpperCAmelCase_ , map_location="""cpu""")["""model"""] # original state dict for name, param in state_dict.items(): print(UpperCAmelCase_ , param.shape) # rename keys snake_case__ : Optional[int] = create_rename_keys(UpperCAmelCase_) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) read_in_swin_q_k_v(UpperCAmelCase_ , config.backbone_config) read_in_decoder_q_k_v(UpperCAmelCase_ , UpperCAmelCase_) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: snake_case__ : Any = state_dict.pop(UpperCAmelCase_) snake_case__ : Union[str, Any] = val if "input_proj" in key: snake_case__ : Optional[Any] = state_dict.pop(UpperCAmelCase_) snake_case__ : Dict = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: snake_case__ : Tuple = state_dict.pop(UpperCAmelCase_) snake_case__ : List[str] = val # finally, create HuggingFace model and load state dict snake_case__ : List[str] = DetaForObjectDetection(UpperCAmelCase_) model.load_state_dict(UpperCAmelCase_) model.eval() snake_case__ : List[Any] = """cuda""" if torch.cuda.is_available() else """cpu""" model.to(UpperCAmelCase_) # load image processor snake_case__ : Tuple = DetaImageProcessor(format="""coco_detection""") # verify our conversion on image snake_case__ : Any = prepare_img() snake_case__ : Tuple = processor(images=UpperCAmelCase_ , return_tensors="""pt""") snake_case__ : Tuple = encoding["""pixel_values"""] snake_case__ : List[str] = model(pixel_values.to(UpperCAmelCase_)) # verify logits print("""Logits:""" , outputs.logits[0, :3, :3]) print("""Boxes:""" , outputs.pred_boxes[0, :3, :3]) if model_name == "deta-swin-large": snake_case__ : int = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]]) snake_case__ : Optional[Any] = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]]) elif model_name == "deta-swin-large-o365": snake_case__ : Optional[int] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]]) snake_case__ : List[str] = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]]) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(UpperCAmelCase_) , atol=1e-4) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(UpperCAmelCase_) , atol=1e-4) print("""Everything ok!""") if pytorch_dump_folder_path: # Save model and processor logger.info(F'Saving PyTorch model and processor to {pytorch_dump_folder_path}...') Path(UpperCAmelCase_).mkdir(exist_ok=UpperCAmelCase_) model.save_pretrained(UpperCAmelCase_) processor.save_pretrained(UpperCAmelCase_) # Push to hub if push_to_hub: print("""Pushing model and processor to hub...""") model.push_to_hub(F'jozhang97/{model_name}') processor.push_to_hub(F'jozhang97/{model_name}') if __name__ == "__main__": lowercase_: int = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowercase_: str = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
648
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase__ (unittest.TestCase ): """simple docstring""" def lowercase ( self : List[str] ): debug_launcher(test_script.main ) def lowercase ( self : Tuple ): debug_launcher(test_ops.main )
648
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
714
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Any =logging.get_logger(__name__) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __SCREAMING_SNAKE_CASE : str = MaskFormerConfig(backbone_config=lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Optional[Any] = 847 __SCREAMING_SNAKE_CASE : Optional[int] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Dict = 150 __SCREAMING_SNAKE_CASE : Union[str, Any] = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Union[str, Any] = 171 __SCREAMING_SNAKE_CASE : Tuple = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO __SCREAMING_SNAKE_CASE : Dict = 133 __SCREAMING_SNAKE_CASE : Union[str, Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Optional[int] = 19 __SCREAMING_SNAKE_CASE : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Tuple = 65 __SCREAMING_SNAKE_CASE : Optional[Any] = '''mapillary-vistas-id2label.json''' __SCREAMING_SNAKE_CASE : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE : Any = {int(lowercase__ ): v for k, v in idalabel.items()} return config def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Any = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : int = dct.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = val def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __SCREAMING_SNAKE_CASE : List[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Dict = in_proj_weight[:dim, :] __SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[: dim] __SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : Dict = in_proj_bias[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight[ -dim :, : ] __SCREAMING_SNAKE_CASE : Dict = in_proj_bias[-dim :] # fmt: on def _UpperCamelCase ( lowercase__ , lowercase__ ): # fmt: off __SCREAMING_SNAKE_CASE : Any = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __SCREAMING_SNAKE_CASE : List[Any] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) __SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[: hidden_size, :] __SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias[:config.hidden_size] __SCREAMING_SNAKE_CASE : Optional[int] = in_proj_weight[hidden_size : hidden_size * 2, :] __SCREAMING_SNAKE_CASE : Dict = in_proj_bias[hidden_size : hidden_size * 2] __SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[-hidden_size :, :] __SCREAMING_SNAKE_CASE : List[str] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __SCREAMING_SNAKE_CASE : Any = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) __SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[: hidden_size, :] __SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias[:config.hidden_size] __SCREAMING_SNAKE_CASE : Any = in_proj_weight[hidden_size : hidden_size * 2, :] __SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] __SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[-hidden_size :, :] __SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[-hidden_size :] # fmt: on def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = False ): __SCREAMING_SNAKE_CASE : Dict = get_maskformer_config(lowercase__ ) # load original state_dict with open(lowercase__ , '''rb''' ) as f: __SCREAMING_SNAKE_CASE : Any = pickle.load(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __SCREAMING_SNAKE_CASE : Dict = create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_swin_q_k_v(lowercase__ , config.backbone_config ) read_in_decoder_q_k_v(lowercase__ , lowercase__ ) # update to torch tensors for key, value in state_dict.items(): __SCREAMING_SNAKE_CASE : Any = torch.from_numpy(lowercase__ ) # load 🤗 model __SCREAMING_SNAKE_CASE : Union[str, Any] = MaskFormerForInstanceSegmentation(lowercase__ ) model.eval() for name, param in model.named_parameters(): print(lowercase__ , param.shape ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = model.load_state_dict(lowercase__ , strict=lowercase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowercase__ ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results __SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() if "vistas" in model_name: __SCREAMING_SNAKE_CASE : Optional[int] = 65 elif "cityscapes" in model_name: __SCREAMING_SNAKE_CASE : str = 65535 else: __SCREAMING_SNAKE_CASE : Optional[Any] = 255 __SCREAMING_SNAKE_CASE : Dict = True if '''ade''' in model_name else False __SCREAMING_SNAKE_CASE : int = MaskFormerImageProcessor(ignore_index=lowercase__ , reduce_labels=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = image_processor(lowercase__ , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Any = model(**lowercase__ ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase : Optional[int] =parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
260
0
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any]=14 , _lowerCAmelCase : int=7 , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : List[Any]=99 , _lowerCAmelCase : Dict=32 , _lowerCAmelCase : Optional[int]=5 , _lowerCAmelCase : int=4 , _lowerCAmelCase : Union[str, Any]=37 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Tuple=512 , _lowerCAmelCase : Dict=16 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : List[Any]=3 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : List[str]=None , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_input_mask SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = use_mc_token_ids SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = num_choices SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = self.vocab_size - 1 def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_mc_token_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = self.get_config() SCREAMING_SNAKE_CASE_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase_ ( self : Optional[int] ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , *_lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = CTRLModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase ) model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , *_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = CTRLLMHeadModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , *_lowerCAmelCase : List[str] ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = CTRLForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowercase_ = (CTRLLMHeadModel,) if is_torch_available() else () lowercase_ = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) lowercase_ = True lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = CTRLModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , n_embd=37 ) def lowerCAmelCase_ ( self : int ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_lowerCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase_ ( self : int ): pass @slow def lowerCAmelCase_ ( self : str ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = CTRLModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCAmelCase_ ( self : int ): pass @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[11_859, 0, 1_611, 8]] , dtype=torch.long , device=_lowerCAmelCase ) # Legal the president is SCREAMING_SNAKE_CASE_ = [ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a SCREAMING_SNAKE_CASE_ = model.generate(_lowerCAmelCase , do_sample=_lowerCAmelCase ) self.assertListEqual(output_ids[0].tolist() , _lowerCAmelCase )
31
from ....configuration_utils import PretrainedConfig from ....utils import logging __a : List[Any] = logging.get_logger(__name__) # TODO: upload to AWS __a : Union[str, Any] = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class __lowercase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "retribert" def __init__( self : Any , UpperCamelCase_ : int=30_522 , UpperCamelCase_ : Optional[int]=768 , UpperCamelCase_ : Union[str, Any]=8 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : List[Any]=3_072 , UpperCamelCase_ : Tuple="gelu" , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : List[str]=512 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : List[str]=1e-12 , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[Any]=128 , UpperCamelCase_ : Union[str, Any]=0 , **UpperCamelCase_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = hidden_act __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = initializer_range __A = layer_norm_eps __A = share_encoders __A = projection_dim
637
0
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging _lowerCamelCase = logging.get_logger(__name__) class lowerCamelCase_ ( lowercase ): """simple docstring""" _lowerCAmelCase : Optional[Any] = ["pixel_values"] def __init__( self , UpperCAmelCase__ = True , UpperCAmelCase__ = 1 / 255 , UpperCAmelCase__ = True , UpperCAmelCase__ = 8 , **UpperCAmelCase__ , ): super().__init__(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_pad SCREAMING_SNAKE_CASE__ = pad_size def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ ): return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_image_size(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = (old_height // size + 1) * size - old_height SCREAMING_SNAKE_CASE__ = (old_width // size + 1) * size - old_width return pad(UpperCAmelCase__ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=UpperCAmelCase__ ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = ChannelDimension.FIRST , **UpperCAmelCase__ , ): SCREAMING_SNAKE_CASE__ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ = do_pad if do_pad is not None else self.do_pad SCREAMING_SNAKE_CASE__ = pad_size if pad_size is not None else self.pad_size SCREAMING_SNAKE_CASE__ = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_pad: SCREAMING_SNAKE_CASE__ = [self.pad(UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] SCREAMING_SNAKE_CASE__ = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] SCREAMING_SNAKE_CASE__ = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
112
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __lowercase ( ): SCREAMING_SNAKE_CASE__ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=lowerCamelCase_ ) env_command_parser(subparsers=lowerCamelCase_ ) launch_command_parser(subparsers=lowerCamelCase_ ) tpu_command_parser(subparsers=lowerCamelCase_ ) test_command_parser(subparsers=lowerCamelCase_ ) # Let's go SCREAMING_SNAKE_CASE__ = parser.parse_args() if not hasattr(lowerCamelCase_ , "func" ): parser.print_help() exit(1 ) # Run args.func(lowerCamelCase_ ) if __name__ == "__main__": main()
112
1
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def A ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=10_24 ) -> Any: '''simple docstring''' lowerCAmelCase__ ,lowerCAmelCase__ = [], [] lowerCAmelCase__ = list(zip(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase__ ,lowerCAmelCase__ = sorted_examples[0] def is_too_big(UpperCamelCase_ : Union[str, Any] ): return tok(UpperCamelCase_ , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): lowerCAmelCase__ = new_src + " " + src lowerCAmelCase__ = new_tgt + " " + tgt if is_too_big(UpperCamelCase_ ) or is_too_big(UpperCamelCase_ ): # cant fit, finalize example finished_src.append(UpperCamelCase_ ) finished_tgt.append(UpperCamelCase_ ) lowerCAmelCase__ ,lowerCAmelCase__ = src, tgt else: # can fit, keep adding lowerCAmelCase__ ,lowerCAmelCase__ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(UpperCamelCase_ ) finished_tgt.append(UpperCamelCase_ ) return finished_src, finished_tgt def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Path , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = Path(UpperCamelCase_ ) save_path.mkdir(exist_ok=UpperCamelCase_ ) for split in ["train"]: lowerCAmelCase__ ,lowerCAmelCase__ = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" lowerCAmelCase__ = [x.rstrip() for x in Path(UpperCamelCase_ ).open().readlines()] lowerCAmelCase__ = [x.rstrip() for x in Path(UpperCamelCase_ ).open().readlines()] lowerCAmelCase__ ,lowerCAmelCase__ = pack_examples(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) print(F"""packed {split} split from {len(UpperCamelCase_ )} examples -> {len(UpperCamelCase_ )}.""" ) Path(save_path / F"""{split}.source""" ).open("w" ).write("\n".join(UpperCamelCase_ ) ) Path(save_path / F"""{split}.target""" ).open("w" ).write("\n".join(UpperCamelCase_ ) ) for split in ["val", "test"]: lowerCAmelCase__ ,lowerCAmelCase__ = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(UpperCamelCase_ , save_path / F"""{split}.source""" ) shutil.copyfile(UpperCamelCase_ , save_path / F"""{split}.target""" ) def A ( ) -> int: '''simple docstring''' lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=UpperCamelCase_ , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=UpperCamelCase_ , default=1_28 ) parser.add_argument("--data_dir" , type=UpperCamelCase_ ) parser.add_argument("--save_path" , type=UpperCamelCase_ ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(UpperCamelCase_ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
48
'''simple docstring''' UpperCamelCase_ = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def _UpperCAmelCase ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float: if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _UpperCAmelCase ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float: if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
384
0
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
702
import numpy as np import qiskit def UpperCamelCase__ ( A__ = 8 , A__ = None ) -> str: snake_case__ : Optional[int] = np.random.default_rng(seed=A__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. snake_case__ : Tuple = 6 * key_len # Measurement basis for Alice's qubits. snake_case__ : Tuple = rng.integers(2 , size=A__ ) # The set of states Alice will prepare. snake_case__ : List[str] = rng.integers(2 , size=A__ ) # Measurement basis for Bob's qubits. snake_case__ : List[Any] = rng.integers(2 , size=A__ ) # Quantum Circuit to simulate BB84 snake_case__ : Any = qiskit.QuantumCircuit(A__ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(A__ ): if alice_state[index] == 1: bbaa_circ.x(A__ ) if alice_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(A__ ): if bob_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. snake_case__ : List[str] = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. snake_case__ : Optional[Any] = qiskit.execute(A__ , A__ , shots=1 , seed_simulator=A__ ) # Returns the result of measurement. snake_case__ : Union[str, Any] = job.result().get_counts(A__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. snake_case__ : Optional[Any] = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( A__ , A__ , A__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. snake_case__ : Tuple = gen_key[:key_len] if len(A__ ) >= key_len else gen_key.ljust(A__ , '0' ) return key if __name__ == "__main__": print(F'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
699
0
"""simple docstring""" UpperCAmelCase__ =0 # The first color of the flag. UpperCAmelCase__ =1 # The second color of the flag. UpperCAmelCase__ =2 # The third color of the flag. UpperCAmelCase__ =(red, white, blue) def lowerCAmelCase_ ( UpperCamelCase__ : list ): """simple docstring""" if not sequence: return [] if len(UpperCamelCase__ ) == 1: return list(UpperCamelCase__ ) __lowercase = 0 __lowercase = len(UpperCamelCase__ ) - 1 __lowercase = 0 while mid <= high: if sequence[mid] == colors[0]: __lowercase , __lowercase = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __lowercase , __lowercase = sequence[high], sequence[mid] high -= 1 else: __lowercase = f'''The elements inside the sequence must contains only {colors} values''' raise ValueError(UpperCamelCase__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ =input("Enter numbers separated by commas:\n").strip() UpperCAmelCase__ =[int(item.strip()) for item in user_input.split(",")] print(f"""{dutch_national_flag_sort(unsorted)}""")
616
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase__ =logging.get_logger(__name__) class lowerCamelCase__ ( _a ): a : Optional[int] = """vision-encoder-decoder""" a : Dict = True def __init__( self : Dict , **A_ : List[Any] ): '''simple docstring''' super().__init__(**A_ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'''A configuraton of type {self.model_type} cannot be instantiated because ''' F'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) __lowercase = kwargs.pop("""encoder""" ) __lowercase = encoder_config.pop("""model_type""" ) __lowercase = kwargs.pop("""decoder""" ) __lowercase = decoder_config.pop("""model_type""" ) __lowercase = AutoConfig.for_model(A_ , **A_ ) __lowercase = AutoConfig.for_model(A_ , **A_ ) __lowercase = True @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , A_ : PretrainedConfig , A_ : PretrainedConfig , **A_ : Any ): '''simple docstring''' logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) __lowercase = True __lowercase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **A_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.encoder.to_dict() __lowercase = self.decoder.to_dict() __lowercase = self.__class__.model_type return output class lowerCamelCase__ ( _a ): a : Dict = version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' return 1e-4 @property def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class lowerCamelCase__ ( _a ): @property def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = OrderedDict() __lowercase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} __lowercase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} __lowercase = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def SCREAMING_SNAKE_CASE_ ( self : str , A_ : "PreTrainedTokenizerBase" , A_ : int = -1 , A_ : int = -1 , A_ : bool = False , A_ : Optional["TensorType"] = None , ): '''simple docstring''' import torch __lowercase = OrderedDict() __lowercase = super().generate_dummy_inputs( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) __lowercase , __lowercase = dummy_input["""input_ids"""].shape __lowercase = (batch, encoder_sequence, self._config.encoder_hidden_size) __lowercase = dummy_input.pop("""input_ids""" ) __lowercase = dummy_input.pop("""attention_mask""" ) __lowercase = torch.zeros(A_ ) return common_inputs class lowerCamelCase__ ( _a ): @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : str , A_ : PretrainedConfig ): '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(A_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , A_ : PretrainedConfig , A_ : PretrainedConfig , A_ : str = "default" ): '''simple docstring''' __lowercase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(A_ , A_ )
616
1
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _UpperCamelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name def snake_case (A_ :Union[List, PIL.Image.Image, torch.Tensor] ): '''simple docstring''' warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , A_ , ) if isinstance(A_ , torch.Tensor ): return image elif isinstance(A_ , PIL.Image.Image ): a : Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): a, a : Optional[Any] = image[0].size a, a : Optional[Any] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 a : Tuple = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] a : Optional[int] = np.concatenate(A_ , axis=0 ) a : Any = np.array(A_ ).astype(np.floataa ) / 255.0 a : Tuple = image.transpose(0 , 3 , 1 , 2 ) a : List[Any] = 2.0 * image - 1.0 a : int = torch.from_numpy(A_ ) elif isinstance(image[0] , torch.Tensor ): a : Optional[int] = torch.cat(A_ , dim=0 ) return image def snake_case (A_ :Union[List, PIL.Image.Image, torch.Tensor] ): '''simple docstring''' if isinstance(A_ , torch.Tensor ): return mask elif isinstance(A_ , PIL.Image.Image ): a : Optional[Any] = [mask] if isinstance(mask[0] , PIL.Image.Image ): a, a : str = mask[0].size a, a : Tuple = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 a : Dict = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] a : Union[str, Any] = np.concatenate(A_ , axis=0 ) a : str = mask.astype(np.floataa ) / 255.0 a : str = 0 a : List[str] = 1 a : List[str] = torch.from_numpy(A_ ) elif isinstance(mask[0] , torch.Tensor ): a : Union[str, Any] = torch.cat(A_ , dim=0 ) return mask class snake_case ( UpperCAmelCase ): __magic_name__ = 42 __magic_name__ = 42 def __init__( self : Tuple , A : List[str] , A : Tuple ): '''simple docstring''' super().__init__() self.register_modules(unet=A , scheduler=A ) @torch.no_grad() def __call__( self : Optional[int] , A : Union[torch.Tensor, PIL.Image.Image] , A : Union[torch.Tensor, PIL.Image.Image] , A : int = 2_5_0 , A : float = 0.0 , A : int = 1_0 , A : int = 1_0 , A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A : Optional[str] = "pil" , A : bool = True , ): '''simple docstring''' a : List[Any] = image a : int = _preprocess_image(A ) a : str = original_image.to(device=self.device , dtype=self.unet.dtype ) a : Dict = _preprocess_mask(A ) a : Union[str, Any] = mask_image.to(device=self.device , dtype=self.unet.dtype ) a : Any = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(A , A ) and len(A ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(A )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) a : Optional[int] = original_image.shape a : List[Any] = randn_tensor(A , generator=A , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(A , A , A , self.device ) a : Union[str, Any] = eta a : int = self.scheduler.timesteps[0] + 1 a : Optional[int] = generator[0] if isinstance(A , A ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual a : List[Any] = self.unet(A , A ).sample # compute previous image: x_t -> x_t-1 a : List[Any] = self.scheduler.step(A , A , A , A , A , A ).prev_sample else: # compute the reverse: x_t-1 -> x_t a : str = self.scheduler.undo_step(A , A , A ) a : List[str] = t a : Any = (image / 2 + 0.5).clamp(0 , 1 ) a : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a : int = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
118
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) _UpperCamelCase : List[str] = logging.getLogger() def snake_case (A_ :Path , A_ :list ): '''simple docstring''' a : Optional[int] = '\n'.join(A_ ) Path(A_ ).open('w' ).writelines(A_ ) _UpperCamelCase : Optional[Any] = 'patrickvonplaten/t5-tiny-random' _UpperCamelCase : str = 'sshleifer/bart-tiny-random' _UpperCamelCase : Any = 'sshleifer/tiny-mbart' _UpperCamelCase : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class snake_case ( UpperCAmelCase ): def lowerCamelCase__ ( self : List[Any] , A : Optional[Any] ): '''simple docstring''' a : Dict = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' a : List[str] = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() a : Optional[Any] = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(A , A ) a : Tuple = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) a : List[Any] = 'translation_en_to_de' if model == T5_TINY else 'summarization' a : List[Any] = F''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(A , 'argv' , A ): run_generate() assert Path(A ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' self.run_eval_tester(A ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase__ ( self : Union[str, Any] , A : List[Any] ): '''simple docstring''' self.run_eval_tester(A ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase__ ( self : Optional[Any] , A : List[Any] ): '''simple docstring''' a : Dict = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' a : int = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() a : Optional[Any] = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } a : int = Path(self.get_auto_remove_tmp_dir() ) a : int = str(tmp_dir / 'scores.json' ) a : Optional[int] = str(tmp_dir / 'val.target' ) _dump_articles(A , text['en'] ) _dump_articles(A , text['de'] ) a : List[str] = 'translation_en_to_de' if model == T5_TINY else 'summarization' a : Any = F''' run_eval_search.py {model} {str(A )} {str(A )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(A , 'argv' , A ): with CaptureStdout() as cs: run_search() a : Tuple = [' num_beams | length_penalty', model, 'Best score args'] a : List[str] = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(A ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(A ).exists() os.remove(Path(A ) )
118
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class A : def __init__( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Any=13 , lowercase_ : Any=10 , lowercase_ : Any=3 , lowercase_ : Any=2 , lowercase_ : Union[str, Any]=2 , lowercase_ : List[str]=True , lowercase_ : List[str]=True , lowercase_ : List[str]=32 , lowercase_ : Any=5 , lowercase_ : List[Any]=4 , lowercase_ : Any=37 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : Tuple=0.1 , lowercase_ : str=0.1 , lowercase_ : int=10 , lowercase_ : List[str]=0.02 , lowercase_ : int="divided_space_time" , lowercase_ : Optional[int]=None , ) -> str: """simple docstring""" _lowerCamelCase : List[str] =parent _lowerCamelCase : List[Any] =batch_size _lowerCamelCase : List[Any] =image_size _lowerCamelCase : str =num_channels _lowerCamelCase : Dict =patch_size _lowerCamelCase : Any =num_frames _lowerCamelCase : Union[str, Any] =is_training _lowerCamelCase : int =use_labels _lowerCamelCase : Any =hidden_size _lowerCamelCase : List[Any] =num_hidden_layers _lowerCamelCase : Union[str, Any] =num_attention_heads _lowerCamelCase : int =intermediate_size _lowerCamelCase : Dict =hidden_act _lowerCamelCase : str =hidden_dropout_prob _lowerCamelCase : Union[str, Any] =attention_probs_dropout_prob _lowerCamelCase : str =attention_type _lowerCamelCase : List[str] =initializer_range _lowerCamelCase : Tuple =scope _lowerCamelCase : List[Any] =num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _lowerCamelCase : Dict =(image_size // patch_size) ** 2 _lowerCamelCase : str =(num_frames) * self.num_patches_per_frame + 1 def lowerCamelCase ( self : int ) -> int: """simple docstring""" _lowerCamelCase : Optional[int] =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : Union[str, Any] =None if self.use_labels: _lowerCamelCase : List[Any] =ids_tensor([self.batch_size] , self.num_labels ) _lowerCamelCase : List[Any] =self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" _lowerCamelCase : str =TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _lowerCamelCase : List[Any] =self.num_labels return config def lowerCamelCase ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] ) -> List[Any]: """simple docstring""" _lowerCamelCase : List[Any] =TimesformerModel(config=__a ) model.to(__a ) model.eval() _lowerCamelCase : List[Any] =model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self : List[str] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Any ) -> Dict: """simple docstring""" _lowerCamelCase : List[str] =TimesformerForVideoClassification(__a ) model.to(__a ) model.eval() _lowerCamelCase : str =model(__a ) # verify the logits shape _lowerCamelCase : str =torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __a ) def lowerCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[int] =self.prepare_config_and_inputs() _lowerCamelCase : int =config_and_inputs _lowerCamelCase : List[str] ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A ( A__ , A__ , unittest.TestCase ): UpperCamelCase__ : Union[str, Any] =(TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () UpperCamelCase__ : Union[str, Any] =( {'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification} if is_torch_available() else {} ) UpperCamelCase__ : Any =False UpperCamelCase__ : Optional[Any] =False UpperCamelCase__ : Tuple =False UpperCamelCase__ : Optional[int] =False def lowerCamelCase ( self : Dict ) -> Any: """simple docstring""" _lowerCamelCase : Optional[int] =TimesformerModelTester(self ) _lowerCamelCase : List[Any] =ConfigTester( self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def lowerCamelCase ( self : Tuple , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : int=False ) -> List[Any]: """simple docstring""" _lowerCamelCase : str =copy.deepcopy(__a ) if return_labels: if model_class in get_values(__a ): _lowerCamelCase : List[Any] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) return inputs_dict def lowerCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds' ) def lowerCamelCase ( self : Dict ) -> str: """simple docstring""" pass def lowerCamelCase ( self : Optional[int] ) -> int: """simple docstring""" _lowerCamelCase : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[Any] =model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCamelCase : int =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" _lowerCamelCase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : str =model_class(__a ) _lowerCamelCase : Any =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] =[*signature.parameters.keys()] _lowerCamelCase : Optional[Any] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCamelCase ( self : Tuple ) -> Dict: """simple docstring""" _lowerCamelCase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__a ) @slow def lowerCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : str =TimesformerModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCamelCase ( self : List[Any] ) -> Any: """simple docstring""" if not self.has_attentions: pass else: _lowerCamelCase : int =self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : int =True for model_class in self.all_model_classes: _lowerCamelCase : Optional[int] =self.model_tester.seq_length _lowerCamelCase : Union[str, Any] =self.model_tester.num_frames _lowerCamelCase : Union[str, Any] =True _lowerCamelCase : Any =False _lowerCamelCase : Optional[Any] =True _lowerCamelCase : List[Any] =model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _lowerCamelCase : Dict =model(**self._prepare_for_class(__a , __a ) ) _lowerCamelCase : str =outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCamelCase : int =True _lowerCamelCase : List[str] =model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _lowerCamelCase : int =model(**self._prepare_for_class(__a , __a ) ) _lowerCamelCase : Union[str, Any] =outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _lowerCamelCase : Tuple =len(__a ) # Check attention is always last and order is fine _lowerCamelCase : Optional[int] =True _lowerCamelCase : List[Any] =True _lowerCamelCase : List[Any] =model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _lowerCamelCase : Any =model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 1 , len(__a ) ) _lowerCamelCase : Union[str, Any] =outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowerCamelCase ( self : str ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(lowercase_ : Any , lowercase_ : int , lowercase_ : Optional[int] ): _lowerCamelCase : Optional[int] =model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _lowerCamelCase : List[Any] =model(**self._prepare_for_class(__a , __a ) ) _lowerCamelCase : Any =outputs.hidden_states _lowerCamelCase : Dict =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__a ) , __a ) _lowerCamelCase : str =self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _lowerCamelCase : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Union[str, Any] =True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Dict =True check_hidden_states_output(__a , __a , __a ) def a_ ( ): '''simple docstring''' _lowerCamelCase : List[str] =hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _lowerCamelCase : Any =np.load(_UpperCamelCase ) return list(_UpperCamelCase ) @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : Dict ) -> Tuple: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _lowerCamelCase : str =TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to( __a ) _lowerCamelCase : Optional[Any] =self.default_image_processor _lowerCamelCase : int =prepare_video() _lowerCamelCase : Union[str, Any] =image_processor(video[:8] , return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): _lowerCamelCase : Tuple =model(**__a ) # verify the logits _lowerCamelCase : Union[str, Any] =torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __a ) _lowerCamelCase : Optional[int] =torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
464
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ) -> Any: '''simple docstring''' if attention_mask is None: lowerCamelCase__: List[str] = tf.cast(tf.math.not_equal(_UpperCamelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCamelCase__ : __lowerCamelCase = OPTConfig __lowerCamelCase = {} __lowerCamelCase = """gelu""" def __init__( self : Union[str, Any] , __a : List[Any] , __a : Dict=13 , __a : Dict=7 , __a : Optional[Any]=True , __a : Any=False , __a : Tuple=99 , __a : Optional[int]=16 , __a : Any=2 , __a : Optional[Any]=4 , __a : Union[str, Any]=4 , __a : Tuple="gelu" , __a : Optional[int]=0.1 , __a : int=0.1 , __a : List[Any]=20 , __a : Tuple=2 , __a : str=1 , __a : str=0 , __a : List[Any]=16 , __a : Optional[Any]=16 , ): '''simple docstring''' lowerCamelCase__: List[str] = parent lowerCamelCase__: List[str] = batch_size lowerCamelCase__: Dict = seq_length lowerCamelCase__: List[str] = is_training lowerCamelCase__: Dict = use_labels lowerCamelCase__: Union[str, Any] = vocab_size lowerCamelCase__: Union[str, Any] = hidden_size lowerCamelCase__: Any = num_hidden_layers lowerCamelCase__: Union[str, Any] = num_attention_heads lowerCamelCase__: Tuple = intermediate_size lowerCamelCase__: Optional[int] = hidden_act lowerCamelCase__: Union[str, Any] = hidden_dropout_prob lowerCamelCase__: str = attention_probs_dropout_prob lowerCamelCase__: List[str] = max_position_embeddings lowerCamelCase__: Tuple = eos_token_id lowerCamelCase__: Any = pad_token_id lowerCamelCase__: str = bos_token_id lowerCamelCase__: Optional[int] = embed_dim lowerCamelCase__: Union[str, Any] = word_embed_proj_dim lowerCamelCase__: List[Any] = False def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowerCamelCase__: List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase__: Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase__: Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase__: Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__a , **self.config_updates , ) lowerCamelCase__: Optional[Any] = prepare_opt_inputs_dict(__a , __a ) return config, inputs_dict def lowerCamelCase_ ( self : str , __a : Optional[Any] , __a : Optional[int] ): '''simple docstring''' lowerCamelCase__: Optional[Any] = TFOPTModel(config=__a ) lowerCamelCase__: Optional[Any] = inputs_dict["""input_ids"""] lowerCamelCase__: Dict = input_ids[:1, :] lowerCamelCase__: Any = inputs_dict["""attention_mask"""][:1, :] lowerCamelCase__: Any = 1 # first forward pass lowerCamelCase__: str = model(__a , attention_mask=__a , use_cache=__a ) lowerCamelCase__ , lowerCamelCase__: Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__: Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase__: Dict = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase__: str = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase__: int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase__: Any = model(__a , attention_mask=__a )[0] lowerCamelCase__: Any = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase__: str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase__: Optional[int] = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__: List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3 ) @require_tf class lowerCamelCase__ ( A__ , A__ , unittest.TestCase ): __lowerCamelCase = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __lowerCamelCase = (TFOPTForCausalLM,) if is_tf_available() else () __lowerCamelCase = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = 10 def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowerCamelCase__: int = TFOPTModelTester(self ) lowerCamelCase__: Tuple = ConfigTester(self , config_class=__a ) def lowerCamelCase_ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: str = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__a : Optional[int] , __a : Dict ): if hasattr(__a , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__a , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings lowerCamelCase__: int = model_class(config=__a ) lowerCamelCase__: Tuple = _get_word_embedding_weight(__a , model.get_input_embeddings() ) lowerCamelCase__: Optional[int] = _get_word_embedding_weight(__a , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__a ) lowerCamelCase__: str = _get_word_embedding_weight(__a , model.get_input_embeddings() ) lowerCamelCase__: List[str] = _get_word_embedding_weight(__a , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCamelCase__: Any = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __a ) # check that weights remain the same after resizing lowerCamelCase__: Optional[Any] = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase__: Any = False self.assertTrue(__a ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __a ) lowerCamelCase__: List[Any] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase__: List[Any] = False self.assertTrue(__a ) def __lowerCAmelCase ( _UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return tf.constant(_UpperCamelCase , dtype=tf.intaa ) @require_tf class lowerCamelCase__ ( unittest.TestCase ): __lowerCamelCase = 99 def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: int = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCamelCase__: Optional[int] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCamelCase__: Any = input_ids.shape[0] lowerCamelCase__: List[str] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCamelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowerCamelCase__: int = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) lowerCamelCase__: List[Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) lowerCamelCase__: Optional[Any] = tf.not_equal(__a , model.config.pad_token_id ) with tf.GradientTape(): lowerCamelCase__: str = model(input_ids=__a , attention_mask=__a ).last_hidden_state lowerCamelCase__: str = (1, 11, 512) self.assertEqual(output.shape , __a ) lowerCamelCase__: str = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __a , atol=4e-3 ) ) lowerCamelCase__: Optional[int] = tf.function(__a , jit_compile=__a ) lowerCamelCase__: List[Any] = xla_generate(__a , __a )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __a , atol=4e-2 ) ) @require_tf @slow class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' super().setUp() lowerCamelCase__: List[Any] = """facebook/opt-350m""" def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowerCamelCase__: Dict = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCamelCase__: Dict = GPTaTokenizer.from_pretrained(self.path_model ) lowerCamelCase__: Union[str, Any] = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCamelCase__: Union[str, Any] = tokenizer(__a , return_tensors="""tf""" , padding=__a , add_special_tokens=__a ) lowerCamelCase__: Union[str, Any] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCamelCase__: Dict = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(__a , __a , atol=1e-4 ) ) lowerCamelCase__: Any = tf.function(__a , jit_compile=__a ) lowerCamelCase__: List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__a , __a , atol=1e-4 ) ) @require_tf @slow class lowerCamelCase__ ( unittest.TestCase ): @property def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: Union[str, Any] = """facebook/opt-125m""" lowerCamelCase__: Dict = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase__: Any = [] lowerCamelCase__: Optional[Any] = GPTaTokenizer.from_pretrained(__a ) lowerCamelCase__: str = TFOPTForCausalLM.from_pretrained(__a ) for prompt in self.prompts: lowerCamelCase__: Dict = tokenizer(__a , return_tensors="""tf""" ).input_ids lowerCamelCase__: Any = model.generate(__a , max_length=10 ) lowerCamelCase__: Optional[int] = tokenizer.batch_decode(__a , skip_special_tokens=__a ) predicted_outputs += generated_string self.assertListEqual(__a , __a ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__: List[Any] = """facebook/opt-350m""" lowerCamelCase__: Tuple = GPTaTokenizer.from_pretrained(__a ) lowerCamelCase__: Any = TFOPTForCausalLM.from_pretrained(__a ) lowerCamelCase__: Tuple = """left""" # use different length sentences to test batching lowerCamelCase__: Tuple = [ """Hello, my dog is a little""", """Today, I""", ] lowerCamelCase__: List[Any] = tokenizer(__a , return_tensors="""tf""" , padding=__a ) lowerCamelCase__: Any = inputs["""input_ids"""] lowerCamelCase__: int = model.generate(input_ids=__a , attention_mask=inputs["""attention_mask"""] ) lowerCamelCase__: Optional[int] = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowerCamelCase__: Optional[Any] = model.generate(input_ids=__a ) lowerCamelCase__: int = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) lowerCamelCase__: Dict = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowerCamelCase__: str = model.generate(input_ids=__a , max_length=model.config.max_length - num_paddings ) lowerCamelCase__: List[str] = tokenizer.batch_decode(__a , skip_special_tokens=__a ) lowerCamelCase__: Optional[int] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__a ) lowerCamelCase__: Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__a ) lowerCamelCase__: Tuple = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , [non_padded_sentence, padded_sentence] ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowerCamelCase__: Dict = """facebook/opt-350m""" lowerCamelCase__: Tuple = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase__: Dict = [] lowerCamelCase__: int = GPTaTokenizer.from_pretrained(__a ) lowerCamelCase__: List[Any] = TFOPTForCausalLM.from_pretrained(__a ) for prompt in self.prompts: lowerCamelCase__: str = tokenizer(__a , return_tensors="""tf""" ).input_ids lowerCamelCase__: Optional[int] = model.generate(__a , max_length=10 ) lowerCamelCase__: Any = tokenizer.batch_decode(__a , skip_special_tokens=__a ) predicted_outputs += generated_string self.assertListEqual(__a , __a )
306
0
'''simple docstring''' def _lowerCAmelCase( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] ) -> str: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) lowerCAmelCase__ = (boundary[1] - boundary[0]) / steps lowerCAmelCase__ = boundary[0] lowerCAmelCase__ = boundary[1] lowerCAmelCase__ = make_points(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase__ = 0.0 y += (h / 2.0) * f(UpperCAmelCase_ ) for i in x_i: # print(i) y += h * f(UpperCAmelCase_ ) y += (h / 2.0) * f(UpperCAmelCase_ ) return y def _lowerCAmelCase( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple ) -> Tuple: lowerCAmelCase__ = a + h while x < (b - h): yield x lowerCAmelCase__ = x + h def _lowerCAmelCase( UpperCAmelCase_ : Optional[int] ) -> Any: # enter your function here lowerCAmelCase__ = (x - 0) * (x - 0) return y def _lowerCAmelCase( ) -> Any: lowerCAmelCase__ = 0.0 # Lower bound of integration lowerCAmelCase__ = 1.0 # Upper bound of integration lowerCAmelCase__ = 10.0 # define number of steps or resolution lowerCAmelCase__ = [a, b] # define boundary of integration lowerCAmelCase__ = method_a(UpperCAmelCase_ , UpperCAmelCase_ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
211
'''simple docstring''' from sklearn.metrics import fa_score import datasets _UpperCamelCase = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ _UpperCamelCase = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'f1': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['f1'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results['f1'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\") >>> print(round(results['f1'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'f1': array([0.8, 0. , 0. ])} """ _UpperCamelCase = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def lowercase__ ( self : Optional[int] , __A : str , __A : Optional[Any] , __A : Dict=None , __A : Union[str, Any]=1 , __A : Tuple="binary" , __A : str=None ) -> str: '''simple docstring''' lowerCAmelCase__ = fa_score( __A , __A , labels=__A , pos_label=__A , average=__A , sample_weight=__A ) return {"f1": float(__A ) if score.size == 1 else score}
211
1
# Lint as: python3 import itertools import os import re _snake_case = re.compile(R'''([A-Z]+)([A-Z][a-z])''') _snake_case = re.compile(R'''([a-z\d])([A-Z])''') _snake_case = re.compile(R'''(?<!_)_(?!_)''') _snake_case = re.compile(R'''(_{2,})''') _snake_case = R"""^\w+(\.\w+)*$""" _snake_case = R"""<>:/\|?*""" def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : str = _uppercase_uppercase_re.sub(r"\1_\2" , snake_case_ ) lowerCamelCase : Dict = _lowercase_uppercase_re.sub(r"\1_\2" , snake_case_ ) return name.lower() def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Dict = _single_underscore_re.split(snake_case_ ) lowerCamelCase : Optional[Any] = [_multiple_underscores_re.split(snake_case_ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(snake_case_ ) if n != "" ) def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if os.path.basename(snake_case_ ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(snake_case_ ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if os.path.basename(snake_case_ ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , snake_case_ ): raise ValueError(f"""Split name should match \'{_split_re}\'\' but got \'{split}\'.""" ) return f"""{filename_prefix_for_name(snake_case_ )}-{split}""" def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ): '''simple docstring''' lowerCamelCase : Tuple = filename_prefix_for_split(snake_case_ , snake_case_ ) if filetype_suffix: prefix += f""".{filetype_suffix}""" lowerCamelCase : Dict = os.path.join(snake_case_ , snake_case_ ) return f"""{filepath}*""" def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ): '''simple docstring''' lowerCamelCase : Union[str, Any] = filename_prefix_for_split(snake_case_ , snake_case_ ) lowerCamelCase : Any = os.path.join(snake_case_ , snake_case_ ) if shard_lengths: lowerCamelCase : Optional[int] = len(snake_case_ ) lowerCamelCase : Optional[int] = [f"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(snake_case_ )] if filetype_suffix: lowerCamelCase : int = [filename + f""".{filetype_suffix}""" for filename in filenames] return filenames else: lowerCamelCase : Tuple = prefix if filetype_suffix: filename += f""".{filetype_suffix}""" return [filename]
340
def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): snake_case__ : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack snake_case__ : set[int] = set() return any( node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for node in graph ) def SCREAMING_SNAKE_CASE ( snake_case_ : dict , snake_case_ : int , snake_case_ : set , snake_case_ : set ): visited.add(snake_case_ ) rec_stk.add(snake_case_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(snake_case_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
297
0
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self : List[str] , a : Any , a : Optional[int] , a : List[str] , a : Optional[Any] , a : Optional[Any] , a : Optional[int] , a : List[Any] , a : List[str] , a : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: lowercase : Dict = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE ) lowercase : Any = dict(scheduler.config ) lowercase : List[str] = 1 lowercase : Optional[Any] = FrozenDict(_SCREAMING_SNAKE_CASE ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: lowercase : str = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE ) lowercase : List[str] = dict(scheduler.config ) lowercase : Any = True lowercase : str = FrozenDict(_SCREAMING_SNAKE_CASE ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=_SCREAMING_SNAKE_CASE , segmentation_processor=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , ) def _lowerCAmelCase ( self : Union[str, Any] , a : List[str] = "auto" ) -> str: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase : Union[str, Any] = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_SCREAMING_SNAKE_CASE , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Dict , a : Any , a : List[str] , a : Optional[Any] , a : int = 512 , a : Optional[int] = 512 , a : int = 50 , a : Any = 7.5 , a : List[Any] = None , a : Dict = 1 , a : List[Any] = 0.0 , a : Dict = None , a : Optional[Any] = None , a : Dict = "pil" , a : Any = True , a : Dict = None , a : List[Any] = 1 , **a : Any , ) -> Union[str, Any]: """simple docstring""" lowercase : str = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) lowercase : Optional[int] = self.segmentation_model(**_SCREAMING_SNAKE_CASE ) lowercase : Optional[Any] = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowercase : List[Any] = self.numpy_to_pil(_SCREAMING_SNAKE_CASE )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowercase : int = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , )
709
"""simple docstring""" def A_ ( __UpperCamelCase : str , __UpperCamelCase : str ): lowercase = len(__UpperCamelCase ) lowercase = [] for i in range(len(__UpperCamelCase ) - pat_len + 1 ): lowercase = True for j in range(__UpperCamelCase ): if s[i + j] != pattern[j]: lowercase = False break if match_found: position.append(__UpperCamelCase ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
396
0
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCAmelCase : str = re.compile(R'''\s+''') def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_lowerCamelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Any = [len(_lowerCamelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCamelCase ), "line_max": max(_lowerCamelCase )} def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Optional[Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=5 ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : str = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : str = example["content"].splitlines() for _, line in zip(range(_lowerCamelCase ) , _lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=5 , _lowerCamelCase=0.0_5 ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Tuple = ["unit tests", "test file", "configuration file"] _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCamelCase ) , _lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Dict = example["content"].count("\n" ) _lowerCamelCase : Optional[Any] = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Dict = ["def ", "class ", "for ", "while "] _lowerCamelCase : Union[str, Any] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=4 ) -> int: '''simple docstring''' _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : List[Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : List[str] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"] _lowerCamelCase : Tuple = len(example["content"] ) / len(_lowerCamelCase ) return {"ratio": ratio} def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : str = {} results.update(get_hash(_lowerCamelCase ) ) results.update(line_stats(_lowerCamelCase ) ) results.update(alpha_stats(_lowerCamelCase ) ) results.update(char_token_ratio(_lowerCamelCase ) ) results.update(is_autogenerated(_lowerCamelCase ) ) results.update(is_config_or_test(_lowerCamelCase ) ) results.update(has_no_keywords(_lowerCamelCase ) ) results.update(has_few_assignments(_lowerCamelCase ) ) return results def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' if not check_uniques(_lowerCamelCase , _lowerCamelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' with open(_lowerCamelCase , "rb" ) as f_in: with gzip.open(str(_lowerCamelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCamelCase , _lowerCamelCase ) os.unlink(_lowerCamelCase ) # Settings _lowerCAmelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCAmelCase : List[str] = parser.parse_args() if args.num_workers is None: _lowerCAmelCase : Optional[Any] = multiprocessing.cpu_count() _lowerCAmelCase : Any = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase : str = load_dataset(args.dataset_name, split='''train''') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing _lowerCAmelCase : List[Any] = time.time() _lowerCAmelCase : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes _lowerCAmelCase : Dict = set(ds.unique('''hash''')) _lowerCAmelCase : Union[str, Any] = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics _lowerCAmelCase : Tuple = time.time() _lowerCAmelCase : List[Any] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase , _lowerCAmelCase : Optional[int] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file _lowerCAmelCase : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCAmelCase : Optional[int] = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCAmelCase : Optional[int] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCAmelCase : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') _lowerCAmelCase : Optional[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
46
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int: __a = 3 __a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
695
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __magic_name__ : def __init__( self , __magic_name__ , __magic_name__=1_3 , __magic_name__=7 , __magic_name__=True , __magic_name__=True , __magic_name__=False , __magic_name__=True , __magic_name__=9_9 , __magic_name__=3_2 , __magic_name__=5 , __magic_name__=4 , __magic_name__=3_7 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=5_1_2 , __magic_name__=1_6 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=3 , __magic_name__=4 , __magic_name__=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , use_stable_embedding=__magic_name__ , ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = OpenLlamaModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ , attention_mask=__magic_name__ ) _lowerCAmelCase = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ): """simple docstring""" _lowerCAmelCase = True _lowerCAmelCase = OpenLlamaModel(__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , ) _lowerCAmelCase = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , ) _lowerCAmelCase = model(__magic_name__ , attention_mask=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ): """simple docstring""" _lowerCAmelCase = OpenLlamaForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ): """simple docstring""" _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = OpenLlamaForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() # first forward pass _lowerCAmelCase = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , use_cache=__magic_name__ , ) _lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) _lowerCAmelCase = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , output_hidden_states=__magic_name__ , )['hidden_states'][0] _lowerCAmelCase = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , past_key_values=__magic_name__ , output_hidden_states=__magic_name__ , )['hidden_states'][0] # select random slice _lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): UpperCamelCase : str = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) UpperCamelCase : int = (OpenLlamaForCausalLM,) if is_torch_available() else () UpperCamelCase : List[str] = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase : Union[str, Any] = False UpperCamelCase : List[str] = False def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = OpenLlamaModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=__magic_name__ , hidden_size=3_7 ) def _lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = 3 _lowerCAmelCase = input_dict['input_ids'] _lowerCAmelCase = input_ids.ne(1 ).to(__magic_name__ ) _lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCAmelCase = OpenLlamaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = 3 _lowerCAmelCase = 'single_label_classification' _lowerCAmelCase = input_dict['input_ids'] _lowerCAmelCase = input_ids.ne(1 ).to(__magic_name__ ) _lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCAmelCase = OpenLlamaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = 3 _lowerCAmelCase = 'multi_label_classification' _lowerCAmelCase = input_dict['input_ids'] _lowerCAmelCase = input_ids.ne(1 ).to(__magic_name__ ) _lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _lowerCAmelCase = OpenLlamaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def _lowerCamelCase ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = ids_tensor([1, 1_0] , config.vocab_size ) _lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _lowerCAmelCase = OpenLlamaModel(__magic_name__ ) original_model.to(__magic_name__ ) original_model.eval() _lowerCAmelCase = original_model(__magic_name__ ).last_hidden_state _lowerCAmelCase = original_model(__magic_name__ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _lowerCAmelCase = {'type': scaling_type, 'factor': 10.0} _lowerCAmelCase = OpenLlamaModel(__magic_name__ ) scaled_model.to(__magic_name__ ) scaled_model.eval() _lowerCAmelCase = scaled_model(__magic_name__ ).last_hidden_state _lowerCAmelCase = scaled_model(__magic_name__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__magic_name__ , __magic_name__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__magic_name__ , __magic_name__ , atol=1e-5 ) )
717
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : Optional[Any] = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } a__ : List[Any] = logging.get_logger(__name__) class __magic_name__ ( _UpperCamelCase ): UpperCamelCase : Union[str, Any] = "mask2former" UpperCamelCase : Union[str, Any] = ["swin"] UpperCamelCase : str = {"hidden_size": "hidden_dim"} def __init__( self , __magic_name__ = None , __magic_name__ = 2_5_6 , __magic_name__ = 2_5_6 , __magic_name__ = 2_5_6 , __magic_name__ = 1_0_2_4 , __magic_name__ = "relu" , __magic_name__ = 6 , __magic_name__ = 1_0 , __magic_name__ = 8 , __magic_name__ = 0.0 , __magic_name__ = 2_0_4_8 , __magic_name__ = False , __magic_name__ = False , __magic_name__ = 4 , __magic_name__ = 2_5_5 , __magic_name__ = 1_0_0 , __magic_name__ = 0.1 , __magic_name__ = 2.0 , __magic_name__ = 5.0 , __magic_name__ = 5.0 , __magic_name__ = 1_2_5_4_4 , __magic_name__ = 3.0 , __magic_name__ = 0.75 , __magic_name__ = 0.02 , __magic_name__ = 1.0 , __magic_name__ = True , __magic_name__ = [4, 8, 1_6, 3_2] , __magic_name__ = None , **__magic_name__ , ): """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) _lowerCAmelCase = CONFIG_MAPPING['swin']( image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__magic_name__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(__magic_name__ , __magic_name__ ): _lowerCAmelCase = backbone_config.pop('model_type' ) _lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase = config_class.from_dict(__magic_name__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {",".join(self.backbones_supported )}''' ) _lowerCAmelCase = backbone_config _lowerCAmelCase = feature_size _lowerCAmelCase = mask_feature_size _lowerCAmelCase = hidden_dim _lowerCAmelCase = encoder_feedforward_dim _lowerCAmelCase = activation_function _lowerCAmelCase = encoder_layers _lowerCAmelCase = decoder_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = dim_feedforward _lowerCAmelCase = pre_norm _lowerCAmelCase = enforce_input_projection _lowerCAmelCase = common_stride _lowerCAmelCase = ignore_value _lowerCAmelCase = num_queries _lowerCAmelCase = no_object_weight _lowerCAmelCase = class_weight _lowerCAmelCase = mask_weight _lowerCAmelCase = dice_weight _lowerCAmelCase = train_num_points _lowerCAmelCase = oversample_ratio _lowerCAmelCase = importance_sample_ratio _lowerCAmelCase = init_std _lowerCAmelCase = init_xavier_std _lowerCAmelCase = use_auxiliary_loss _lowerCAmelCase = feature_strides _lowerCAmelCase = output_auxiliary_logits _lowerCAmelCase = decoder_layers super().__init__(**__magic_name__ ) @classmethod def _lowerCamelCase ( cls , __magic_name__ , **__magic_name__ ): """simple docstring""" return cls( backbone_config=__magic_name__ , **__magic_name__ , ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = copy.deepcopy(self.__dict__ ) _lowerCAmelCase = self.backbone_config.to_dict() _lowerCAmelCase = self.__class__.model_type return output
309
0
"""simple docstring""" from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : List[Any] = u for i in range(1 , A_ ): lowerCAmelCase__ : Union[str, Any] = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Optional[int] = int(input('''enter the numbers of values: ''' ) ) lowerCAmelCase__ : list[list[float]] = [] for _ in range(A_ ): y.append([] ) for i in range(A_ ): for j in range(A_ ): y[i].append(A_ ) lowerCAmelCase__ : Optional[int] = 0 print('''enter the values of parameters in a list: ''' ) lowerCAmelCase__ : int = list(map(A_ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(A_ ): lowerCAmelCase__ : Dict = float(input() ) lowerCAmelCase__ : Any = int(input('''enter the value to interpolate: ''' ) ) lowerCAmelCase__ : Union[str, Any] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , A_ ): for j in range(n - i ): lowerCAmelCase__ : List[Any] = y[j + 1][i - 1] - y[j][i - 1] lowerCAmelCase__ : str = y[0][0] for i in range(1 , A_ ): summ += (ucal(A_ , A_ ) * y[0][i]) / math.factorial(A_ ) print(f'the value at {value} is {summ}' ) if __name__ == "__main__": main()
450
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ ): for i in range(len(A_ ) - 1 , 0 , -1 ): lowerCAmelCase__ : Optional[Any] = False for j in range(A_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = unsorted[j - 1], unsorted[j] lowerCAmelCase__ : Dict = True for j in range(A_ ): if unsorted[j] > unsorted[j + 1]: lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowerCAmelCase__ : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : int = input('''Enter numbers separated by a comma:\n''').strip() __UpperCamelCase : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(F'''{cocktail_shaker_sort(unsorted) = }''')
450
1
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging lowercase_: Optional[int] = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) lowercase_: List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowercase ( ): """simple docstring""" snake_case__ : Any = """https://pypi.org/pypi/diffusers/json""" snake_case__ : Optional[int] = json.loads(request.urlopen(UpperCAmelCase_).read())["""releases"""].keys() return sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: version.Version(UpperCAmelCase_)) def _lowercase ( ): """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(UpperCAmelCase_) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_) snake_case__ : Union[str, Any] = Path(UpperCAmelCase_) / """__init__.py""" if not init_path.exists(): init_path.touch() def _lowercase ( UpperCAmelCase_): """simple docstring""" init_hf_modules() snake_case__ : List[str] = Path(UpperCAmelCase_) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_) snake_case__ : int = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def _lowercase ( UpperCAmelCase_): """simple docstring""" with open(UpperCAmelCase_ , """r""" , encoding="""utf-8""") as f: snake_case__ : List[str] = f.read() # Imports of the form `import .xxx` snake_case__ : str = re.findall("""^\s*import\s+\.(\S+)\s*$""" , UpperCAmelCase_ , flags=re.MULTILINE) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , UpperCAmelCase_ , flags=re.MULTILINE) # Unique-ify return list(set(UpperCAmelCase_)) def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : List[Any] = False snake_case__ : Optional[int] = [module_file] snake_case__ : str = [] # Let's recurse through all relative imports while not no_change: snake_case__ : List[str] = [] for f in files_to_check: new_imports.extend(get_relative_imports(UpperCAmelCase_)) snake_case__ : List[str] = Path(UpperCAmelCase_).parent snake_case__ : List[Any] = [str(module_path / m) for m in new_imports] snake_case__ : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] snake_case__ : Optional[int] = [F'{f}.py' for f in new_import_files] snake_case__ : int = len(UpperCAmelCase_) == 0 all_relative_imports.extend(UpperCAmelCase_) return all_relative_imports def _lowercase ( UpperCAmelCase_): """simple docstring""" with open(UpperCAmelCase_ , """r""" , encoding="""utf-8""") as f: snake_case__ : Tuple = f.read() # Imports of the form `import xxx` snake_case__ : Union[str, Any] = re.findall("""^\s*import\s+(\S+)\s*$""" , UpperCAmelCase_ , flags=re.MULTILINE) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , UpperCAmelCase_ , flags=re.MULTILINE) # Only keep the top-level module snake_case__ : str = [imp.split(""".""")[0] for imp in imports if not imp.startswith(""".""")] # Unique-ify and test we got them all snake_case__ : Optional[int] = list(set(UpperCAmelCase_)) snake_case__ : List[str] = [] for imp in imports: try: importlib.import_module(UpperCAmelCase_) except ImportError: missing_packages.append(UpperCAmelCase_) if len(UpperCAmelCase_) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F'{", ".join(UpperCAmelCase_)}. Run `pip install {" ".join(UpperCAmelCase_)}`') return get_relative_imports(UpperCAmelCase_) def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" snake_case__ : Optional[int] = module_path.replace(os.path.sep , """.""") snake_case__ : int = importlib.import_module(UpperCAmelCase_) if class_name is None: return find_pipeline_class(UpperCAmelCase_) return getattr(UpperCAmelCase_ , UpperCAmelCase_) def _lowercase ( UpperCAmelCase_): """simple docstring""" from ..pipelines import DiffusionPipeline snake_case__ : List[str] = dict(inspect.getmembers(UpperCAmelCase_ , inspect.isclass)) snake_case__ : Union[str, Any] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , UpperCAmelCase_) and cls.__module__.split(""".""")[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.') snake_case__ : List[str] = cls return pipeline_class def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = False , ): """simple docstring""" snake_case__ : str = str(UpperCAmelCase_) snake_case__ : Union[str, Any] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_) if os.path.isfile(UpperCAmelCase_): snake_case__ : Dict = module_file_or_url snake_case__ : List[str] = """local""" elif pretrained_model_name_or_path.count("""/""") == 0: snake_case__ : List[str] = get_diffusers_versions() # cut ".dev0" snake_case__ : Optional[Any] = """v""" + """.""".join(__version__.split(""".""")[:3]) # retrieve github version that matches if revision is None: snake_case__ : List[Any] = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F'Defaulting to latest_version: {revision}.') elif revision in available_versions: snake_case__ : List[Any] = F'v{revision}' elif revision == "main": snake_case__ : str = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"])}.') # community pipeline on GitHub snake_case__ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=UpperCAmelCase_ , pipeline=UpperCAmelCase_) try: snake_case__ : Union[str, Any] = cached_download( UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , force_download=UpperCAmelCase_ , proxies=UpperCAmelCase_ , resume_download=UpperCAmelCase_ , local_files_only=UpperCAmelCase_ , use_auth_token=UpperCAmelCase_ , ) snake_case__ : List[str] = """git""" snake_case__ : int = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.') raise else: try: # Load from URL or cache if already cached snake_case__ : Optional[Any] = hf_hub_download( UpperCAmelCase_ , UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , force_download=UpperCAmelCase_ , proxies=UpperCAmelCase_ , resume_download=UpperCAmelCase_ , local_files_only=UpperCAmelCase_ , use_auth_token=UpperCAmelCase_ , ) snake_case__ : List[str] = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/"""))) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.') raise # Check we have all the requirements in our environment snake_case__ : Optional[int] = check_imports(UpperCAmelCase_) # Now we move the module inside our cached dynamic modules. snake_case__ : List[Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(UpperCAmelCase_) snake_case__ : Dict = Path(UpperCAmelCase_) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(UpperCAmelCase_ , submodule_path / module_file) for module_needed in modules_needed: snake_case__ : Any = F'{module_needed}.py' shutil.copy(os.path.join(UpperCAmelCase_ , UpperCAmelCase_) , submodule_path / module_needed) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(UpperCAmelCase_ , UpperCAmelCase_): snake_case__ : str = use_auth_token elif use_auth_token is True: snake_case__ : List[Any] = HfFolder.get_token() else: snake_case__ : str = None snake_case__ : Dict = model_info(UpperCAmelCase_ , revision=UpperCAmelCase_ , token=UpperCAmelCase_).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. snake_case__ : Dict = submodule_path / commit_hash snake_case__ : Union[str, Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(UpperCAmelCase_) if not (submodule_path / module_file).exists(): shutil.copy(UpperCAmelCase_ , submodule_path / module_file) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( UpperCAmelCase_ , F'{module_needed}.py' , cache_dir=UpperCAmelCase_ , force_download=UpperCAmelCase_ , resume_download=UpperCAmelCase_ , proxies=UpperCAmelCase_ , use_auth_token=UpperCAmelCase_ , revision=UpperCAmelCase_ , local_files_only=UpperCAmelCase_ , ) return os.path.join(UpperCAmelCase_ , UpperCAmelCase_) def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = False , **UpperCAmelCase_ , ): """simple docstring""" snake_case__ : int = get_cached_module_file( UpperCAmelCase_ , UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , force_download=UpperCAmelCase_ , resume_download=UpperCAmelCase_ , proxies=UpperCAmelCase_ , use_auth_token=UpperCAmelCase_ , revision=UpperCAmelCase_ , local_files_only=UpperCAmelCase_ , ) return get_class_in_module(UpperCAmelCase_ , final_module.replace(""".py""" , """"""))
127
import re import string import numpy as np import datasets lowercase_: Optional[Any] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' lowercase_: Optional[int] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' lowercase_: str = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ (datasets.Metric ): """simple docstring""" def lowercase ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def lowercase ( self : Optional[Any] , __a : int , __a : Optional[int] , __a : Optional[int]=None , __a : int=False , __a : Any=False , __a : Dict=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case__ : Union[str, Any] = np.array([re.sub(__a , """""" , __a ) for x in predictions] ) snake_case__ : Union[str, Any] = np.array([re.sub(__a , """""" , __a ) for x in references] ) else: snake_case__ : List[str] = np.asarray(__a ) snake_case__ : int = np.asarray(__a ) if ignore_case: snake_case__ : str = np.char.lower(__a ) snake_case__ : Tuple = np.char.lower(__a ) if ignore_punctuation: snake_case__ : str = string.punctuation.maketrans("""""" , """""" , string.punctuation ) snake_case__ : List[Any] = np.char.translate(__a , table=__a ) snake_case__ : Tuple = np.char.translate(__a , table=__a ) if ignore_numbers: snake_case__ : Union[str, Any] = string.digits.maketrans("""""" , """""" , string.digits ) snake_case__ : Dict = np.char.translate(__a , table=__a ) snake_case__ : int = np.char.translate(__a , table=__a ) snake_case__ : Any = predictions == references return {"exact_match": np.mean(__a ) * 1_0_0}
127
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = '''▁''' lowercase_ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowercase_ = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } lowercase_ = { '''facebook/m2m100_418M''': 10_24, } # fmt: off lowercase_ = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class __a ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] def __init__( self : int , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : Union[str, Any]=None , snake_case_ : Tuple=None , snake_case_ : List[str]="<s>" , snake_case_ : List[str]="</s>" , snake_case_ : Optional[Any]="</s>" , snake_case_ : Dict="<pad>" , snake_case_ : Any="<unk>" , snake_case_ : Tuple="m2m100" , snake_case_ : Optional[Dict[str, Any]] = None , snake_case_ : Dict=8 , **snake_case_ : List[Any] , )-> None: __lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs __lowerCAmelCase =language_codes __lowerCAmelCase =FAIRSEQ_LANGUAGE_CODES[language_codes] __lowerCAmelCase ={lang_code: F"""__{lang_code}__""" for lang_code in fairseq_language_code} __lowerCAmelCase =kwargs.get("""additional_special_tokens""" , []) kwargs["additional_special_tokens"] += [ self.get_lang_token(snake_case_) for lang_code in fairseq_language_code if self.get_lang_token(snake_case_) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case_ , tgt_lang=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , language_codes=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=snake_case_ , **snake_case_ , ) __lowerCAmelCase =vocab_file __lowerCAmelCase =load_json(snake_case_) __lowerCAmelCase ={v: k for k, v in self.encoder.items()} __lowerCAmelCase =spm_file __lowerCAmelCase =load_spm(snake_case_ , self.sp_model_kwargs) __lowerCAmelCase =len(self.encoder) __lowerCAmelCase ={ self.get_lang_token(snake_case_): self.encoder_size + i for i, lang_code in enumerate(snake_case_) } __lowerCAmelCase ={lang_code: self.encoder_size + i for i, lang_code in enumerate(snake_case_)} __lowerCAmelCase ={v: k for k, v in self.lang_token_to_id.items()} __lowerCAmelCase =src_lang if src_lang is not None else """en""" __lowerCAmelCase =tgt_lang __lowerCAmelCase =self.get_lang_id(self._src_lang) self.set_src_lang_special_tokens(self._src_lang) __lowerCAmelCase =num_madeup_words @property def UpperCamelCase ( self : int)-> int: return len(self.encoder) + len(self.lang_token_to_id) @property def UpperCamelCase ( self : Optional[Any])-> str: return self._src_lang @src_lang.setter def UpperCamelCase ( self : List[Any] , snake_case_ : str)-> None: __lowerCAmelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang) def UpperCamelCase ( self : str , snake_case_ : str)-> List[str]: return self.sp_model.encode(snake_case_ , out_type=snake_case_) def UpperCamelCase ( self : Optional[Any] , snake_case_ : List[str])-> str: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(snake_case_ , self.encoder[self.unk_token]) def UpperCamelCase ( self : Dict , snake_case_ : int)-> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(snake_case_ , self.unk_token) def UpperCamelCase ( self : Union[str, Any] , snake_case_ : Tuple)-> str: __lowerCAmelCase =[] __lowerCAmelCase ="""""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_) + token __lowerCAmelCase =[] else: current_sub_tokens.append(snake_case_) out_string += self.sp_model.decode(snake_case_) return out_string.strip() def UpperCamelCase ( self : Union[str, Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None , snake_case_ : bool = False)-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_) __lowerCAmelCase =[1] * len(self.prefix_tokens) __lowerCAmelCase =[1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_)) + suffix_ones return prefix_ones + ([0] * len(snake_case_)) + ([0] * len(snake_case_)) + suffix_ones def UpperCamelCase ( self : Any , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None)-> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self : Optional[Any])-> Dict: __lowerCAmelCase ={self.convert_ids_to_tokens(snake_case_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Tuple)-> Dict: __lowerCAmelCase =self.__dict__.copy() __lowerCAmelCase =None return state def __setstate__( self : List[Any] , snake_case_ : Dict)-> None: __lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs"""): __lowerCAmelCase ={} __lowerCAmelCase =load_spm(self.spm_file , self.sp_model_kwargs) def UpperCamelCase ( self : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[str] = None)-> Tuple[str]: __lowerCAmelCase =Path(snake_case_) if not save_dir.is_dir(): raise OSError(F"""{save_directory} should be a directory""") __lowerCAmelCase =save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) __lowerCAmelCase =save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , snake_case_) if os.path.abspath(self.spm_file) != os.path.abspath(snake_case_) and os.path.isfile(self.spm_file): copyfile(self.spm_file , snake_case_) elif not os.path.isfile(self.spm_file): with open(snake_case_ , """wb""") as fi: __lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(snake_case_) return (str(snake_case_), str(snake_case_)) def UpperCamelCase ( self : str , snake_case_ : List[str] , snake_case_ : str = "en" , snake_case_ : Optional[List[str]] = None , snake_case_ : str = "ro" , **snake_case_ : int , )-> BatchEncoding: __lowerCAmelCase =src_lang __lowerCAmelCase =tgt_lang self.set_src_lang_special_tokens(self.src_lang) return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_) def UpperCamelCase ( self : Optional[int] , snake_case_ : int , snake_case_ : Optional[str] , snake_case_ : Optional[str] , **snake_case_ : List[str])-> List[Any]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""") __lowerCAmelCase =src_lang __lowerCAmelCase =self(snake_case_ , add_special_tokens=snake_case_ , **snake_case_) __lowerCAmelCase =self.get_lang_id(snake_case_) __lowerCAmelCase =tgt_lang_id return inputs def UpperCamelCase ( self : Optional[int])-> Union[str, Any]: self.set_src_lang_special_tokens(self.src_lang) def UpperCamelCase ( self : Dict)-> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang) def UpperCamelCase ( self : Union[str, Any] , snake_case_ : str)-> None: __lowerCAmelCase =self.get_lang_token(snake_case_) __lowerCAmelCase =self.lang_token_to_id[lang_token] __lowerCAmelCase =[self.cur_lang_id] __lowerCAmelCase =[self.eos_token_id] def UpperCamelCase ( self : str , snake_case_ : str)-> None: __lowerCAmelCase =self.get_lang_token(snake_case_) __lowerCAmelCase =self.lang_token_to_id[lang_token] __lowerCAmelCase =[self.cur_lang_id] __lowerCAmelCase =[self.eos_token_id] def UpperCamelCase ( self : int , snake_case_ : str)-> str: return self.lang_code_to_token[lang] def UpperCamelCase ( self : List[str] , snake_case_ : str)-> int: __lowerCAmelCase =self.get_lang_token(snake_case_) return self.lang_token_to_id[lang_token] def __lowerCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: __lowerCAmelCase =sentencepiece.SentencePieceProcessor(**__lowerCamelCase ) spm.Load(str(__lowerCamelCase ) ) return spm def __lowerCAmelCase ( __lowerCamelCase : str ) -> Union[Dict, List]: with open(__lowerCamelCase , """r""" ) as f: return json.load(__lowerCamelCase ) def __lowerCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : str ) -> None: with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase , indent=2 )
354
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __a ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = "distilbert" SCREAMING_SNAKE_CASE = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self : Optional[Any] , snake_case_ : Tuple=3_05_22 , snake_case_ : Any=5_12 , snake_case_ : Dict=False , snake_case_ : Tuple=6 , snake_case_ : Union[str, Any]=12 , snake_case_ : List[str]=7_68 , snake_case_ : Optional[Any]=4 * 7_68 , snake_case_ : Optional[Any]=0.1 , snake_case_ : Dict=0.1 , snake_case_ : Union[str, Any]="gelu" , snake_case_ : Any=0.0_2 , snake_case_ : Optional[Any]=0.1 , snake_case_ : List[Any]=0.2 , snake_case_ : Optional[Any]=0 , **snake_case_ : List[Any] , )-> Tuple: __lowerCAmelCase =vocab_size __lowerCAmelCase =max_position_embeddings __lowerCAmelCase =sinusoidal_pos_embds __lowerCAmelCase =n_layers __lowerCAmelCase =n_heads __lowerCAmelCase =dim __lowerCAmelCase =hidden_dim __lowerCAmelCase =dropout __lowerCAmelCase =attention_dropout __lowerCAmelCase =activation __lowerCAmelCase =initializer_range __lowerCAmelCase =qa_dropout __lowerCAmelCase =seq_classif_dropout super().__init__(**snake_case_ , pad_token_id=snake_case_) class __a ( SCREAMING_SNAKE_CASE ): @property def UpperCamelCase ( self : Union[str, Any])-> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCAmelCase ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowerCAmelCase ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
354
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable A = list[list[float | int]] def __A ( a_ :Matrix , a_ :Matrix) -> Matrix: __a : int = len(a_) __a : Matrix = [[0 for _ in range(size + 1)] for _ in range(a_)] __a : int __a : int __a : int __a : int __a : int __a : float for row in range(a_): for col in range(a_): __a : Any = matrix[row][col] __a : Optional[Any] = vector[row][0] __a : int = 0 __a : int = 0 while row < size and col < size: # pivoting __a : int = max((abs(augmented[rowa][col]), rowa) for rowa in range(a_ , a_))[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __a , __a : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , a_): __a : Tuple = augmented[rowa][col] / augmented[row][col] __a : Union[str, Any] = 0 for cola in range(col + 1 , size + 1): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , a_): for row in range(a_): __a : List[Any] = augmented[row][col] / augmented[col][col] for cola in range(a_ , size + 1): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10)] for row in range(a_) ] def __A ( a_ :list[int]) -> Callable[[int], int]: __a : int = len(a_) __a : Matrix = [[0 for _ in range(a_)] for _ in range(a_)] __a : Matrix = [[0] for _ in range(a_)] __a : Matrix __a : int __a : int __a : int for x_val, y_val in enumerate(a_): for col in range(a_): __a : str = (x_val + 1) ** (size - col - 1) __a : Dict = y_val __a : Union[str, Any] = solve(a_ , a_) def interpolated_func(a_ :int) -> int: return sum( round(coeffs[x_val][0]) * (var ** (size - x_val - 1)) for x_val in range(a_)) return interpolated_func def __A ( a_ :int) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __A ( a_ :Callable[[int], int] = question_function , a_ :int = 10) -> int: __a : list[int] = [func(a_) for x_val in range(1 , order + 1)] __a : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff]) for max_coeff in range(1 , order + 1) ] __a : int = 0 __a : Callable[[int], int] __a : int for poly in polynomials: __a : Tuple = 1 while func(a_) == poly(a_): x_val += 1 ret += poly(a_) return ret if __name__ == "__main__": print(F'{solution() = }')
101
"""simple docstring""" from __future__ import annotations import typing from collections import Counter def __A ( a_ :int) -> typing.Counter[int]: __a : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1): for perpendicular in range(a_ , max_perimeter + 1): __a : Any = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a_): __a : List[Any] = int(base + perpendicular + hypotenuse) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __A ( a_ :int = 10_00) -> int: __a : Dict = pythagorean_triple(a_) return triplets.most_common(1)[0][0] if __name__ == "__main__": print(F'Perimeter {solution()} has maximum solutions')
101
1
"""simple docstring""" from math import isqrt def __A (_SCREAMING_SNAKE_CASE ) ->bool: """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(__snake_case ) + 1 ) ) def __A (_SCREAMING_SNAKE_CASE = 10**6 ) ->int: """simple docstring""" lowerCAmelCase__ :List[Any] = 0 lowerCAmelCase__ :Dict = 1 lowerCAmelCase__ :List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(__snake_case ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
93
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : str = logging.get_logger(__name__) a_ : int = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] ='mvp' lowercase : List[str] =['past_key_values'] lowercase : Dict ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self, lowerCAmelCase=50_267, lowerCAmelCase=1_024, lowerCAmelCase=12, lowerCAmelCase=4_096, lowerCAmelCase=16, lowerCAmelCase=12, lowerCAmelCase=4_096, lowerCAmelCase=16, lowerCAmelCase=0.0, lowerCAmelCase=0.0, lowerCAmelCase="gelu", lowerCAmelCase=1_024, lowerCAmelCase=0.1, lowerCAmelCase=0.0, lowerCAmelCase=0.0, lowerCAmelCase=0.0_2, lowerCAmelCase=0.0, lowerCAmelCase=False, lowerCAmelCase=True, lowerCAmelCase=1, lowerCAmelCase=0, lowerCAmelCase=2, lowerCAmelCase=True, lowerCAmelCase=2, lowerCAmelCase=2, lowerCAmelCase=False, lowerCAmelCase=100, lowerCAmelCase=800, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =vocab_size lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =d_model lowerCamelCase_ =encoder_ffn_dim lowerCamelCase_ =encoder_layers lowerCamelCase_ =encoder_attention_heads lowerCamelCase_ =decoder_ffn_dim lowerCamelCase_ =decoder_layers lowerCamelCase_ =decoder_attention_heads lowerCamelCase_ =dropout lowerCamelCase_ =attention_dropout lowerCamelCase_ =activation_dropout lowerCamelCase_ =activation_function lowerCamelCase_ =init_std lowerCamelCase_ =encoder_layerdrop lowerCamelCase_ =decoder_layerdrop lowerCamelCase_ =classifier_dropout lowerCamelCase_ =use_cache lowerCamelCase_ =encoder_layers lowerCamelCase_ =scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase_ =use_prompt lowerCamelCase_ =prompt_length lowerCamelCase_ =prompt_mid_dim super().__init__( pad_token_id=lowerCAmelCase, bos_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase, is_encoder_decoder=lowerCAmelCase, decoder_start_token_id=lowerCAmelCase, forced_eos_token_id=lowerCAmelCase, **lowerCAmelCase, ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''', lowerCAmelCase ): lowerCamelCase_ =self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' '''The config can simply be saved and uploaded again to be fixed.''' )
676
0
'''simple docstring''' from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def A__ ( lowercase: bool = True, *lowercase: Any, **lowercase: List[Any] ) -> List[str]: if not is_tqdm_available(): raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' ) A : Any =False if main_process_only: A : Union[str, Any] =PartialState().local_process_index == 0 return _tqdm(*__a, **__a, disable=__a )
720
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]: A : Dict =tempfile.mkdtemp() A : int =SamImageProcessor() A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]: A : str =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A : Optional[int] =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple: A : Optional[int] =SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A : str =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) A : Union[str, Any] =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]: A : Optional[Any] =self.get_image_processor() A : Optional[Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : Dict =self.prepare_image_inputs() A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) A : Optional[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any: A : str =self.get_image_processor() A : Union[str, Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : str =[torch.ones((1, 3, 5, 5) )] A : Optional[Any] =[[17_64, 26_46]] A : List[Any] =[[6_83, 10_24]] A : Union[str, Any] =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A : Any =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np A : str =[np.ones((1, 3, 5, 5) )] A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A : Any =[[1, 0], [0, 1]] with self.assertRaises(SCREAMING_SNAKE_CASE__ ): A : Any =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) ) @require_vision @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : str ) -> str: A : Tuple =tempfile.mkdtemp() A : Union[str, Any] =SamImageProcessor() A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple: A : Optional[Any] =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A : Any =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]: A : Optional[Any] =SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A : Optional[Any] =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) A : Dict =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any: A : Any =self.get_image_processor() A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : int =self.prepare_image_inputs() A : Tuple =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) A : List[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: A : int =self.get_image_processor() A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : Optional[int] =[tf.ones((1, 3, 5, 5) )] A : Tuple =[[17_64, 26_46]] A : Union[str, Any] =[[6_83, 10_24]] A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A : List[Any] =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np A : Any =[np.ones((1, 3, 5, 5) )] A : Optional[Any] =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A : Any =[[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): A : List[str] =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' ) @require_vision @require_torchvision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]: A : Optional[int] =tempfile.mkdtemp() A : Union[str, Any] =SamImageProcessor() A : Dict =SamProcessor(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple: A : Any =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A : Tuple =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]: A : Optional[Any] =self.get_image_processor() A : Dict =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : Optional[int] =np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) A : Optional[int] =[tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ )] A : Union[str, Any] =[torch.tensor(SCREAMING_SNAKE_CASE__ )] A : int =[[17_64, 26_46]] A : int =[[6_83, 10_24]] A : Dict =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' ) A : Optional[Any] =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any: A : Union[str, Any] =self.get_image_processor() A : int =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : int =self.prepare_image_inputs() A : List[Any] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy() A : Tuple =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy() A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy() A : Dict =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
661
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _lowerCAmelCase ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowercase : int =ksize + 1 lowercase : str =np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__magic_name__ ): for x in range(__magic_name__ ): # distance from center lowercase : Optional[Any] =x - ksize // 2 lowercase : List[str] =y - ksize // 2 # degree to radiant lowercase : Optional[int] =theta / 180 * np.pi lowercase : Union[str, Any] =np.cos(_theta ) lowercase : Optional[int] =np.sin(_theta ) # get kernel x lowercase : Tuple =cos_theta * px + sin_theta * py # get kernel y lowercase : Dict =-sin_theta * px + cos_theta * py # fill kernel lowercase : str =np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image UpperCamelCase_ = imread("""../image_data/lena.jpg""") # turn image in gray scale value UpperCamelCase_ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges UpperCamelCase_ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: UpperCamelCase_ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) UpperCamelCase_ = out / out.max() * 255 UpperCamelCase_ = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
92
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask __lowercase : str = logging.getLogger(__name__) class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self , __a=-1 ): '''simple docstring''' __a : Tuple = label_idx def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' if isinstance(__a , __a ): __a : Any = mode.value __a : List[Any] = os.path.join(__a , f"""{mode}.txt""" ) __a : Optional[Any] = 1 __a : str = [] with open(__a , encoding='utf-8' ) as f: __a : Tuple = [] __a : Dict = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=__a , labels=__a ) ) guid_index += 1 __a : str = [] __a : int = [] else: __a : Optional[int] = line.split(' ' ) words.append(splits[0] ) if len(__a ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=__a , labels=__a ) ) return examples def __UpperCAmelCase ( self , __a , __a , __a ): '''simple docstring''' __a : List[str] = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(__a ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: __a : Tuple = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(__a ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' if path: with open(__a , 'r' ) as f: __a : Any = f.read().splitlines() if "O" not in labels: __a : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' if path: with open(__a , 'r' ) as f: __a : Any = f.read().splitlines() if "O" not in labels: __a : List[Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __UpperCamelCase ( lowerCAmelCase_ ): def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' if isinstance(__a , __a ): __a : Dict = mode.value __a : List[str] = os.path.join(__a , f"""{mode}.txt""" ) __a : Tuple = 1 __a : List[str] = [] with open(__a , encoding='utf-8' ) as f: for sentence in parse_incr(__a ): __a : Any = [] __a : Optional[int] = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(__a ) == len(__a ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=__a , labels=__a ) ) guid_index += 1 return examples def __UpperCAmelCase ( self , __a , __a , __a ): '''simple docstring''' __a : Tuple = 0 for sentence in parse_incr(__a ): __a : int = preds_list[example_id] __a : str = '' for token in sentence: out += f"""{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) """ out += "\n" writer.write(__a ) example_id += 1 def __UpperCAmelCase ( self , __a ): '''simple docstring''' if path: with open(__a , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
476
0
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function a_ :int = 1.0_5_4_5_7_1_8_1_7e-3_4 # unit of ℏ : J * s a_ :Union[str, Any] = 3e8 # unit of c : m * s^-1 def lowercase_ (A : str , A : Any , A : Tuple ): if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: snake_case__ : Dict = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_4_0 * (distance) ** 4 ) return {"force": force} elif area == 0: snake_case__ : Any = (2_4_0 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: snake_case__ : int = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
721
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = KandinskyInpaintPipeline _SCREAMING_SNAKE_CASE = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _SCREAMING_SNAKE_CASE = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _SCREAMING_SNAKE_CASE = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _SCREAMING_SNAKE_CASE = False @property def lowercase_ ( self : Optional[Any] ) ->Optional[Any]: return 3_2 @property def lowercase_ ( self : int ) ->str: return 3_2 @property def lowercase_ ( self : Any ) ->List[str]: return self.time_input_dim @property def lowercase_ ( self : Optional[Any] ) ->str: return self.time_input_dim * 4 @property def lowercase_ ( self : Tuple ) ->int: return 1_0_0 @property def lowercase_ ( self : str ) ->Dict: snake_case__ : Union[str, Any] = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def lowercase_ ( self : Any ) ->Optional[int]: torch.manual_seed(0 ) snake_case__ : str = MCLIPConfig( numDims=self.cross_attention_dim, transformerDimensions=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=3_7, num_attention_heads=4, num_hidden_layers=5, vocab_size=1_0_0_5, ) snake_case__ : Optional[Any] = MultilingualCLIP(_snake_case ) snake_case__ : List[Any] = text_encoder.eval() return text_encoder @property def lowercase_ ( self : Tuple ) ->Optional[int]: torch.manual_seed(0 ) snake_case__ : Optional[Any] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } snake_case__ : Dict = UNetaDConditionModel(**_snake_case ) return model @property def lowercase_ ( self : Dict ) ->Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase_ ( self : Union[str, Any] ) ->List[Any]: torch.manual_seed(0 ) snake_case__ : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self : Any ) ->Any: snake_case__ : int = self.dummy_text_encoder snake_case__ : str = self.dummy_tokenizer snake_case__ : Any = self.dummy_unet snake_case__ : Tuple = self.dummy_movq snake_case__ : int = DDIMScheduler( num_train_timesteps=1_0_0_0, beta_schedule='linear', beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, clip_sample=_snake_case, set_alpha_to_one=_snake_case, steps_offset=1, prediction_type='epsilon', thresholding=_snake_case, ) snake_case__ : Optional[int] = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowercase_ ( self : str, _snake_case : Any, _snake_case : int=0 ) ->str: snake_case__ : Union[str, Any] = floats_tensor((1, self.cross_attention_dim), rng=random.Random(_snake_case ) ).to(_snake_case ) snake_case__ : str = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1 ) ).to(_snake_case ) # create init_image snake_case__ : Tuple = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(_snake_case ) ).to(_snake_case ) snake_case__ : Optional[Any] = image.cpu().permute(0, 2, 3, 1 )[0] snake_case__ : Tuple = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create mask snake_case__ : Any = np.ones((6_4, 6_4), dtype=np.floataa ) snake_case__ : Optional[Any] = 0 if str(_snake_case ).startswith('mps' ): snake_case__ : Union[str, Any] = torch.manual_seed(_snake_case ) else: snake_case__ : Any = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) snake_case__ : int = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def lowercase_ ( self : Optional[int] ) ->Optional[Any]: snake_case__ : int = 'cpu' snake_case__ : str = self.get_dummy_components() snake_case__ : Any = self.pipeline_class(**_snake_case ) snake_case__ : Optional[Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) snake_case__ : Tuple = pipe(**self.get_dummy_inputs(_snake_case ) ) snake_case__ : List[Any] = output.images snake_case__ : List[Any] = pipe( **self.get_dummy_inputs(_snake_case ), return_dict=_snake_case, )[0] snake_case__ : Optional[int] = image[0, -3:, -3:, -1] snake_case__ : int = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : Any = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def lowercase_ ( self : Any ) ->List[Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Dict ) ->int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[int] ) ->List[str]: snake_case__ : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) snake_case__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) snake_case__ : Union[str, Any] = np.ones((7_6_8, 7_6_8), dtype=np.floataa ) snake_case__ : str = 0 snake_case__ : List[str] = 'a hat' snake_case__ : Any = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior', torch_dtype=torch.floataa ) pipe_prior.to(_snake_case ) snake_case__ : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint', torch_dtype=torch.floataa ) snake_case__ : Tuple = pipeline.to(_snake_case ) pipeline.set_progress_bar_config(disable=_snake_case ) snake_case__ : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case__ , snake_case__ : Tuple = pipe_prior( _snake_case, generator=_snake_case, num_inference_steps=5, negative_prompt='', ).to_tuple() snake_case__ : Optional[Any] = pipeline( _snake_case, image=_snake_case, mask_image=_snake_case, image_embeds=_snake_case, negative_image_embeds=_snake_case, generator=_snake_case, num_inference_steps=1_0_0, height=7_6_8, width=7_6_8, output_type='np', ) snake_case__ : Dict = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_snake_case, _snake_case )
243
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter UpperCAmelCase__ :Any = """Create a default config file for Accelerate with only a few flags set.""" def __lowercase (_lowercase="no", _lowercase = default_json_config_file, _lowercase = False ) -> str: """simple docstring""" __lowerCamelCase : int = Path(_lowercase ) path.parent.mkdir(parents=_lowercase, exist_ok=_lowercase ) if path.exists(): print( f"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`." ) return False __lowerCamelCase : Dict = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}" ) __lowerCamelCase : Optional[Any] = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): __lowerCamelCase : Union[str, Any] = torch.cuda.device_count() __lowerCamelCase : Union[str, Any] = num_gpus __lowerCamelCase : List[str] = False if num_gpus > 1: __lowerCamelCase : Tuple = """MULTI_GPU""" else: __lowerCamelCase : Tuple = """NO""" elif is_xpu_available() and use_xpu: __lowerCamelCase : int = torch.xpu.device_count() __lowerCamelCase : List[Any] = num_xpus __lowerCamelCase : Any = False if num_xpus > 1: __lowerCamelCase : Dict = """MULTI_XPU""" else: __lowerCamelCase : Any = """NO""" elif is_npu_available(): __lowerCamelCase : int = torch.npu.device_count() __lowerCamelCase : int = num_npus __lowerCamelCase : List[str] = False if num_npus > 1: __lowerCamelCase : Dict = """MULTI_NPU""" else: __lowerCamelCase : Dict = """NO""" else: __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Union[str, Any] = True __lowerCamelCase : Union[str, Any] = 1 __lowerCamelCase : Dict = """NO""" __lowerCamelCase : str = ClusterConfig(**_lowercase ) config.to_json_file(_lowercase ) return path def __lowercase (_lowercase, _lowercase ) -> Optional[Any]: """simple docstring""" __lowerCamelCase : List[Any] = parser.add_parser("""default""", parents=_lowercase, help=_lowercase, formatter_class=_lowercase ) parser.add_argument( """--config_file""", default=_lowercase, help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ), dest="""save_location""", ) parser.add_argument( """--mixed_precision""", choices=["""no""", """fp16""", """bf16"""], type=_lowercase, help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""", default="""no""", ) parser.set_defaults(func=_lowercase ) return parser def __lowercase (_lowercase ) -> str: """simple docstring""" __lowerCamelCase : Union[str, Any] = write_basic_config(args.mixed_precision, args.save_location ) if config_file: print(f"accelerate configuration saved at {config_file}" )
150
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ :List[Any] = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ :List[str] = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ :Dict = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ :List[str] = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCAmelCase__ :Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
150
1
from __future__ import annotations import math def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ ): if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(A__ ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , A__ , A__ , A__ ) , minimax(depth + 1 , node_index * 2 + 1 , A__ , A__ , A__ ) , ) return min( minimax(depth + 1 , node_index * 2 , A__ , A__ , A__ ) , minimax(depth + 1 , node_index * 2 + 1 , A__ , A__ , A__ ) , ) def _lowerCAmelCase ( ): lowercase__ = [90, 23, 6, 33, 21, 65, 123, 34_423] lowercase__ = math.log(len(A__ ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , A__ , A__ , A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
642
import math import sys def _lowerCAmelCase ( A__ ): lowercase__ = '' try: with open(A__ , 'rb' ) as binary_file: lowercase__ = binary_file.read() for dat in data: lowercase__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = {'0': '0', '1': '1'} lowercase__, lowercase__ = '', '' lowercase__ = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ = lexicon[curr_string] result += last_match_id lowercase__ = last_match_id + '0' if math.loga(A__ ).is_integer(): lowercase__ = {} for curr_key in list(A__ ): lowercase__ = lexicon.pop(A__ ) lowercase__ = new_lex lowercase__ = last_match_id + '1' index += 1 lowercase__ = '' return result def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 8 try: with open(A__ , 'wb' ) as opened_file: lowercase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase__ = data_bits[counter:] lowercase__ = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( A__ , A__ ): lowercase__ = read_file_binary(A__ ) lowercase__ = remove_prefix(A__ ) lowercase__ = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
642
1
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowercase = None lowercase = logging.get_logger(__name__) lowercase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 lowercase = { '''t5-small''': 5_1_2, '''t5-base''': 5_1_2, '''t5-large''': 5_1_2, '''t5-3b''': 5_1_2, '''t5-11b''': 5_1_2, } class __A( UpperCAmelCase ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE = TaTokenizer SCREAMING_SNAKE_CASE = [] def __init__( self : List[str] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Dict=None , __UpperCamelCase : Any="</s>" , __UpperCamelCase : Union[str, Any]="<unk>" , __UpperCamelCase : List[str]="<pad>" , __UpperCamelCase : Any=1_0_0 , __UpperCamelCase : List[str]=None , **__UpperCamelCase : Tuple , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowerCamelCase_ = [F'''<extra_id_{i}>''' for i in range(__UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowerCamelCase_ = len(set(filter(lambda __UpperCamelCase : bool("""extra_id_""" in str(__UpperCamelCase ) ) , __UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , extra_ids=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , **__UpperCamelCase , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True lowerCamelCase_ = extra_ids @staticmethod def lowercase__ ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowerCamelCase_ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , __UpperCamelCase , ) return max_model_length def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): lowerCamelCase_ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowerCamelCase_ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def lowercase__ ( self : Dict , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): lowerCamelCase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowercase__ ( self : Any ): return list( set(filter(lambda __UpperCamelCase : bool(re.search(R"""<extra_id_\d+>""" , __UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def lowercase__ ( self : List[str] ): return [self.convert_tokens_to_ids(__UpperCamelCase ) for token in self.get_sentinel_tokens()]
272
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowercase = {'''UserAgent''': UserAgent().random} def __lowerCAmelCase ( UpperCAmelCase__ : Optional[int] ) -> dict: lowerCamelCase_ = script.contents[0] lowerCamelCase_ = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __A: def __init__( self : int , __UpperCamelCase : List[str] ): lowerCamelCase_ = F'''https://www.instagram.com/{username}/''' lowerCamelCase_ = self.get_json() def lowercase__ ( self : List[str] ): lowerCamelCase_ = requests.get(self.url , headers=__UpperCamelCase ).text lowerCamelCase_ = BeautifulSoup(__UpperCamelCase , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Dict ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self : Optional[Any] ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowercase__ ( self : Dict ): return self.user_data["username"] @property def lowercase__ ( self : List[Any] ): return self.user_data["full_name"] @property def lowercase__ ( self : Any ): return self.user_data["biography"] @property def lowercase__ ( self : int ): return self.user_data["business_email"] @property def lowercase__ ( self : List[str] ): return self.user_data["external_url"] @property def lowercase__ ( self : List[Any] ): return self.user_data["edge_followed_by"]["count"] @property def lowercase__ ( self : str ): return self.user_data["edge_follow"]["count"] @property def lowercase__ ( self : List[str] ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase__ ( self : List[str] ): return self.user_data["profile_pic_url_hd"] @property def lowercase__ ( self : Optional[Any] ): return self.user_data["is_verified"] @property def lowercase__ ( self : int ): return self.user_data["is_private"] def __lowerCAmelCase ( UpperCAmelCase__ : str = "github" ) -> None: import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions lowerCamelCase_ = InstagramUser(UpperCAmelCase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCAmelCase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowercase = InstagramUser('''github''') print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
272
1
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Tuple = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''efficientformer''' def __init__( self , _lowerCamelCase = [3, 2, 6, 4] , _lowerCamelCase = [48, 96, 224, 448] , _lowerCamelCase = [True, True, True, True] , _lowerCamelCase = 448 , _lowerCamelCase = 32 , _lowerCamelCase = 4 , _lowerCamelCase = 7 , _lowerCamelCase = 5 , _lowerCamelCase = 8 , _lowerCamelCase = 4 , _lowerCamelCase = 0.0 , _lowerCamelCase = 16 , _lowerCamelCase = 3 , _lowerCamelCase = 3 , _lowerCamelCase = 3 , _lowerCamelCase = 2 , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = 1 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = 1e-5 , _lowerCamelCase = "gelu" , _lowerCamelCase = 0.02 , _lowerCamelCase = 1e-12 , _lowerCamelCase = 224 , _lowerCamelCase = 1e-05 , **_lowerCamelCase , ) -> None: super().__init__(**_lowerCamelCase ) A_ : List[str] = hidden_act A_ : List[str] = hidden_dropout_prob A_ : Tuple = hidden_sizes A_ : str = num_hidden_layers A_ : List[Any] = num_attention_heads A_ : Union[str, Any] = initializer_range A_ : List[str] = layer_norm_eps A_ : Optional[Any] = patch_size A_ : Dict = num_channels A_ : int = depths A_ : List[Any] = mlp_expansion_ratio A_ : Dict = downsamples A_ : Dict = dim A_ : List[Any] = key_dim A_ : Union[str, Any] = attention_ratio A_ : str = resolution A_ : Optional[Any] = pool_size A_ : Any = downsample_patch_size A_ : Union[str, Any] = downsample_stride A_ : Tuple = downsample_pad A_ : str = drop_path_rate A_ : Optional[Any] = num_metaad_blocks A_ : Union[str, Any] = distillation A_ : Optional[int] = use_layer_scale A_ : str = layer_scale_init_value A_ : str = image_size A_ : Tuple = batch_norm_eps
385
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : int = create_tensor(a_ ) A_ : Any = gather(a_ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : List[str] = [state.process_index] A_ : Optional[Any] = gather_object(a_ ) assert len(a_ ) == state.num_processes, F"{gathered_obj}, {len(a_ )} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes ) ), F"{gathered_obj} != {list(range(state.num_processes ) )}" def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" A_ : List[str] = create_tensor(a_ ) A_ : Optional[Any] = broadcast(a_ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" if state.is_main_process: A_ : Optional[int] = torch.arange(state.num_processes + 1 ).to(state.device ) else: A_ : Any = torch.arange(state.num_processes ).to(state.device ) A_ : Union[str, Any] = pad_across_processes(a_ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return A_ : Tuple = create_tensor(a_ ) A_ : Optional[Any] = reduce(a_ , """sum""" ) A_ : str = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(a_ , a_ ), F"{reduced_tensor} != {truth_tensor}" def UpperCAmelCase ( a_ ) -> str: """simple docstring""" if state.num_processes != 2: return A_ : str = create_tensor(a_ ) A_ : int = reduce(a_ , """mean""" ) A_ : Optional[Any] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(a_ , a_ ), F"{reduced_tensor} != {truth_tensor}" def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" main() def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" A_ : Union[str, Any] = PartialState() state.print(F"State: {state}" ) state.print("""testing gather""" ) test_gather(a_ ) state.print("""testing gather_object""" ) test_gather_object(a_ ) state.print("""testing broadcast""" ) test_broadcast(a_ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(a_ ) state.print("""testing reduce_sum""" ) test_reduce_sum(a_ ) state.print("""testing reduce_mean""" ) test_reduce_mean(a_ ) if __name__ == "__main__": main()
385
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _UpperCAmelCase ( _lowercase ): '''simple docstring''' def UpperCamelCase ( self : Union[str, Any] , UpperCamelCase__ : Optional[Any] ): with open(UpperCamelCase__ , encoding='utf-8' ) as input_file: A = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) A = input_file.read() A = regexp.search(UpperCamelCase__ ) return match def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : Any ): with open(UpperCamelCase__ , encoding='utf-8' ) as input_file: A = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) A = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` A = regexp.finditer(UpperCamelCase__ ) A = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCamelCase ( self : Optional[Any] ): A = Path('./datasets' ) A = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(UpperCamelCase__ ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def UpperCamelCase ( self : str ): A = Path('./datasets' ) A = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(UpperCamelCase__ ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
699
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __lowercase : str = logging.get_logger(__name__) __lowercase : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase : Any = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } __lowercase : List[str] = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } __lowercase : Optional[int] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Any = RoFormerTokenizer def __init__(self , A=None , A=None , A=True , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A=True , A=None , **A , ): super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) lowerCamelCase_ : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , A ) != do_lower_case or pre_tok_state.get('''strip_accents''' , A ) != strip_accents ): lowerCamelCase_ : Any = getattr(A , pre_tok_state.pop('''type''' ) ) lowerCamelCase_ : Dict = do_lower_case lowerCamelCase_ : List[Any] = strip_accents lowerCamelCase_ : Any = pre_tok_class(**A ) lowerCamelCase_ : str = do_lower_case def __getstate__(self ): lowerCamelCase_ : Optional[Any] = self.__dict__.copy() lowerCamelCase_ : List[Any] = BertPreTokenizer() return state def __setstate__(self , A ): lowerCamelCase_ : str = d lowerCamelCase_ : List[str] = self.__dict__['''_tokenizer'''].get_vocab() lowerCamelCase_ : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(A ) ) def UpperCAmelCase__ (self , A , A=None ): lowerCamelCase_ : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Optional[int] = [self.sep_token_id] lowerCamelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Union[str, Any] = self._tokenizer.model.save(A , name=A ) return tuple(A ) def UpperCAmelCase__ (self , A , A=None , A=None , A=False , **A , ): lowerCamelCase_ : str = BertPreTokenizer() return super().save_pretrained(A , A , A , A , **A )
422
0
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> str: return " ".join( ''.join(word[::-1] ) if len(SCREAMING_SNAKE_CASE_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
327
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __UpperCamelCase = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } __UpperCamelCase = {'''facebook/blenderbot-3B''': 128} class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : int = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : Optional[int] = BlenderbotTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> str: super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , lowerCAmelCase__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , lowerCAmelCase__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**lowerCAmelCase__ ) setattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __A ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __A ( self , lowerCAmelCase__ ) -> List[str]: SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else value SCREAMING_SNAKE_CASE = value def __A ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> BatchEncoding: SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __A ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> BatchEncoding: SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Dict: return token_ids_a + [self.eos_token_id] def __A ( self , lowerCAmelCase__ ) -> List[int]: SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ' '.join(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.encode(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
327
1
import operator as op def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
31
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : int = CTRLTokenizer A_ : List[str] = False A_ : str = False def __UpperCamelCase ( self : Any ) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] A = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) A = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] A = {'unk_token': '<unk>'} A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__UpperCamelCase ) ) def __UpperCamelCase ( self : Optional[Any] , **__UpperCamelCase : List[str] ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __UpperCamelCase ( self : int , __UpperCamelCase : Optional[int] ) -> Optional[Any]: A = 'adapt react readapt apt' A = 'adapt react readapt apt' return input_text, output_text def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: A = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) A = 'adapt react readapt apt' A = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() A = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) A = tokens + [tokenizer.unk_token] A = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
106
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Dict = logging.get_logger(__name__) A__: Tuple = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : str = "nllb-moe" __UpperCamelCase : List[Any] = ["past_key_values"] __UpperCamelCase : Any = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[Any]=1_2_8_1_1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=1_0_2_4 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :Optional[int]=4_0_9_6 , SCREAMING_SNAKE_CASE :Union[str, Any]=1_6 , SCREAMING_SNAKE_CASE :str=1_2 , SCREAMING_SNAKE_CASE :Dict=4_0_9_6 , SCREAMING_SNAKE_CASE :List[str]=1_6 , SCREAMING_SNAKE_CASE :List[Any]=0.05 , SCREAMING_SNAKE_CASE :Tuple=0.05 , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :int="relu" , SCREAMING_SNAKE_CASE :List[str]=1_0_2_4 , SCREAMING_SNAKE_CASE :Optional[Any]=0.1 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :int=0.0 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE :List[str]=2 , SCREAMING_SNAKE_CASE :Optional[int]=True , SCREAMING_SNAKE_CASE :Any=False , SCREAMING_SNAKE_CASE :Optional[Any]="float32" , SCREAMING_SNAKE_CASE :Optional[Any]=False , SCREAMING_SNAKE_CASE :Optional[int]=1_2_8 , SCREAMING_SNAKE_CASE :Tuple=6_4 , SCREAMING_SNAKE_CASE :Any=4 , SCREAMING_SNAKE_CASE :Dict=4 , SCREAMING_SNAKE_CASE :Optional[Any]=0.001 , SCREAMING_SNAKE_CASE :Dict=0.001 , SCREAMING_SNAKE_CASE :List[Any]="all" , SCREAMING_SNAKE_CASE :List[str]=False , SCREAMING_SNAKE_CASE :Optional[Any]=False , SCREAMING_SNAKE_CASE :Tuple=1.0 , SCREAMING_SNAKE_CASE :str=0.2 , SCREAMING_SNAKE_CASE :List[str]=1 , SCREAMING_SNAKE_CASE :Dict=0 , SCREAMING_SNAKE_CASE :List[str]=2 , SCREAMING_SNAKE_CASE :Any=False , **SCREAMING_SNAKE_CASE :Dict , ) -> Tuple: '''simple docstring''' _a : Any =vocab_size _a : Tuple =max_position_embeddings _a : int =d_model _a : List[Any] =encoder_ffn_dim _a : List[Any] =encoder_layers _a : Union[str, Any] =encoder_attention_heads _a : Tuple =decoder_ffn_dim _a : List[Any] =decoder_layers _a : List[Any] =decoder_attention_heads _a : Union[str, Any] =dropout _a : List[str] =attention_dropout _a : Optional[int] =activation_dropout _a : Any =activation_function _a : List[Any] =init_std _a : Optional[int] =encoder_layerdrop _a : Union[str, Any] =decoder_layerdrop _a : List[str] =use_cache _a : Tuple =encoder_layers _a : Optional[int] =scale_embedding # scale factor will be sqrt(d_model) if True _a : Union[str, Any] =router_z_loss_coef _a : List[Any] =router_aux_loss_coef _a : Optional[Any] =decoder_sparse_step _a : List[Any] =encoder_sparse_step _a : Any =num_experts _a : Dict =expert_capacity _a : Tuple =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) _a : Any =router_dtype _a : Union[str, Any] =router_ignore_padding_tokens _a : Dict =batch_prioritized_routing _a : Tuple =second_expert_policy _a : Optional[int] =normalize_router_prob_before_dropping _a : str =moe_eval_capacity_token_fraction _a : Union[str, Any] =moe_token_dropout _a : Tuple =output_router_logits super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
506
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A__ ( UpperCAmelCase__ ): __UpperCamelCase : str = (DPMSolverSinglestepScheduler,) __UpperCamelCase : str = (("num_inference_steps", 25),) def __UpperCAmelCase ( self :Optional[Any] , **SCREAMING_SNAKE_CASE :int ) -> str: '''simple docstring''' _a : Optional[Any] ={ """num_train_timesteps""": 1_0_0_0, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """prediction_type""": """epsilon""", """thresholding""": False, """sample_max_value""": 1.0, """algorithm_type""": """dpmsolver++""", """solver_type""": """midpoint""", """lambda_min_clipped""": -float("""inf""" ), """variance_type""": None, } config.update(**SCREAMING_SNAKE_CASE ) return config def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Optional[Any]=0 , **SCREAMING_SNAKE_CASE :str ) -> Any: '''simple docstring''' _a : Any =dict(self.forward_default_kwargs ) _a : Any =kwargs.pop("""num_inference_steps""" , SCREAMING_SNAKE_CASE ) _a : Tuple =self.dummy_sample _a : Optional[Any] =0.1 * sample _a : Dict =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _a : Tuple =self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) _a : Optional[Any] =scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals _a : str =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) _a : Dict =scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals _a : List[str] =dummy_past_residuals[: new_scheduler.config.solver_order] _a , _a : str =sample, sample for t in range(SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): _a : Optional[int] =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample _a : Union[str, Any] =new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self :Optional[Any] ) -> List[str]: '''simple docstring''' pass def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :Union[str, Any]=0 , **SCREAMING_SNAKE_CASE :str ) -> Union[str, Any]: '''simple docstring''' _a : List[str] =dict(self.forward_default_kwargs ) _a : Dict =kwargs.pop("""num_inference_steps""" , SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =self.dummy_sample _a : int =0.1 * sample _a : Optional[int] =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _a : Optional[int] =self.get_scheduler_config() _a : str =scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) _a : Union[str, Any] =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) _a : Any =dummy_past_residuals[: new_scheduler.config.solver_order] _a : Optional[int] =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample _a : Tuple =new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Any=None , **SCREAMING_SNAKE_CASE :List[Any] ) -> Any: '''simple docstring''' if scheduler is None: _a : int =self.scheduler_classes[0] _a : int =self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) _a : int =scheduler_class(**SCREAMING_SNAKE_CASE ) _a : List[str] =self.scheduler_classes[0] _a : Union[str, Any] =self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) _a : Optional[Any] =scheduler_class(**SCREAMING_SNAKE_CASE ) _a : List[str] =1_0 _a : Optional[Any] =self.dummy_model() _a : int =self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): _a : str =model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Dict =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample return sample def __UpperCAmelCase ( self :List[Any] ) -> Tuple: '''simple docstring''' _a : int =DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _a : List[Any] =5_0 _a : Optional[Any] =self.dummy_model() _a : List[Any] =self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _a : Union[str, Any] =model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Optional[int] =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample _a : Optional[int] =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_574 ) < 1e-3 def __UpperCAmelCase ( self :Any ) -> Optional[int]: '''simple docstring''' for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Tuple ) -> int: '''simple docstring''' # make sure that iterating over schedulers with same config names gives same results # for defaults _a : List[str] =DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _a : List[Any] =self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) _a : str =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 _a : Dict =DEISMultistepScheduler.from_config(scheduler.config ) _a : Union[str, Any] =DPMSolverMultistepScheduler.from_config(scheduler.config ) _a : str =UniPCMultistepScheduler.from_config(scheduler.config ) _a : Optional[Any] =DPMSolverSinglestepScheduler.from_config(scheduler.config ) _a : Dict =self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) _a : List[str] =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 def __UpperCAmelCase ( self :Optional[int] ) -> Tuple: '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , sample_max_value=SCREAMING_SNAKE_CASE , algorithm_type="""dpmsolver++""" , solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , ) def __UpperCAmelCase ( self :Tuple ) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Dict ) -> str: '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , algorithm_type=SCREAMING_SNAKE_CASE , ) _a : List[Any] =self.full_loop( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , algorithm_type=SCREAMING_SNAKE_CASE , ) assert not torch.isnan(SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def __UpperCAmelCase ( self :Tuple ) -> Any: '''simple docstring''' self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Dict ) -> str: '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float("""inf""" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def __UpperCAmelCase ( self :Dict ) -> Optional[int]: '''simple docstring''' self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE ) self.check_over_configs(variance_type="""learned_range""" ) def __UpperCAmelCase ( self :Dict ) -> Optional[int]: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE , time_step=0 ) def __UpperCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' _a : List[Any] =self.full_loop() _a : Any =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 def __UpperCAmelCase ( self :List[str] ) -> Tuple: '''simple docstring''' _a : Dict =self.full_loop(use_karras_sigmas=SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_248 ) < 1e-3 def __UpperCAmelCase ( self :List[Any] ) -> Any: '''simple docstring''' _a : Optional[int] =self.full_loop(prediction_type="""v_prediction""" ) _a : Optional[Any] =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.1_453 ) < 1e-3 def __UpperCAmelCase ( self :int ) -> str: '''simple docstring''' _a : List[Any] =self.full_loop(prediction_type="""v_prediction""" , use_karras_sigmas=SCREAMING_SNAKE_CASE ) _a : Dict =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.0_649 ) < 1e-3 def __UpperCAmelCase ( self :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _a : Dict =self.scheduler_classes[0] _a : str =self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) _a : Optional[int] =scheduler_class(**SCREAMING_SNAKE_CASE ) _a : Optional[Any] =1_0 _a : Any =self.dummy_model() _a : int =self.dummy_sample_deter.half() scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): _a : Tuple =model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Dict =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa
506
1
print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
216
"""simple docstring""" import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput __UpperCAmelCase =logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCAmelCase__ ( UpperCAmelCase_ ): def __init__( self , *UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ): '''simple docstring''' super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) A__ = eval_examples A__ = post_process_function A__ = quant_trainer_args A__ = 1_28 # default number of calibration samples def lowercase_ ( self , UpperCamelCase__=None ): '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset." ) A__ = calib_dataset if calib_dataset is not None else self.calib_dataset A__ = self._remove_unused_columns(UpperCamelCase__ , description="Calibration" ) return DataLoader( UpperCamelCase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=UpperCamelCase__ , ) def lowercase_ ( self , UpperCamelCase__=None ): '''simple docstring''' A__ = self.train_dataset if calib_dataset is None else calib_dataset A__ = self.get_calib_dataloader(UpperCamelCase__ ) A__ = self.model quant_trainer.configure_model(UpperCamelCase__ , self.quant_trainer_args , calib=UpperCamelCase__ ) model.eval() quant_trainer.enable_calibration(UpperCamelCase__ ) logger.info("***** Running calibration *****" ) logger.info(f""" Num examples = {self.calib_num}""" ) logger.info(f""" Batch size = {calib_dataloader.batch_size}""" ) for step, inputs in enumerate(UpperCamelCase__ ): # Prediction step A__ , A__ , A__ = self.prediction_step(UpperCamelCase__ , UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(UpperCamelCase__ , self.quant_trainer_args ) A__ = model def lowercase_ ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__ = "eval" ): '''simple docstring''' A__ = self.eval_dataset if eval_dataset is None else eval_dataset A__ = self.get_eval_dataloader(UpperCamelCase__ ) A__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCamelCase__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , ) finally: A__ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: A__ = self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , output.predictions ) A__ = self.compute_metrics(UpperCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): A__ = metrics.pop(UpperCamelCase__ ) self.log(UpperCamelCase__ ) else: A__ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) A__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase__ ) return metrics def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__ = "test" ): '''simple docstring''' A__ = self.get_test_dataloader(UpperCamelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCamelCase__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , ) finally: A__ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output A__ = self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , output.predictions , "predict" ) A__ = self.compute_metrics(UpperCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): A__ = metrics.pop(UpperCamelCase__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__="./" ): '''simple docstring''' A__ = self.eval_dataset A__ = self.get_eval_dataloader(UpperCamelCase__ ) A__ = next(iter(UpperCamelCase__ ) ) # saving device - to make it consistent A__ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) # convert to tuple A__ = tuple(v.to(UpperCamelCase__ ) for k, v in batch.items() ) logger.info("Converting model to be onnx compatible" ) from pytorch_quantization.nn import TensorQuantizer A__ = True A__ = self.model.to(UpperCamelCase__ ) model.eval() model.float() A__ = model.module if hasattr(UpperCamelCase__ , "module" ) else model quant_trainer.configure_model(UpperCamelCase__ , self.quant_trainer_args ) A__ = os.path.join(UpperCamelCase__ , "model.onnx" ) logger.info(f"""exporting model to {output_model_file}""" ) A__ = {0: "batch_size", 1: "seq_len"} torch.onnx.export( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , export_params=UpperCamelCase__ , opset_version=13 , do_constant_folding=UpperCamelCase__ , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, } , verbose=UpperCamelCase__ , ) logger.info("onnx export finished" )
337
0
"""simple docstring""" from __future__ import annotations lowercase__ = 8.988E9 # units = N * m^s * C^-2 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->dict[str, float]: a__: Optional[int] = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if distance < 0: raise ValueError('Distance cannot be negative' ) if force == 0: a__: Optional[Any] = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: a__: List[str] = abs(_SCREAMING_SNAKE_CASE ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: a__: List[Any] = abs(_SCREAMING_SNAKE_CASE ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: a__: List[str] = (COULOMBS_CONSTANT * charge_product / abs(_SCREAMING_SNAKE_CASE )) ** 0.5 return {"distance": distance} raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
707
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __snake_case ( __lowerCAmelCase , unittest.TestCase ): a__ = BarthezTokenizer a__ = BarthezTokenizerFast a__ = True a__ = True def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' super().setUp() a__: List[Any] = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez') tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowercase) a__: List[str] = tokenizer def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: str = '<pad>' a__: Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase) , lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase) , lowercase) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: str = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , '<mask>') self.assertEqual(len(lowercase) , 10_11_22) def lowerCamelCase_ ( self) -> Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_11_22) @require_torch def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: Optional[int] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] a__: int = [0, 57, 30_18, 7_03_07, 91, 2] a__: Optional[int] = self.tokenizer( lowercase , max_length=len(lowercase) , padding=lowercase , truncation=lowercase , return_tensors='pt') self.assertIsInstance(lowercase , lowercase) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) a__: Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(lowercase , lowercase) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' if not self.test_rust_tokenizer: return a__: int = self.get_tokenizer() a__: Union[str, Any] = self.get_rust_tokenizer() a__: int = 'I was born in 92000, and this is falsé.' a__: int = tokenizer.tokenize(lowercase) a__: str = rust_tokenizer.tokenize(lowercase) self.assertListEqual(lowercase , lowercase) a__: int = tokenizer.encode(lowercase , add_special_tokens=lowercase) a__: Dict = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase) self.assertListEqual(lowercase , lowercase) a__: Union[str, Any] = self.get_rust_tokenizer() a__: Optional[Any] = tokenizer.encode(lowercase) a__: int = rust_tokenizer.encode(lowercase) self.assertListEqual(lowercase , lowercase) @slow def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: Tuple = {'input_ids': [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. a__: int = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=lowercase , )
217
0
'''simple docstring''' from math import isqrt, loga def __UpperCAmelCase (lowercase__ ) -> list[int]: '''simple docstring''' a_ = [True] * max_number for i in range(2 ,isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 ,lowercase__ ,lowercase__ ): a_ = False return [i for i in range(2 ,lowercase__ ) if is_prime[i]] def __UpperCAmelCase (lowercase__ = 800800 ,lowercase__ = 800800 ) -> int: '''simple docstring''' a_ = degree * loga(lowercase__ ) a_ = int(lowercase__ ) a_ = calculate_prime_numbers(lowercase__ ) a_ = 0 a_ = 0 a_ = len(lowercase__ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'{solution() = }')
685
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run __lowerCAmelCase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
689
0
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class A_ : def __init__( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any=True ,__lowerCAmelCase: str=False ,__lowerCAmelCase: Optional[int]=10 ,__lowerCAmelCase: List[str]=3 ,__lowerCAmelCase: Any=32 * 8 ,__lowerCAmelCase: Union[str, Any]=32 * 8 ,__lowerCAmelCase: Optional[Any]=4 ,__lowerCAmelCase: int=64 ,): '''simple docstring''' _lowerCamelCase : str = parent _lowerCamelCase : List[str] = batch_size _lowerCamelCase : str = is_training _lowerCamelCase : str = use_auxiliary_loss _lowerCamelCase : Optional[Any] = num_queries _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[Any] = min_size _lowerCamelCase : str = max_size _lowerCamelCase : str = num_labels _lowerCamelCase : List[str] = hidden_dim _lowerCamelCase : Dict = hidden_dim def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __lowerCAmelCase ) _lowerCamelCase : str = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=__lowerCAmelCase ) _lowerCamelCase : str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=__lowerCAmelCase ) > 0.5 ).float() _lowerCamelCase : Any = (torch.rand((self.batch_size, self.num_labels) ,device=__lowerCAmelCase ) > 0.5).long() _lowerCamelCase : List[str] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = MaskaFormerConfig( hidden_size=self.hidden_dim ,) _lowerCamelCase : Dict = self.num_queries _lowerCamelCase : Union[str, Any] = self.num_labels _lowerCamelCase : int = [1, 1, 1, 1] _lowerCamelCase : List[str] = self.num_channels _lowerCamelCase : Tuple = 64 _lowerCamelCase : Optional[Any] = 128 _lowerCamelCase : str = self.hidden_dim _lowerCamelCase : int = self.hidden_dim _lowerCamelCase : int = self.hidden_dim return config def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[Any] = self.prepare_config_and_inputs() _lowerCamelCase : Dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : List[Any] = output.encoder_hidden_states _lowerCamelCase : List[str] = output.pixel_decoder_hidden_states _lowerCamelCase : Tuple = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__lowerCAmelCase ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowerCAmelCase ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowerCAmelCase ) ,config.decoder_layers ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Any=False ): '''simple docstring''' with torch.no_grad(): _lowerCamelCase : List[str] = MaskaFormerModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[int] = model(pixel_values=__lowerCAmelCase ,pixel_mask=__lowerCAmelCase ) _lowerCamelCase : int = model(__lowerCAmelCase ,output_hidden_states=__lowerCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: int ,__lowerCAmelCase: Any ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : int = MaskaFormerForUniversalSegmentation(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() def comm_check_on_output(__lowerCAmelCase: Optional[int] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(pixel_values=__lowerCAmelCase ,pixel_mask=__lowerCAmelCase ) _lowerCamelCase : str = model(__lowerCAmelCase ) comm_check_on_output(__lowerCAmelCase ) _lowerCamelCase : Tuple = model( pixel_values=__lowerCAmelCase ,pixel_mask=__lowerCAmelCase ,mask_labels=__lowerCAmelCase ,class_labels=__lowerCAmelCase ) comm_check_on_output(__lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowerCAmelCase__ = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[str] = MaskaFormerModelTester(self ) _lowerCamelCase : int = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__lowerCAmelCase ,**__lowerCAmelCase ,output_hidden_states=__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__lowerCAmelCase ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def _lowercase ( self: List[Any] ): '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="Mask2Former is not a generative model" ) def _lowercase ( self: Dict ): '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _lowercase ( self: Any ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: List[Any] ): '''simple docstring''' pass def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Any = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) @slow def _lowercase ( self: Optional[Any] ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _lowerCamelCase : Tuple = MaskaFormerModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[Any] = (self.model_tester.min_size,) * 2 _lowerCamelCase : Optional[Any] = { "pixel_values": torch.randn((2, 3, *size) ,device=__lowerCAmelCase ), "mask_labels": torch.randn((2, 10, *size) ,device=__lowerCAmelCase ), "class_labels": torch.zeros(2 ,10 ,device=__lowerCAmelCase ).long(), } _lowerCamelCase : Dict = self.model_tester.get_config() _lowerCamelCase : Dict = MaskaFormerForUniversalSegmentation(__lowerCAmelCase ).to(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model(**__lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__lowerCAmelCase ,**__lowerCAmelCase ,output_hidden_states=__lowerCAmelCase ) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ).to(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model(**__lowerCAmelCase ,output_attentions=__lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def _lowercase ( self: int ): '''simple docstring''' if not self.model_tester.is_training: return _lowerCamelCase : Tuple = self.all_model_classes[1] _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() _lowerCamelCase : int = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ,mask_labels=__lowerCAmelCase ,class_labels=__lowerCAmelCase ).loss loss.backward() def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : str = self.all_model_classes[1] _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() _lowerCamelCase : Any = True _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : Dict = model_class(__lowerCAmelCase ).to(__lowerCAmelCase ) model.train() _lowerCamelCase : List[Any] = model(__lowerCAmelCase ,mask_labels=__lowerCAmelCase ,class_labels=__lowerCAmelCase ) _lowerCamelCase : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _lowerCamelCase : Dict = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _lowerCamelCase : Tuple = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _lowerCamelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowerCAmelCase : str = 1e-4 def lowerCamelCase_( ) -> List[str]: '''simple docstring''' _lowerCamelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: str ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def _lowercase ( self: List[Any] ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Optional[int] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__lowerCAmelCase ) _lowerCamelCase : Any = self.default_image_processor _lowerCamelCase : str = prepare_img() _lowerCamelCase : int = image_processor(__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__lowerCAmelCase ,(1, 3, 384, 384) ) with torch.no_grad(): _lowerCamelCase : Union[str, Any] = model(**__lowerCAmelCase ) _lowerCamelCase : Dict = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,__lowerCAmelCase ,atol=__lowerCAmelCase ) ) _lowerCamelCase : int = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,__lowerCAmelCase ,atol=__lowerCAmelCase ) ) _lowerCamelCase : List[Any] = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,__lowerCAmelCase ,atol=__lowerCAmelCase ) ) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__lowerCAmelCase ).eval() _lowerCamelCase : List[str] = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : int = image_processor(__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) _lowerCamelCase : List[str] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__lowerCAmelCase ,(1, 3, 384, 384) ) with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ) # masks_queries_logits _lowerCamelCase : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _lowerCamelCase : str = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] _lowerCamelCase : str = torch.tensor(__lowerCAmelCase ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,__lowerCAmelCase ,atol=__lowerCAmelCase ) ) # class_queries_logits _lowerCamelCase : Optional[Any] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) _lowerCamelCase : Optional[int] = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__lowerCAmelCase ,atol=__lowerCAmelCase ) ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Tuple = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__lowerCAmelCase ).eval() _lowerCamelCase : Any = self.default_image_processor _lowerCamelCase : Dict = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors="pt" ,) _lowerCamelCase : List[str] = inputs["pixel_values"].to(__lowerCAmelCase ) _lowerCamelCase : List[str] = [el.to(__lowerCAmelCase ) for el in inputs["mask_labels"]] _lowerCamelCase : Dict = [el.to(__lowerCAmelCase ) for el in inputs["class_labels"]] with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**__lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
713
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class A_ ( _a ): lowerCAmelCase__ = 42 class A_ ( _a , _a ): @register_to_config def __init__( self: List[Any] ,__lowerCAmelCase: int = 65_536 ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: int = 2 ,__lowerCAmelCase: int = 2 ,__lowerCAmelCase: int = 0 ,__lowerCAmelCase: str = "fourier" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: float = 0.0 ,__lowerCAmelCase: Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") ,__lowerCAmelCase: Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") ,__lowerCAmelCase: Tuple[str] = "UNetMidBlock1D" ,__lowerCAmelCase: str = None ,__lowerCAmelCase: Tuple[int] = (32, 32, 64) ,__lowerCAmelCase: str = None ,__lowerCAmelCase: int = 8 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: bool = False ,): '''simple docstring''' super().__init__() _lowerCamelCase : List[str] = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase : Optional[Any] = GaussianFourierProjection( embedding_size=8 ,set_W_to_weight=__lowerCAmelCase ,log=__lowerCAmelCase ,flip_sin_to_cos=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase : Any = Timesteps( block_out_channels[0] ,flip_sin_to_cos=__lowerCAmelCase ,downscale_freq_shift=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase : str = block_out_channels[0] * 4 _lowerCamelCase : str = TimestepEmbedding( in_channels=__lowerCAmelCase ,time_embed_dim=__lowerCAmelCase ,act_fn=__lowerCAmelCase ,out_dim=block_out_channels[0] ,) _lowerCamelCase : int = nn.ModuleList([] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Tuple = nn.ModuleList([] ) _lowerCamelCase : List[str] = None # down _lowerCamelCase : List[Any] = in_channels for i, down_block_type in enumerate(__lowerCAmelCase ): _lowerCamelCase : Optional[Any] = output_channel _lowerCamelCase : List[str] = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase : Tuple = i == len(__lowerCAmelCase ) - 1 _lowerCamelCase : List[Any] = get_down_block( __lowerCAmelCase ,num_layers=__lowerCAmelCase ,in_channels=__lowerCAmelCase ,out_channels=__lowerCAmelCase ,temb_channels=block_out_channels[0] ,add_downsample=not is_final_block or downsample_each_block ,) self.down_blocks.append(__lowerCAmelCase ) # mid _lowerCamelCase : Optional[Any] = get_mid_block( __lowerCAmelCase ,in_channels=block_out_channels[-1] ,mid_channels=block_out_channels[-1] ,out_channels=block_out_channels[-1] ,embed_dim=block_out_channels[0] ,num_layers=__lowerCAmelCase ,add_downsample=__lowerCAmelCase ,) # up _lowerCamelCase : Optional[int] = list(reversed(__lowerCAmelCase ) ) _lowerCamelCase : Tuple = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase : Tuple = out_channels else: _lowerCamelCase : Optional[Any] = block_out_channels[0] for i, up_block_type in enumerate(__lowerCAmelCase ): _lowerCamelCase : List[Any] = output_channel _lowerCamelCase : List[str] = ( reversed_block_out_channels[i + 1] if i < len(__lowerCAmelCase ) - 1 else final_upsample_channels ) _lowerCamelCase : Union[str, Any] = i == len(__lowerCAmelCase ) - 1 _lowerCamelCase : Tuple = get_up_block( __lowerCAmelCase ,num_layers=__lowerCAmelCase ,in_channels=__lowerCAmelCase ,out_channels=__lowerCAmelCase ,temb_channels=block_out_channels[0] ,add_upsample=not is_final_block ,) self.up_blocks.append(__lowerCAmelCase ) _lowerCamelCase : Dict = output_channel # out _lowerCamelCase : Dict = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 ,32 ) _lowerCamelCase : List[Any] = get_out_block( out_block_type=__lowerCAmelCase ,num_groups_out=__lowerCAmelCase ,embed_dim=block_out_channels[0] ,out_channels=__lowerCAmelCase ,act_fn=__lowerCAmelCase ,fc_dim=block_out_channels[-1] // 4 ,) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : Dict = timestep if not torch.is_tensor(__lowerCAmelCase ): _lowerCamelCase : int = torch.tensor([timesteps] ,dtype=torch.long ,device=sample.device ) elif torch.is_tensor(__lowerCAmelCase ) and len(timesteps.shape ) == 0: _lowerCamelCase : Optional[Any] = timesteps[None].to(sample.device ) _lowerCamelCase : Dict = self.time_proj(__lowerCAmelCase ) if self.config.use_timestep_embedding: _lowerCamelCase : Any = self.time_mlp(__lowerCAmelCase ) else: _lowerCamelCase : Optional[int] = timestep_embed[..., None] _lowerCamelCase : int = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase : Any = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase : Any = () for downsample_block in self.down_blocks: _lowerCamelCase, _lowerCamelCase : Dict = downsample_block(hidden_states=__lowerCAmelCase ,temb=__lowerCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase : Union[str, Any] = self.mid_block(__lowerCAmelCase ,__lowerCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase : Any = down_block_res_samples[-1:] _lowerCamelCase : Tuple = down_block_res_samples[:-1] _lowerCamelCase : str = upsample_block(__lowerCAmelCase ,res_hidden_states_tuple=__lowerCAmelCase ,temb=__lowerCAmelCase ) # 5. post-process if self.out_block: _lowerCamelCase : List[str] = self.out_block(__lowerCAmelCase ,__lowerCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=__lowerCAmelCase )
386
0
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _a = WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def lowerCamelCase__ ( __snake_case ) -> Any: """simple docstring""" _UpperCamelCase = test_results.split(''' ''' ) _UpperCamelCase = 0 _UpperCamelCase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. _UpperCamelCase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__snake_case ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def lowerCamelCase__ ( __snake_case ) -> int: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = None _UpperCamelCase = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''', __snake_case ): _UpperCamelCase = True _UpperCamelCase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): _UpperCamelCase = line _UpperCamelCase = False return failures class _UpperCAmelCase: def __init__( self , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = title _UpperCamelCase = doc_test_results['''time_spent'''].split(''',''')[0] _UpperCamelCase = doc_test_results['''success'''] _UpperCamelCase = doc_test_results['''failures'''] _UpperCamelCase = self.n_success + self.n_failures # Failures and success of the modeling tests _UpperCamelCase = doc_test_results @property def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = [self._time_spent] _UpperCamelCase = 0 for time in time_spent: _UpperCamelCase = time.split(''':''') # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__a) == 1: _UpperCamelCase = [0, 0, time_parts[0]] _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = int(time_parts[0]), int(time_parts[1]), float(time_parts[2]) total_secs += hours * 36_00 + minutes * 60 + seconds _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return F'''{int(__a)}h{int(__a)}m{int(__a)}s''' @property def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = 40 _UpperCamelCase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(__a , __a)} _UpperCamelCase = '''''' for category, failures in category_failures.items(): if len(__a) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2).rjust(line_length // 2) + "\n" report += "`" report += "`\n`".join(__a) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = [self.header] if self.n_failures > 0: blocks.append(self.failures) if self.n_failures > 0: blocks.extend([self.category_failures]) if self.n_failures == 0: blocks.append(self.no_failures) return json.dumps(__a) @staticmethod def UpperCAmelCase ( ) -> str: '''simple docstring''' _UpperCamelCase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print('''Sending the following payload''') print(json.dumps({'''blocks''': json.loads(__a)})) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=__a , ) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' print('''Sending the following payload''') print(json.dumps({'''blocks''': json.loads(self.payload)})) _UpperCamelCase = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else '''All tests passed.''' _UpperCamelCase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=__a , ) def UpperCAmelCase ( self , __a , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = '''''' for key, value in failures.items(): _UpperCamelCase = value[:2_00] + ''' [Truncated]''' if len(__a) > 2_50 else value failures_text += F'''*{key}*\n_{value}_\n\n''' _UpperCamelCase = job_name _UpperCamelCase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: _UpperCamelCase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''') _UpperCamelCase = self.doc_test_results.pop('''job_link''') self.doc_test_results.pop('''failures''') self.doc_test_results.pop('''success''') self.doc_test_results.pop('''time_spent''') _UpperCamelCase = sorted(self.doc_test_results.items() , key=lambda __a: t[0]) for job, job_result in sorted_dict: if len(job_result['''failures''']): _UpperCamelCase = F'''*Num failures* :{len(job_result["failed"])} \n''' _UpperCamelCase = job_result['''failures'''] _UpperCamelCase = self.get_reply_blocks(__a , __a , __a , text=__a) print('''Sending the following reply''') print(json.dumps({'''blocks''': blocks})) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F'''Results for {job}''' , blocks=__a , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = os.environ['''GITHUB_RUN_ID'''] _UpperCamelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' _UpperCamelCase = requests.get(__snake_case ).json() _UpperCamelCase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) _UpperCamelCase = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(__snake_case ): _UpperCamelCase = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''', __snake_case ) return {} def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = {} if os.path.exists(__snake_case ): _UpperCamelCase = os.listdir(__snake_case ) for file in files: try: with open(os.path.join(__snake_case, __snake_case ), encoding='''utf-8''' ) as f: _UpperCamelCase = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(__snake_case, __snake_case )}.''' ) from e return _artifact def lowerCamelCase__ ( ) -> int: """simple docstring""" class _UpperCAmelCase: def __init__( self , __a) -> str: '''simple docstring''' _UpperCamelCase = name _UpperCamelCase = [] def __str__( self) -> int: '''simple docstring''' return self.name def UpperCAmelCase ( self , __a) -> Any: '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path}) _UpperCamelCase = {} _UpperCamelCase = filter(os.path.isdir, os.listdir() ) for directory in directories: _UpperCamelCase = directory if artifact_name not in _available_artifacts: _UpperCamelCase = Artifact(__snake_case ) _available_artifacts[artifact_name].add_path(__snake_case ) return _available_artifacts if __name__ == "__main__": _a = get_job_links() _a = retrieve_available_artifacts() _a = collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _a = { v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job _a = github_actions_job_links.get("""run_doctests""") _a = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] _a = retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: _a , _a , _a = handle_test_results(artifact["""stats"""]) _a = failed _a = success _a = time_spent[1:-1] + """, """ _a = extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): _a = line.replace("""FAILED """, """""") _a = line.split()[0].replace("""\n""", """""") if "::" in line: _a , _a = line.split("""::""") else: _a , _a = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _a = docs[file_regex] doc_test_results[category]["failed"].append(test) _a = all_failures[test] if test in all_failures else """N/A""" _a = failure break _a = Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
19
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil _a = 100 _a = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _UpperCamelCase = set() _UpperCamelCase = 42 _UpperCamelCase = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowerCamelCase__ ( __snake_case = 50_00 ) -> int | None: """simple docstring""" for number_to_partition in range(1, __snake_case ): if len(partition(__snake_case ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
19
1
from __future__ import annotations import math def A ( __UpperCAmelCase ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A ( __UpperCAmelCase ) -> list[int]: '''simple docstring''' UpperCAmelCase_ = str(__UpperCAmelCase ) UpperCAmelCase_ = [n] for i in range(1 , len(__UpperCAmelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def A ( __UpperCAmelCase ) -> bool: '''simple docstring''' if len(str(__UpperCAmelCase ) ) > 3: if not is_prime(int(str(__UpperCAmelCase )[-3:] ) ) or not is_prime(int(str(__UpperCAmelCase )[:3] ) ): return False return True def A ( __UpperCAmelCase = 11 ) -> list[int]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = 13 while len(__UpperCAmelCase ) != count: if validate(__UpperCAmelCase ): UpperCAmelCase_ = list_truncated_nums(__UpperCAmelCase ) if all(is_prime(__UpperCAmelCase ) for i in list_nums ): list_truncated_primes.append(__UpperCAmelCase ) num += 2 return list_truncated_primes def A ( ) -> int: '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f"{sum(compute_truncated_primes(11)) = }")
561
def A ( __UpperCAmelCase ) -> Dict: '''simple docstring''' if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ = head.next, head while fast and fast.next: UpperCAmelCase_ = fast.next.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ = None while second: UpperCAmelCase_ = second.next UpperCAmelCase_ = node UpperCAmelCase_ = second UpperCAmelCase_ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ = node.next UpperCAmelCase_ = head.next return True def A ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ = [slow.val] while slow.next: UpperCAmelCase_ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ = cur.next return True def A ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' if not head or not head.next: return True UpperCAmelCase_ = {} UpperCAmelCase_ = 0 while head: if head.val in d: d[head.val].append(__UpperCAmelCase ) else: UpperCAmelCase_ = [pos] UpperCAmelCase_ = head.next pos += 1 UpperCAmelCase_ = pos - 1 UpperCAmelCase_ = 0 for v in d.values(): if len(__UpperCAmelCase ) % 2 != 0: middle += 1 else: UpperCAmelCase_ = 0 for i in range(0 , len(__UpperCAmelCase ) ): if v[i] + v[len(__UpperCAmelCase ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
561
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase_ ( lowerCamelCase ): a__ = 42 a__ = 42 def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" super().__init__() self.register_modules(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) @torch.no_grad() def __call__( self , __lowerCAmelCase = 1 , __lowerCAmelCase = 2_0_0_0 , __lowerCAmelCase = None , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , **__lowerCAmelCase , ): """simple docstring""" __magic_name__ :int = self.unet.config.sample_size __magic_name__ :Optional[Any] = (batch_size, 3, img_size, img_size) __magic_name__ :Tuple = self.unet __magic_name__ :Dict = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase ) * self.scheduler.init_noise_sigma __magic_name__ :str = sample.to(self.device ) self.scheduler.set_timesteps(__lowerCAmelCase ) self.scheduler.set_sigmas(__lowerCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __magic_name__ :Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __magic_name__ :List[Any] = self.unet(__lowerCAmelCase , __lowerCAmelCase ).sample __magic_name__ :Tuple = self.scheduler.step_correct(__lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample # prediction step __magic_name__ :Union[str, Any] = model(__lowerCAmelCase , __lowerCAmelCase ).sample __magic_name__ :Dict = self.scheduler.step_pred(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ) __magic_name__ , __magic_name__ :List[str] = output.prev_sample, output.prev_sample_mean __magic_name__ :Tuple = sample_mean.clamp(0 , 1 ) __magic_name__ :List[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __magic_name__ :Union[str, Any] = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__lowerCAmelCase )
0
lowercase_ : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_9344, "knot": 1.852, } lowercase_ : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_7777_7778, "mph": 0.6_2137_1192, "knot": 0.5_3995_6803, } def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if unit_to not in speed_chart or unit_from not in speed_chart_inverse: _snake_case : Union[str, Any] = ( F'''Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n''' F'''Valid values are: {', '.join(__lowerCAmelCase )}''' ) raise ValueError(__lowerCAmelCase ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
304
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = KandinskyImgaImgPipeline __snake_case = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] __snake_case = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] __snake_case = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __snake_case = False @property def _snake_case ( self: List[Any] ): return 32 @property def _snake_case ( self: Any ): return 32 @property def _snake_case ( self: Dict ): return self.time_input_dim @property def _snake_case ( self: Optional[Any] ): return self.time_input_dim * 4 @property def _snake_case ( self: Any ): return 100 @property def _snake_case ( self: Tuple ): __lowerCamelCase : Dict = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def _snake_case ( self: Dict ): torch.manual_seed(0 ) __lowerCamelCase : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) __lowerCamelCase : Any = MultilingualCLIP(a ) __lowerCamelCase : Dict = text_encoder.eval() return text_encoder @property def _snake_case ( self: List[Any] ): torch.manual_seed(0 ) __lowerCamelCase : int = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __lowerCamelCase : Optional[int] = UNetaDConditionModel(**a ) return model @property def _snake_case ( self: Dict ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _snake_case ( self: List[str] ): torch.manual_seed(0 ) __lowerCamelCase : int = VQModel(**self.dummy_movq_kwargs ) return model def _snake_case ( self: int ): __lowerCamelCase : List[str] = self.dummy_text_encoder __lowerCamelCase : str = self.dummy_tokenizer __lowerCamelCase : List[Any] = self.dummy_unet __lowerCamelCase : List[str] = self.dummy_movq __lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } __lowerCamelCase : List[Any] = DDIMScheduler(**a ) __lowerCamelCase : Optional[Any] = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _snake_case ( self: Optional[int] , a: List[Any] , a: List[str]=0 ): __lowerCamelCase : List[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(a ) ).to(a ) __lowerCamelCase : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(a ) # create init_image __lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(a ) ).to(a ) __lowerCamelCase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase : Optional[int] = Image.fromarray(np.uinta(a ) ).convert('RGB' ).resize((256, 256) ) if str(a ).startswith('mps' ): __lowerCamelCase : Tuple = torch.manual_seed(a ) else: __lowerCamelCase : List[str] = torch.Generator(device=a ).manual_seed(a ) __lowerCamelCase : Tuple = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _snake_case ( self: Dict ): __lowerCamelCase : Optional[Any] = 'cpu' __lowerCamelCase : List[str] = self.get_dummy_components() __lowerCamelCase : Optional[int] = self.pipeline_class(**a ) __lowerCamelCase : Tuple = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : Tuple = pipe(**self.get_dummy_inputs(a ) ) __lowerCamelCase : Optional[Any] = output.images __lowerCamelCase : int = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] __lowerCamelCase : Tuple = image[0, -3:, -3:, -1] __lowerCamelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase : Dict = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self: Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self: List[Any] ): __lowerCamelCase : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) __lowerCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __lowerCamelCase : Optional[Any] = 'A red cartoon frog, 4k' __lowerCamelCase : Optional[Any] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(a ) __lowerCamelCase : str = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) __lowerCamelCase : Optional[int] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) __lowerCamelCase : Any = torch.Generator(device='cpu' ).manual_seed(0 ) __lowerCamelCase , __lowerCamelCase : List[str] = pipe_prior( a , generator=a , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __lowerCamelCase : int = pipeline( a , image=a , image_embeds=a , negative_image_embeds=a , generator=a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) __lowerCamelCase : Any = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a , a )
230
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class A_ : '''simple docstring''' __snake_case = 42 # [batch_size x 3] __snake_case = 42 # [batch_size x 3] __snake_case = 42 # [batch_size x 3] __snake_case = 42 # [batch_size x 3] __snake_case = 42 __snake_case = 42 __snake_case = 42 __snake_case = 42 __snake_case = 42 def _snake_case ( self: str ): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _snake_case ( self: Dict ): return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _snake_case ( self: List[str] ): return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _snake_case ( self: Dict ): __lowerCamelCase : Any = torch.arange(self.height * self.width ) __lowerCamelCase : List[str] = torch.stack( [ pixel_indices % self.width, torch.div(a , self.width , rounding_mode='trunc' ), ] , axis=1 , ) return coords @property def _snake_case ( self: Optional[int] ): __lowerCamelCase , *__lowerCamelCase : int = self.shape __lowerCamelCase : Optional[Any] = int(np.prod(a ) ) __lowerCamelCase : Dict = self.get_image_coords() __lowerCamelCase : Optional[Any] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) __lowerCamelCase : Tuple = self.get_camera_rays(a ) __lowerCamelCase : Union[str, Any] = rays.view(a , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _snake_case ( self: Optional[Any] , a: torch.Tensor ): __lowerCamelCase , *__lowerCamelCase , __lowerCamelCase : Union[str, Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __lowerCamelCase : Union[str, Any] = coords.view(a , -1 , 2 ) __lowerCamelCase : Dict = self.resolution() __lowerCamelCase : List[Any] = self.fov() __lowerCamelCase : str = (flat.float() / (res - 1)) * 2 - 1 __lowerCamelCase : Union[str, Any] = fracs * torch.tan(fov / 2 ) __lowerCamelCase : Dict = fracs.view(a , -1 , 2 ) __lowerCamelCase : Dict = ( self.z.view(a , 1 , 3 ) + self.x.view(a , 1 , 3 ) * fracs[:, :, :1] + self.y.view(a , 1 , 3 ) * fracs[:, :, 1:] ) __lowerCamelCase : int = directions / directions.norm(dim=-1 , keepdim=a ) __lowerCamelCase : Any = torch.stack( [ torch.broadcast_to(self.origin.view(a , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(a , *a , 2 , 3 ) def _snake_case ( self: int , a: int , a: int ): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=a , height=a , x_fov=self.x_fov , y_fov=self.y_fov , ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Dict = [] __lowerCamelCase : Optional[int] = [] __lowerCamelCase : str = [] __lowerCamelCase : Optional[int] = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): __lowerCamelCase : Tuple = np.array([np.sin(SCREAMING_SNAKE_CASE__ ), np.cos(SCREAMING_SNAKE_CASE__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __lowerCamelCase : Optional[Any] = -z * 4 __lowerCamelCase : Any = np.array([np.cos(SCREAMING_SNAKE_CASE__ ), -np.sin(SCREAMING_SNAKE_CASE__ ), 0.0] ) __lowerCamelCase : Optional[int] = np.cross(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) origins.append(SCREAMING_SNAKE_CASE__ ) xs.append(SCREAMING_SNAKE_CASE__ ) ys.append(SCREAMING_SNAKE_CASE__ ) zs.append(SCREAMING_SNAKE_CASE__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(SCREAMING_SNAKE_CASE__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(SCREAMING_SNAKE_CASE__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(SCREAMING_SNAKE_CASE__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(SCREAMING_SNAKE_CASE__ , axis=0 ) ).float() , width=SCREAMING_SNAKE_CASE__ , height=SCREAMING_SNAKE_CASE__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(SCREAMING_SNAKE_CASE__ )) , )
230
1
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : int=1024 , __magic_name__ : Union[str, Any]=1024 , __magic_name__ : Union[str, Any]=3.6 ): """simple docstring""" lowerCAmelCase__ = tokenizer lowerCAmelCase__ = tokenizer.bos_token_id lowerCAmelCase__ = dataset lowerCAmelCase__ = seq_length lowerCAmelCase__ = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ): """simple docstring""" lowerCAmelCase__ = iter(self.dataset ) lowerCAmelCase__ = True while more_examples: lowerCAmelCase__ ,lowerCAmelCase__ = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__magic_name__ )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: lowerCAmelCase__ = False break lowerCAmelCase__ = tokenizer(__magic_name__ , truncation=__magic_name__ )["input_ids"] lowerCAmelCase__ = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(__magic_name__ ) , self.seq_length ): lowerCAmelCase__ = all_token_ids[i : i + self.seq_length] if len(__magic_name__ ) == self.seq_length: yield torch.tensor(__magic_name__ ) def A ( UpperCamelCase_ : str ) -> int: '''simple docstring''' lowerCAmelCase__ = {"streaming": True} lowerCAmelCase__ = load_dataset(args.dataset_name , split="train" , **UpperCamelCase_ ) lowerCAmelCase__ = ConstantLengthDataset(UpperCamelCase_ , UpperCamelCase_ , seq_length=args.seq_length ) lowerCAmelCase__ = DataLoader(UpperCamelCase_ , batch_size=args.batch_size ) return eval_dataloader def A ( UpperCamelCase_ : Tuple ) -> str: '''simple docstring''' model.eval() lowerCAmelCase__ = [] for step, batch in enumerate(UpperCamelCase_ ): with torch.no_grad(): lowerCAmelCase__ = model(UpperCamelCase_ , labels=UpperCamelCase_ ) lowerCAmelCase__ = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(UpperCamelCase_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowerCAmelCase__ = torch.mean(torch.cat(UpperCamelCase_ ) ) try: lowerCAmelCase__ = torch.exp(UpperCamelCase_ ) except OverflowError: lowerCAmelCase__ = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase__ : Any = Accelerator() # Parse configuration UpperCAmelCase__ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase__ : int = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase__ : Any = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) # Load model and tokenizer UpperCAmelCase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase__ : Tuple = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase__ , UpperCAmelCase__ : str = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = evaluate(args) logger.info(F"loss/eval: {eval_loss}, perplexity: {perplexity}")
48
'''simple docstring''' from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" A__ : torch.FloatTensor class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , A = 16 , A = 88 , A = None , A = None , A = 1 , A = 0.0 , A = 32 , A = None , A = False , A = None , A = "geglu" , A = True , A = True , ) -> Union[str, Any]: super().__init__() A: Union[str, Any] = num_attention_heads A: Optional[Any] = attention_head_dim A: Optional[int] = num_attention_heads * attention_head_dim A: str = in_channels A: List[Any] = torch.nn.GroupNorm(num_groups=A , num_channels=A , eps=1e-6 , affine=A ) A: Optional[int] = nn.Linear(A , A ) # 3. Define transformers blocks A: Optional[Any] = nn.ModuleList( [ BasicTransformerBlock( A , A , A , dropout=A , cross_attention_dim=A , activation_fn=A , attention_bias=A , double_self_attention=A , norm_elementwise_affine=A , ) for d in range(A ) ] ) A: Tuple = nn.Linear(A , A ) def a__ ( self , A , A=None , A=None , A=None , A=1 , A=None , A = True , ) -> str: A , A , A , A: Optional[Any] = hidden_states.shape A: Optional[Any] = batch_frames // num_frames A: List[str] = hidden_states A: List[str] = hidden_states[None, :].reshape(A , A , A , A , A ) A: Dict = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) A: List[str] = self.norm(A ) A: List[Any] = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , A , A ) A: Optional[Any] = self.proj_in(A ) # 2. Blocks for block in self.transformer_blocks: A: int = block( A , encoder_hidden_states=A , timestep=A , cross_attention_kwargs=A , class_labels=A , ) # 3. Output A: Tuple = self.proj_out(A ) A: List[str] = ( hidden_states[None, None, :] .reshape(A , A , A , A , A ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) A: Optional[int] = hidden_states.reshape(A , A , A , A ) A: Optional[int] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=A )
135
0
'''simple docstring''' __SCREAMING_SNAKE_CASE :List[Any] = [ '''Audio''', '''Array2D''', '''Array3D''', '''Array4D''', '''Array5D''', '''ClassLabel''', '''Features''', '''Sequence''', '''Value''', '''Image''', '''Translation''', '''TranslationVariableLanguages''', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
119
'''simple docstring''' from __future__ import annotations __SCREAMING_SNAKE_CASE :Tuple = list[tuple[int, int]] __SCREAMING_SNAKE_CASE :Tuple = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __SCREAMING_SNAKE_CASE :Any = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class A_ : def __init__( self : List[Any] , snake_case_ : int , snake_case_ : int , snake_case_ : int , snake_case_ : int , snake_case_ : float , snake_case_ : Node | None , ): _UpperCAmelCase = pos_x _UpperCAmelCase = pos_y _UpperCAmelCase = (pos_y, pos_x) _UpperCAmelCase = goal_x _UpperCAmelCase = goal_y _UpperCAmelCase = g_cost _UpperCAmelCase = parent _UpperCAmelCase = self.calculate_heuristic() def lowercase ( self : List[Any] ): _UpperCAmelCase = abs(self.pos_x - self.goal_x ) _UpperCAmelCase = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : List[str] , snake_case_ : List[Any] ): return self.f_cost < other.f_cost class A_ : def __init__( self : Tuple , snake_case_ : tuple[int, int] , snake_case_ : tuple[int, int] ): _UpperCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ ) _UpperCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , snake_case_ ) _UpperCAmelCase = [self.start] _UpperCAmelCase = [] _UpperCAmelCase = False def lowercase ( self : int ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _UpperCAmelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: _UpperCAmelCase = True return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) _UpperCAmelCase = self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path _UpperCAmelCase = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) if not self.reached: return [self.start.pos] return None def lowercase ( self : List[str] , snake_case_ : Node ): _UpperCAmelCase = [] for action in delta: _UpperCAmelCase = parent.pos_x + action[1] _UpperCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) ) return successors def lowercase ( self : Any , snake_case_ : Node | None ): _UpperCAmelCase = node _UpperCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _UpperCAmelCase = current_node.parent path.reverse() return path if __name__ == "__main__": __SCREAMING_SNAKE_CASE :int = (0, 0) __SCREAMING_SNAKE_CASE :Optional[int] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') __SCREAMING_SNAKE_CASE :Union[str, Any] = GreedyBestFirst(init, goal) __SCREAMING_SNAKE_CASE :Optional[int] = greedy_bf.search() if path: for pos_x, pos_y in path: __SCREAMING_SNAKE_CASE :Dict = 2 for elem in grid: print(elem)
119
1
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = CLIPTokenizer __lowercase : Tuple = CLIPTokenizerFast __lowercase : str = True __lowercase : Optional[int] = {} __lowercase : str = False def UpperCAmelCase_ ( self ) -> Tuple: super().setUp() # fmt: off lowerCAmelCase__ : List[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowerCAmelCase__ : Union[str, Any] = dict(zip(__UpperCAmelCase ,range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ : Union[str, Any] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] lowerCAmelCase__ : Dict = {"""unk_token""": """<unk>"""} lowerCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase__ : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ,**__UpperCAmelCase ) -> Any: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ,**__UpperCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : str = """lower newer""" lowerCAmelCase__ : str = """lower newer""" return input_text, output_text def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : str = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase__ : Optional[int] = """lower newer""" lowerCAmelCase__ : Optional[Any] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] lowerCAmelCase__ : str = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : Tuple = tokens + [tokenizer.unk_token] lowerCAmelCase__ : int = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) ,__UpperCAmelCase ) @require_ftfy def UpperCAmelCase_ ( self ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : str = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" lowerCAmelCase__ : List[str] = tokenizer_s.tokenize(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowerCAmelCase__ : List[Any] = """xa\u0303y""" + """ """ + """x\xe3y""" lowerCAmelCase__ : List[str] = tokenizer_s.tokenize(__UpperCAmelCase ) lowerCAmelCase__ : Any = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) # Test that the tokenization is identical on unicode of space type lowerCAmelCase__ : List[Any] = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowerCAmelCase__ : Optional[Any] = tokenizer_s.tokenize(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) # Test that the tokenization is identical on unicode of line break type lowerCAmelCase__ : Union[str, Any] = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowerCAmelCase__ : int = tokenizer_s.tokenize(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ : Dict = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase__ : List[Any] = F"""{text_of_1_token} {text_of_1_token}""" lowerCAmelCase__ : int = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase ,use_fast=__UpperCAmelCase ,) lowerCAmelCase__ : Tuple = tokenizer_r(__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) ,) lowerCAmelCase__ : Any = F""" {text}""" lowerCAmelCase__ : Any = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase ,use_fast=__UpperCAmelCase ,) lowerCAmelCase__ : List[Any] = tokenizer_r(__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(__UpperCAmelCase ) + 1, 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) ,) def UpperCAmelCase_ ( self ) -> Union[str, Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(__UpperCAmelCase ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def UpperCAmelCase_ ( self ) -> List[Any]: super().test_tokenization_python_rust_equals() def UpperCAmelCase_ ( self ) -> int: # CLIP always lower cases letters pass
565
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if "resnet-50" in model_name: lowerCAmelCase__ : int = ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: lowerCAmelCase__ : Dict = ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) lowerCAmelCase__ : Tuple = DetrConfig(use_timm_backbone=UpperCamelCase , backbone_config=UpperCamelCase ) # set label attributes lowerCAmelCase__ : str = """panoptic""" in model_name if is_panoptic: lowerCAmelCase__ : Union[str, Any] = 250 else: lowerCAmelCase__ : Union[str, Any] = 91 lowerCAmelCase__ : Optional[Any] = """huggingface/label-files""" lowerCAmelCase__ : int = """coco-detection-id2label.json""" lowerCAmelCase__ : Dict = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase__ : Any = {int(UpperCamelCase ): v for k, v in idalabel.items()} lowerCAmelCase__ : Union[str, Any] = idalabel lowerCAmelCase__ : str = {v: k for k, v in idalabel.items()} return config, is_panoptic def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = state_dict.pop(UpperCamelCase ) lowerCAmelCase__ : Any = val def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase=False ): """simple docstring""" lowerCAmelCase__ : List[Any] = """""" if is_panoptic: lowerCAmelCase__ : Union[str, Any] = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCAmelCase__ : Optional[int] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCAmelCase__ : Optional[Any] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : Union[str, Any] = in_proj_weight[:256, :] lowerCAmelCase__ : Optional[int] = in_proj_bias[:256] lowerCAmelCase__ : Union[str, Any] = in_proj_weight[256:512, :] lowerCAmelCase__ : List[Any] = in_proj_bias[256:512] lowerCAmelCase__ : Optional[int] = in_proj_weight[-256:, :] lowerCAmelCase__ : Optional[Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowerCAmelCase__ : List[str] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCAmelCase__ : int = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : List[str] = in_proj_weight[:256, :] lowerCAmelCase__ : Any = in_proj_bias[:256] lowerCAmelCase__ : Optional[Any] = in_proj_weight[256:512, :] lowerCAmelCase__ : Optional[int] = in_proj_bias[256:512] lowerCAmelCase__ : List[Any] = in_proj_weight[-256:, :] lowerCAmelCase__ : Any = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowerCAmelCase__ : Union[str, Any] = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) lowerCAmelCase__ : Dict = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowerCAmelCase__ : Union[str, Any] = in_proj_weight_cross_attn[:256, :] lowerCAmelCase__ : Tuple = in_proj_bias_cross_attn[:256] lowerCAmelCase__ : str = in_proj_weight_cross_attn[256:512, :] lowerCAmelCase__ : Optional[int] = in_proj_bias_cross_attn[256:512] lowerCAmelCase__ : Optional[Any] = in_proj_weight_cross_attn[-256:, :] lowerCAmelCase__ : Optional[int] = in_proj_bias_cross_attn[-256:] def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase__ : Optional[int] = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase=None , UpperCamelCase=False ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = get_detr_config(UpperCamelCase ) # load original model from torch hub lowerCAmelCase__ : Union[str, Any] = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(f"""Converting model {model_name}...""" ) lowerCAmelCase__ : List[Any] = torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=UpperCamelCase ).eval() lowerCAmelCase__ : str = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCamelCase ): if is_panoptic: lowerCAmelCase__ : List[str] = """detr.""" + src rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase , is_panoptic=UpperCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCAmelCase__ : int = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): lowerCAmelCase__ : Optional[Any] = state_dict.pop(UpperCamelCase ) lowerCAmelCase__ : Tuple = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCAmelCase__ : Any = state_dict.pop(UpperCamelCase ) lowerCAmelCase__ : List[str] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: lowerCAmelCase__ : List[Any] = state_dict.pop(UpperCamelCase ) lowerCAmelCase__ : Dict = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): lowerCAmelCase__ : Dict = state_dict.pop(UpperCamelCase ) lowerCAmelCase__ : Dict = val # finally, create HuggingFace model and load state dict lowerCAmelCase__ : int = DetrForSegmentation(UpperCamelCase ) if is_panoptic else DetrForObjectDetection(UpperCamelCase ) model.load_state_dict(UpperCamelCase ) model.eval() # verify our conversion on an image lowerCAmelCase__ : Union[str, Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" lowerCAmelCase__ : List[Any] = DetrImageProcessor(format=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase__ : Union[str, Any] = encoding["""pixel_values"""] lowerCAmelCase__ : List[Any] = detr(UpperCamelCase ) lowerCAmelCase__ : List[Any] = model(UpperCamelCase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) model.save_pretrained(UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(f"""nielsr/{model_name}""" ) processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') _lowerCAmelCase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
565
1
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
700
'''simple docstring''' def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) lowerCamelCase_ : int = str(bin(__UpperCAmelCase ) )[2:] # remove the leading "0b" lowerCamelCase_ : str = str(bin(__UpperCAmelCase ) )[2:] lowerCamelCase_ : Dict = max(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCAmelCase ) , b_binary.zfill(__UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
418
0
def _snake_case (_snake_case : Any) -> list: if n_term == "": return [] _lowercase =[] for temp in range(int(UpperCAmelCase__)): series.append(f'''1/{temp + 1}''' if series else '1') return series if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
181
import unittest import numpy as np def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , ) -> np.ndarray: UpperCamelCase_: str = np.shape(UpperCAmelCase__ ) UpperCamelCase_: str = np.shape(UpperCAmelCase__ ) UpperCamelCase_: List[Any] = np.shape(UpperCAmelCase__ ) if shape_a[0] != shape_b[0]: UpperCamelCase_: Any = ( 'Expected the same number of rows for A and B. ' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(UpperCAmelCase__ ) if shape_b[1] != shape_c[1]: UpperCamelCase_: int = ( 'Expected the same number of columns for B and C. ' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(UpperCAmelCase__ ) UpperCamelCase_: Dict = pseudo_inv if a_inv is None: try: UpperCamelCase_: Optional[Any] = np.linalg.inv(UpperCAmelCase__ ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: Dict = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: Tuple = np.array([[2, 1], [6, 3]] ) UpperCamelCase_: Tuple = schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[Any] = np.block([[a, b], [b.T, c]] ) UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase ) UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase ) UpperCamelCase_: Dict = np.linalg.det(_lowerCamelCase ) self.assertAlmostEqual(_lowerCamelCase , det_a * det_s ) def _a ( self ): UpperCamelCase_: int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: List[str] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: str = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
57
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __lowerCAmelCase ): '''simple docstring''' __UpperCAmelCase = "encoder-decoder" __UpperCAmelCase = True def __init__(self , **lowerCAmelCase__ ): '''simple docstring''' super().__init__(**lowerCamelCase__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _UpperCamelCase : str = kwargs.pop("encoder" ) _UpperCamelCase : Optional[int] = encoder_config.pop("model_type" ) _UpperCamelCase : Dict = kwargs.pop("decoder" ) _UpperCamelCase : Optional[Any] = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _UpperCamelCase : Any = AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) _UpperCamelCase : Optional[int] = AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) _UpperCamelCase : Dict = True @classmethod def lowercase_ (cls , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) _UpperCamelCase : Any = True _UpperCamelCase : Any = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase__ ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) _UpperCamelCase : Dict = self.encoder.to_dict() _UpperCamelCase : int = self.decoder.to_dict() _UpperCamelCase : Optional[int] = self.__class__.model_type return output
718
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCAmelCase = """vit_mae""" def __init__(self , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=2_24 , lowerCAmelCase__=16 , lowerCAmelCase__=3 , lowerCAmelCase__=True , lowerCAmelCase__=16 , lowerCAmelCase__=5_12 , lowerCAmelCase__=8 , lowerCAmelCase__=20_48 , lowerCAmelCase__=0.75 , lowerCAmelCase__=False , **lowerCAmelCase__ , ): '''simple docstring''' super().__init__(**lowerCAmelCase__ ) _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Tuple = intermediate_size _UpperCamelCase : Tuple = hidden_act _UpperCamelCase : Optional[Any] = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Union[str, Any] = initializer_range _UpperCamelCase : Tuple = layer_norm_eps _UpperCamelCase : Dict = image_size _UpperCamelCase : Union[str, Any] = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Optional[int] = qkv_bias _UpperCamelCase : List[str] = decoder_num_attention_heads _UpperCamelCase : int = decoder_hidden_size _UpperCamelCase : Dict = decoder_num_hidden_layers _UpperCamelCase : Dict = decoder_intermediate_size _UpperCamelCase : str = mask_ratio _UpperCamelCase : List[str] = norm_pix_loss
239
0