code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
1
'''simple docstring''' import os from math import logaa def lowerCAmelCase_ ( snake_case_ : str = "base_exp.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(snake_case_ ) , snake_case_ ) ) ): UpperCAmelCase_ , UpperCAmelCase_ = list(map(snake_case_ , line.split("," ) ) ) if x * logaa(snake_case_ ) > largest: UpperCAmelCase_ = x * logaa(snake_case_ ) UpperCAmelCase_ = i + 1 return result if __name__ == "__main__": print(solution())
1
1
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem SCREAMING_SNAKE_CASE = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 SCREAMING_SNAKE_CASE = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: if "://" in dataset_path: A__ = dataset_path.split("://" )[1] return dataset_path def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: if fs is not None and fs.protocol != "file": return True else: return False def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: A__ = not is_remote_filesystem(lowercase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowercase_ ) , fs._strip_protocol(lowercase_ ) ) else: fs.mv(lowercase_ , lowercase_ , recursive=lowercase_ ) def _SCREAMING_SNAKE_CASE ( ) -> None: if hasattr(fsspec.asyn , "reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: A__ = None A__ = None A__ = threading.Lock()
230
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self : Tuple , snake_case_ : Optional[Any] , snake_case_ : Optional[Any]=13 , snake_case_ : Optional[int]=7 , snake_case_ : Any=True , snake_case_ : List[Any]=True , snake_case_ : Dict=True , snake_case_ : Dict=True , snake_case_ : List[str]=99 , snake_case_ : Union[str, Any]=16 , snake_case_ : Any=36 , snake_case_ : List[Any]=6 , snake_case_ : Optional[Any]=6 , snake_case_ : Optional[Any]=6 , snake_case_ : Any=37 , snake_case_ : int="gelu" , snake_case_ : Any=0.1 , snake_case_ : int=0.1 , snake_case_ : str=512 , snake_case_ : Union[str, Any]=16 , snake_case_ : Tuple=2 , snake_case_ : Any=0.02 , snake_case_ : Optional[Any]=3 , snake_case_ : Union[str, Any]=4 , snake_case_ : Any=None , ) -> Tuple: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = embedding_size A__ = hidden_size A__ = num_hidden_layers A__ = num_hidden_groups A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def __magic_name__ ( self : Tuple ) -> List[str]: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : int ) -> Dict: '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __magic_name__ ( self : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ = AlbertModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() A__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) A__ = model(snake_case_ , token_type_ids=snake_case_ ) A__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self : int , snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ) -> int: '''simple docstring''' A__ = AlbertForPreTraining(config=snake_case_ ) model.to(snake_case_ ) model.eval() A__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , sentence_order_label=snake_case_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __magic_name__ ( self : str , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : List[str] ) -> Dict: '''simple docstring''' A__ = AlbertForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() A__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : int , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : List[str] ) -> Tuple: '''simple docstring''' A__ = AlbertForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() A__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : Any , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : Any ) -> Any: '''simple docstring''' A__ = self.num_labels A__ = AlbertForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() A__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : Tuple , snake_case_ : Dict , snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] ) -> List[str]: '''simple docstring''' A__ = self.num_labels A__ = AlbertForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() A__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Any , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Any ) -> Optional[Any]: '''simple docstring''' A__ = self.num_choices A__ = AlbertForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() A__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self : Any ) -> List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ), ( A__ ), ( A__ ), ( A__ ), ( A__ ), ( A__ ), ( A__ ), ) = config_and_inputs A__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( A_, A_, unittest.TestCase ): lowercase__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowercase__ = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True def __magic_name__ ( self : Tuple , snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : List[Any]=False ) -> Optional[int]: '''simple docstring''' A__ = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class in get_values(snake_case_ ): A__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case_ ) A__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def __magic_name__ ( self : Dict ) -> List[Any]: '''simple docstring''' A__ = AlbertModelTester(self ) A__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def __magic_name__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : Any ) -> List[str]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __magic_name__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) def __magic_name__ ( self : int ) -> str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def __magic_name__ ( self : Any ) -> str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def __magic_name__ ( self : Optional[Any] ) -> Any: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def __magic_name__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def __magic_name__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*snake_case_ ) @slow def __magic_name__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = AlbertModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __magic_name__ ( self : int ) -> Tuple: '''simple docstring''' A__ = AlbertModel.from_pretrained("albert-base-v2" ) A__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) A__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A__ = model(snake_case_ , attention_mask=snake_case_ )[0] A__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , snake_case_ ) A__ = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1e-4 ) )
230
1
from collections.abc import Callable def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : float = a _A : float = b if function(_UpperCAmelCase ) == 0: # one of the a or b is a root for the function return a elif function(_UpperCAmelCase ) == 0: return b elif ( function(_UpperCAmelCase ) * function(_UpperCAmelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: _A : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_UpperCAmelCase ) == 0: return mid elif function(_UpperCAmelCase ) * function(_UpperCAmelCase ) < 0: _A : Optional[int] = mid else: _A : Optional[Any] = mid _A : Any = start + (end - start) / 2.0 return mid def lowerCAmelCase_ ( snake_case_ ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
26
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : str = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCamelCase__ : Optional[Any] = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCamelCase__ : List[str] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase__ : Dict = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCamelCase__ : Tuple = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_UpperCAmelCase )-1}""" ) if "norm" in key: lowerCamelCase__ : str = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase__ : Dict = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCamelCase__ : str = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_UpperCAmelCase )-1}""" ) if "layer_norm1" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase__ : List[Any] = key[key.find('block' ) + len('block' )] lowerCamelCase__ : int = key.replace(F"""block{idx}""" , F"""block.{int(_UpperCAmelCase )-1}""" ) if "attn.q" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCamelCase__ : Dict = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCamelCase__ : Dict = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCamelCase__ : Any = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCamelCase__ : Dict = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCamelCase__ : Tuple = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCamelCase__ : List[str] = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase__ : Optional[Any] = key[key.find('linear_c' ) + len('linear_c' )] lowerCamelCase__ : Dict = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_UpperCAmelCase )-1}""" ) if "bot_conv" in key: lowerCamelCase__ : str = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCamelCase__ : Union[str, Any] = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCamelCase__ : List[Any] = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCamelCase__ : Optional[int] = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCamelCase__ : Union[str, Any] = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCamelCase__ : List[Any] = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCamelCase__ : str = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCamelCase__ : Dict = key.replace('module.last_layer_depth' , 'head.head' ) lowerCamelCase__ : str = value return new_state_dict def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase__ : Any = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowerCamelCase__ : Optional[Any] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowerCamelCase__ : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase__ : Optional[int] = kv_bias[: config.hidden_sizes[i]] lowerCamelCase__ : Any = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase__ : Dict = kv_bias[config.hidden_sizes[i] :] def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Tuple = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=None ) -> Optional[int]: lowerCamelCase__ : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCamelCase__ : Union[str, Any] = GLPNImageProcessor() # prepare image lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCamelCase__ : Any = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCamelCase__ : str = rename_keys(_UpperCAmelCase ) # key and value matrices need special treatment read_in_k_v(_UpperCAmelCase , _UpperCAmelCase ) # create HuggingFace model and load state dict lowerCamelCase__ : Dict = GLPNForDepthEstimation(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # forward pass lowerCamelCase__ : List[str] = model(_UpperCAmelCase ) lowerCamelCase__ : Tuple = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCamelCase__ : List[Any] = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCamelCase__ : List[str] = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) lowerCamelCase__ : Tuple = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) _UpperCAmelCase : int = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
50
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowercase : Any = logging.get_logger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : str = torch.load(_UpperCamelCase , map_location="""cpu""" ) if "model" in sd.keys(): lowercase : Optional[Any] = torch.load(_UpperCamelCase , map_location="""cpu""" )["""model"""] # pop unnecessary weights lowercase : Optional[Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_UpperCamelCase ) lowercase : Any = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: lowercase : List[Any] = sd.pop(_UpperCamelCase ) lowercase : int = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: lowercase : Tuple = sd[key] # We split QKV in separate Q,K,V lowercase : int = key.replace(""".qkv_proj.""" , """.q_proj.""" ) lowercase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) lowercase : Any = key.replace(""".qkv_proj.""" , """.v_proj.""" ) lowercase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 lowercase , lowercase , lowercase : Dict = torch.split(_UpperCamelCase , depth // 3 , dim=0 ) lowercase : int = q lowercase : Any = k lowercase : Dict = v del sd[key] return sd @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> Dict: lowercase : List[Any] = load_checkpoint(_UpperCamelCase ) if config is not None: lowercase : List[Any] = OPTConfig.from_pretrained(_UpperCamelCase ) else: lowercase : List[Any] = OPTConfig() lowercase : int = OPTModel(_UpperCamelCase ).half().eval() model.load_state_dict(_UpperCamelCase ) # Check results Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") lowercase : Optional[Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
368
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def _snake_case( ) -> tuple[list[int], int]: lowercase : List[Any] = [randint(-1_000 , 1_000 ) for i in range(10 )] lowercase : Tuple = randint(-5_000 , 5_000 ) return (arr, r) lowercase : List[Any] = make_dataset() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> tuple[int, ...]: for triplet in permutations(SCREAMING_SNAKE_CASE__ , 3 ): if sum(SCREAMING_SNAKE_CASE__ ) == target: return tuple(sorted(SCREAMING_SNAKE_CASE__ ) ) return (0, 0, 0) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> tuple[int, int, int]: arr.sort() lowercase : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(n - 1 ): lowercase , lowercase : Optional[Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def _snake_case( ) -> tuple[float, float]: lowercase : Dict = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ lowercase : Tuple = """ triplet_sum1(*dataset) """ lowercase : int = """ triplet_sum2(*dataset) """ lowercase : str = repeat(setup=SCREAMING_SNAKE_CASE__ , stmt=SCREAMING_SNAKE_CASE__ , repeat=5 , number=10_000 ) lowercase : Dict = repeat(setup=SCREAMING_SNAKE_CASE__ , stmt=SCREAMING_SNAKE_CASE__ , repeat=5 , number=10_000 ) return (min(SCREAMING_SNAKE_CASE__ ), min(SCREAMING_SNAKE_CASE__ )) if __name__ == "__main__": from doctest import testmod testmod() lowercase : Union[str, Any] = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
285
0
from __future__ import annotations from collections import namedtuple def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Any = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
186
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = "pix2struct_text_model" snake_case = ["past_key_values"] snake_case = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _SCREAMING_SNAKE_CASE=5_0244 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE="gelu_new" , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , )->int: '''simple docstring''' A_ : Optional[int] = vocab_size A_ : Any = hidden_size A_ : Optional[Any] = d_kv A_ : int = d_ff A_ : int = num_layers A_ : Dict = num_heads A_ : Any = relative_attention_num_buckets A_ : int = relative_attention_max_distance A_ : Optional[Any] = dropout_rate A_ : Optional[Any] = layer_norm_epsilon A_ : List[Any] = initializer_factor A_ : Optional[int] = use_cache A_ : Optional[Any] = eos_token_id A_ : List[Any] = decoder_start_token_id # for backwards compatibility A_ : int = dense_act_fn super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , tie_word_embeddings=_SCREAMING_SNAKE_CASE , is_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @classmethod def _snake_case ( cls , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_SCREAMING_SNAKE_CASE ) A_ , A_ : Union[str, Any] = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": A_ : Any = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = "pix2struct_vision_model" def __init__( self , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE="gelu_new" , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=1e-10 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=4096 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=128 , **_SCREAMING_SNAKE_CASE , )->Optional[int]: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) A_ : Dict = hidden_size A_ : Union[str, Any] = patch_embed_hidden_size A_ : Optional[Any] = d_ff A_ : Optional[Any] = dropout_rate A_ : int = num_hidden_layers A_ : Tuple = num_attention_heads A_ : List[str] = initializer_range A_ : List[str] = initializer_factor A_ : Union[str, Any] = attention_dropout A_ : Union[str, Any] = layer_norm_eps A_ : Dict = dense_act_fn A_ : Union[str, Any] = seq_len A_ : Optional[Any] = relative_attention_num_buckets A_ : Tuple = relative_attention_max_distance A_ : List[Any] = d_kv @classmethod def _snake_case ( cls , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_SCREAMING_SNAKE_CASE ) A_ , A_ : str = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": A_ : Any = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = "pix2struct" snake_case = True def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , )->Any: '''simple docstring''' super().__init__(tie_word_embeddings=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text_config is None: A_ : Dict = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: A_ : List[Any] = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) A_ : int = PixaStructTextConfig(**_SCREAMING_SNAKE_CASE ) A_ : Dict = PixaStructVisionConfig(**_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = self.text_config.decoder_start_token_id A_ : Tuple = self.text_config.pad_token_id A_ : Union[str, Any] = self.text_config.eos_token_id A_ : str = initializer_factor A_ : Tuple = initializer_range A_ : List[str] = self.initializer_range A_ : int = self.initializer_range A_ : List[Any] = is_vqa @classmethod def _snake_case ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Dict: '''simple docstring''' A_ : List[Any] = copy.deepcopy(self.__dict__ ) A_ : Dict = self.text_config.to_dict() A_ : int = self.vision_config.to_dict() A_ : List[str] = self.__class__.model_type return output
186
1
from ..utils import DummyObject, requires_backends class lowercase ( metaclass=__SCREAMING_SNAKE_CASE ): __lowercase : Tuple = ["note_seq"] def __init__( self , *A_ , **A_ ) -> List[str]: """simple docstring""" requires_backends(self , ['note_seq'] ) @classmethod def __UpperCamelCase ( cls , *A_ , **A_ ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['note_seq'] ) @classmethod def __UpperCamelCase ( cls , *A_ , **A_ ) -> Tuple: """simple docstring""" requires_backends(cls , ['note_seq'] )
364
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = get_activation('swish' ) self.assertIsInstance(A_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = get_activation('silu' ) self.assertIsInstance(A_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = get_activation('mish' ) self.assertIsInstance(A_ , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = get_activation('gelu' ) self.assertIsInstance(A_ , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
110
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if height >= 1: move_tower(height - 1, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) move_disk(__UpperCAmelCase, __UpperCAmelCase ) move_tower(height - 1, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Any: '''simple docstring''' print('''moving disk from''', __UpperCAmelCase, '''to''', __UpperCAmelCase ) def __magic_name__ ( ) -> List[Any]: '''simple docstring''' snake_case_ = int(input('''Height of hanoi: ''' ).strip() ) move_tower(__UpperCAmelCase, '''A''', '''B''', '''C''' ) if __name__ == "__main__": main()
56
"""simple docstring""" from __future__ import annotations def lowercase (snake_case__ : list[int] ) -> list[int]: # This function is recursive '''simple docstring''' lowerCAmelCase = len(snake_case__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCAmelCase = array[0] lowerCAmelCase = False lowerCAmelCase = 1 lowerCAmelCase = [] while not is_found and i < array_length: if array[i] < pivot: lowerCAmelCase = True lowerCAmelCase = [element for element in array[i:] if element >= array[i]] lowerCAmelCase = longest_subsequence(snake_case__ ) if len(snake_case__ ) > len(snake_case__ ): lowerCAmelCase = temp_array else: i += 1 lowerCAmelCase = [element for element in array[1:] if element >= pivot] lowerCAmelCase = [pivot, *longest_subsequence(snake_case__ )] if len(snake_case__ ) > len(snake_case__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
155
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , __lowercase , unittest.TestCase): _SCREAMING_SNAKE_CASE : Optional[int] = AltDiffusionPipeline _SCREAMING_SNAKE_CASE : str = TEXT_TO_IMAGE_PARAMS _SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE : int = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase__ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_02 , ) lowerCAmelCase__ = CLIPTextModel(_UpperCamelCase ) lowerCAmelCase__ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) lowerCAmelCase__ = 77 lowerCAmelCase__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=0 ): """simple docstring""" if str(_UpperCamelCase ).startswith('mps' ): lowerCAmelCase__ = torch.manual_seed(_UpperCamelCase ) else: lowerCAmelCase__ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) lowerCAmelCase__ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() torch.manual_seed(0 ) lowerCAmelCase__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCAmelCase__ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) lowerCAmelCase__ = text_encoder lowerCAmelCase__ = AltDiffusionPipeline(**_UpperCamelCase ) lowerCAmelCase__ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = self.get_dummy_inputs(_UpperCamelCase ) lowerCAmelCase__ = 'A photo of an astronaut' lowerCAmelCase__ = alt_pipe(**_UpperCamelCase ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) lowerCAmelCase__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCAmelCase__ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) lowerCAmelCase__ = text_encoder lowerCAmelCase__ = AltDiffusionPipeline(**_UpperCamelCase ) lowerCAmelCase__ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = self.get_dummy_inputs(_UpperCamelCase ) lowerCAmelCase__ = alt_pipe(**_UpperCamelCase ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" # make sure here that pndm scheduler skips prk lowerCAmelCase__ = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=_UpperCamelCase ) lowerCAmelCase__ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = 'A painting of a squirrel eating a burger' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) lowerCAmelCase__ = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) lowerCAmelCase__ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = 'A painting of a squirrel eating a burger' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='numpy' ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
122
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : List[Any] = '''microsoft/speecht5_tts''' _SCREAMING_SNAKE_CASE : Any = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) _SCREAMING_SNAKE_CASE : int = '''text_reader''' _SCREAMING_SNAKE_CASE : List[str] = SpeechTaProcessor _SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaForTextToSpeech _SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGan _SCREAMING_SNAKE_CASE : Optional[int] = ['''text'''] _SCREAMING_SNAKE_CASE : List[Any] = ['''audio'''] def UpperCamelCase__ ( self ): """simple docstring""" if self.post_processor is None: lowerCAmelCase__ = 'microsoft/speecht5_hifigan' super().setup() def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" lowerCAmelCase__ = self.pre_processor(text=_UpperCamelCase , return_tensors='pt' , truncation=_UpperCamelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) lowerCAmelCase__ = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) lowerCAmelCase__ = torch.tensor(embeddings_dataset[73_05]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" with torch.no_grad(): return self.model.generate_speech(**_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" with torch.no_grad(): return self.post_processor(_UpperCamelCase ).cpu().detach()
122
1
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> str: """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : List[str] = len(set_a.intersection(__lowerCAmelCase ) ) if alternative_union: snake_case__ : Optional[int] = len(__lowerCAmelCase ) + len(__lowerCAmelCase ) else: snake_case__ : Dict = len(set_a.union(__lowerCAmelCase ) ) return intersection / union if isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(__lowerCAmelCase , (list, tuple) ): snake_case__ : Optional[Any] = [element for element in set_a if element in set_b] if alternative_union: snake_case__ : Dict = len(__lowerCAmelCase ) + len(__lowerCAmelCase ) return len(__lowerCAmelCase ) / union else: snake_case__ : Optional[Any] = set_a + [element for element in set_b if element not in set_a] return len(__lowerCAmelCase ) / len(__lowerCAmelCase ) return len(__lowerCAmelCase ) / len(__lowerCAmelCase ) return None if __name__ == "__main__": A__ = {'''a''', '''b''', '''c''', '''d''', '''e'''} A__ = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
230
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename A__ = '''http://www.mocksite.com/file1.txt''' A__ = '''"text": ["foo", "foo"]''' A__ = '''6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8''' class a : __lowerCAmelCase : Optional[int] = 2_00 __lowerCAmelCase : List[str] = {"""Content-Length""": """100"""} __lowerCAmelCase : Dict = {} def __lowerCamelCase ( self :Dict ,**__lowercase :List[Any] ): return [bytes(__lowercase ,'''utf-8''' )] def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(__lowerCAmelCase , '''request''' , __lowerCAmelCase ) snake_case__ : Union[str, Any] = URL if issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Optional[Any] = url elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : int = [url] elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : int = {'''train''': url} snake_case__ : Dict = '''dummy''' snake_case__ : Any = '''downloads''' snake_case__ : int = tmp_path snake_case__ : Any = DownloadConfig( cache_dir=os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , use_etag=__lowerCAmelCase , ) snake_case__ : Tuple = DownloadManager(dataset_name=__lowerCAmelCase , download_config=__lowerCAmelCase ) snake_case__ : List[Any] = dl_manager.download(__lowerCAmelCase ) snake_case__ : Union[str, Any] = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Optional[int] = [downloaded_paths] snake_case__ : Dict = [urls] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): assert "train" in downloaded_paths.keys() snake_case__ : str = downloaded_paths.values() snake_case__ : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCAmelCase , __lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] snake_case__ : List[Any] = Path(__lowerCAmelCase ) snake_case__ : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() snake_case__ : List[str] = downloaded_path.read_text() assert content == CONTENT snake_case__ : List[str] = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() snake_case__ : str = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: """simple docstring""" snake_case__ : Any = str(__lowerCAmelCase ) if issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Tuple = filename elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Dict = [filename] elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Dict = {'''train''': filename} snake_case__ : Any = '''dummy''' snake_case__ : Any = xz_file.parent snake_case__ : List[str] = '''extracted''' snake_case__ : Dict = DownloadConfig( cache_dir=__lowerCAmelCase , use_etag=__lowerCAmelCase , ) snake_case__ : Dict = DownloadManager(dataset_name=__lowerCAmelCase , download_config=__lowerCAmelCase ) snake_case__ : str = dl_manager.extract(__lowerCAmelCase ) snake_case__ : int = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Dict = [extracted_paths] snake_case__ : Optional[Any] = [paths] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): assert "train" in extracted_paths.keys() snake_case__ : int = extracted_paths.values() snake_case__ : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCAmelCase , __lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] snake_case__ : Optional[int] = Path(__lowerCAmelCase ) snake_case__ : int = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCAmelCase , etag=__lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() snake_case__ : List[Any] = extracted_path.read_text() snake_case__ : List[str] = text_file.read_text() assert extracted_file_content == expected_file_content def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: """simple docstring""" assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(__lowerCAmelCase , start=1 ): snake_case__ : Any = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Any = request.getfixturevalue(__lowerCAmelCase ) snake_case__ : Union[str, Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): _test_jsonl(__lowerCAmelCase , __lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: """simple docstring""" snake_case__ : Union[str, Any] = request.getfixturevalue(__lowerCAmelCase ) snake_case__ : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): _test_jsonl(__lowerCAmelCase , __lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Any = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCAmelCase ) , start=1 ): assert os.path.basename(__lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
230
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a_ : List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class __UpperCamelCase : lowercase : Optional[str] =field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) lowercase : Optional[str] =field( default=lowerCamelCase__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowercase : Optional[str] =field( default=lowerCamelCase__ , metadata={'help': 'The column name of the images in the files.'} ) lowercase : Optional[str] =field(default=lowerCamelCase__ , metadata={'help': 'A folder containing the training data.'} ) lowercase : Optional[str] =field(default=lowerCamelCase__ , metadata={'help': 'A folder containing the validation data.'} ) lowercase : Optional[float] =field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) lowercase : Optional[int] =field( default=lowerCamelCase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowercase : Optional[int] =field( default=lowerCamelCase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={} if self.train_dir is not None: lowerCamelCase_ =self.train_dir if self.validation_dir is not None: lowerCamelCase_ =self.validation_dir lowerCamelCase_ =data_files if data_files else None @dataclass class __UpperCamelCase : lowercase : str =field( default=lowerCamelCase__ , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) lowercase : Optional[str] =field( default=lowerCamelCase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) lowercase : Optional[str] =field( default=lowerCamelCase__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) lowercase : Optional[str] =field( default=lowerCamelCase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) lowercase : str =field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowercase : str =field(default=lowerCamelCase__ , metadata={'help': 'Name or path of preprocessor config.'} ) lowercase : bool =field( default=lowerCamelCase__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowercase : float =field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class __UpperCamelCase ( lowerCamelCase__ ): lowercase : float =field( default=1E-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def a_ ( __snake_case : List[str] ) -> int: """simple docstring""" lowerCamelCase_ =torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def a_ ( ) -> str: """simple docstring""" lowerCamelCase_ =HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , __snake_case , __snake_case ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ =training_args.get_process_log_level() logger.setLevel(__snake_case ) transformers.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowerCamelCase_ =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. lowerCamelCase_ =load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCamelCase_ =None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __snake_case ) and data_args.train_val_split > 0.0: lowerCamelCase_ =ds['''train'''].train_test_split(data_args.train_val_split ) lowerCamelCase_ =split['''train'''] lowerCamelCase_ =split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ ={ '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase_ =ViTMAEConfig.from_pretrained(model_args.config_name , **__snake_case ) elif model_args.model_name_or_path: lowerCamelCase_ =ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **__snake_case ) else: lowerCamelCase_ =ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowerCamelCase_ =ViTImageProcessor.from_pretrained(model_args.image_processor_name , **__snake_case ) elif model_args.model_name_or_path: lowerCamelCase_ =ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **__snake_case ) else: lowerCamelCase_ =ViTImageProcessor() # create model if model_args.model_name_or_path: lowerCamelCase_ =ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowerCamelCase_ =ViTMAEForPreTraining(__snake_case ) if training_args.do_train: lowerCamelCase_ =ds['''train'''].column_names else: lowerCamelCase_ =ds['''validation'''].column_names if data_args.image_column_name is not None: lowerCamelCase_ =data_args.image_column_name elif "image" in column_names: lowerCamelCase_ ='''image''' elif "img" in column_names: lowerCamelCase_ ='''img''' else: lowerCamelCase_ =column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowerCamelCase_ =image_processor.size['''shortest_edge'''] else: lowerCamelCase_ =(image_processor.size['''height'''], image_processor.size['''width''']) lowerCamelCase_ =Compose( [ Lambda(lambda __snake_case : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(__snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(__snake_case : List[Any] ): lowerCamelCase_ =[transforms(__snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowerCamelCase_ =ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowerCamelCase_ =( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__snake_case ) # Compute absolute learning rate lowerCamelCase_ =( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowerCamelCase_ =training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer lowerCamelCase_ =Trainer( model=__snake_case , args=__snake_case , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: lowerCamelCase_ =None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ =training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ =last_checkpoint lowerCamelCase_ =trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase_ =trainer.evaluate() trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) # Write model card and (optionally) push to hub lowerCamelCase_ ={ '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**__snake_case ) else: trainer.create_model_card(**__snake_case ) def a_ ( __snake_case : Optional[int] ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
367
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union a_ : Tuple = TypeVar("""T""") a_ : Dict = Union[List[T], Tuple[T, ...]] a_ : int = Union[T, List[T], Dict[str, T]] a_ : Optional[Any] = Union[str, bytes, os.PathLike]
6
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "dpt" def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=3_8_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=[2, 5, 8, 1_1] , __lowerCamelCase="project" , __lowerCamelCase=[4, 2, 1, 0.5] , __lowerCamelCase=[9_6, 1_9_2, 3_8_4, 7_6_8] , __lowerCamelCase=2_5_6 , __lowerCamelCase=-1 , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.4 , __lowerCamelCase=2_5_5 , __lowerCamelCase=0.1 , __lowerCamelCase=[1, 1_0_2_4, 2_4, 2_4] , __lowerCamelCase=[0, 1] , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[Any]: super().__init__(**__lowerCamelCase) _A : Any = hidden_size _A : Dict = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone.") _A : int = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } _A : Dict = BitConfig(**__lowerCamelCase) elif isinstance(__lowerCamelCase , __lowerCamelCase): logger.info("Initializing the config with a `BiT` backbone.") _A : Optional[Any] = BitConfig(**__lowerCamelCase) elif isinstance(__lowerCamelCase , __lowerCamelCase): _A : List[str] = backbone_config else: raise ValueError( F"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.") _A : Any = backbone_featmap_shape _A : Optional[Any] = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode.") else: _A : List[Any] = None _A : List[str] = None _A : int = [] _A : Any = num_hidden_layers _A : List[str] = num_attention_heads _A : Any = intermediate_size _A : int = hidden_act _A : int = hidden_dropout_prob _A : Tuple = attention_probs_dropout_prob _A : str = initializer_range _A : Optional[Any] = layer_norm_eps _A : Optional[Any] = image_size _A : Any = patch_size _A : List[Any] = num_channels _A : Union[str, Any] = qkv_bias _A : List[Any] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']") _A : int = readout_type _A : Union[str, Any] = reassemble_factors _A : str = neck_hidden_sizes _A : Optional[Any] = fusion_hidden_size _A : Union[str, Any] = head_in_index _A : List[str] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _A : str = use_auxiliary_head _A : Union[str, Any] = auxiliary_loss_weight _A : Any = semantic_loss_ignore_index _A : Any = semantic_classifier_dropout def _lowerCamelCase ( self) -> Dict: _A : str = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _A : Optional[Any] = self.backbone_config.to_dict() _A : Optional[int] = self.__class__.model_type return output
11
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = 1.5 snake_case_ = int(factor * num_class_images ) snake_case_ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=UpperCamelCase__ , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=UpperCamelCase__ ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: snake_case_ = client.query(text=UpperCamelCase__ ) if len(UpperCamelCase__ ) >= factor * num_class_images or num_images > 1E4: break else: snake_case_ = int(factor * num_images ) snake_case_ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=UpperCamelCase__ , aesthetic_weight=0.1 , ) snake_case_ = 0 snake_case_ = 0 snake_case_ = tqdm(desc='downloading real regularization images' , total=UpperCamelCase__ ) with open(F'''{class_data_dir}/caption.txt''' , 'w' ) as fa, open(F'''{class_data_dir}/urls.txt''' , 'w' ) as fa, open( F'''{class_data_dir}/images.txt''' , 'w' ) as fa: while total < num_class_images: snake_case_ = class_images[count] count += 1 try: snake_case_ = requests.get(images['url'] ) if img.status_code == 200: snake_case_ = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = argparse.ArgumentParser('' , add_help=UpperCamelCase__ ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=UpperCamelCase__ , type=UpperCamelCase__ ) parser.add_argument('--class_data_dir' , help='path to save images' , required=UpperCamelCase__ , type=UpperCamelCase__ ) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=UpperCamelCase__ ) return parser.parse_args() if __name__ == "__main__": _UpperCAmelCase : Optional[int] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
285
0
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser( description=( """Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""roberta""", choices=["""roberta""", """gpt2"""]) parser.add_argument("""--model_name""", default="""roberta-large""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_roberta_048131723.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _SCREAMING_SNAKE_CASE = parser.parse_args() if args.model_type == "roberta": _SCREAMING_SNAKE_CASE = RobertaForMaskedLM.from_pretrained(args.model_name) _SCREAMING_SNAKE_CASE = """roberta""" elif args.model_type == "gpt2": _SCREAMING_SNAKE_CASE = GPTaLMHeadModel.from_pretrained(args.model_name) _SCREAMING_SNAKE_CASE = """transformer""" _SCREAMING_SNAKE_CASE = model.state_dict() _SCREAMING_SNAKE_CASE = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: _SCREAMING_SNAKE_CASE = state_dict[F'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: _SCREAMING_SNAKE_CASE = F'''{prefix}.embeddings.{w}.weight''' _SCREAMING_SNAKE_CASE = state_dict[param_name] for w in ["weight", "bias"]: _SCREAMING_SNAKE_CASE = F'''{prefix}.embeddings.LayerNorm.{w}''' _SCREAMING_SNAKE_CASE = state_dict[param_name] # Transformer Blocks # _SCREAMING_SNAKE_CASE = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: _SCREAMING_SNAKE_CASE = state_dict[ F'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] _SCREAMING_SNAKE_CASE = state_dict[F'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: _SCREAMING_SNAKE_CASE = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: _SCREAMING_SNAKE_CASE = state_dict[F'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: _SCREAMING_SNAKE_CASE = state_dict[F'''lm_head.dense.{w}'''] _SCREAMING_SNAKE_CASE = state_dict[F'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: _SCREAMING_SNAKE_CASE = state_dict[F'''{prefix}.ln_f.{w}'''] _SCREAMING_SNAKE_CASE = state_dict["""lm_head.weight"""] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
165
def lowercase( UpperCamelCase_ ) -> list[list]: '''simple docstring''' UpperCamelCase = current_set.copy() for row_index, row in enumerate(UpperCamelCase_ ): UpperCamelCase = row[0] for column_index, column in enumerate(UpperCamelCase_ ): if magnitude == 0: UpperCamelCase = column continue UpperCamelCase = column / magnitude # Subtract to cancel term UpperCamelCase = current_set[0] UpperCamelCase = [first_row] UpperCamelCase = current_set[1::] for row in current_set: UpperCamelCase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(UpperCamelCase_ ) continue for column_index in range(len(UpperCamelCase_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(UpperCamelCase_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: UpperCamelCase = final_set[0] UpperCamelCase = [] UpperCamelCase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) UpperCamelCase = simplify(UpperCamelCase_ ) for i in range(len(UpperCamelCase_ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , UpperCamelCase_ ) UpperCamelCase = resultant return final_set def lowercase( UpperCamelCase_ ) -> list: '''simple docstring''' if len(UpperCamelCase_ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) UpperCamelCase = len(UpperCamelCase_ ) + 1 if any(len(UpperCamelCase_ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(UpperCamelCase_ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(UpperCamelCase_ ) == 1: return [equations[0][-1] / equations[0][0]] UpperCamelCase = equations.copy() if any(0 in row for row in data_set ): UpperCamelCase = data_set.copy() UpperCamelCase = [] for row_index, row in enumerate(UpperCamelCase_ ): if 0 not in row: UpperCamelCase = data_set.pop(UpperCamelCase_ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , UpperCamelCase_ ) UpperCamelCase = data_set.copy() UpperCamelCase = simplify(UpperCamelCase_ ) UpperCamelCase = simplified[::-1] UpperCamelCase = [] for row in simplified: UpperCamelCase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue UpperCamelCase = row.copy()[: len(UpperCamelCase_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(UpperCamelCase_ ) == 0: solutions.append(0 ) continue UpperCamelCase = temp_row[1::] UpperCamelCase = temp_row[::-1] for column_index, column in enumerate(UpperCamelCase_ ): current_solution -= column * solutions[column_index] solutions.append(UpperCamelCase_ ) UpperCamelCase = [] for item in solutions: final.append(float(round(UpperCamelCase_ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
165
1
'''simple docstring''' import numpy as np def __snake_case ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float = 1E-1_2 , UpperCAmelCase_ : int = 100 , ): assert np.shape(UpperCAmelCase_ )[0] == np.shape(UpperCAmelCase_ )[1] # Ensure proper dimensionality. assert np.shape(UpperCAmelCase_ )[0] == np.shape(UpperCAmelCase_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(UpperCAmelCase_ ) == np.iscomplexobj(UpperCAmelCase_ ) lowerCamelCase_ = np.iscomplexobj(UpperCAmelCase_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(UpperCAmelCase_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. lowerCamelCase_ = False lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 1E1_2 while not convergence: # Multiple matrix by the vector. lowerCamelCase_ = np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) # Normalize the resulting output vector. lowerCamelCase_ = w / np.linalg.norm(UpperCAmelCase_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lowerCamelCase_ = vector.conj().T if is_complex else vector.T lowerCamelCase_ = np.dot(UpperCAmelCase_ , np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Check convergence. lowerCamelCase_ = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: lowerCamelCase_ = True lowerCamelCase_ = lambda_ if is_complex: lowerCamelCase_ = np.real(lambda_ ) return lambda_, vector def __snake_case ( ): lowerCamelCase_ = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) lowerCamelCase_ = np.array([41, 4, 20] ) lowerCamelCase_ = real_input_matrix.astype(np.complexaaa ) lowerCamelCase_ = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T lowerCamelCase_ = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": lowerCamelCase_ = real_input_matrix lowerCamelCase_ = real_vector elif problem_type == "complex": lowerCamelCase_ = complex_input_matrix lowerCamelCase_ = complex_vector # Our implementation. lowerCamelCase_ ,lowerCamelCase_ = power_iteration(UpperCAmelCase_ , UpperCAmelCase_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). lowerCamelCase_ ,lowerCamelCase_ = np.linalg.eigh(UpperCAmelCase_ ) # Last eigenvalue is the maximum one. lowerCamelCase_ = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. lowerCamelCase_ = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(UpperCAmelCase_ ) - np.abs(UpperCAmelCase_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
55
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCAmelCase = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" with open(SCREAMING_SNAKE_CASE , '''rb''' ) as f: lowercase__ = Image.open(SCREAMING_SNAKE_CASE ) return im.convert('''RGB''' ) @dataclass class _a : _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={ '''help''': '''Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).''' } , ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _lowercase : Optional[str] = field(default=UpperCamelCase__ , metadata={'''help''': '''A folder containing the training data.'''} ) _lowercase : Optional[str] = field(default=UpperCamelCase__ , metadata={'''help''': '''A folder containing the validation data.'''} ) _lowercase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class _a : _lowercase : str = field( default='''google/vit-base-patch16-224-in21k''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(UpperCamelCase__ )} , ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) _lowercase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _lowercase : str = field(default=UpperCamelCase__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) _lowercase : bool = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) _lowercase : bool = field( default=UpperCamelCase__ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = torch.stack([example['''pixel_values'''] for example in examples] ) lowercase__ = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _a ( ): """simple docstring""" lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , ) else: lowercase__ = {} if data_args.train_dir is not None: lowercase__ = os.path.join(data_args.train_dir , '''**''' ) if data_args.validation_dir is not None: lowercase__ = os.path.join(data_args.validation_dir , '''**''' ) lowercase__ = load_dataset( '''imagefolder''' , data_files=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , task='''image-classification''' , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase__ = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , SCREAMING_SNAKE_CASE ) and data_args.train_val_split > 0.0: lowercase__ = dataset['''train'''].train_test_split(data_args.train_val_split ) lowercase__ = split['''train'''] lowercase__ = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase__ = dataset['''train'''].features['''labels'''].names lowercase__ , lowercase__ = {}, {} for i, label in enumerate(SCREAMING_SNAKE_CASE ): lowercase__ = str(SCREAMING_SNAKE_CASE ) lowercase__ = label # Load the accuracy metric from the datasets package lowercase__ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) lowercase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE ) , labelaid=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase__ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) lowercase__ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: lowercase__ = image_processor.size['''shortest_edge'''] else: lowercase__ = (image_processor.size['''height'''], image_processor.size['''width''']) lowercase__ = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) lowercase__ = Compose( [ RandomResizedCrop(SCREAMING_SNAKE_CASE ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) lowercase__ = Compose( [ Resize(SCREAMING_SNAKE_CASE ), CenterCrop(SCREAMING_SNAKE_CASE ), ToTensor(), normalize, ] ) def train_transforms(SCREAMING_SNAKE_CASE ): lowercase__ = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(SCREAMING_SNAKE_CASE ): lowercase__ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowercase__ = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(SCREAMING_SNAKE_CASE ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowercase__ = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(SCREAMING_SNAKE_CASE ) # Initalize our trainer lowercase__ = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: lowercase__ = None if training_args.resume_from_checkpoint is not None: lowercase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ = last_checkpoint lowercase__ = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase__ = trainer.evaluate() trainer.log_metrics('''eval''' , SCREAMING_SNAKE_CASE ) trainer.save_metrics('''eval''' , SCREAMING_SNAKE_CASE ) # Write model card and (optionally) push to hub lowercase__ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
110
0
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Dict = FunnelTokenizer _UpperCAmelCase :Union[str, Any] = FunnelTokenizerFast _UpperCAmelCase :Union[str, Any] = True _UpperCAmelCase :Tuple = True def _snake_case ( self ): super().setUp() lowercase__: Optional[Any] = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase__: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _snake_case ( self , **_UpperCAmelCase ): return FunnelTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , **_UpperCAmelCase ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Tuple = '''UNwant\u00E9d,running''' lowercase__: Optional[int] = '''unwanted, running''' return input_text, output_text def _snake_case ( self ): lowercase__: List[str] = self.tokenizer_class(self.vocab_file ) lowercase__: Tuple = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def _snake_case ( self ): lowercase__: Union[str, Any] = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: lowercase__: int = tokenizer('''UNwant\u00E9d,running''' ) lowercase__: Union[str, Any] = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) lowercase__: Union[str, Any] = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
2
"""simple docstring""" import unittest from transformers import DonutProcessor __A = "naver-clova-ix/donut-base" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: int = DonutProcessor.from_pretrained(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__: Union[str, Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__: str = self.processor.tokenajson(_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , _UpperCAmelCase )
2
1
def lowerCamelCase__ ( a__ : str , a__ : str ) -> bool: UpperCamelCase_ = len(a__ ) + 1 UpperCamelCase_ = len(a__ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCamelCase_ = [[0 for i in range(a__ )] for j in range(a__ )] # since string of zero length match pattern of zero length UpperCamelCase_ = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , a__ ): UpperCamelCase_ = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , a__ ): UpperCamelCase_ = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , a__ ): for j in range(1 , a__ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCamelCase_ = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCamelCase_ = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCamelCase_ = dp[i - 1][j] else: UpperCamelCase_ = 0 else: UpperCamelCase_ = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _A = '''aab''' _A = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
122
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _A = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex _A = 10 _A = 256 def lowerCamelCase__ ( a__ : List[str] ) -> Optional[MinHash]: if len(a__ ) < MIN_NUM_TOKENS: return None UpperCamelCase_ = MinHash(num_perm=a__ ) for token in set(a__ ): min_hash.update(token.encode() ) return min_hash def lowerCamelCase__ ( a__ : str ) -> Set[str]: return {t for t in NON_ALPHA.split(a__ ) if len(t.strip() ) > 0} class lowercase_ : def __init__( self , *, __UpperCamelCase = 0.85 , ): """simple docstring""" UpperCamelCase_ = duplication_jaccard_threshold UpperCamelCase_ = NUM_PERM UpperCamelCase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) UpperCamelCase_ = defaultdict(__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self._index.query(__UpperCamelCase ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(__UpperCamelCase , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = [] for base, duplicates in self._duplicate_clusters.items(): UpperCamelCase_ = [base] + list(__UpperCamelCase ) # reformat the cluster to be a list of dict UpperCamelCase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__UpperCamelCase ) return duplicate_clusters def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.get_duplicate_clusters() with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def lowerCamelCase__ ( a__ : Optional[int] ) -> List[str]: UpperCamelCase_ , UpperCamelCase_ = element UpperCamelCase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCamelCase__ ( a__ : Type[Dataset] ) -> Optional[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a__ , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def lowerCamelCase__ ( a__ : Type[Dataset] , a__ : float ) -> List[Any]: UpperCamelCase_ = DuplicationIndex(duplication_jaccard_threshold=a__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a__ ) ) , max_queue_size=100 ) ): di.add(a__ , a__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCamelCase__ ( a__ : str , a__ : str ) -> float: UpperCamelCase_ = get_tokens(a__ ) UpperCamelCase_ = get_tokens(a__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _A = None def lowerCamelCase__ ( a__ : str , a__ : str ) -> Optional[Any]: UpperCamelCase_ = [] for elementa in cluster: UpperCamelCase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: UpperCamelCase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(a__ , a__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: UpperCamelCase_ = 1 extremes.append(a__ ) return extremes def lowerCamelCase__ ( a__ : str , a__ : Optional[int] , a__ : Optional[int] ) -> str: global _shared_dataset UpperCamelCase_ = dataset UpperCamelCase_ = [] UpperCamelCase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=a__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a__ , a__ , ) , total=len(a__ ) , ): extremes_list.append(a__ ) return extremes_list def lowerCamelCase__ ( a__ : Type[Dataset] , a__ : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: UpperCamelCase_ = make_duplicate_clusters(a__ , a__ ) UpperCamelCase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} UpperCamelCase_ = {} UpperCamelCase_ = find_extremes(a__ , a__ , a__ ) for extremes in extremes_clusters: for element in extremes: UpperCamelCase_ = element UpperCamelCase_ = duplicate_indices - set(extreme_dict.keys() ) UpperCamelCase_ = dataset.filter(lambda a__ , a__ : idx not in remove_indices , with_indices=a__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: UpperCamelCase_ = element["""base_index"""] in extreme_dict if element["is_extreme"]: UpperCamelCase_ = extreme_dict[element["""base_index"""]]["""copies"""] print(f'''Original dataset size: {len(a__ )}''' ) print(f'''Number of duplicate clusters: {len(a__ )}''' ) print(f'''Files in duplicate cluster: {len(a__ )}''' ) print(f'''Unique files in duplicate cluster: {len(a__ )}''' ) print(f'''Filtered dataset size: {len(a__ )}''' ) return ds_filter, duplicate_clusters
122
1
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __a: List[Any] = 8 def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=BITS ): lowercase__ : str = x.device lowercase__ : Any = (x * 255).int().clamp(0 , 255 ) lowercase__ : int = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCAmelCase ) lowercase__ : Optional[Any] = rearrange(UpperCAmelCase , '''d -> d 1 1''' ) lowercase__ : Any = rearrange(UpperCAmelCase , '''b c h w -> b c 1 h w''' ) lowercase__ : Any = ((x & mask) != 0).float() lowercase__ : Tuple = rearrange(UpperCAmelCase , '''b c d h w -> b (c d) h w''' ) lowercase__ : str = bits * 2 - 1 return bits def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=BITS ): lowercase__ : str = x.device lowercase__ : int = (x > 0).int() lowercase__ : Optional[int] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCAmelCase , dtype=torch.intaa ) lowercase__ : Optional[Any] = rearrange(UpperCAmelCase , '''d -> d 1 1''' ) lowercase__ : Optional[int] = rearrange(UpperCAmelCase , '''b (c d) h w -> b c d h w''' , d=8 ) lowercase__ : Dict = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 255).clamp(0.0 , 1.0 ) def __UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0.0 , UpperCAmelCase = True , UpperCAmelCase=None , UpperCAmelCase = True , ): if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowercase__ : Union[str, Any] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowercase__ : Any = self.alphas_cumprod[timestep] lowercase__ : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowercase__ : Tuple = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : str = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowercase__ : Optional[Any] = self.bit_scale if self.config.clip_sample: lowercase__ : Optional[int] = torch.clamp(UpperCAmelCase , -scale , UpperCAmelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowercase__ : Optional[Any] = self._get_variance(UpperCAmelCase , UpperCAmelCase ) lowercase__ : Tuple = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowercase__ : str = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : Optional[Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : Optional[int] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowercase__ : Optional[Any] = model_output.device if torch.is_tensor(UpperCAmelCase ) else '''cpu''' lowercase__ : Any = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase ).to(UpperCAmelCase ) lowercase__ : Any = self._get_variance(UpperCAmelCase , UpperCAmelCase ) ** 0.5 * eta * noise lowercase__ : int = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="epsilon" , UpperCAmelCase=None , UpperCAmelCase = True , ): lowercase__ : Any = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowercase__ , lowercase__ : List[Any] = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 ) else: lowercase__ : Any = None # 1. compute alphas, betas lowercase__ : Optional[Any] = self.alphas_cumprod[t] lowercase__ : Optional[int] = self.alphas_cumprod[t - 1] if t > 0 else self.one lowercase__ : int = 1 - alpha_prod_t lowercase__ : Dict = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowercase__ : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowercase__ : List[str] = model_output else: raise ValueError(F"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" lowercase__ : int = self.bit_scale if self.config.clip_sample: lowercase__ : Any = torch.clamp(UpperCAmelCase , -scale , UpperCAmelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : List[Any] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowercase__ : List[str] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowercase__ : List[str] = 0 if t > 0: lowercase__ : Optional[Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCAmelCase ).to(model_output.device ) lowercase__ : Any = (self._get_variance(UpperCAmelCase , predicted_variance=UpperCAmelCase ) ** 0.5) * noise lowercase__ : Optional[int] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) class UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1.0 , ) -> str: super().__init__() lowercase__ : List[str] = bit_scale lowercase__ : str = ( ddim_bit_scheduler_step if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) @torch.no_grad() def __call__( self , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 50 , __lowerCAmelCase = None , __lowerCAmelCase = 1 , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , **__lowerCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]: lowercase__ : str = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=__lowerCAmelCase , ) lowercase__ : List[Any] = decimal_to_bits(__lowerCAmelCase ) * self.bit_scale lowercase__ : List[str] = latents.to(self.device ) self.scheduler.set_timesteps(__lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowercase__ : List[str] = self.unet(__lowerCAmelCase , __lowerCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase__ : List[Any] = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample lowercase__ : int = bits_to_decimal(__lowerCAmelCase ) if output_type == "pil": lowercase__ : int = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
214
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase ( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1.0 , __lowerCAmelCase = None , ) -> Union[str, Any]: super().__init__() lowercase__ : Any = initial_learning_rate lowercase__ : str = warmup_steps lowercase__ : Dict = power lowercase__ : int = decay_schedule_fn lowercase__ : Dict = name def __call__( self , __lowerCAmelCase ) -> int: with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowercase__ : Union[str, Any] = tf.cast(__lowerCAmelCase , tf.floataa ) lowercase__ : Optional[int] = tf.cast(self.warmup_steps , tf.floataa ) lowercase__ : Dict = global_step_float / warmup_steps_float lowercase__ : Dict = self.initial_learning_rate * tf.math.pow(__lowerCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=__lowerCAmelCase , ) def _lowerCAmelCase( self ) -> List[str]: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0.0 , UpperCAmelCase = 0.9 , UpperCAmelCase = 0.9_9_9 , UpperCAmelCase = 1E-8 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 0.0 , UpperCAmelCase = 1.0 , UpperCAmelCase = None , ): lowercase__ : List[Any] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase , ) if num_warmup_steps: lowercase__ : Optional[Any] = WarmUp( initial_learning_rate=UpperCAmelCase , decay_schedule_fn=UpperCAmelCase , warmup_steps=UpperCAmelCase , ) if weight_decay_rate > 0.0: lowercase__ : str = AdamWeightDecay( learning_rate=UpperCAmelCase , weight_decay_rate=UpperCAmelCase , beta_a=UpperCAmelCase , beta_a=UpperCAmelCase , epsilon=UpperCAmelCase , clipnorm=UpperCAmelCase , global_clipnorm=UpperCAmelCase , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=UpperCAmelCase , ) else: lowercase__ : Any = tf.keras.optimizers.Adam( learning_rate=UpperCAmelCase , beta_a=UpperCAmelCase , beta_a=UpperCAmelCase , epsilon=UpperCAmelCase , clipnorm=UpperCAmelCase , global_clipnorm=UpperCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self , __lowerCAmelCase = 0.0_0_1 , __lowerCAmelCase = 0.9 , __lowerCAmelCase = 0.9_9_9 , __lowerCAmelCase = 1E-7 , __lowerCAmelCase = False , __lowerCAmelCase = 0.0 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = "AdamWeightDecay" , **__lowerCAmelCase , ) -> str: super().__init__(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : int = weight_decay_rate lowercase__ : Dict = include_in_weight_decay lowercase__ : List[str] = exclude_from_weight_decay @classmethod def _lowerCAmelCase( cls , __lowerCAmelCase ) -> str: lowercase__ : int = {'''WarmUp''': WarmUp} return super(__lowerCAmelCase , cls ).from_config(__lowerCAmelCase , custom_objects=__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: super(__lowerCAmelCase , self )._prepare_local(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase__ : Any = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: lowercase__ : str = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase ) -> List[Any]: lowercase__ , lowercase__ : Any = list(zip(*__lowerCAmelCase ) ) return super(__lowerCAmelCase , self ).apply_gradients(zip(__lowerCAmelCase , __lowerCAmelCase ) , name=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowercase__ : Union[str, Any] = apply_state or {} lowercase__ : Optional[Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowercase__ : Union[str, Any] = self._fallback_apply_state(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : Optional[int] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> Any: lowercase__ , lowercase__ : Dict = self._get_lr(var.device , var.dtype.base_dtype , __lowerCAmelCase ) lowercase__ : List[str] = self._decay_weights_op(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with tf.control_dependencies([decay] ): return super(__lowerCAmelCase , self )._resource_apply_dense(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> List[str]: lowercase__ , lowercase__ : List[Any] = self._get_lr(var.device , var.dtype.base_dtype , __lowerCAmelCase ) lowercase__ : Union[str, Any] = self._decay_weights_op(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with tf.control_dependencies([decay] ): return super(__lowerCAmelCase , self )._resource_apply_sparse(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Optional[Any] = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__lowerCAmelCase , __lowerCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__lowerCAmelCase , __lowerCAmelCase ) is not None: return False return True class UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self ) -> List[Any]: lowercase__ : List[str] = [] lowercase__ : Optional[int] = None @property def _lowerCAmelCase( self ) -> Optional[Any]: if self._accum_steps is None: lowercase__ : int = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=__lowerCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _lowerCAmelCase( self ) -> Union[str, Any]: if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , __lowerCAmelCase ) -> Optional[Any]: if not self._gradients: lowercase__ : str = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__lowerCAmelCase ) , trainable=__lowerCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(__lowerCAmelCase ) != len(self._gradients ): raise ValueError(F"""Expected {len(self._gradients )} gradients, but got {len(__lowerCAmelCase )}""" ) for accum_gradient, gradient in zip(self._gradients , __lowerCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__lowerCAmelCase ) self._accum_steps.assign_add(1 ) def _lowerCAmelCase( self ) -> Optional[Any]: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__lowerCAmelCase ) )
214
1
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str = 1000 ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = 1, 1 UpperCAmelCase_ : Optional[Any] = 2 while True: UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : List[Any] = fa + fa UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = fa, f index += 1 for _ in str(a__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
125
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : int = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __A( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' __a = TOKEN HfFolder.save_token(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_snake_case , repo_id='''test-model-flax''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case )
6
0
'''simple docstring''' import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = '''ssube/stable-diffusion-x4-upscaler-onnx''' def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : Union[str, Any]=0 ): """simple docstring""" __UpperCAmelCase : str = floats_tensor((1, 3, 128, 128) , rng=random.Random(UpperCAmelCase_ ) ) __UpperCAmelCase : Any = torch.manual_seed(UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowerCamelCase_ ( self : List[str] ): """simple docstring""" __UpperCAmelCase : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) __UpperCAmelCase : Any = self.get_dummy_inputs() __UpperCAmelCase : Any = pipe(**UpperCAmelCase_ ).images __UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) __UpperCAmelCase : List[Any] = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __UpperCAmelCase : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) __UpperCAmelCase : Tuple = self.get_dummy_inputs() __UpperCAmelCase : str = pipe(**UpperCAmelCase_ ).images __UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase : Optional[int] = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCamelCase_ ( self : List[str] ): """simple docstring""" __UpperCAmelCase : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __UpperCAmelCase : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) __UpperCAmelCase : List[str] = self.get_dummy_inputs() __UpperCAmelCase : Dict = pipe(**UpperCAmelCase_ ).images __UpperCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase : Union[str, Any] = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __UpperCAmelCase : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) __UpperCAmelCase : Any = self.get_dummy_inputs() __UpperCAmelCase : List[str] = pipe(**UpperCAmelCase_ ).images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase : Dict = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCamelCase_ ( self : Dict ): """simple docstring""" __UpperCAmelCase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __UpperCAmelCase : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = self.get_dummy_inputs() __UpperCAmelCase : Optional[int] = pipe(**UpperCAmelCase_ ).images __UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase : str = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" __UpperCAmelCase : List[str] = ort.SessionOptions() __UpperCAmelCase : List[Any] = False return options def lowerCamelCase_ ( self : List[str] ): """simple docstring""" __UpperCAmelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __UpperCAmelCase : int = init_image.resize((128, 128) ) # using the PNDM scheduler by default __UpperCAmelCase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) __UpperCAmelCase : str = "A fantasy landscape, trending on artstation" __UpperCAmelCase : Any = torch.manual_seed(0 ) __UpperCAmelCase : int = pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCAmelCase_ , output_type="np" , ) __UpperCAmelCase : Dict = output.images __UpperCAmelCase : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) __UpperCAmelCase : Union[str, Any] = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowerCamelCase_ ( self : List[str] ): """simple docstring""" __UpperCAmelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __UpperCAmelCase : int = init_image.resize((128, 128) ) __UpperCAmelCase : Optional[int] = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler" ) __UpperCAmelCase : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=UpperCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) __UpperCAmelCase : int = "A fantasy landscape, trending on artstation" __UpperCAmelCase : List[Any] = torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=UpperCAmelCase_ , output_type="np" , ) __UpperCAmelCase : List[str] = output.images __UpperCAmelCase : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) __UpperCAmelCase : str = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
363
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def __UpperCamelCase ( _UpperCAmelCase=None ): if subparsers is not None: __UpperCAmelCase : Optional[int] = subparsers.add_parser("env" ) else: __UpperCAmelCase : List[Any] = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file", default=_UpperCAmelCase, help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : Dict = torch.__version__ __UpperCAmelCase : str = torch.cuda.is_available() __UpperCAmelCase : str = is_xpu_available() __UpperCAmelCase : List[Any] = is_npu_available() __UpperCAmelCase : Union[str, Any] = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file ).to_dict() __UpperCAmelCase : List[str] = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": F"{pt_version} ({pt_cuda_available})", "PyTorch XPU available": str(_UpperCAmelCase ), "PyTorch NPU available": str(_UpperCAmelCase ), "System RAM": F"{psutil.virtual_memory().total / 1024 ** 3:.2f} GB", } if pt_cuda_available: __UpperCAmelCase : int = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([F"- {prop}: {val}" for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) __UpperCAmelCase : Tuple = ( "\n".join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else F"\t{accelerate_config}" ) print(_UpperCAmelCase ) __UpperCAmelCase : Any = accelerate_config return info def __UpperCamelCase ( ): __UpperCAmelCase : Tuple = env_command_parser() __UpperCAmelCase : Dict = parser.parse_args() env_command(_UpperCAmelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
37
0
"""simple docstring""" import math def A ( snake_case__ , snake_case__ ): '''simple docstring''' if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(snake_case__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
165
"""simple docstring""" import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel A_ : Dict = HfApi() A_ : List[str] = {} # fmt: off A_ : Dict = torch.tensor([ -0.75_15, -1.68_83, 0.24_20, 0.03_00, 0.63_47, 1.34_33, -1.17_43, -3.74_67, 1.23_42, -2.24_85, 0.46_36, 0.80_76, -0.79_91, 0.39_69, 0.84_98, 0.91_89, -1.88_87, -3.35_22, 0.76_39, 0.20_40, 0.62_71, -2.71_48, -1.63_16, 3.08_39, 0.31_86, 0.27_21, -0.97_59, -1.24_61, 2.62_57, 1.35_57 ]) A_ : List[Any] = torch.tensor([ -2.36_39, -2.53_44, 0.00_54, -0.66_74, 1.59_90, 1.01_58, 0.31_24, -2.14_36, 1.87_95, -2.54_29, -0.15_66, -0.39_73, 1.24_90, 2.64_47, 1.22_83, -0.52_08, -2.81_54, -3.51_19, 2.38_38, 1.20_33, 1.72_01, -2.12_56, -1.45_76, 2.79_48, 2.42_04, -0.97_52, -1.25_46, 0.80_27, 3.27_58, 3.13_65 ]) A_ : str = torch.tensor([ -0.65_31, -0.68_91, -0.31_72, -0.53_75, -0.91_40, -0.53_67, -0.11_75, -0.78_69, -0.38_08, -0.45_13, -0.20_98, -0.00_83, 0.31_83, 0.51_40, 0.22_47, -0.13_04, -0.13_02, -0.28_02, -0.20_84, -0.20_25, -0.49_67, -0.48_73, -0.08_61, 0.69_25, 0.02_50, 0.12_90, -0.15_43, 0.63_16, 1.04_60, 1.49_43 ]) A_ : List[Any] = torch.tensor([ 0.09_11, 0.11_07, 0.01_82, 0.04_35, -0.08_05, -0.06_08, 0.03_81, 0.21_72, -0.02_80, 0.13_27, -0.02_99, -0.02_55, -0.00_50, -0.11_70, -0.10_46, 0.03_09, 0.13_67, 0.17_28, -0.05_33, -0.07_48, -0.05_34, 0.16_24, 0.03_84, -0.18_05, -0.07_07, 0.06_42, 0.02_20, -0.01_34, -0.13_33, -0.15_05 ]) A_ : Tuple = torch.tensor([ 0.13_21, 0.13_37, 0.04_40, 0.06_22, -0.05_91, -0.03_70, 0.05_03, 0.21_33, -0.01_77, 0.14_15, -0.01_16, -0.01_12, 0.00_44, -0.09_80, -0.07_89, 0.03_95, 0.15_02, 0.17_85, -0.04_88, -0.05_14, -0.04_04, 0.15_39, 0.04_54, -0.15_59, -0.06_65, 0.06_59, 0.03_83, -0.00_05, -0.12_66, -0.13_86 ]) A_ : List[str] = torch.tensor([ 0.11_54, 0.12_18, 0.03_07, 0.05_26, -0.07_11, -0.05_41, 0.03_66, 0.20_78, -0.02_67, 0.13_17, -0.02_26, -0.01_93, -0.00_14, -0.10_55, -0.09_02, 0.03_30, 0.13_91, 0.17_09, -0.05_62, -0.06_93, -0.05_60, 0.14_82, 0.03_81, -0.16_83, -0.06_81, 0.06_61, 0.03_31, -0.00_46, -0.12_68, -0.14_31 ]) A_ : List[Any] = torch.tensor([ 0.11_92, 0.12_40, 0.04_14, 0.06_06, -0.05_57, -0.04_12, 0.04_30, 0.20_42, -0.02_00, 0.13_85, -0.01_15, -0.01_32, 0.00_17, -0.09_65, -0.08_02, 0.03_98, 0.14_33, 0.17_47, -0.04_58, -0.05_33, -0.04_07, 0.15_45, 0.04_19, -0.15_74, -0.06_45, 0.06_26, 0.03_41, -0.00_10, -0.11_99, -0.13_90 ]) A_ : Dict = torch.tensor([ 0.10_75, 0.10_74, 0.02_05, 0.04_31, -0.07_74, -0.06_07, 0.02_98, 0.20_42, -0.03_20, 0.12_67, -0.02_81, -0.02_50, -0.00_64, -0.10_91, -0.09_46, 0.02_90, 0.13_28, 0.16_50, -0.05_80, -0.07_38, -0.05_86, 0.14_40, 0.03_37, -0.17_46, -0.07_12, 0.06_05, 0.02_50, -0.00_99, -0.13_16, -0.14_73 ]) A_ : Tuple = torch.tensor([ -1.45_72, -2.04_81, -0.04_14, -0.60_05, 1.41_36, 0.58_48, 0.40_28, -2.73_30, 1.22_12, -2.12_28, 0.21_55, 0.40_39, 0.76_62, 2.05_35, 0.74_77, -0.32_43, -2.17_58, -2.76_48, 1.69_47, 0.70_26, 1.23_38, -1.60_78, -0.86_82, 2.28_10, 1.85_74, -0.57_18, -0.55_86, -0.01_86, 2.34_15, 2.12_51]) A_ : str = torch.tensor([ -1.36_90, -1.97_20, -0.40_90, -0.69_66, 1.46_60, 0.99_38, -0.13_85, -2.73_24, 0.77_36, -1.89_17, 0.29_23, 0.42_93, 0.16_93, 1.41_12, 1.18_87, -0.31_81, -2.21_60, -2.63_81, 1.31_70, 0.81_63, 0.92_40, -1.65_44, -0.60_99, 2.52_59, 1.64_30, -0.90_90, -0.93_92, -0.01_26, 2.42_68, 2.32_66 ]) A_ : str = torch.tensor([ -1.35_25, -1.96_28, -0.39_56, -0.68_60, 1.46_64, 1.00_14, -0.12_59, -2.72_12, 0.77_72, -1.88_11, 0.29_96, 0.43_88, 0.17_04, 1.40_29, 1.17_01, -0.30_27, -2.20_53, -2.62_87, 1.33_50, 0.81_31, 0.92_74, -1.62_92, -0.60_98, 2.51_31, 1.65_05, -0.89_58, -0.92_98, -0.01_51, 2.42_57, 2.33_55 ]) A_ : int = torch.tensor([ -2.05_85, -2.78_97, -0.28_50, -0.89_40, 1.90_52, 0.57_02, 0.63_45, -3.89_59, 1.59_32, -3.23_19, 0.19_74, 0.02_87, 1.75_66, 2.65_43, 0.83_87, -0.53_51, -3.27_36, -4.33_75, 2.90_29, 1.63_90, 1.46_40, -2.17_01, -1.90_13, 2.93_41, 3.49_81, -0.62_55, -1.16_44, -0.15_91, 3.70_97, 3.20_66 ]) A_ : int = torch.tensor([ -2.31_39, -2.55_94, -0.01_97, -0.67_85, 1.70_01, 1.16_06, 0.30_75, -2.17_40, 1.80_71, -2.56_30, -0.09_26, -0.38_11, 1.21_16, 2.62_46, 1.27_31, -0.53_98, -2.81_53, -3.61_40, 2.38_93, 1.32_62, 1.62_58, -2.18_56, -1.32_67, 2.83_95, 2.37_79, -1.06_23, -1.24_68, 0.89_59, 3.33_67, 3.22_43 ]) A_ : str = torch.tensor([ -2.06_28, -2.76_67, -0.20_89, -0.82_63, 2.05_39, 0.59_92, 0.64_95, -3.83_36, 1.60_25, -3.28_17, 0.17_21, -0.06_33, 1.75_16, 2.70_39, 0.81_00, -0.59_08, -3.21_13, -4.43_43, 2.92_57, 1.36_32, 1.55_62, -2.14_89, -1.98_94, 3.05_60, 3.33_96, -0.73_28, -1.04_17, 0.03_83, 3.70_93, 3.23_43 ]) A_ : Optional[int] = torch.tensor([ -1.45_74, -2.05_69, -0.04_73, -0.61_17, 1.40_18, 0.57_69, 0.41_29, -2.73_44, 1.22_41, -2.13_97, 0.20_00, 0.39_37, 0.76_16, 2.04_53, 0.73_24, -0.33_91, -2.17_46, -2.77_44, 1.69_63, 0.69_21, 1.21_87, -1.61_72, -0.88_77, 2.24_39, 1.84_71, -0.58_39, -0.56_05, -0.04_64, 2.32_50, 2.12_19 ]) # fmt: on A_ : List[str] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": A_ : Dict = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(F'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): A_ : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: A_ : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) A_ : Any = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) A_ : int = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): A_ : Optional[int] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(F'{mod.modelId} has passed successfully!!!')
165
1
from ..utils import DummyObject, requires_backends class snake_case_ (metaclass=lowerCamelCase_ ): UpperCAmelCase__ : Optional[int] = ['''note_seq'''] def __init__( self :int ,*__snake_case :List[str] ,**__snake_case :Union[str, Any] ) -> Optional[Any]: requires_backends(self ,['note_seq'] ) @classmethod def lowerCamelCase__( cls :Optional[int] ,*__snake_case :Dict ,**__snake_case :Optional[int] ) -> List[Any]: requires_backends(cls ,['note_seq'] ) @classmethod def lowerCamelCase__( cls :int ,*__snake_case :List[Any] ,**__snake_case :Dict ) -> List[str]: requires_backends(cls ,['note_seq'] )
354
snake_case : str = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def __lowercase ( __lowerCAmelCase : float ): assert type(__lowerCAmelCase ) in (int, float) and decimal == int(__lowerCAmelCase ) a__ = int(__lowerCAmelCase ) a__ = '' a__ = False if decimal < 0: a__ = True decimal *= -1 while decimal > 0: a__ , a__ = divmod(__lowerCAmelCase , 1_6 ) a__ = values[remainder] + hexadecimal a__ = '0x' + hexadecimal if negative: a__ = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
109
0
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Tuple = FunnelTokenizer lowerCAmelCase__ : Tuple = FunnelTokenizerFast lowerCAmelCase__ : int = True lowerCAmelCase__ : Tuple = True def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' super().setUp() lowercase__ = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCamelCase__ (self : int , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] , **UpperCamelCase : List[str] ): '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = '''UNwant\u00E9d,running''' lowercase__ = '''unwanted, running''' return input_text, output_text def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = self.tokenizer_class(self.vocab_file ) lowercase__ = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(UpperCamelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [7, 4, 5, 10, 8, 9] ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=UpperCamelCase ) for tokenizer in tokenizers: lowercase__ = tokenizer('''UNwant\u00E9d,running''' ) lowercase__ = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) lowercase__ = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
2
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCamelCase : Any = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCamelCase : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCamelCase : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) lowerCamelCase : List[Any] = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) lowerCamelCase : List[str] = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions lowerCamelCase : List[str] = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image) lowerCamelCase : str = np.expand_dims(test_image, axis=0) lowerCamelCase : List[str] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCamelCase : Any = 'Normal' if result[0][0] == 1: lowerCamelCase : Any = 'Abnormality detected'
2
1
class _snake_case : def __init__( self , _lowerCamelCase ): a :Optional[Any] = size a :Dict = [0] * size a :List[str] = [0] * size @staticmethod def SCREAMING_SNAKE_CASE__ ( _lowerCamelCase ): return index | (index + 1) @staticmethod def SCREAMING_SNAKE_CASE__ ( _lowerCamelCase ): return (index & (index + 1)) - 1 def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): a :str = value while index < self.size: a :List[Any] = self.get_prev(_lowerCamelCase ) + 1 if current_left_border == index: a :str = value else: a :Optional[Any] = max(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) a :List[Any] = self.get_next(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): right -= 1 # Because of right is exclusive a :Dict = 0 while left <= right: a :Tuple = self.get_prev(_lowerCamelCase ) if left <= current_left: a :Any = max(_lowerCamelCase , self.tree[right] ) a :Union[str, Any] = current_left else: a :Union[str, Any] = max(_lowerCamelCase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
281
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def __lowerCamelCase ( UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Any=10 , UpperCAmelCase_ : Any=100 , UpperCAmelCase_ : List[str]=1026 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : str="data/tokenized_stories_train_wikitext103.jbl" , UpperCAmelCase_ : List[Any]="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set a , a :Optional[int] = generate_datasets( UpperCAmelCase_ , UpperCAmelCase_ , number=UpperCAmelCase_ , min_len=1026 , trim=UpperCAmelCase_ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? a :str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model a :str = load_gpta('''gpt2''' ).to(UpperCAmelCase_ ) print('''computing perplexity on objective set''' ) a :Dict = compute_perplexity(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).item() print('''perplexity on objective set:''' , UpperCAmelCase_ ) # collect igf pairs and save to file demo.jbl collect_objective_set(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str=15 , UpperCAmelCase_ : Optional[Any]=128 , UpperCAmelCase_ : List[Any]=100 , UpperCAmelCase_ : List[str]="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model a :Tuple = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model a :List[str] = SecondaryLearner(UpperCAmelCase_ ) # Train secondary learner a :List[str] = train_secondary_learner( UpperCAmelCase_ , UpperCAmelCase_ , max_epochs=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , eval_freq=100 , igf_model_path=UpperCAmelCase_ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : List[str]=1000 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : Any=1.0 , UpperCAmelCase_ : Optional[int]=recopy_gpta , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Tuple=10 , UpperCAmelCase_ : Any="gpt2_finetuned.pt" , ): """simple docstring""" a :Optional[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) a :Optional[Any] = RandomSampler(UpperCAmelCase_ ) a :Union[str, Any] = DataLoader(UpperCAmelCase_ , sampler=UpperCAmelCase_ ) a :List[str] = max_steps // (len(UpperCAmelCase_ )) + 1 a :Tuple = 0 a :int = torch.zeros((1, context_len) , dtype=torch.long , device=UpperCAmelCase_ ) a , a , a :str = recopy_model(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) model.train() if secondary_learner is not None: secondary_learner.to(UpperCAmelCase_ ) secondary_learner.eval() a :Optional[Any] = [] a :Union[str, Any] = 0 a :Optional[Any] = [] a :Tuple = [] # Compute the performance of the transformer model at the beginning a :Any = compute_perplexity(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) test_perps.append(UpperCAmelCase_ ) print('''Test perplexity, step''' , UpperCAmelCase_ , ''':''' , UpperCAmelCase_ ) for epoch in range(int(UpperCAmelCase_ ) ): for step, example in enumerate(UpperCAmelCase_ ): torch.cuda.empty_cache() a :Tuple = random.randint(0 , example.size(2 ) - context_len - 1 ) a :Optional[int] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() a :Optional[int] = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) a :int = True if secondary_learner is not None: a :Tuple = secondary_learner.forward( torch.tensor(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(UpperCAmelCase_ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: a :List[str] = -1 if predicted_q < threshold: a :Tuple = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) a :Any = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() a :Tuple = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: a :Dict = compute_perplexity(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) test_perps.append(UpperCAmelCase_ ) print('''Test perplexity, step''' , UpperCAmelCase_ , ''':''' , UpperCAmelCase_ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , UpperCAmelCase_ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def __lowerCamelCase ( ): """simple docstring""" a :Union[str, Any] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=UpperCAmelCase_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=UpperCAmelCase_ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=UpperCAmelCase_ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1000 , type=UpperCAmelCase_ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=UpperCAmelCase_ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=UpperCAmelCase_ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=UpperCAmelCase_ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=UpperCAmelCase_ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1026 , type=UpperCAmelCase_ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=UpperCAmelCase_ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=UpperCAmelCase_ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=UpperCAmelCase_ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=UpperCAmelCase_ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner a :Union[str, Any] = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner a :Any = training_secondary_learner( UpperCAmelCase_ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model a :Any = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model a , a :Union[str, Any] = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1026 , trim=UpperCAmelCase_ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=UpperCAmelCase_ , secondary_learner=UpperCAmelCase_ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
281
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : torch.FloatTensor __lowerCamelCase : Optional[torch.FloatTensor] = None def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any=0.999 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ : str ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowercase__ : str = [] for i in range(SCREAMING_SNAKE_CASE_ ): lowercase__ : List[Any] = i / num_diffusion_timesteps lowercase__ : Tuple = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE__ (__snake_case , __snake_case ): @register_to_config def __init__( self , a = 1000 , a = "fixed_small_log" , a = True , a = 1.0 , a = "epsilon" , a = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'') lowercase__ : Union[str, Any] = betas_for_alpha_bar(a) lowercase__ : Optional[int] = 1.0 - self.betas lowercase__ : List[str] = torch.cumprod(self.alphas , dim=0) lowercase__ : List[Any] = torch.tensor(1.0) # standard deviation of the initial noise distribution lowercase__ : Optional[Any] = 1.0 # setable values lowercase__ : int = None lowercase__ : int = torch.from_numpy(np.arange(0 , a)[::-1].copy()) lowercase__ : Union[str, Any] = variance_type def snake_case_ ( self , a , a = None): return sample def snake_case_ ( self , a , a = None): lowercase__ : int = num_inference_steps lowercase__ : Union[str, Any] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowercase__ : str = (np.arange(0 , a) * step_ratio).round()[::-1].copy().astype(np.intaa) lowercase__ : int = torch.from_numpy(a).to(a) def snake_case_ ( self , a , a=None , a=None , a=None): if prev_timestep is None: lowercase__ : Optional[int] = t - 1 lowercase__ : Tuple = self.alphas_cumprod[t] lowercase__ : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowercase__ : str = 1 - alpha_prod_t lowercase__ : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowercase__ : Any = self.betas[t] else: lowercase__ : Union[str, Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase__ : Optional[int] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowercase__ : Tuple = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowercase__ : Any = torch.log(torch.clamp(a , min=1e-20)) lowercase__ : Dict = torch.exp(0.5 * variance) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowercase__ : List[Any] = variance.log() lowercase__ : List[str] = beta.log() lowercase__ : int = (predicted_variance + 1) / 2 lowercase__ : List[Any] = frac * max_log + (1 - frac) * min_log return variance def snake_case_ ( self , a , a , a , a = None , a=None , a = True , ): lowercase__ : int = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowercase__ , lowercase__ : List[Any] = torch.split(a , sample.shape[1] , dim=1) else: lowercase__ : str = None # 1. compute alphas, betas if prev_timestep is None: lowercase__ : Tuple = t - 1 lowercase__ : Tuple = self.alphas_cumprod[t] lowercase__ : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowercase__ : Dict = 1 - alpha_prod_t lowercase__ : Dict = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowercase__ : Optional[Any] = self.betas[t] lowercase__ : Dict = self.alphas[t] else: lowercase__ : str = 1 - alpha_prod_t / alpha_prod_t_prev lowercase__ : str = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase__ : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase__ : List[Any] = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" ' for the UnCLIPScheduler.') # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase__ : Optional[int] = torch.clamp( a , -self.config.clip_sample_range , self.config.clip_sample_range) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : List[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowercase__ : Union[str, Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowercase__ : Dict = 0 if t > 0: lowercase__ : str = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=a , device=model_output.device) lowercase__ : str = self._get_variance( a , predicted_variance=a , prev_timestep=a , ) if self.variance_type == "fixed_small_log": lowercase__ : Optional[Any] = variance elif self.variance_type == "learned_range": lowercase__ : Optional[Any] = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" ' for the UnCLIPScheduler.') lowercase__ : Any = variance * variance_noise lowercase__ : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=a , pred_original_sample=a) def snake_case_ ( self , a , a , a , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples lowercase__ : Dict = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype) lowercase__ : str = timesteps.to(original_samples.device) lowercase__ : List[str] = alphas_cumprod[timesteps] ** 0.5 lowercase__ : List[str] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): lowercase__ : List[str] = sqrt_alpha_prod.unsqueeze(-1) lowercase__ : str = (1 - alphas_cumprod[timesteps]) ** 0.5 lowercase__ : Any = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): lowercase__ : Dict = sqrt_one_minus_alpha_prod.unsqueeze(-1) lowercase__ : Union[str, Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
214
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging snake_case_ = logging.get_logger(__name__) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' lowercase__ : List[str] = set() lowercase__ : List[str] = [] def parse_line(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): for line in fp: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ : Optional[int] = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(SCREAMING_SNAKE_CASE_ ) > 0: lowercase__ : Optional[Any] = '\n'.join(SCREAMING_SNAKE_CASE_ ) # Only keep the warnings specified in `targets` if any(f""": {x}: """ in warning for x in targets ): selected_warnings.add(SCREAMING_SNAKE_CASE_ ) buffer.clear() continue else: lowercase__ : Optional[Any] = line.strip() buffer.append(SCREAMING_SNAKE_CASE_ ) if from_gh: for filename in os.listdir(SCREAMING_SNAKE_CASE_ ): lowercase__ : int = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename != "warnings.txt": continue with open(SCREAMING_SNAKE_CASE_ ) as fp: parse_line(SCREAMING_SNAKE_CASE_ ) else: try: with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename != "warnings.txt": continue with z.open(SCREAMING_SNAKE_CASE_ ) as fp: parse_line(SCREAMING_SNAKE_CASE_ ) except Exception: logger.warning( f"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[Any] = set() lowercase__ : List[str] = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) return selected_warnings if __name__ == "__main__": def snake_case__ ( SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' return values.split(',' ) snake_case_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) snake_case_ = parser.parse_args() snake_case_ = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links snake_case_ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts snake_case_ = extract_warnings(args.output_dir, args.targets) snake_case_ = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
214
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCamelCase_ ( _a : str , _a : str , _a : str , _a : PreTrainedTokenizer , _a : int , _a : Optional[int] = None , ): '''simple docstring''' UpperCAmelCase_ : Any = {} if train_file is not None: UpperCAmelCase_ : str = [train_file] if eval_file is not None: UpperCAmelCase_ : Any = [eval_file] if test_file is not None: UpperCAmelCase_ : Optional[int] = [test_file] UpperCAmelCase_ : Tuple = datasets.load_dataset("""csv""" , data_files=_a ) UpperCAmelCase_ : Any = list(ds[list(files.keys() )[0]].features.keys() ) UpperCAmelCase_ : Union[str, Any] = features_name.pop(_a ) UpperCAmelCase_ : Optional[int] = list(set(ds[list(files.keys() )[0]][label_name] ) ) UpperCAmelCase_ : List[Any] = {label: i for i, label in enumerate(_a )} UpperCAmelCase_ : Any = tokenizer.model_input_names UpperCAmelCase_ : Union[str, Any] = {} if len(_a ) == 1: for k in files.keys(): UpperCAmelCase_ : Optional[Any] = ds[k].map( lambda _a : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_a , max_length=_a , padding="""max_length""" ) , batched=_a , ) elif len(_a ) == 2: for k in files.keys(): UpperCAmelCase_ : int = ds[k].map( lambda _a : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_a , max_length=_a , padding="""max_length""" , ) , batched=_a , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: UpperCAmelCase_ : Tuple = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase_ : Optional[int] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: UpperCAmelCase_ : str = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase_ : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: UpperCAmelCase_ : Tuple = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase_ : List[Any] = labelaid[ex[label_name]] yield (d, label) UpperCAmelCase_ : int = ( tf.data.Dataset.from_generator( _a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: UpperCAmelCase_ : Any = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) UpperCAmelCase_ : str = ( tf.data.Dataset.from_generator( _a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: UpperCAmelCase_ : List[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) UpperCAmelCase_ : str = ( tf.data.Dataset.from_generator( _a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: UpperCAmelCase_ : Dict = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCamelCase_ = logging.getLogger(__name__) @dataclass class _snake_case : '''simple docstring''' A__ : int = field(metadata={"help": "Which column contains the label"} ) A__ : str = field(default=__snake_case , metadata={"help": "The path of the training file"} ) A__ : Optional[str] = field(default=__snake_case , metadata={"help": "The path of the development file"} ) A__ : Optional[str] = field(default=__snake_case , metadata={"help": "The path of the test file"} ) A__ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A__ : bool = field( default=__snake_case , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class _snake_case : '''simple docstring''' A__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) A__ : Optional[str] = field( default=__snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) A__ : Optional[str] = field( default=__snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) A__ : bool = field(default=__snake_case , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. A__ : Optional[str] = field( default=__snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) UpperCAmelCase_ : str = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( F'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' F'''16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ : Dict = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_a , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) UpperCAmelCase_ : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_a ) , labelaid=_a , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): UpperCAmelCase_ : str = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , ) def compute_metrics(_a : EvalPrediction ) -> Dict: UpperCAmelCase_ : Optional[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer UpperCAmelCase_ : List[str] = TFTrainer( model=_a , args=_a , train_dataset=_a , eval_dataset=_a , compute_metrics=_a , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : Tuple = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCAmelCase_ : Any = trainer.evaluate() UpperCAmelCase_ : Any = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(_a , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) results.update(_a ) return results if __name__ == "__main__": main()
358
import argparse import os import torch from transformers.utils import WEIGHTS_NAME UpperCamelCase_ = ['''small''', '''medium''', '''large'''] UpperCamelCase_ = '''lm_head.decoder.weight''' UpperCamelCase_ = '''lm_head.weight''' def lowerCamelCase_ ( _a : str , _a : str ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.load(_a ) UpperCAmelCase_ : Tuple = d.pop(_a ) os.makedirs(_a , exist_ok=_a ) torch.save(_a , os.path.join(_a , _a ) ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) UpperCamelCase_ = parser.parse_args() for MODEL in DIALOGPT_MODELS: UpperCamelCase_ = os.path.join(args.dialogpt_path, F"{MODEL}_ft.pkl") UpperCamelCase_ = F"./DialoGPT-{MODEL}" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
59
0
'''simple docstring''' import functools def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not all(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(lowerCAmelCase_ ) != 3 or not all(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(lowerCAmelCase_ ) == 0: return 0 if min(lowerCAmelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(lowerCAmelCase_ ) >= 366: raise ValueError('All days elements should be less than 366' ) _a : Any = set(lowerCAmelCase_ ) @functools.cache def dynamic_programming(lowerCAmelCase_ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
89
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'''vocab_file''': '''spiece.model'''} _lowerCAmelCase = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } _lowerCAmelCase = { '''AI-Sweden/gpt-sw3-126m''': 2048, '''AI-Sweden/gpt-sw3-350m''': 2048, '''AI-Sweden/gpt-sw3-1.6b''': 2048, '''AI-Sweden/gpt-sw3-6.7b''': 2048, '''AI-Sweden/gpt-sw3-20b''': 2048, } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Dict = VOCAB_FILES_NAMES __lowercase : str = PRETRAINED_VOCAB_FILES_MAP __lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> None: lowerCAmelCase__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase__ : Dict = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) lowerCAmelCase__ : Tuple = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCAmelCase__ : Union[str, Any] = """<|endoftext|>""" if eos_token is None else eos_token lowerCAmelCase__ : Dict = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCAmelCase__ : Any = unk_token if pad_token is None else pad_token lowerCAmelCase__ : Dict = eos_token if bos_token is None else bos_token else: lowerCAmelCase__ : List[str] = """<pad>""" if pad_token is None else pad_token lowerCAmelCase__ : Optional[int] = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=__UpperCAmelCase ,remove_space=__UpperCAmelCase ,keep_accents=__UpperCAmelCase ,bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCAmelCase ,) lowerCAmelCase__ : Optional[int] = do_lower_case lowerCAmelCase__ : Dict = remove_space lowerCAmelCase__ : Optional[Any] = keep_accents lowerCAmelCase__ : int = vocab_file lowerCAmelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) # Used for whitespace normalization in input texts # fmt : off lowerCAmelCase__ : int = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCAmelCase__ : List[str] = re.compile( F"""[{''.join(map(__UpperCAmelCase ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(127 ,160 ) ) + [160, 173, 8203] ) )}]""" ) def __getstate__( self ) -> Any: lowerCAmelCase__ : int = self.__dict__.copy() lowerCAmelCase__ : Optional[int] = None return state def __setstate__( self ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : List[str] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCAmelCase__ : Tuple = {} lowerCAmelCase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCAmelCase_ ( self ) -> int: return len(self.sp_model ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : Tuple = self.non_printing_characters_re.sub("""""" ,__UpperCAmelCase ) # Normalize whitespaces lowerCAmelCase__ : List[Any] = """""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization lowerCAmelCase__ : List[Any] = unicodedata.normalize("""NFC""" ,__UpperCAmelCase ) return text def UpperCAmelCase_ ( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : List[Any] = self.preprocess_text(__UpperCAmelCase ) return self.sp_model.encode(__UpperCAmelCase ,out_type=__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: return self.sp_model.PieceToId(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: return self.sp_model.IdToPiece(__UpperCAmelCase ) @staticmethod def UpperCAmelCase_ ( __UpperCAmelCase ) -> str: return out_string def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : int = [] lowerCAmelCase__ : Optional[int] = """""" lowerCAmelCase__ : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Optional[Any] = [] else: current_sub_tokens.append(__UpperCAmelCase ) lowerCAmelCase__ : Any = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string def UpperCAmelCase_ ( self ) -> Dict[str, int]: lowerCAmelCase__ : Optional[int] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : Optional[int] = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase ,"""wb""" ) as fi: lowerCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Tuple = self.preprocess_text(__UpperCAmelCase ) lowerCAmelCase__ : int = self.sp_model.encode(__UpperCAmelCase ) else: lowerCAmelCase__ : int = [self.preprocess_text(__UpperCAmelCase ) for t in text] lowerCAmelCase__ : Any = self.sp_model.encode(__UpperCAmelCase ) if return_tensors is True or return_tensors == "pt": lowerCAmelCase__ : Tuple = torch.tensor(__UpperCAmelCase ) return token_ids def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: return self.sp_model.decode(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[int]: lowerCAmelCase__ : List[Any] = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] lowerCAmelCase__ : Any = ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(__UpperCAmelCase ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=__UpperCAmelCase )
37
0
"""simple docstring""" def A ( lowercase ) -> int: '''simple docstring''' if not grid or not grid[0]: raise TypeError('The grid does not contain the appropriate information' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] UpperCamelCase = grid[0] for row_n in range(1 , len(lowercase ) ): UpperCamelCase = grid[row_n] UpperCamelCase = fill_row(lowercase , lowercase ) UpperCamelCase = grid[row_n] return grid[-1][-1] def A ( lowercase , lowercase ) -> list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(lowercase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
361
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline _UpperCAmelCase : Optional[Any] = { "n_samples": 64, "horizon": 32, "num_inference_steps": 20, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": _UpperCAmelCase : int = "hopper-medium-v2" _UpperCAmelCase : Tuple = gym.make(env_name) _UpperCAmelCase : Any = ValueGuidedRLPipeline.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", env=env, ) env.seed(0) _UpperCAmelCase : Optional[Any] = env.reset() _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Dict = 1_000 _UpperCAmelCase : Tuple = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy _UpperCAmelCase : int = pipeline(obs, planning_horizon=32) # execute action in environment _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : List[Any] = env.step(denorm_actions) _UpperCAmelCase : int = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' F''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) _UpperCAmelCase : Union[str, Any] = next_observation except KeyboardInterrupt: pass print(F'''Total reward: {total_reward}''')
110
0
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : list[int] ) -> float: if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) UpperCAmelCase : Tuple = sum(_lowerCAmelCase ) / len(_lowerCAmelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
23
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A: Optional[Any] = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: List[str] = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys A: Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __A = { '''vocab_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/spiece.model''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json''', }, } __A = { '''google/fnet-base''': 512, '''google/fnet-large''': 512, } __A = '''▁''' class _snake_case ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "token_type_ids"] snake_case__ = FNetTokenizer def __init__( self : str , UpperCAmelCase : str=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : str="<unk>" , UpperCAmelCase : List[Any]="[SEP]" , UpperCAmelCase : Optional[Any]="<pad>" , UpperCAmelCase : List[str]="[CLS]" , UpperCAmelCase : str="[MASK]" , **UpperCAmelCase : List[str] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __lowerCamelCase : Optional[int] = ( AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase , normalized=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token ) super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , remove_space=UpperCAmelCase , keep_accents=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , **UpperCAmelCase , ) __lowerCamelCase : Union[str, Any] = do_lower_case __lowerCamelCase : Dict = remove_space __lowerCamelCase : str = keep_accents __lowerCamelCase : Union[str, Any] = vocab_file __lowerCamelCase : List[Any] = False if not self.vocab_file else True def lowerCamelCase__ ( self : Dict , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): __lowerCamelCase : Optional[int] = [self.sep_token_id] __lowerCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): __lowerCamelCase : Dict = [self.sep_token_id] __lowerCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase : Optional[Any] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
359
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class _snake_case ( a__ ): snake_case__ = "rwkv" snake_case__ = {"max_position_embeddings": "context_length"} def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=50277 , UpperCAmelCase : Dict=1024 , UpperCAmelCase : int=4096 , UpperCAmelCase : Optional[Any]=32 , UpperCAmelCase : str=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : str=1E-5 , UpperCAmelCase : Optional[int]=0 , UpperCAmelCase : int=0 , UpperCAmelCase : Tuple=6 , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[Any]=True , **UpperCAmelCase : Any , ): __lowerCamelCase : Optional[Any] = vocab_size __lowerCamelCase : List[Any] = context_length __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : Optional[Any] = num_hidden_layers __lowerCamelCase : Tuple = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowerCamelCase : Dict = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowerCamelCase : str = layer_norm_epsilon __lowerCamelCase : Dict = rescale_every __lowerCamelCase : Optional[Any] = use_cache __lowerCamelCase : int = bos_token_id __lowerCamelCase : Tuple = eos_token_id super().__init__( tie_word_embeddings=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
64
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. snake_case : Optional[int] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def lowerCAmelCase_ ( _snake_case : Tuple ) -> Any: '''simple docstring''' config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" ) def lowerCAmelCase_ ( _snake_case : List[str] ) -> Dict: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_snake_case ) def lowerCAmelCase_ ( _snake_case : Any ) -> str: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main __magic_name__ : Any = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_snake_case , id=_snake_case ) def lowerCAmelCase_ ( _snake_case : Optional[Any] , _snake_case : Tuple ) -> Optional[int]: '''simple docstring''' if exitstatus == 5: __magic_name__ : Dict = 0 # Doctest custom flag to ignore output. snake_case : Optional[int] = doctest.register_optionflag("IGNORE_RESULT") snake_case : Tuple = doctest.OutputChecker class _snake_case ( snake_case ): def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , _a , _a , _a ) snake_case : List[str] = CustomOutputChecker snake_case : Any = HfDoctestModule snake_case : Union[str, Any] = HfDocTestParser
281
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase_ ( _snake_case : str = "laptop" ) -> DataFrame: '''simple docstring''' __magic_name__ : Tuple = F'''https://www.amazon.in/laptop/s?k={product}''' __magic_name__ : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } __magic_name__ : Tuple = BeautifulSoup(requests.get(_snake_case , headers=_snake_case ).text ) # Initialize a Pandas dataframe with the column titles __magic_name__ : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: __magic_name__ : Dict = item.ha.text __magic_name__ : Optional[int] = "https://www.amazon.in/" + item.ha.a["href"] __magic_name__ : Optional[Any] = item.find("span" , attrs={"class": "a-offscreen"} ).text try: __magic_name__ : Union[str, Any] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: __magic_name__ : Dict = "Not available" try: __magic_name__ : Optional[int] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: __magic_name__ : List[str] = "" try: __magic_name__ : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: __magic_name__ : str = float("nan" ) except AttributeError: pass __magic_name__ : Optional[int] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __magic_name__ : Optional[Any] = " " __magic_name__ : str = " " data_frame.index += 1 return data_frame if __name__ == "__main__": snake_case : Any = "headphones" get_amazon_product_data(product).to_csv(F"Amazon Product Data for {product}.csv")
281
1
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge _lowerCAmelCase = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] _lowerCAmelCase = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : str = calculate_rouge(UpperCamelCase , UpperCamelCase , bootstrap_aggregation=UpperCamelCase , rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = calculate_rouge(UpperCamelCase , UpperCamelCase , bootstrap_aggregation=UpperCamelCase , rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : List[Any] = """rougeLsum""" lowerCAmelCase__ : Union[str, Any] = calculate_rouge(UpperCamelCase , UpperCamelCase , newline_sep=UpperCamelCase , rouge_keys=[k] )[k] lowerCAmelCase__ : List[Any] = calculate_rouge(UpperCamelCase , UpperCamelCase , newline_sep=UpperCamelCase , rouge_keys=[k] )[k] assert score > score_no_sep def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Tuple = ["""rouge1""", """rouge2""", """rougeL"""] lowerCAmelCase__ : Union[str, Any] = calculate_rouge(UpperCamelCase , UpperCamelCase , newline_sep=UpperCamelCase , rouge_keys=UpperCamelCase ) lowerCAmelCase__ : List[Any] = calculate_rouge(UpperCamelCase , UpperCamelCase , newline_sep=UpperCamelCase , rouge_keys=UpperCamelCase ) assert score_sep == score_no_sep def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Dict = [ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] lowerCAmelCase__ : Dict = [ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(UpperCamelCase , UpperCamelCase , newline_sep=UpperCamelCase ) == calculate_rouge(UpperCamelCase , UpperCamelCase , newline_sep=UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : str = [ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] lowerCAmelCase__ : Dict = [ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] lowerCAmelCase__ : str = calculate_rouge(UpperCamelCase , UpperCamelCase , rouge_keys=["""rougeLsum"""] , newline_sep=UpperCamelCase )["""rougeLsum"""] lowerCAmelCase__ : Optional[Any] = calculate_rouge(UpperCamelCase , UpperCamelCase , rouge_keys=["""rougeLsum"""] )["""rougeLsum"""] assert new_score > prev_score def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) lowerCAmelCase__ : str = calculate_rouge_path(data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) ) assert isinstance(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : str = calculate_rouge_path( data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) , bootstrap_aggregation=UpperCamelCase ) assert isinstance(UpperCamelCase , UpperCamelCase )
184
'''simple docstring''' import os def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = len(grid[0] ) lowerCAmelCase__ : int = len(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Optional[Any] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(UpperCamelCase ): for j in range(n_rows - 3 ): lowerCAmelCase__ : str = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowerCAmelCase__ : Optional[int] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowerCAmelCase__ : Optional[int] = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowerCAmelCase__ : Tuple = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowerCAmelCase__ : Dict = max( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if max_product > largest: lowerCAmelCase__ : Any = max_product return largest def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : List[str] = [] with open(os.path.dirname(UpperCamelCase ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) lowerCAmelCase__ : Dict = [[int(UpperCamelCase ) for i in grid[j]] for j in range(len(UpperCamelCase ) )] return largest_product(UpperCamelCase ) if __name__ == "__main__": print(solution())
184
1
"""simple docstring""" from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class A__ ( A_): A_ : Union[List[PIL.Image.Image], np.ndarray] A_ : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
86
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class UpperCAmelCase ( A_ ): A__ : jnp.ndarray @flax_register_to_config class UpperCAmelCase ( nn.Module ,A_ ,A_ ): A__ : int = 32 A__ : int = 4 A__ : int = 4 A__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) A__ : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") A__ : Union[bool, Tuple[bool]] = False A__ : Tuple[int] = (3_20, 6_40, 12_80, 12_80) A__ : int = 2 A__ : Union[int, Tuple[int]] = 8 A__ : Optional[Union[int, Tuple[int]]] = None A__ : int = 12_80 A__ : float = 0.0 A__ : bool = False A__ : jnp.dtype = jnp.floataa A__ : bool = True A__ : int = 0 A__ : bool = False def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : jax.random.KeyArray ) -> FrozenDict: '''simple docstring''' snake_case : Dict = (1, self.in_channels, self.sample_size, self.sample_size) snake_case : Any = jnp.zeros(snake_case__ , dtype=jnp.floataa ) snake_case : List[str] = jnp.ones((1,) , dtype=jnp.intaa ) snake_case : str = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) snake_case , snake_case : Optional[int] = jax.random.split(snake_case__ ) snake_case : Union[str, Any] = {"params": params_rng, "dropout": dropout_rng} return self.init(snake_case__ , snake_case__ , snake_case__ , snake_case__ )["params"] def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' snake_case : str = self.block_out_channels snake_case : Optional[Any] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. snake_case : Tuple = self.num_attention_heads or self.attention_head_dim # input snake_case : Tuple = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time snake_case : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) snake_case : Dict = FlaxTimestepEmbedding(snake_case__ , dtype=self.dtype ) snake_case : List[str] = self.only_cross_attention if isinstance(snake_case__ , snake_case__ ): snake_case : List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(snake_case__ , snake_case__ ): snake_case : List[Any] = (num_attention_heads,) * len(self.down_block_types ) # down snake_case : List[Any] = [] snake_case : Optional[int] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): snake_case : List[Any] = output_channel snake_case : Dict = block_out_channels[i] snake_case : Optional[Any] = i == len(snake_case__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": snake_case : List[Any] = FlaxCrossAttnDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: snake_case : Union[str, Any] = FlaxDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(snake_case__ ) snake_case : Dict = down_blocks # mid snake_case : Optional[int] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up snake_case : Optional[Any] = [] snake_case : Optional[int] = list(reversed(snake_case__ ) ) snake_case : Dict = list(reversed(snake_case__ ) ) snake_case : Tuple = list(reversed(snake_case__ ) ) snake_case : Optional[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): snake_case : Optional[int] = output_channel snake_case : List[Any] = reversed_block_out_channels[i] snake_case : Union[str, Any] = reversed_block_out_channels[min(i + 1 , len(snake_case__ ) - 1 )] snake_case : int = i == len(snake_case__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": snake_case : Any = FlaxCrossAttnUpBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , prev_output_channel=snake_case__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: snake_case : Optional[int] = FlaxUpBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , prev_output_channel=snake_case__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(snake_case__ ) snake_case : Optional[int] = output_channel snake_case : Tuple = up_blocks # out snake_case : Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) snake_case : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : bool = True , snake_case__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: '''simple docstring''' if not isinstance(snake_case__ , jnp.ndarray ): snake_case : List[Any] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(snake_case__ , jnp.ndarray ) and len(timesteps.shape ) == 0: snake_case : Any = timesteps.astype(dtype=jnp.floataa ) snake_case : int = jnp.expand_dims(snake_case__ , 0 ) snake_case : str = self.time_proj(snake_case__ ) snake_case : str = self.time_embedding(snake_case__ ) # 2. pre-process snake_case : int = jnp.transpose(snake_case__ , (0, 2, 3, 1) ) snake_case : List[Any] = self.conv_in(snake_case__ ) # 3. down snake_case : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(snake_case__ , snake_case__ ): snake_case , snake_case : List[Any] = down_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) else: snake_case , snake_case : str = down_block(snake_case__ , snake_case__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: snake_case : Tuple = () for down_block_res_sample, down_block_additional_residual in zip( snake_case__ , snake_case__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) snake_case : Optional[int] = new_down_block_res_samples # 4. mid snake_case : Optional[int] = self.mid_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: snake_case : int = down_block_res_samples[-(self.layers_per_block + 1) :] snake_case : Optional[Any] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(snake_case__ , snake_case__ ): snake_case : Optional[Any] = up_block( snake_case__ , temb=snake_case__ , encoder_hidden_states=snake_case__ , res_hidden_states_tuple=snake_case__ , deterministic=not train , ) else: snake_case : Dict = up_block(snake_case__ , temb=snake_case__ , res_hidden_states_tuple=snake_case__ , deterministic=not train ) # 6. post-process snake_case : List[str] = self.conv_norm_out(snake_case__ ) snake_case : Any = nn.silu(snake_case__ ) snake_case : Optional[int] = self.conv_out(snake_case__ ) snake_case : Union[str, Any] = jnp.transpose(snake_case__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=snake_case__ )
59
0
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict ) -> int: '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: __snake_case : List[str] = _modexpt(__UpperCAmelCase , exponent // 2 , __UpperCAmelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__UpperCAmelCase , exponent - 1 , __UpperCAmelCase )) % modulo_value def __UpperCAmelCase ( UpperCAmelCase_ : Any = 17_77 , UpperCAmelCase_ : Tuple = 18_55 , UpperCAmelCase_ : List[str] = 8 ) -> int: '''simple docstring''' __snake_case : Union[str, Any] = base for _ in range(1 , __UpperCAmelCase ): __snake_case : int = _modexpt(__UpperCAmelCase , __UpperCAmelCase , 10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
356
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _a : Any= logging.get_logger(__name__) _a : str= {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _a : Optional[Any]= [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] _a : List[Any]= { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } _a : str= {f'''funnel-transformer/{name}''': 512 for name in _model_names} _a : List[Any]= {f'''funnel-transformer/{name}''': {"do_lower_case": True} for name in _model_names} class UpperCamelCase ( lowercase ): UpperCAmelCase : List[str] = VOCAB_FILES_NAMES UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : int = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase : Tuple = FunnelTokenizer UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : int = 2 def __init__(self : int , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=True , _A : List[str]="<unk>" , _A : Any="<sep>" , _A : Dict="<pad>" , _A : Tuple="<cls>" , _A : Dict="<mask>" , _A : Optional[Any]="<s>" , _A : List[Any]="</s>" , _A : Optional[int]=True , _A : Dict=True , _A : Tuple=None , _A : int="##" , **_A : Any , ) -> str: super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , bos_token=_A , eos_token=_A , clean_text=_A , tokenize_chinese_chars=_A , strip_accents=_A , wordpieces_prefix=_A , **_A , ) __snake_case : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , _A) != do_lower_case or normalizer_state.get('strip_accents' , _A) != strip_accents or normalizer_state.get('handle_chinese_chars' , _A) != tokenize_chinese_chars ): __snake_case : List[str] = getattr(_A , normalizer_state.pop('type')) __snake_case : int = do_lower_case __snake_case : Optional[int] = strip_accents __snake_case : str = tokenize_chinese_chars __snake_case : Optional[int] = normalizer_class(**_A) __snake_case : str = do_lower_case def _lowercase (self : Optional[Any] , _A : Dict , _A : Tuple=None) -> Any: __snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase (self : str , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : Union[str, Any] = [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls) * [self.cls_token_type_id] + len(token_ids_a + sep) * [0] return len(cls) * [self.cls_token_type_id] + len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowercase (self : Tuple , _A : str , _A : Optional[str] = None) -> Tuple[str]: __snake_case : int = self._tokenizer.model.save(_A , name=_A) return tuple(_A)
95
0
def _a ( SCREAMING_SNAKE_CASE_ : Dict = 1_00 ): __lowerCAmelCase = 0 __lowerCAmelCase = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
92
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase = re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)') lowerCAmelCase = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = None # source code of `config_class` lowercase__ = inspect.getsource(SCREAMING_SNAKE_CASE ) lowercase__ = _re_checkpoint.findall(SCREAMING_SNAKE_CASE ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): lowercase__ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowercase__ = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: lowercase__ = ckpt_name break return checkpoint def _a ( ): """simple docstring""" lowercase__ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowercase__ = get_checkpoint_from_config_class(SCREAMING_SNAKE_CASE ) lowercase__ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: lowercase__ = '''\n'''.join(sorted(SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
110
0
import numpy as np _UpperCAmelCase : Any = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class lowercase : def __init__( self ): snake_case_ = np.array(snake_case ) def a ( self , snake_case ): snake_case_ , snake_case_ = np.where(letter == self.SQUARE ) snake_case_ = np.concatenate([indexa + 1, indexa + 1] ) return indexes def a ( self , snake_case , snake_case ): snake_case_ = self.SQUARE[indexa - 1, indexa - 1] return letter def a ( self , snake_case ): snake_case_ = message.lower() snake_case_ = message.replace(' ' , '' ) snake_case_ = message.replace('j' , 'i' ) snake_case_ = np.empty((2, len(snake_case )) ) for letter_index in range(len(snake_case ) ): snake_case_ = self.letter_to_numbers(message[letter_index] ) snake_case_ = numbers[0] snake_case_ = numbers[1] snake_case_ = first_step.reshape(2 * len(snake_case ) ) snake_case_ = '' for numbers_index in range(len(snake_case ) ): snake_case_ = int(second_step[numbers_index * 2] ) snake_case_ = int(second_step[(numbers_index * 2) + 1] ) snake_case_ = self.numbers_to_letter(snake_case , snake_case ) snake_case_ = encoded_message + letter return encoded_message def a ( self , snake_case ): snake_case_ = message.lower() message.replace(' ' , '' ) snake_case_ = np.empty(2 * len(snake_case ) ) for letter_index in range(len(snake_case ) ): snake_case_ = self.letter_to_numbers(message[letter_index] ) snake_case_ = numbers[0] snake_case_ = numbers[1] snake_case_ = first_step.reshape((2, len(snake_case )) ) snake_case_ = '' for numbers_index in range(len(snake_case ) ): snake_case_ = int(second_step[0, numbers_index] ) snake_case_ = int(second_step[1, numbers_index] ) snake_case_ = self.numbers_to_letter(snake_case , snake_case ) snake_case_ = decoded_message + letter return decoded_message
200
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
200
1
def lowerCamelCase_ ( _a : list[list] ): '''simple docstring''' UpperCAmelCase_ : Tuple = current_set.copy() for row_index, row in enumerate(snake_case__ ): UpperCAmelCase_ : Tuple = row[0] for column_index, column in enumerate(snake_case__ ): if magnitude == 0: UpperCAmelCase_ : List[Any] = column continue UpperCAmelCase_ : Tuple = column / magnitude # Subtract to cancel term UpperCAmelCase_ : Optional[Any] = current_set[0] UpperCAmelCase_ : List[str] = [first_row] UpperCAmelCase_ : str = current_set[1::] for row in current_set: UpperCAmelCase_ : int = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(snake_case__ ) continue for column_index in range(len(snake_case__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(snake_case__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: UpperCAmelCase_ : Union[str, Any] = final_set[0] UpperCAmelCase_ : int = [] UpperCAmelCase_ : str = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) UpperCAmelCase_ : Optional[Any] = simplify(snake_case__ ) for i in range(len(snake_case__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , snake_case__ ) UpperCAmelCase_ : List[str] = resultant return final_set def lowerCamelCase_ ( _a : list[list] ): '''simple docstring''' if len(snake_case__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) UpperCAmelCase_ : Union[str, Any] = len(snake_case__ ) + 1 if any(len(snake_case__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(snake_case__ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(snake_case__ ) == 1: return [equations[0][-1] / equations[0][0]] UpperCAmelCase_ : Dict = equations.copy() if any(0 in row for row in data_set ): UpperCAmelCase_ : Any = data_set.copy() UpperCAmelCase_ : int = [] for row_index, row in enumerate(snake_case__ ): if 0 not in row: UpperCAmelCase_ : Optional[int] = data_set.pop(snake_case__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , snake_case__ ) UpperCAmelCase_ : str = data_set.copy() UpperCAmelCase_ : Union[str, Any] = simplify(snake_case__ ) UpperCAmelCase_ : int = simplified[::-1] UpperCAmelCase_ : list = [] for row in simplified: UpperCAmelCase_ : int = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue UpperCAmelCase_ : Dict = row.copy()[: len(snake_case__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(snake_case__ ) == 0: solutions.append(0 ) continue UpperCAmelCase_ : Optional[Any] = temp_row[1::] UpperCAmelCase_ : Dict = temp_row[::-1] for column_index, column in enumerate(snake_case__ ): current_solution -= column * solutions[column_index] solutions.append(snake_case__ ) UpperCAmelCase_ : str = [] for item in solutions: final.append(float(round(snake_case__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
345
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : List[Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _snake_case : Tuple = 1_92 _snake_case : Any = 7_68 _snake_case : Any = 12 _snake_case : List[Any] = 3 _snake_case : int = [8_00, 13_33] _snake_case : Tuple = False elif yolos_name == "yolos_s_dWr": _snake_case : Tuple = 3_30 _snake_case : List[str] = 14 _snake_case : List[str] = 6 _snake_case : Union[str, Any] = 13_20 elif "yolos_s" in yolos_name: _snake_case : Union[str, Any] = 3_84 _snake_case : List[str] = 15_36 _snake_case : Any = 12 _snake_case : Optional[int] = 6 elif "yolos_b" in yolos_name: _snake_case : Dict = [8_00, 13_44] _snake_case : str = 91 _snake_case : Optional[Any] = """huggingface/label-files""" _snake_case : str = """coco-detection-id2label.json""" _snake_case : str = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : Union[str, Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : List[str] = idalabel _snake_case : List[str] = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ (snake_case__ : dict , snake_case__ : YolosConfig , snake_case__ : bool = False ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case : int = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _snake_case : Union[str, Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _snake_case : Any = in_proj_weight[: config.hidden_size, :] _snake_case : Optional[Any] = in_proj_bias[: config.hidden_size] _snake_case : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case : Tuple = in_proj_weight[-config.hidden_size :, :] _snake_case : List[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" if "backbone" in name: _snake_case : str = name.replace("""backbone""" , """vit""" ) if "cls_token" in name: _snake_case : Union[str, Any] = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "det_token" in name: _snake_case : str = name.replace("""det_token""" , """embeddings.detection_tokens""" ) if "mid_pos_embed" in name: _snake_case : str = name.replace("""mid_pos_embed""" , """encoder.mid_position_embeddings""" ) if "pos_embed" in name: _snake_case : Tuple = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: _snake_case : str = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "blocks" in name: _snake_case : str = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: _snake_case : Any = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: _snake_case : str = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: _snake_case : List[str] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _snake_case : str = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _snake_case : List[str] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _snake_case : int = name.replace("""mlp.fc2""" , """output.dense""" ) if "class_embed" in name: _snake_case : Union[str, Any] = name.replace("""class_embed""" , """class_labels_classifier""" ) if "bbox_embed" in name: _snake_case : str = name.replace("""bbox_embed""" , """bbox_predictor""" ) if "vit.norm" in name: _snake_case : Union[str, Any] = name.replace("""vit.norm""" , """vit.layernorm""" ) return name def UpperCAmelCase__ (snake_case__ : dict , snake_case__ : YolosForObjectDetection ): """simple docstring""" for key in orig_state_dict.copy().keys(): _snake_case : List[str] = orig_state_dict.pop(snake_case__ ) if "qkv" in key: _snake_case : Optional[Any] = key.split(""".""" ) _snake_case : Optional[Any] = int(key_split[2] ) _snake_case : Optional[int] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _snake_case : str = val[:dim, :] _snake_case : Optional[Any] = val[ dim : dim * 2, : ] _snake_case : Optional[Any] = val[-dim:, :] else: _snake_case : Dict = val[:dim] _snake_case : Any = val[dim : dim * 2] _snake_case : Dict = val[-dim:] else: _snake_case : Tuple = val return orig_state_dict def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" _snake_case : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : str , snake_case__ : bool = False ): """simple docstring""" _snake_case : Optional[Any] = get_yolos_config(snake_case__ ) # load original state_dict _snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" )["""model"""] # load 🤗 model _snake_case : Optional[Any] = YolosForObjectDetection(snake_case__ ) model.eval() _snake_case : Optional[Any] = convert_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by YolosImageProcessor _snake_case : List[str] = 8_00 if yolos_name != """yolos_ti""" else 5_12 _snake_case : Optional[int] = YolosImageProcessor(format="""coco_detection""" , size=snake_case__ ) _snake_case : Optional[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) _snake_case : Optional[Any] = model(**snake_case__ ) _snake_case , _snake_case : Optional[int] = outputs.logits, outputs.pred_boxes _snake_case , _snake_case : Dict = None, None if yolos_name == "yolos_ti": _snake_case : Optional[Any] = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) _snake_case : Tuple = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": _snake_case : List[str] = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) _snake_case : List[str] = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": _snake_case : Dict = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) _snake_case : Union[str, Any] = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": _snake_case : Tuple = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) _snake_case : Optional[Any] = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": _snake_case : int = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) _snake_case : Optional[int] = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , snake_case__ , atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: _snake_case : Dict = { """yolos_ti""": """yolos-tiny""", """yolos_s_200_pre""": """yolos-small""", """yolos_s_300_pre""": """yolos-small-300""", """yolos_s_dWr""": """yolos-small-dwr""", """yolos_base""": """yolos-base""", } print("""Pushing to the hub...""" ) _snake_case : str = model_mapping[yolos_name] image_processor.push_to_hub(snake_case__ , organization="""hustvl""" ) model.push_to_hub(snake_case__ , organization="""hustvl""" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) A_ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
64
0
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
184
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = '''instructblip_vision_model''' def __init__( self ,__UpperCAmelCase=1408 ,__UpperCAmelCase=6144 ,__UpperCAmelCase=39 ,__UpperCAmelCase=16 ,__UpperCAmelCase=224 ,__UpperCAmelCase=14 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=1E-6 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=1E-10 ,__UpperCAmelCase=True ,**__UpperCAmelCase ,) -> List[Any]: super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ : Any = hidden_size lowerCAmelCase__ : List[str] = intermediate_size lowerCAmelCase__ : str = num_hidden_layers lowerCAmelCase__ : Tuple = num_attention_heads lowerCAmelCase__ : Union[str, Any] = patch_size lowerCAmelCase__ : int = image_size lowerCAmelCase__ : Tuple = initializer_range lowerCAmelCase__ : Optional[int] = attention_dropout lowerCAmelCase__ : List[str] = layer_norm_eps lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : int = qkv_bias @classmethod def UpperCAmelCase_ ( cls ,__UpperCAmelCase ,**__UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Tuple = cls.get_config_dict(__UpperCAmelCase ,**__UpperCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": lowerCAmelCase__ : Optional[int] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase ,**__UpperCAmelCase ) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = '''instructblip_qformer''' def __init__( self ,__UpperCAmelCase=3_0522 ,__UpperCAmelCase=768 ,__UpperCAmelCase=12 ,__UpperCAmelCase=12 ,__UpperCAmelCase=3072 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=512 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1E-12 ,__UpperCAmelCase=0 ,__UpperCAmelCase="absolute" ,__UpperCAmelCase=2 ,__UpperCAmelCase=1408 ,**__UpperCAmelCase ,) -> Tuple: super().__init__(pad_token_id=__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = vocab_size lowerCAmelCase__ : Optional[Any] = hidden_size lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : int = num_attention_heads lowerCAmelCase__ : Tuple = hidden_act lowerCAmelCase__ : int = intermediate_size lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase__ : Optional[Any] = max_position_embeddings lowerCAmelCase__ : Any = initializer_range lowerCAmelCase__ : Tuple = layer_norm_eps lowerCAmelCase__ : Dict = position_embedding_type lowerCAmelCase__ : int = cross_attention_frequency lowerCAmelCase__ : List[Any] = encoder_hidden_size @classmethod def UpperCAmelCase_ ( cls ,__UpperCAmelCase ,**__UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Any = cls.get_config_dict(__UpperCAmelCase ,**__UpperCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": lowerCAmelCase__ : Tuple = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase ,**__UpperCAmelCase ) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Any = '''instructblip''' __lowercase : str = True def __init__( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=32 ,**__UpperCAmelCase ) -> Any: super().__init__(**__UpperCAmelCase ) if vision_config is None: lowerCAmelCase__ : Any = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: lowerCAmelCase__ : List[str] = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: lowerCAmelCase__ : List[Any] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) lowerCAmelCase__ : Any = InstructBlipVisionConfig(**__UpperCAmelCase ) lowerCAmelCase__ : Tuple = InstructBlipQFormerConfig(**__UpperCAmelCase ) lowerCAmelCase__ : Tuple = text_config["""model_type"""] if """model_type""" in text_config else """opt""" lowerCAmelCase__ : Any = CONFIG_MAPPING[text_model_type](**__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = self.text_config.tie_word_embeddings lowerCAmelCase__ : Any = self.text_config.is_encoder_decoder lowerCAmelCase__ : int = num_query_tokens lowerCAmelCase__ : List[str] = self.vision_config.hidden_size lowerCAmelCase__ : Optional[int] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCAmelCase__ : Optional[Any] = 1.0 lowerCAmelCase__ : Dict = 0.0_2 @classmethod def UpperCAmelCase_ ( cls ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ,) -> Union[str, Any]: return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**__UpperCAmelCase ,) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : List[Any] = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ : str = self.vision_config.to_dict() lowerCAmelCase__ : Union[str, Any] = self.qformer_config.to_dict() lowerCAmelCase__ : Union[str, Any] = self.text_config.to_dict() lowerCAmelCase__ : str = self.__class__.model_type return output
184
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A : Optional[Any] = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
184
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor A : List[str] = logging.get_logger(__name__) class _lowercase ( lowercase__): """simple docstring""" def __init__( self : Optional[int] , *__lowerCamelCase : List[str] , **__lowerCamelCase : str ): '''simple docstring''' warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
184
1
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ) -> Dict: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] ) -> str: SCREAMING_SNAKE_CASE_ = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ = SqlDatasetReader( 'dataset' , 'sqlite:///' + sqlite_path , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase ).read() _check_sql_dataset(__UpperCAmelCase , __UpperCAmelCase ) @require_sqlalchemy @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} SCREAMING_SNAKE_CASE_ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ = ( Features({feature: Value(__UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase ).read() _check_sql_dataset(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Union[str, Any]: with contextlib.closing(sqlitea.connect(__UpperCAmelCase ) ) as con: SCREAMING_SNAKE_CASE_ = con.cursor() cur.execute('SELECT * FROM dataset' ) for row in cur: yield row @require_sqlalchemy def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCAmelCase , 'tmp.sql' ) SCREAMING_SNAKE_CASE_ = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=__UpperCAmelCase ).read() SqlDatasetWriter(__UpperCAmelCase , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=1 ).write() SCREAMING_SNAKE_CASE_ = iter_sql_file(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = iter_sql_file(__UpperCAmelCase ) for rowa, rowa in zip(__UpperCAmelCase , __UpperCAmelCase ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCAmelCase , 'tmp.sql' ) SCREAMING_SNAKE_CASE_ = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=__UpperCAmelCase ).read() SqlDatasetWriter(__UpperCAmelCase , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=2 ).write() SCREAMING_SNAKE_CASE_ = iter_sql_file(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = iter_sql_file(__UpperCAmelCase ) for rowa, rowa in zip(__UpperCAmelCase , __UpperCAmelCase ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCAmelCase , 'tmp.sql' ) SCREAMING_SNAKE_CASE_ = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=__UpperCAmelCase ).read() with pytest.raises(__UpperCAmelCase ): SqlDatasetWriter(__UpperCAmelCase , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=0 ).write()
210
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Dict = logging.get_logger(__name__) lowerCamelCase__ : Any = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "speech_to_text" lowercase_ = ["past_key_values"] lowercase_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Union[str, Any] , _lowerCAmelCase : Optional[int]=10_000 , _lowerCAmelCase : str=12 , _lowerCAmelCase : Tuple=2_048 , _lowerCAmelCase : str=4 , _lowerCAmelCase : Tuple=6 , _lowerCAmelCase : Optional[int]=2_048 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Any="relu" , _lowerCAmelCase : Any=256 , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Optional[int]=6_000 , _lowerCAmelCase : Tuple=1_024 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : str=(5, 5) , _lowerCAmelCase : Optional[int]=1_024 , _lowerCAmelCase : List[Any]=80 , _lowerCAmelCase : List[Any]=1 , **_lowerCAmelCase : List[Any] , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE_ = max_source_positions SCREAMING_SNAKE_CASE_ = max_target_positions SCREAMING_SNAKE_CASE_ = num_conv_layers SCREAMING_SNAKE_CASE_ = list(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = conv_channels SCREAMING_SNAKE_CASE_ = input_feat_per_channel SCREAMING_SNAKE_CASE_ = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, " F"`config.num_conv_layers = {self.num_conv_layers}`." ) super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
210
1
'''simple docstring''' from __future__ import annotations from random import random class UpperCAmelCase : def __init__( self : Any , __snake_case : int | None = None ) -> str: _lowerCAmelCase = value _lowerCAmelCase = random() _lowerCAmelCase = None _lowerCAmelCase = None def __repr__( self : Dict ) -> str: from pprint import pformat if self.left is None and self.right is None: return f"'{self.value}: {self.prior:.5}'" else: return pformat( {f"{self.value}: {self.prior:.5}": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ) -> str: _lowerCAmelCase = str(self.value ) + """ """ _lowerCAmelCase = str(self.left or """""" ) _lowerCAmelCase = str(self.right or """""" ) return value + left + right def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _lowerCAmelCase , _lowerCAmelCase = split(root.left , lowerCAmelCase ) return left, root else: _lowerCAmelCase , _lowerCAmelCase = split(root.right , lowerCAmelCase ) return root, right def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _lowerCAmelCase = merge(left.right , lowerCAmelCase ) return left else: _lowerCAmelCase = merge(lowerCAmelCase , right.left ) return right def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = Node(lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = split(lowerCAmelCase , value - 1 ) _lowerCAmelCase , _lowerCAmelCase = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if not root: # None return else: inorder(root.left ) print(root.value , end=""",""" ) inorder(root.right ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" for arg in args.split(): if arg[0] == "+": _lowerCAmelCase = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _lowerCAmelCase = erase(lowerCAmelCase , int(arg[1:] ) ) else: print("""Unknown command""" ) return root def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = None print( """enter numbers to create a tree, + value to add value into treap, """ """- value to erase all nodes with value. 'q' to quit. """ ) _lowerCAmelCase = input() while args != "q": _lowerCAmelCase = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _lowerCAmelCase = input() print("""good by!""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
70
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase : Any = 16 UpperCAmelCase : str = 32 def _A ( SCREAMING_SNAKE_CASE : Accelerator , SCREAMING_SNAKE_CASE : int = 16 ): """simple docstring""" a__ : int =AutoTokenizer.from_pretrained("bert-base-cased" ) a__ : List[str] =load_dataset("glue" , "mrpc" ) def tokenize_function(SCREAMING_SNAKE_CASE : List[Any] ): # max_length=None => use the model max length (it's actually the default) a__ : int =tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a__ : Dict =datasets.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ : Dict =tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(SCREAMING_SNAKE_CASE : str ): # On TPU it's best to pad everything to the same length or training will be very slow. a__ : Optional[Any] =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a__ : str =16 elif accelerator.mixed_precision != "no": a__ : Union[str, Any] =8 else: a__ : List[str] =None return tokenizer.pad( SCREAMING_SNAKE_CASE , padding="longest" , max_length=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_tensors="pt" , ) # Instantiate dataloaders. a__ : Any =DataLoader( tokenized_datasets["train"] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) a__ : int =DataLoader( tokenized_datasets["validation"] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase : str = mocked_dataloaders # noqa: F811 def _A ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , SCREAMING_SNAKE_CASE ) == "1": a__ : Tuple =2 # Initialize accelerator a__ : int =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ : Optional[int] =config["lr"] a__ : Union[str, Any] =int(config["num_epochs"] ) a__ : Any =int(config["seed"] ) a__ : Dict =int(config["batch_size"] ) a__ : int =evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation a__ : int =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: a__ : Dict =batch_size // MAX_GPU_BATCH_SIZE a__ : Tuple =MAX_GPU_BATCH_SIZE set_seed(SCREAMING_SNAKE_CASE ) a__ , a__ : Optional[int] =get_dataloaders(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ : List[str] =AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a__ : List[str] =model.to(accelerator.device ) # Instantiate optimizer a__ : List[Any] =AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE ) # Instantiate scheduler a__ : Optional[int] =get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ : Optional[int] =accelerator.prepare( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) a__ : Dict =model(**SCREAMING_SNAKE_CASE ) a__ : List[Any] =outputs.loss a__ : List[str] =loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() a__ : Optional[Any] =0 for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a__ : Any =model(**SCREAMING_SNAKE_CASE ) a__ : str =outputs.logits.argmax(dim=-1 ) a__ , a__ : List[str] =accelerator.gather((predictions, batch["labels"]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(SCREAMING_SNAKE_CASE ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples a__ : Optional[Any] =predictions[: len(eval_dataloader.dataset ) - samples_seen] a__ : Dict =references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE , ) a__ : Tuple =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , SCREAMING_SNAKE_CASE ) def _A ( ): """simple docstring""" a__ : List[str] =argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) a__ : str =parser.parse_args() a__ : Optional[int] ={"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
95
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : int =logging.get_logger(__name__) A__ : str ={ "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class UpperCAmelCase ( a_ ): _lowercase: Optional[Any] = "data2vec-text" def __init__( self : int , __snake_case : int=3_05_22 , __snake_case : Dict=7_68 , __snake_case : Union[str, Any]=12 , __snake_case : Any=12 , __snake_case : List[Any]=30_72 , __snake_case : Dict="gelu" , __snake_case : Tuple=0.1 , __snake_case : Any=0.1 , __snake_case : Optional[Any]=5_12 , __snake_case : Optional[int]=2 , __snake_case : str=0.02 , __snake_case : List[str]=1E-1_2 , __snake_case : Dict=1 , __snake_case : Tuple=0 , __snake_case : int=2 , __snake_case : List[str]="absolute" , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=None , **__snake_case : Optional[Any] , ) -> Dict: super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout class UpperCAmelCase ( a_ ): @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
350
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase : def __init__( self : str , __snake_case : Optional[int] , __snake_case : Dict=13 , __snake_case : Dict=32 , __snake_case : List[str]=2 , __snake_case : str=3 , __snake_case : str=16 , __snake_case : int=[1, 2, 1] , __snake_case : Dict=[2, 2, 4] , __snake_case : int=2 , __snake_case : str=2.0 , __snake_case : List[str]=True , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Dict=0.1 , __snake_case : Tuple="gelu" , __snake_case : str=False , __snake_case : Any=True , __snake_case : Union[str, Any]=0.02 , __snake_case : Union[str, Any]=1E-5 , __snake_case : Optional[Any]=True , __snake_case : Union[str, Any]=None , __snake_case : Any=True , __snake_case : Optional[Any]=10 , __snake_case : Tuple=8 , __snake_case : List[Any]=["stage1", "stage2", "stage3"] , __snake_case : Dict=[1, 2, 3] , ) -> List[str]: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = patch_norm _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = is_training _lowerCAmelCase = scope _lowerCAmelCase = use_labels _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = encoder_stride _lowerCAmelCase = out_features _lowerCAmelCase = out_indices def lowercase__ ( self : Union[str, Any] ) -> List[str]: _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase__ ( self : int ) -> Any: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase__ ( self : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[Any] ) -> Dict: _lowerCAmelCase = MaskFormerSwinModel(config=__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase__ ( self : Optional[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[int] ) -> Union[str, Any]: _lowerCAmelCase = MaskFormerSwinBackbone(config=__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(__snake_case ): _lowerCAmelCase = ["""stem"""] _lowerCAmelCase = MaskFormerSwinBackbone(config=__snake_case ) def lowercase__ ( self : Union[str, Any] ) -> int: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: str = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _lowercase: List[Any] = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} _lowercase: Optional[Any] = False _lowercase: List[str] = False _lowercase: Optional[Any] = False _lowercase: str = False _lowercase: Union[str, Any] = False def lowercase__ ( self : Optional[Any] ) -> str: _lowerCAmelCase = MaskFormerSwinModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=__snake_case , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def lowercase__ ( self : Tuple ) -> str: pass def lowercase__ ( self : str ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : str ) -> Any: return def lowercase__ ( self : Tuple ) -> Tuple: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowercase__ ( self : Optional[int] ) -> str: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case ) @unittest.skip("""Swin does not use inputs_embeds""" ) def lowercase__ ( self : str ) -> List[str]: pass @unittest.skip("""Swin does not support feedforward chunking""" ) def lowercase__ ( self : Any ) -> Union[str, Any]: pass def lowercase__ ( self : Optional[Any] ) -> List[str]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def lowercase__ ( self : str ) -> Any: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__snake_case ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def lowercase__ ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def lowercase__ ( self : List[str] ) -> Any: pass def lowercase__ ( self : Tuple , __snake_case : Optional[int] , __snake_case : str , __snake_case : str , __snake_case : Optional[int] ) -> Optional[int]: _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # Swin has a different seq_length _lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase__ ( self : List[str] ) -> Any: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _lowerCAmelCase = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase__ ( self : Any ) -> Any: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = 3 _lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _lowerCAmelCase = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def lowercase__ ( self : List[Any] ) -> Any: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def lowercase__ ( self : Any ) -> str: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def lowercase__ ( self : Dict ) -> Optional[int]: pass def lowercase__ ( self : List[str] ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__snake_case : List[str] ): _lowerCAmelCase = 0 return t def check_equivalence(__snake_case : Any , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : Dict={} ): with torch.no_grad(): _lowerCAmelCase = model(**__snake_case , return_dict=__snake_case , **__snake_case ) _lowerCAmelCase = model(**__snake_case , return_dict=__snake_case , **__snake_case ).to_tuple() def recursive_check(__snake_case : int , __snake_case : Any ): if isinstance(__snake_case , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__snake_case , __snake_case ): recursive_check(__snake_case , __snake_case ) elif isinstance(__snake_case , __snake_case ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(__snake_case , __snake_case ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__snake_case ) , set_nan_tensor_to_zero(__snake_case ) , atol=1E-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" f" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" f" {torch.isnan(__snake_case ).any()} and `inf`: {torch.isinf(__snake_case )}. Dict has" f" `nan`: {torch.isnan(__snake_case ).any()} and `inf`: {torch.isinf(__snake_case )}." ) , ) recursive_check(__snake_case , __snake_case ) for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case ) _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case ) check_equivalence(__snake_case , __snake_case , __snake_case ) _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) check_equivalence(__snake_case , __snake_case , __snake_case ) _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case ) _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case ) check_equivalence(__snake_case , __snake_case , __snake_case , {"""output_hidden_states""": True} ) _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) _lowerCAmelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) check_equivalence(__snake_case , __snake_case , __snake_case , {"""output_hidden_states""": True} ) @require_torch class UpperCAmelCase ( unittest.TestCase , snake_case_ ): _lowercase: int = (MaskFormerSwinBackbone,) if is_torch_available() else () _lowercase: Dict = MaskFormerSwinConfig def lowercase__ ( self : Union[str, Any] ) -> str: _lowerCAmelCase = MaskFormerSwinModelTester(self ) def lowercase__ ( self : str ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: _lowerCAmelCase = backbone_class(__snake_case ) backbone.to(__snake_case ) backbone.eval() _lowerCAmelCase = backbone(**__snake_case ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __snake_case ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _lowerCAmelCase = backbone(**__snake_case , output_hidden_states=__snake_case ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _lowerCAmelCase = backbone(**__snake_case , output_attentions=__snake_case ) self.assertIsNotNone(outputs.attentions )
220
0
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) _SCREAMING_SNAKE_CASE : Dict = str(bin(SCREAMING_SNAKE_CASE__ ) )[2:] # remove the leading "0b" _SCREAMING_SNAKE_CASE : Optional[Any] = str(bin(SCREAMING_SNAKE_CASE__ ) )[2:] # remove the leading "0b" _SCREAMING_SNAKE_CASE : Any = max(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE__ ) , b_binary.zfill(SCREAMING_SNAKE_CASE__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
200
'''simple docstring''' import argparse import struct import unittest class lowercase__ : '''simple docstring''' def __init__( self , __snake_case ): _SCREAMING_SNAKE_CASE : Dict = data # Initialize hash values _SCREAMING_SNAKE_CASE : Tuple = [ 0X6A09_E667, 0XBB67_AE85, 0X3C6E_F372, 0XA54F_F53A, 0X510E_527F, 0X9B05_688C, 0X1F83_D9AB, 0X5BE0_CD19, ] # Initialize round constants _SCREAMING_SNAKE_CASE : int = [ 0X428A_2F98, 0X7137_4491, 0XB5C0_FBCF, 0XE9B5_DBA5, 0X3956_C25B, 0X59F1_11F1, 0X923F_82A4, 0XAB1C_5ED5, 0XD807_AA98, 0X1283_5B01, 0X2431_85BE, 0X550C_7DC3, 0X72BE_5D74, 0X80DE_B1FE, 0X9BDC_06A7, 0XC19B_F174, 0XE49B_69C1, 0XEFBE_4786, 0X0FC1_9DC6, 0X240C_A1CC, 0X2DE9_2C6F, 0X4A74_84AA, 0X5CB0_A9DC, 0X76F9_88DA, 0X983E_5152, 0XA831_C66D, 0XB003_27C8, 0XBF59_7FC7, 0XC6E0_0BF3, 0XD5A7_9147, 0X06CA_6351, 0X1429_2967, 0X27B7_0A85, 0X2E1B_2138, 0X4D2C_6DFC, 0X5338_0D13, 0X650A_7354, 0X766A_0ABB, 0X81C2_C92E, 0X9272_2C85, 0XA2BF_E8A1, 0XA81A_664B, 0XC24B_8B70, 0XC76C_51A3, 0XD192_E819, 0XD699_0624, 0XF40E_3585, 0X106A_A070, 0X19A4_C116, 0X1E37_6C08, 0X2748_774C, 0X34B0_BCB5, 0X391C_0CB3, 0X4ED8_AA4A, 0X5B9C_CA4F, 0X682E_6FF3, 0X748F_82EE, 0X78A5_636F, 0X84C8_7814, 0X8CC7_0208, 0X90BE_FFFA, 0XA450_6CEB, 0XBEF9_A3F7, 0XC671_78F2, ] _SCREAMING_SNAKE_CASE : Optional[int] = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCAmelCase_ ( __snake_case ): _SCREAMING_SNAKE_CASE : Tuple = B"""\x80""" + (B"""\x00""" * (63 - (len(__snake_case ) + 8) % 64)) _SCREAMING_SNAKE_CASE : List[str] = struct.pack(""">Q""" , (len(__snake_case ) * 8) ) return data + padding + big_endian_integer def UpperCAmelCase_ ( self ): # Convert into blocks of 64 bytes _SCREAMING_SNAKE_CASE : Any = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _SCREAMING_SNAKE_CASE : List[Any] = list(struct.unpack(""">16L""" , __snake_case ) ) # add 48 0-ed integers words += [0] * 48 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array _SCREAMING_SNAKE_CASE : Optional[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) _SCREAMING_SNAKE_CASE : Tuple = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) _SCREAMING_SNAKE_CASE : Tuple = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0000_0000 # Compression _SCREAMING_SNAKE_CASE : Any = self.ror(__snake_case , 6 ) ^ self.ror(__snake_case , 11 ) ^ self.ror(__snake_case , 25 ) _SCREAMING_SNAKE_CASE : str = (e & f) ^ ((~e & 0XFFFF_FFFF) & g) _SCREAMING_SNAKE_CASE : str = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0000_0000 _SCREAMING_SNAKE_CASE : Dict = self.ror(__snake_case , 2 ) ^ self.ror(__snake_case , 13 ) ^ self.ror(__snake_case , 22 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = (a & b) ^ (a & c) ^ (b & c) _SCREAMING_SNAKE_CASE : Dict = (sa + maj) % 0X1_0000_0000 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = ( g, f, e, ((d + tempa) % 0X1_0000_0000), c, b, a, ((tempa + tempa) % 0X1_0000_0000), ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [a, b, c, d, e, f, g, h] # Modify final values _SCREAMING_SNAKE_CASE : Tuple = [ ((element + mutated_hash_values[index]) % 0X1_0000_0000) for index, element in enumerate(self.hashes ) ] _SCREAMING_SNAKE_CASE : Dict = """""".join([hex(__snake_case )[2:].zfill(8 ) for value in self.hashes] ) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): return 0XFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ): import hashlib _SCREAMING_SNAKE_CASE : Tuple = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(__snake_case ).hash , hashlib.shaaaa(__snake_case ).hexdigest() ) def snake_case_ ( ): """simple docstring""" import doctest doctest.testmod() _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args() _SCREAMING_SNAKE_CASE : Tuple = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: _SCREAMING_SNAKE_CASE : str = f.read() else: _SCREAMING_SNAKE_CASE : List[Any] = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaaa(SCREAMING_SNAKE_CASE__ ).hash ) if __name__ == "__main__": main()
200
1
'''simple docstring''' import os import sys import unittest lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCAmelCase__ = os.path.join(git_repo_path, '''src''', '''transformers''') lowerCAmelCase__ = ''' {0} = None ''' lowerCAmelCase__ = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) ''' lowerCAmelCase__ = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(lowercase__ ) __lowercase = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(lowercase__ ,'''tokenizers''' ) __lowercase = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(lowercase__ ,'''tensorflow_text''' ) __lowercase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(lowercase__ ,'''sentencepiece_and_tokenizers''' ) __lowercase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(lowercase__ ,'''sentencepiece_and_tensorflow_text''' ) __lowercase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(lowercase__ ,'''sentencepiece_and_tokenizers_and_vision''' ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' ,lowercase__ ) self.assertIn('''tensorflow_text''' ,lowercase__ ) self.assertIn('''sentencepiece_and_tokenizers''' ,lowercase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' ,objects['''torch'''] ) self.assertIn('''TFBertModel''' ,objects['''tf'''] ) self.assertIn('''FlaxBertModel''' ,objects['''flax'''] ) self.assertIn('''BertModel''' ,objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' ,objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' ,objects['''sentencepiece_and_tokenizers'''] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = create_dummy_object('''CONSTANT''' ,'''\'torch\'''' ) self.assertEqual(lowercase__ ,'''\nCONSTANT = None\n''' ) __lowercase = create_dummy_object('''function''' ,'''\'torch\'''' ) self.assertEqual( lowercase__ ,'''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) __lowercase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' __lowercase = create_dummy_object('''FakeClass''' ,'''\'torch\'''' ) self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' __lowercase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] ,lowercase__ )
52
'''simple docstring''' def _A ( A__ ): """simple docstring""" stooge(A__ , 0 , len(A__ ) - 1 ) return arr def _A ( A__ , A__ , A__ ): """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: __lowercase , __lowercase = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: __lowercase = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(A__ , A__ , (h - t) ) # Recursively sort last 2/3 elements stooge(A__ , i + t , (A__) ) # Recursively sort first 2/3 elements stooge(A__ , A__ , (h - t) ) if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(stooge_sort(unsorted))
52
1
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = RoCBertTokenizer A__ = None A__ = False A__ = True A__ = filter_non_english def lowerCAmelCase ( self : Dict ): '''simple docstring''' super().setUp() lowerCamelCase__ : Optional[Any] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Tuple = {} for i, value in enumerate(__lowerCamelCase ): lowerCamelCase__ : str = i lowerCamelCase__ : Optional[Any] = i lowerCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) lowerCamelCase__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(__lowerCamelCase , __lowerCamelCase , ensure_ascii=__lowerCamelCase ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(__lowerCamelCase , __lowerCamelCase , ensure_ascii=__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase__ : Optional[int] = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(__lowerCamelCase , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Optional[int] = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase , strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase , strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : int = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase , strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase , strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : str = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCamelCase__ : str = {} for i, token in enumerate(__lowerCamelCase ): lowerCamelCase__ : Tuple = i lowerCamelCase__ : Optional[int] = RoCBertWordpieceTokenizer(vocab=__lowerCamelCase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def lowerCAmelCase ( self : str ): '''simple docstring''' self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__lowerCamelCase ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: lowerCamelCase__ : Optional[int] = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__lowerCamelCase ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Tuple = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCamelCase__ : Optional[Any] = tokenizer_r.encode_plus( __lowerCamelCase , return_attention_mask=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase , ) lowerCamelCase__ : int = tokenizer_r.do_lower_case if hasattr(__lowerCamelCase , "do_lower_case" ) else False lowerCamelCase__ : Tuple = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ["的", "人", "有"] lowerCamelCase__ : Tuple = "".join(__lowerCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase__ : Dict = True lowerCamelCase__ : List[Any] = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : int = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Optional[int] = tokenizer_p.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) lowerCamelCase__ : int = tokenizer_r.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) lowerCamelCase__ : Dict = tokenizer_r.convert_ids_to_tokens(__lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer_p.convert_ids_to_tokens(__lowerCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = tokenizer_r.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) lowerCamelCase__ : List[str] = tokenizer_p.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) lowerCamelCase__ : int = tokenizer_r.convert_ids_to_tokens(__lowerCamelCase ) lowerCamelCase__ : List[Any] = tokenizer_p.convert_ids_to_tokens(__lowerCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase__ : Dict = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(__lowerCamelCase ) ] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase__ : int = tokenizer.encode("你好" , add_special_tokens=__lowerCamelCase ) lowerCamelCase__ : Dict = tokenizer.encode("你是谁" , add_special_tokens=__lowerCamelCase ) lowerCamelCase__ : List[Any] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) lowerCamelCase__ : str = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : int = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase__ : Union[str, Any] = "你好,你是谁" lowerCamelCase__ : Tuple = tokenizer.tokenize(__lowerCamelCase ) lowerCamelCase__ : str = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = tokenizer.convert_tokens_to_shape_ids(__lowerCamelCase ) lowerCamelCase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = tokenizer.prepare_for_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , add_special_tokens=__lowerCamelCase ) lowerCamelCase__ : int = tokenizer.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase )
184
import math import random from typing import Any from .hill_climbing import SearchProblem def lowercase_ ( _A : Optional[int] , _A : bool = True , _A : float = math.inf , _A : float = -math.inf , _A : float = math.inf , _A : float = -math.inf , _A : bool = False , _A : float = 100 , _A : float = 0.01 , _A : float = 1 , ): """simple docstring""" lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Optional[Any] = search_prob lowerCamelCase__ : List[str] = start_temperate lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : Any = 0 lowerCamelCase__ : Optional[Any] = None while not search_end: lowerCamelCase__ : Optional[Any] = current_state.score() if best_state is None or current_score > best_state.score(): lowerCamelCase__ : List[Any] = current_state scores.append(_A ) iterations += 1 lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Optional[Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCamelCase__ : Any = random.randint(0 , len(_A ) - 1 ) # picking a random neighbor lowerCamelCase__ : List[Any] = neighbors.pop(_A ) lowerCamelCase__ : Dict = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCamelCase__ : Dict = change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCamelCase__ : Optional[Any] = picked_neighbor else: lowerCamelCase__ : str = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCamelCase__ : Optional[int] = picked_neighbor lowerCamelCase__ : Any = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCamelCase__ : int = True else: lowerCamelCase__ : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_A ) , _A ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowercase_ ( _A : List[str] , _A : int ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) A : Any = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) A : Dict = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) # starting the problem with initial coordinates (12, 47) A : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) A : int = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) def lowercase_ ( _A : int , _A : Any ): """simple docstring""" return (3 * x**2) - (6 * y) A : Optional[int] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) A : Union[str, Any] = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f'{local_min.score()}' ) A : Any = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) A : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f'{local_min.score()}' )
184
1
import os import re import shutil import sys import tempfile import unittest import black UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCAmelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class __magic_name__ ( unittest.TestCase ): def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Tuple = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) lowercase :Tuple = self.diffusers_dir shutil.copy( os.path.join(snake_case__ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :Any = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def __snake_case ( self : Dict , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : int=None ): '''simple docstring''' lowercase :Tuple = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowercase :List[str] = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowercase :List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) lowercase :List[str] = black.format_str(snake_case__ , mode=snake_case__ ) lowercase :Dict = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(snake_case__ , '''w''' , newline='''\n''' ) as f: f.write(snake_case__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case__ ) with open(snake_case__ , '''r''' ) as f: self.assertTrue(f.read() , snake_case__ ) def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Optional[int] = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(snake_case__ , snake_case__ ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , snake_case__ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , snake_case__ ) , ) # Copy consistency with a really long name lowercase :Union[str, Any] = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , snake_case__ , snake_case__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , snake_case__ , overwrite_result=re.sub('''DDPM''' , '''Test''' , snake_case__ ) , )
365
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( __UpperCAmelCase , unittest.TestCase ): __A : Tuple = KandinskyVaaPipeline __A : Any = [ "image_embeds", "negative_image_embeds", ] __A : Tuple = ["image_embeds", "negative_image_embeds"] __A : Tuple = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __A : Union[str, Any] = False @property def __snake_case ( self : str ): '''simple docstring''' return 3_2 @property def __snake_case ( self : Any ): '''simple docstring''' return 3_2 @property def __snake_case ( self : List[Any] ): '''simple docstring''' return self.time_input_dim @property def __snake_case ( self : Any ): '''simple docstring''' return self.time_input_dim * 4 @property def __snake_case ( self : Optional[int] ): '''simple docstring''' return 1_0_0 @property def __snake_case ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase :Optional[Any] = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase :int = UNetaDConditionModel(**snake_case__ ) return model @property def __snake_case ( self : Dict ): '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __snake_case ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase :Tuple = VQModel(**self.dummy_movq_kwargs ) return model def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Optional[Any] = self.dummy_unet lowercase :List[Any] = self.dummy_movq lowercase :Optional[Any] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=snake_case__ , ) lowercase :str = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __snake_case ( self : str , snake_case__ : Any , snake_case__ : str=0 ): '''simple docstring''' lowercase :Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowercase :Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) if str(snake_case__ ).startswith('''mps''' ): lowercase :Optional[int] = torch.manual_seed(snake_case__ ) else: lowercase :Any = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowercase :List[Any] = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :List[Any] = '''cpu''' lowercase :Tuple = self.get_dummy_components() lowercase :Any = self.pipeline_class(**snake_case__ ) lowercase :List[str] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase :Optional[Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowercase :str = output.images lowercase :Dict = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowercase :Any = image[0, -3:, -3:, -1] lowercase :Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowercase :List[Any] = np.array( [0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __snake_case ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Any ): '''simple docstring''' lowercase :Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) lowercase :int = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowercase :Tuple = KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) lowercase :str = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowercase :int = '''red cat, 4k photo''' lowercase :str = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowercase , lowercase :Union[str, Any] = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowercase :Tuple = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowercase :List[Any] = pipeline( image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=1_0_0 , output_type='''np''' , ) lowercase :Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
172
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = tempfile.mkdtemp() # fmt: off __lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __lowercase = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } __lowercase = os.path.join(self.tmpdirname , lowerCAmelCase__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_image_processor() __lowercase = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowercase = self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(lowerCAmelCase__ , return_tensors='''np''' ) __lowercase = processor(images=lowerCAmelCase__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __lowercase = '''lower newer''' __lowercase = processor(text=lowerCAmelCase__ ) __lowercase = tokenizer(lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __lowercase = '''lower newer''' __lowercase = self.prepare_image_inputs() __lowercase = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(lowerCAmelCase__ ): processor() def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase = processor.batch_decode(lowerCAmelCase__ ) __lowercase = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __lowercase = '''lower newer''' __lowercase = self.prepare_image_inputs() __lowercase = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
210
from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Dict = ['''keras_nlp'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''keras_nlp'''] )
210
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
355
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): a__ : Tuple = RoCBertTokenizer a__ : List[Any] = None a__ : List[Any] = False a__ : Dict = True a__ : int = filter_non_english def a ( self : Optional[int] ): super().setUp() __UpperCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] __UpperCAmelCase = {} __UpperCAmelCase = {} for i, value in enumerate(_lowercase ): __UpperCAmelCase = i __UpperCAmelCase = i __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(_lowercase , _lowercase , ensure_ascii=_lowercase ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(_lowercase , _lowercase , ensure_ascii=_lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCAmelCase = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(_lowercase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(_lowercase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(_lowercase ) , [5, 6, 2, 5, 7, 8] ) def a ( self : List[Any] ): __UpperCAmelCase = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def a ( self : Union[str, Any] ): __UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=_lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a ( self : Optional[Any] ): __UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=_lowercase , strip_accents=_lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def a ( self : List[Any] ): __UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=_lowercase , strip_accents=_lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a ( self : Optional[Any] ): __UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=_lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a ( self : Optional[int] ): __UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=_lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a ( self : Union[str, Any] ): __UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=_lowercase , strip_accents=_lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a ( self : Any ): __UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=_lowercase , strip_accents=_lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a ( self : int ): __UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=_lowercase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def a ( self : Optional[Any] ): __UpperCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __UpperCAmelCase = {} for i, token in enumerate(_lowercase ): __UpperCAmelCase = i __UpperCAmelCase = RoCBertWordpieceTokenizer(vocab=_lowercase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def a ( self : Union[str, Any] ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def a ( self : Dict ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def a ( self : Optional[int] ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def a ( self : Tuple ): __UpperCAmelCase = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_lowercase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: __UpperCAmelCase = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(_lowercase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def a ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __UpperCAmelCase = tokenizer_r.encode_plus( _lowercase , return_attention_mask=_lowercase , return_token_type_ids=_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase , ) __UpperCAmelCase = tokenizer_r.do_lower_case if hasattr(_lowercase , '''do_lower_case''' ) else False __UpperCAmelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def a ( self : Dict ): __UpperCAmelCase = ['''的''', '''人''', '''有'''] __UpperCAmelCase = ''''''.join(_lowercase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = True __UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = tokenizer_p.encode(_lowercase , add_special_tokens=_lowercase ) __UpperCAmelCase = tokenizer_r.encode(_lowercase , add_special_tokens=_lowercase ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(_lowercase ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(_lowercase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_lowercase , _lowercase ) self.assertListEqual(_lowercase , _lowercase ) __UpperCAmelCase = False __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = tokenizer_r.encode(_lowercase , add_special_tokens=_lowercase ) __UpperCAmelCase = tokenizer_p.encode(_lowercase , add_special_tokens=_lowercase ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(_lowercase ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(_lowercase ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCAmelCase = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(_lowercase ) ] self.assertListEqual(_lowercase , _lowercase ) self.assertListEqual(_lowercase , _lowercase ) @slow def a ( self : List[Any] ): __UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCAmelCase = tokenizer.encode('''你好''' , add_special_tokens=_lowercase ) __UpperCAmelCase = tokenizer.encode('''你是谁''' , add_special_tokens=_lowercase ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowercase ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def a ( self : List[str] ): __UpperCAmelCase = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase = '''你好,你是谁''' __UpperCAmelCase = tokenizer.tokenize(_lowercase ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase ) __UpperCAmelCase = tokenizer.convert_tokens_to_shape_ids(_lowercase ) __UpperCAmelCase = tokenizer.convert_tokens_to_pronunciation_ids(_lowercase ) __UpperCAmelCase = tokenizer.prepare_for_model( _lowercase , _lowercase , _lowercase , add_special_tokens=_lowercase ) __UpperCAmelCase = tokenizer.encode_plus(_lowercase , add_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase )
86
0
"""simple docstring""" from itertools import product def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Dict = sides_number UpperCAmelCase_ : Optional[Any] = max_face_number * dice_number UpperCAmelCase_ : Optional[Any] = [0] * (max_total + 1) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : int = range(__lowerCamelCase, max_face_number + 1 ) for dice_numbers in product(__lowerCamelCase, repeat=__lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = sum(__lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def __a ( ): UpperCAmelCase_ : Optional[Any] = total_frequency_distribution( sides_number=4, dice_number=9 ) UpperCAmelCase_ : Union[str, Any] = total_frequency_distribution( sides_number=6, dice_number=6 ) UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Dict = 9 UpperCAmelCase_ : Tuple = 4 * 9 UpperCAmelCase_ : int = 6 for peter_total in range(__lowerCamelCase, max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) UpperCAmelCase_ : List[Any] = (4**9) * (6**6) UpperCAmelCase_ : List[str] = peter_wins_count / total_games_number UpperCAmelCase_ : Any = round(__lowerCamelCase, ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
61
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCamelCase : Any = TypeVar('T') class a ( Generic[T] ): def __init__( self , _lowerCamelCase ): lowercase = data lowercase = None def __str__( self ): return F'{self.data}' class a ( Generic[T] ): def __init__( self ): lowercase = None def __iter__( self ): lowercase = self.top while node: yield node.data lowercase = node.next def __str__( self ): return "->".join([str(_lowerCamelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def UpperCamelCase_ ( self ): return self.top is None def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = Node(_lowerCamelCase ) if not self.is_empty(): lowercase = self.top lowercase = node def UpperCamelCase_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _lowerCamelCase ) lowercase = self.top lowercase = self.top.next return pop_node.data def UpperCamelCase_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def UpperCamelCase_ ( self ): lowercase = None if __name__ == "__main__": from doctest import testmod testmod()
220
0
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = np.inf def set_batch_size(UpperCAmelCase_ ) -> None: nonlocal batch_size if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = min(UpperCAmelCase_ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = min(UpperCAmelCase_ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and feature.dtype == "binary": UpperCAmelCase : Optional[int] = min(UpperCAmelCase_ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(UpperCAmelCase_ , UpperCAmelCase_ ) return None if batch_size is np.inf else batch_size class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Dict , ) -> List[str]: super().__init__( lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , ) UpperCAmelCase : Optional[Any] = path_or_paths if isinstance(lowercase_ , lowercase_ ) else {self.split: path_or_paths} UpperCAmelCase : Tuple = _PACKAGED_DATASETS_MODULES['parquet'][1] UpperCAmelCase : str = Parquet( cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , hash=lowercase_ , **lowercase_ , ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: # Build iterable dataset if self.streaming: UpperCAmelCase : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: UpperCAmelCase : List[str] = None UpperCAmelCase : List[Any] = None UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Optional[int] = None self.builder.download_and_prepare( download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , ) UpperCAmelCase : Optional[Any] = self.builder.as_dataset( split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory ) return dataset class A_ : '''simple docstring''' def __init__( self : Dict , lowercase_ : Dataset , lowercase_ : Union[PathLike, BinaryIO] , lowercase_ : Optional[int] = None , **lowercase_ : List[Any] , ) -> Dict: UpperCAmelCase : List[str] = dataset UpperCAmelCase : Tuple = path_or_buf UpperCAmelCase : List[Any] = batch_size or get_writer_batch_size(dataset.features ) UpperCAmelCase : Tuple = parquet_writer_kwargs def UpperCAmelCase_ ( self : Any ) -> int: UpperCAmelCase : int = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: UpperCAmelCase : List[str] = self._write(file_obj=lowercase_ , batch_size=lowercase_ , **self.parquet_writer_kwargs ) else: UpperCAmelCase : Tuple = self._write(file_obj=self.path_or_buf , batch_size=lowercase_ , **self.parquet_writer_kwargs ) return written def UpperCAmelCase_ ( self : List[Any] , lowercase_ : BinaryIO , lowercase_ : int , **lowercase_ : List[Any] ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : Tuple = parquet_writer_kwargs.pop('path_or_buf' , lowercase_ ) UpperCAmelCase : int = self.dataset.features.arrow_schema UpperCAmelCase : int = pq.ParquetWriter(lowercase_ , schema=lowercase_ , **lowercase_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , lowercase_ ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): UpperCAmelCase : Any = query_table( table=self.dataset._data , key=slice(lowercase_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(lowercase_ ) written += batch.nbytes writer.close() return written
280
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """perceiver""" def __init__( self : str , lowercase_ : List[str]=256 , lowercase_ : List[str]=1_280 , lowercase_ : str=768 , lowercase_ : Tuple=1 , lowercase_ : str=26 , lowercase_ : List[Any]=8 , lowercase_ : int=8 , lowercase_ : List[str]=None , lowercase_ : Dict=None , lowercase_ : int="kv" , lowercase_ : Union[str, Any]=1 , lowercase_ : List[str]=1 , lowercase_ : Any="gelu" , lowercase_ : Optional[Any]=0.1 , lowercase_ : str=0.02 , lowercase_ : Optional[Any]=1E-12 , lowercase_ : Any=True , lowercase_ : Union[str, Any]=262 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Optional[int]=56 , lowercase_ : int=[368, 496] , lowercase_ : str=16 , lowercase_ : Optional[int]=1_920 , lowercase_ : Tuple=16 , lowercase_ : int=[1, 16, 224, 224] , **lowercase_ : Union[str, Any] , ) -> List[str]: super().__init__(**lowercase_ ) UpperCAmelCase : Union[str, Any] = num_latents UpperCAmelCase : List[Any] = d_latents UpperCAmelCase : Dict = d_model UpperCAmelCase : Dict = num_blocks UpperCAmelCase : Optional[int] = num_self_attends_per_block UpperCAmelCase : Optional[Any] = num_self_attention_heads UpperCAmelCase : Optional[Any] = num_cross_attention_heads UpperCAmelCase : Tuple = qk_channels UpperCAmelCase : Optional[int] = v_channels UpperCAmelCase : str = cross_attention_shape_for_attention UpperCAmelCase : Union[str, Any] = self_attention_widening_factor UpperCAmelCase : List[Any] = cross_attention_widening_factor UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = initializer_range UpperCAmelCase : Dict = layer_norm_eps UpperCAmelCase : Any = use_query_residual # masked language modeling attributes UpperCAmelCase : Any = vocab_size UpperCAmelCase : List[Any] = max_position_embeddings # image classification attributes UpperCAmelCase : str = image_size # flow attributes UpperCAmelCase : Any = train_size # multimodal autoencoding attributes UpperCAmelCase : Any = num_frames UpperCAmelCase : List[Any] = audio_samples_per_frame UpperCAmelCase : Tuple = samples_per_patch UpperCAmelCase : Union[str, Any] = output_shape class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase : Tuple = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCAmelCase_ ( self : str ) -> float: return 1E-4 def UpperCAmelCase_ ( self : str , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , lowercase_ : int = 3 , lowercase_ : int = 40 , lowercase_ : int = 40 , ) -> Mapping[str, Any]: # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(lowercase_ , lowercase_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase : Tuple = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase : int = preprocessor.num_special_tokens_to_add(lowercase_ ) UpperCAmelCase : Union[str, Any] = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase : List[Any] = [' '.join(['a'] ) * seq_length] * batch_size UpperCAmelCase : Union[str, Any] = dict(preprocessor(lowercase_ , return_tensors=lowercase_ ) ) UpperCAmelCase : Union[str, Any] = inputs.pop('input_ids' ) return inputs elif isinstance(lowercase_ , lowercase_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase : Tuple = compute_effective_axis_dimension(lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCAmelCase : Any = self._generate_dummy_images(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = dict(preprocessor(images=lowercase_ , return_tensors=lowercase_ ) ) UpperCAmelCase : Dict = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
280
1
def A_ ( _lowerCAmelCase = 1000 ) -> int: UpperCamelCase , UpperCamelCase : List[Any] = 1, 1 UpperCamelCase : Union[str, Any] = 2 while True: UpperCamelCase : Union[str, Any] = 0 UpperCamelCase : Tuple = fa + fa UpperCamelCase , UpperCamelCase : Optional[Any] = fa, f index += 1 for _ in str(_lowerCAmelCase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
52
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def A_ ( ) -> List[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(_lowerCAmelCase ): requests.request("GET" , "https://huggingface.co" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("GET" , "https://huggingface.co" , timeout=1.0 ) @pytest.mark.integration def A_ ( ) -> Tuple: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("GET" , "https://huggingface.co" ) def A_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(_lowerCAmelCase ): http_head("https://huggingface.co" )
52
1
def lowerCamelCase__ ( a__ : int , a__ : int , a__ : int ) -> int: if exponent == 1: return base if exponent % 2 == 0: UpperCamelCase_ = _modexpt(a__ , exponent // 2 , a__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(a__ , exponent - 1 , a__ )) % modulo_value def lowerCamelCase__ ( a__ : int = 1777 , a__ : int = 1855 , a__ : int = 8 ) -> int: UpperCamelCase_ = base for _ in range(1 , a__ ): UpperCamelCase_ = _modexpt(a__ , a__ , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
364
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[str] = """align_text_model""" def __init__( self , __UpperCamelCase=3_0_5_2_2 , __UpperCamelCase=7_6_8 , __UpperCamelCase=1_2 , __UpperCamelCase=1_2 , __UpperCamelCase=3_0_7_2 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_1_2 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1e-12 , __UpperCamelCase=0 , __UpperCamelCase="absolute" , __UpperCamelCase=True , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = use_cache UpperCamelCase_ = pad_token_id @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" cls._set_token_in_kwargs(__UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": UpperCamelCase_ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Optional[int] = """align_vision_model""" def __init__( self , __UpperCamelCase = 3 , __UpperCamelCase = 6_0_0 , __UpperCamelCase = 2.0 , __UpperCamelCase = 3.1 , __UpperCamelCase = 8 , __UpperCamelCase = [3, 3, 5, 3, 5, 5, 3] , __UpperCamelCase = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __UpperCamelCase = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __UpperCamelCase = [] , __UpperCamelCase = [1, 2, 2, 2, 1, 2, 1] , __UpperCamelCase = [1, 2, 2, 3, 3, 4, 1] , __UpperCamelCase = [1, 6, 6, 6, 6, 6, 6] , __UpperCamelCase = 0.25 , __UpperCamelCase = "swish" , __UpperCamelCase = 2_5_6_0 , __UpperCamelCase = "mean" , __UpperCamelCase = 0.02 , __UpperCamelCase = 0.001 , __UpperCamelCase = 0.99 , __UpperCamelCase = 0.2 , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) UpperCamelCase_ = num_channels UpperCamelCase_ = image_size UpperCamelCase_ = width_coefficient UpperCamelCase_ = depth_coefficient UpperCamelCase_ = depth_divisor UpperCamelCase_ = kernel_sizes UpperCamelCase_ = in_channels UpperCamelCase_ = out_channels UpperCamelCase_ = depthwise_padding UpperCamelCase_ = strides UpperCamelCase_ = num_block_repeats UpperCamelCase_ = expand_ratios UpperCamelCase_ = squeeze_expansion_ratio UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dim UpperCamelCase_ = pooling_type UpperCamelCase_ = initializer_range UpperCamelCase_ = batch_norm_eps UpperCamelCase_ = batch_norm_momentum UpperCamelCase_ = drop_connect_rate UpperCamelCase_ = sum(__UpperCamelCase ) * 4 @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" cls._set_token_in_kwargs(__UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": UpperCamelCase_ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Tuple = """align""" A__ : int = True def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=6_4_0 , __UpperCamelCase=1.0 , __UpperCamelCase=0.02 , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) if text_config is None: UpperCamelCase_ = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: UpperCamelCase_ = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) UpperCamelCase_ = AlignTextConfig(**__UpperCamelCase ) UpperCamelCase_ = AlignVisionConfig(**__UpperCamelCase ) UpperCamelCase_ = projection_dim UpperCamelCase_ = temperature_init_value UpperCamelCase_ = initializer_range @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.text_config.to_dict() UpperCamelCase_ = self.vision_config.to_dict() UpperCamelCase_ = self.__class__.model_type return output
261
0
a_ = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" a_ = [{"type": "code", "content": INSTALL_CONTENT}] a_ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
175
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _a : Any= "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
172
0
from __future__ import annotations lowerCAmelCase__ : Optional[int] ='''#''' class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self._trie for char in text: if char not in trie: __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = trie[char] __SCREAMING_SNAKE_CASE = True def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self._trie for char in prefix: if char in trie: __SCREAMING_SNAKE_CASE = trie[char] else: return [] return self._elements(_A ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for c, v in d.items(): __SCREAMING_SNAKE_CASE = [' '] if c == END else [(c + s) for s in self._elements(_A )] result.extend(_A ) return tuple(_A ) lowerCAmelCase__ : List[Any] =Trie() lowerCAmelCase__ : List[str] =('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def __lowercase ( a__ ) -> tuple: __SCREAMING_SNAKE_CASE = trie.find_word(a__ ) return tuple(string + word for word in suffixes ) def __lowercase ( ) -> None: print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
354
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __lowercase ( a__ ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __SCREAMING_SNAKE_CASE = True if 'large' in model_name or 'huge' in model_name else False __SCREAMING_SNAKE_CASE = True if 'large' in model_name or 'huge' in model_name else False __SCREAMING_SNAKE_CASE = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __SCREAMING_SNAKE_CASE = [3, 3, 3, 3] __SCREAMING_SNAKE_CASE = [5, 5, 5, 5] elif "fl4" in model_name: __SCREAMING_SNAKE_CASE = [4, 4, 4, 4] __SCREAMING_SNAKE_CASE = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __SCREAMING_SNAKE_CASE = [3, 3, 3, 3] if "lrf" in model_name: __SCREAMING_SNAKE_CASE = [3, 3, 3, 3] else: __SCREAMING_SNAKE_CASE = [2, 2, 2, 2] if "tiny" in model_name: __SCREAMING_SNAKE_CASE = 96 elif "small" in model_name: __SCREAMING_SNAKE_CASE = 96 elif "base" in model_name: __SCREAMING_SNAKE_CASE = 1_28 elif "large" in model_name: __SCREAMING_SNAKE_CASE = 1_92 elif "xlarge" in model_name: __SCREAMING_SNAKE_CASE = 2_56 elif "huge" in model_name: __SCREAMING_SNAKE_CASE = 3_52 # set label information __SCREAMING_SNAKE_CASE = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __SCREAMING_SNAKE_CASE = 'imagenet-22k-id2label.json' else: __SCREAMING_SNAKE_CASE = 'imagenet-1k-id2label.json' __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) __SCREAMING_SNAKE_CASE = {int(a__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = FocalNetConfig( embed_dim=a__ , depths=a__ , focal_levels=a__ , focal_windows=a__ , use_conv_embed=a__ , idalabel=a__ , labelaid=a__ , use_post_layernorm=a__ , use_layerscale=a__ , ) return config def __lowercase ( a__ ) -> Any: if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __SCREAMING_SNAKE_CASE = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __SCREAMING_SNAKE_CASE = 'encoder.' + name if "encoder.layers" in name: __SCREAMING_SNAKE_CASE = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __SCREAMING_SNAKE_CASE = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __SCREAMING_SNAKE_CASE = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __SCREAMING_SNAKE_CASE = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __SCREAMING_SNAKE_CASE = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __SCREAMING_SNAKE_CASE = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __SCREAMING_SNAKE_CASE = 'layernorm.weight' if name == "norm.bias": __SCREAMING_SNAKE_CASE = 'layernorm.bias' if "head" in name: __SCREAMING_SNAKE_CASE = name.replace('head' , 'classifier' ) else: __SCREAMING_SNAKE_CASE = 'focalnet.' + name return name def __lowercase ( a__ , a__ , a__=False ) -> Dict: # fmt: off __SCREAMING_SNAKE_CASE = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __SCREAMING_SNAKE_CASE = model_name_to_url[model_name] print('Checkpoint URL: ' , a__ ) __SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(a__ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __SCREAMING_SNAKE_CASE = state_dict.pop(a__ ) __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = get_focalnet_config(a__ ) __SCREAMING_SNAKE_CASE = FocalNetForImageClassification(a__ ) model.eval() # load state dict model.load_state_dict(a__ ) # verify conversion __SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg' __SCREAMING_SNAKE_CASE = BitImageProcessor( do_resize=a__ , size={'shortest_edge': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=a__ , crop_size=2_24 , do_normalize=a__ , image_mean=a__ , image_std=a__ , ) __SCREAMING_SNAKE_CASE = Image.open(requests.get(a__ , stream=a__ ).raw ) __SCREAMING_SNAKE_CASE = processor(images=a__ , return_tensors='pt' ) __SCREAMING_SNAKE_CASE = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __SCREAMING_SNAKE_CASE = image_transforms(a__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , a__ , atol=1E-4 ) __SCREAMING_SNAKE_CASE = model(**a__ ) __SCREAMING_SNAKE_CASE = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __SCREAMING_SNAKE_CASE = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": __SCREAMING_SNAKE_CASE = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": __SCREAMING_SNAKE_CASE = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": __SCREAMING_SNAKE_CASE = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": __SCREAMING_SNAKE_CASE = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": __SCREAMING_SNAKE_CASE = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase__ : int =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) lowerCAmelCase__ : List[Any] =parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
118
0
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : str = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Optional[Any] = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Tuple = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', '''stage2.cls_token''') ) return token def lowerCAmelCase_ ( ): '''simple docstring''' A : Optional[int] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = '''imagenet-1k-id2label.json''' A : str = 1000 A : Tuple = '''huggingface/label-files''' A : List[Any] = num_labels A : List[Any] = json.load(open(cached_download(hf_hub_url(snake_case__ , snake_case__ , repo_type='''dataset''' ) ) , '''r''' ) ) A : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} A : int = idalabel A : Any = {v: k for k, v in idalabel.items()} A : List[str] = CvtConfig(num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": A : Any = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": A : Optional[Any] = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: A : Optional[Any] = [2, 2, 20] A : int = [3, 12, 16] A : str = [192, 768, 1024] A : Union[str, Any] = CvtForImageClassification(snake_case__ ) A : Optional[int] = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) A : List[str] = image_size A : Dict = torch.load(snake_case__ , map_location=torch.device('''cpu''' ) ) A : int = OrderedDict() A : Optional[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: A : Optional[int] = list_of_state_dict + cls_token(snake_case__ ) A : List[Any] = list_of_state_dict + embeddings(snake_case__ ) for cnt in range(config.depth[idx] ): A : Dict = list_of_state_dict + attention(snake_case__ , snake_case__ ) A : Optional[int] = list_of_state_dict + final() for gg in list_of_state_dict: print(snake_case__ ) for i in range(len(snake_case__ ) ): A : List[str] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(snake_case__ ) model.save_pretrained(snake_case__ ) image_processor.save_pretrained(snake_case__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=3_84, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowercase : Union[str, Any] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
3
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Tuple = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __lowerCAmelCase (_UpperCamelCase = 100 ): __lowerCAmelCase : Optional[int] = 1 __lowerCAmelCase : Optional[Any] = 2 for i in range(2 , max_n + 1 ): __lowerCAmelCase : Any = pre_numerator __lowerCAmelCase : Union[str, Any] = 2 * i // 3 if i % 3 == 0 else 1 __lowerCAmelCase : int = cur_numerator __lowerCAmelCase : Dict = e_cont * pre_numerator + temp return sum_digits(_UpperCamelCase ) if __name__ == "__main__": print(f'{solution() = }')
86
0
"""simple docstring""" from sklearn.metrics import fa_score import datasets a = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ a = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'f1': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['f1'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results['f1'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\") >>> print(round(results['f1'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'f1': array([0.8, 0. , 0. ])} """ a = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict="binary" , _UpperCAmelCase : Any=None ): _A = fa_score( _UpperCAmelCase , _UpperCAmelCase , labels=_UpperCAmelCase , pos_label=_UpperCAmelCase , average=_UpperCAmelCase , sample_weight=_UpperCAmelCase ) return {"f1": float(_UpperCAmelCase ) if score.size == 1 else score}
353
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml a = logging.get_logger(__name__) def _snake_case ( _snake_case : bool , _snake_case : bool ) -> Tuple: '''simple docstring''' def run_func(_snake_case : Any ): @wraps(_snake_case ) def run_in_eager_mode(*_snake_case : List[str] , **_snake_case : Tuple ): return func(*_snake_case , **_snake_case ) @wraps(_snake_case ) @tf.function(experimental_compile=_snake_case ) def run_in_graph_mode(*_snake_case : Dict , **_snake_case : Tuple ): return func(*_snake_case , **_snake_case ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int ) -> ["tf.Tensor"]: '''simple docstring''' _A = random.Random() _A = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(_snake_case , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : TensorFlowBenchmarkArguments UpperCAmelCase : PretrainedConfig UpperCAmelCase : str = "TensorFlow" @property def lowerCAmelCase_ ( self : str ): return tf.__version__ def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): # initialize GPU on separate process _A = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _A = self._prepare_inference_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self._measure_speed(_inference ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _A = self._prepare_train_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self._measure_speed(_train ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _UpperCAmelCase ) _A = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _A = self._prepare_inference_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self._measure_memory(_inference ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _UpperCAmelCase ) _A = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _A = self._prepare_train_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self._measure_memory(_train ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) _A = ( hasattr(_UpperCAmelCase , 'architectures' ) and isinstance(config.architectures , _UpperCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _A = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model _A = __import__('transformers' , fromlist=[model_class] ) _A = getattr(_UpperCAmelCase , _UpperCAmelCase ) _A = model_cls(_UpperCAmelCase ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: _A = TF_MODEL_MAPPING[config.__class__](_UpperCAmelCase ) # encoder-decoder has vocab size saved differently _A = config.vocab_size if hasattr(_UpperCAmelCase , 'vocab_size' ) else config.encoder.vocab_size _A = random_input_ids(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase , training=_UpperCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(_UpperCAmelCase , training=_UpperCAmelCase ) _A = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCAmelCase_ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) _A = ( hasattr(_UpperCAmelCase , 'architectures' ) and isinstance(config.architectures , _UpperCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _A = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model _A = __import__('transformers' , fromlist=[model_class] ) _A = getattr(_UpperCAmelCase , _UpperCAmelCase ) _A = model_cls(_UpperCAmelCase ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: _A = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_UpperCAmelCase ) # encoder-decoder has vocab size saved differently _A = config.vocab_size if hasattr(_UpperCAmelCase , 'vocab_size' ) else config.encoder.vocab_size _A = random_input_ids(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _A = model(_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase )[0] _A = tf.gradients(_UpperCAmelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _A = model(_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase )[0] _A = tf.gradients(_UpperCAmelCase , model.trainable_variables ) return gradients _A = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : int ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(_UpperCAmelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _A = timeit.repeat( _UpperCAmelCase , repeat=self.args.repeat , number=10 , ) return min(_UpperCAmelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Callable[[], None] ): logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) _A = start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) _A = 'N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() _A = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _A = nvml.nvmlDeviceGetMemoryInfo(_UpperCAmelCase ) _A = meminfo.used _A = Memory(_UpperCAmelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) _A = None else: _A = measure_peak_memory_cpu(_UpperCAmelCase ) _A = Memory(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _A = stop_memory_tracing(_UpperCAmelCase ) if memory is None: _A = summary.total else: _A = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
271
0
from PIL import Image def _SCREAMING_SNAKE_CASE ( a ) -> Image: __A , __A : Union[str, Any] = image.size __A : Dict = 0 __A : Tuple = image.load() for i in range(a ): for j in range(a ): __A : Dict = pixels[j, i] mean += pixel mean //= width * height for j in range(a ): for i in range(a ): __A : Any = 2_55 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": UpperCAmelCase : Optional[Any] = mean_threshold(Image.open('''path_to_image''').convert('''L''')) image.save('''output_image_path''')
280
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _A: """simple docstring""" def __init__( self , _A = None ): if components is None: __A : int = [] __A : Tuple = list(_A ) def __len__( self ): return len(self.__components ) def __str__( self ): return "(" + ",".join(map(_A , self.__components ) ) + ")" def __add__( self , _A ): __A : Optional[int] = len(self ) if size == len(_A ): __A : Any = [self.__components[i] + other.component(_A ) for i in range(_A )] return Vector(_A ) else: raise Exception('must have the same size' ) def __sub__( self , _A ): __A : Tuple = len(self ) if size == len(_A ): __A : Union[str, Any] = [self.__components[i] - other.component(_A ) for i in range(_A )] return Vector(_A ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , _A ): ... @overload def __mul__( self , _A ): ... def __mul__( self , _A ): if isinstance(_A , (float, int) ): __A : str = [c * other for c in self.__components] return Vector(_A ) elif isinstance(_A , _A ) and len(self ) == len(_A ): __A : Union[str, Any] = len(self ) __A : Dict = [self.__components[i] * other.component(_A ) for i in range(_A )] return sum(_A ) else: # error case raise Exception('invalid operand!' ) def UpperCAmelCase_ ( self ): return Vector(self.__components ) def UpperCAmelCase_ ( self , _A ): if isinstance(_A , _A ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def UpperCAmelCase_ ( self , _A , _A ): assert -len(self.__components ) <= pos < len(self.__components ) __A : Optional[int] = value def UpperCAmelCase_ ( self ): if len(self.__components ) == 0: raise Exception('Vector is empty' ) __A : Optional[Any] = [c**2 for c in self.__components] return math.sqrt(sum(_A ) ) def UpperCAmelCase_ ( self , _A , _A = False ): __A : Optional[Any] = self * other __A : Optional[Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _SCREAMING_SNAKE_CASE ( a ) -> Vector: assert isinstance(a , a ) return Vector([0] * dimension ) def _SCREAMING_SNAKE_CASE ( a , a ) -> Vector: assert isinstance(a , a ) and (isinstance(a , a )) __A : Optional[Any] = [0] * dimension __A : Tuple = 1 return Vector(a ) def _SCREAMING_SNAKE_CASE ( a , a , a ) -> Vector: assert ( isinstance(a , a ) and isinstance(a , a ) and (isinstance(a , (int, float) )) ) return x * scalar + y def _SCREAMING_SNAKE_CASE ( a , a , a ) -> Vector: random.seed(a ) __A : str = [random.randint(a , a ) for _ in range(a )] return Vector(a ) class _A: """simple docstring""" def __init__( self , _A , _A , _A ): __A : Optional[Any] = matrix __A : Dict = w __A : Optional[int] = h def __str__( self ): __A : Tuple = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , _A ): if self.__width == other.width() and self.__height == other.height(): __A : Optional[Any] = [] for i in range(self.__height ): __A : Optional[Any] = [ self.__matrix[i][j] + other.component(_A , _A ) for j in range(self.__width ) ] matrix.append(_A ) return Matrix(_A , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , _A ): if self.__width == other.width() and self.__height == other.height(): __A : Tuple = [] for i in range(self.__height ): __A : str = [ self.__matrix[i][j] - other.component(_A , _A ) for j in range(self.__width ) ] matrix.append(_A ) return Matrix(_A , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , _A ): ... @overload def __mul__( self , _A ): ... def __mul__( self , _A ): if isinstance(_A , _A ): # matrix-vector if len(_A ) == self.__width: __A : List[Any] = zero_vector(self.__height ) for i in range(self.__height ): __A : List[str] = [ self.__matrix[i][j] * other.component(_A ) for j in range(self.__width ) ] ans.change_component(_A , sum(_A ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(_A , (int, float) ): # matrix-scalar __A : List[str] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(_A , self.__width , self.__height ) return None def UpperCAmelCase_ ( self ): return self.__height def UpperCAmelCase_ ( self ): return self.__width def UpperCAmelCase_ ( self , _A , _A ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def UpperCAmelCase_ ( self , _A , _A , _A ): if 0 <= x < self.__height and 0 <= y < self.__width: __A : int = value else: raise Exception('change_component: indices out of bounds' ) def UpperCAmelCase_ ( self , _A , _A ): if self.__height != self.__width: raise Exception('Matrix is not square' ) __A : List[str] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(_A ) ): __A : Optional[int] = minor[i][:y] + minor[i][y + 1 :] return Matrix(_A , self.__width - 1 , self.__height - 1 ).determinant() def UpperCAmelCase_ ( self , _A , _A ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(_A , _A ) else: raise Exception('Indices out of bounds' ) def UpperCAmelCase_ ( self ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __A : List[str] = [ self.__matrix[0][y] * self.cofactor(0 , _A ) for y in range(self.__width ) ] return sum(_A ) def _SCREAMING_SNAKE_CASE ( a ) -> Matrix: __A : list[list[float]] = [[0] * n for _ in range(a )] return Matrix(a , a , a ) def _SCREAMING_SNAKE_CASE ( a , a , a , a ) -> Matrix: random.seed(a ) __A : list[list[float]] = [ [random.randint(a , a ) for _ in range(a )] for _ in range(a ) ] return Matrix(a , a , a )
280
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = ["""flax"""] def __init__( self : Tuple , *_lowerCAmelCase : str , **_lowerCAmelCase : List[Any]): '''simple docstring''' requires_backends(self , ['flax']) @classmethod def __lowerCamelCase ( cls : Any , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Tuple): '''simple docstring''' requires_backends(cls , ['flax']) @classmethod def __lowerCamelCase ( cls : Any , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : int): '''simple docstring''' requires_backends(cls , ['flax']) class _UpperCamelCase ( metaclass=lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = ["""flax"""] def __init__( self : Any , *_lowerCAmelCase : str , **_lowerCAmelCase : List[str]): '''simple docstring''' requires_backends(self , ['flax']) @classmethod def __lowerCamelCase ( cls : Dict , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : Tuple): '''simple docstring''' requires_backends(cls , ['flax']) @classmethod def __lowerCamelCase ( cls : Any , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : Tuple): '''simple docstring''' requires_backends(cls , ['flax']) class _UpperCamelCase ( metaclass=lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = ["""flax"""] def __init__( self : List[str] , *_lowerCAmelCase : str , **_lowerCAmelCase : int): '''simple docstring''' requires_backends(self , ['flax']) @classmethod def __lowerCamelCase ( cls : List[str] , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Optional[Any]): '''simple docstring''' requires_backends(cls , ['flax']) @classmethod def __lowerCamelCase ( cls : int , *_lowerCAmelCase : Any , **_lowerCAmelCase : Any): '''simple docstring''' requires_backends(cls , ['flax']) class _UpperCamelCase ( metaclass=lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = ["""flax"""] def __init__( self : Optional[int] , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : List[Any]): '''simple docstring''' requires_backends(self , ['flax']) @classmethod def __lowerCamelCase ( cls : str , *_lowerCAmelCase : str , **_lowerCAmelCase : Any): '''simple docstring''' requires_backends(cls , ['flax']) @classmethod def __lowerCamelCase ( cls : Tuple , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : List[str]): '''simple docstring''' requires_backends(cls , ['flax']) class _UpperCamelCase ( metaclass=lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = ["""flax"""] def __init__( self : List[str] , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Tuple): '''simple docstring''' requires_backends(self , ['flax']) @classmethod def __lowerCamelCase ( cls : Union[str, Any] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Optional[int]): '''simple docstring''' requires_backends(cls , ['flax']) @classmethod def __lowerCamelCase ( cls : Optional[Any] , *_lowerCAmelCase : Any , **_lowerCAmelCase : List[str]): '''simple docstring''' requires_backends(cls , ['flax']) class _UpperCamelCase ( metaclass=lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = ["""flax"""] def __init__( self : List[str] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Tuple): '''simple docstring''' requires_backends(self , ['flax']) @classmethod def __lowerCamelCase ( cls : Optional[int] , *_lowerCAmelCase : Any , **_lowerCAmelCase : Any): '''simple docstring''' requires_backends(cls , ['flax']) @classmethod def __lowerCamelCase ( cls : Union[str, Any] , *_lowerCAmelCase : Any , **_lowerCAmelCase : str): '''simple docstring''' requires_backends(cls , ['flax']) class _UpperCamelCase ( metaclass=lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = ["""flax"""] def __init__( self : str , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : List[str]): '''simple docstring''' requires_backends(self , ['flax']) @classmethod def __lowerCamelCase ( cls : int , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Dict): '''simple docstring''' requires_backends(cls , ['flax']) @classmethod def __lowerCamelCase ( cls : Tuple , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Union[str, Any]): '''simple docstring''' requires_backends(cls , ['flax']) class _UpperCamelCase ( metaclass=lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = ["""flax"""] def __init__( self : Optional[int] , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : List[Any]): '''simple docstring''' requires_backends(self , ['flax']) @classmethod def __lowerCamelCase ( cls : Any , *_lowerCAmelCase : str , **_lowerCAmelCase : Optional[int]): '''simple docstring''' requires_backends(cls , ['flax']) @classmethod def __lowerCamelCase ( cls : Optional[int] , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Tuple): '''simple docstring''' requires_backends(cls , ['flax']) class _UpperCamelCase ( metaclass=lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = ["""flax"""] def __init__( self : Tuple , *_lowerCAmelCase : str , **_lowerCAmelCase : Tuple): '''simple docstring''' requires_backends(self , ['flax']) @classmethod def __lowerCamelCase ( cls : Union[str, Any] , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : Tuple): '''simple docstring''' requires_backends(cls , ['flax']) @classmethod def __lowerCamelCase ( cls : Dict , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Optional[int]): '''simple docstring''' requires_backends(cls , ['flax']) class _UpperCamelCase ( metaclass=lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = ["""flax"""] def __init__( self : Any , *_lowerCAmelCase : Any , **_lowerCAmelCase : List[str]): '''simple docstring''' requires_backends(self , ['flax']) @classmethod def __lowerCamelCase ( cls : str , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Optional[Any]): '''simple docstring''' requires_backends(cls , ['flax']) @classmethod def __lowerCamelCase ( cls : Optional[int] , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Optional[Any]): '''simple docstring''' requires_backends(cls , ['flax']) class _UpperCamelCase ( metaclass=lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = ["""flax"""] def __init__( self : Union[str, Any] , *_lowerCAmelCase : Any , **_lowerCAmelCase : Optional[Any]): '''simple docstring''' requires_backends(self , ['flax']) @classmethod def __lowerCamelCase ( cls : Union[str, Any] , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : List[str]): '''simple docstring''' requires_backends(cls , ['flax']) @classmethod def __lowerCamelCase ( cls : Tuple , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : List[Any]): '''simple docstring''' requires_backends(cls , ['flax']) class _UpperCamelCase ( metaclass=lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = ["""flax"""] def __init__( self : Tuple , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : Optional[Any]): '''simple docstring''' requires_backends(self , ['flax']) @classmethod def __lowerCamelCase ( cls : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : List[str]): '''simple docstring''' requires_backends(cls , ['flax']) @classmethod def __lowerCamelCase ( cls : Tuple , *_lowerCAmelCase : int , **_lowerCAmelCase : Tuple): '''simple docstring''' requires_backends(cls , ['flax']) class _UpperCamelCase ( metaclass=lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = ["""flax"""] def __init__( self : List[Any] , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Dict): '''simple docstring''' requires_backends(self , ['flax']) @classmethod def __lowerCamelCase ( cls : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Dict): '''simple docstring''' requires_backends(cls , ['flax']) @classmethod def __lowerCamelCase ( cls : List[Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : Dict): '''simple docstring''' requires_backends(cls , ['flax'])
366
'''simple docstring''' from __future__ import annotations import requests def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =f"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(_lowerCAmelCase ).json() def _A ( _lowerCAmelCase = 10 ): """simple docstring""" __lowercase ='https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' __lowercase =requests.get(_lowerCAmelCase ).json()[:max_stories] return [get_hackernews_story(_lowerCAmelCase ) for story_id in story_ids] def _A ( _lowerCAmelCase = 10 ): """simple docstring""" __lowercase =hackernews_top_stories(_lowerCAmelCase ) return "\n".join('* [{title}]({url})'.format(**_lowerCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
48
0
import mpmath # for roots of unity import numpy as np class A_ : def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,SCREAMING_SNAKE_CASE__ : str=None): # Input as list __lowerCamelCase : Optional[int] = list(poly_a or [0])[:] __lowerCamelCase : Dict = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __lowerCamelCase : Optional[int] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() __lowerCamelCase : Any = len(self.polyB) # Add 0 to make lengths equal a power of 2 __lowerCamelCase : int = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform __lowerCamelCase : Tuple = complex(mpmath.root(x=1 ,n=self.c_max_length ,k=1)) # The product __lowerCamelCase : Optional[Any] = self.__multiply() def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : Optional[Any] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(SCREAMING_SNAKE_CASE__) <= 1: return dft[0] # __lowerCamelCase : str = self.c_max_length // 2 while next_ncol > 0: __lowerCamelCase : Optional[Any] = [[] for i in range(SCREAMING_SNAKE_CASE__)] __lowerCamelCase : Optional[int] = self.root**next_ncol # First half of next step __lowerCamelCase : Union[str, Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(SCREAMING_SNAKE_CASE__): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step __lowerCamelCase : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(SCREAMING_SNAKE_CASE__): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update __lowerCamelCase : Union[str, Any] = new_dft __lowerCamelCase : Optional[Any] = next_ncol // 2 return dft[0] def lowerCAmelCase ( self : List[str]): __lowerCamelCase : Optional[int] = self.__dft('A') __lowerCamelCase : Dict = self.__dft('B') __lowerCamelCase : Optional[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT __lowerCamelCase : int = 2 while next_ncol <= self.c_max_length: __lowerCamelCase : Dict = [[] for i in range(SCREAMING_SNAKE_CASE__)] __lowerCamelCase : Dict = self.root ** (next_ncol // 2) __lowerCamelCase : Union[str, Any] = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update __lowerCamelCase : List[Any] = new_inverse_c next_ncol *= 2 # Unpack __lowerCamelCase : Optional[Any] = [round(x[0].real ,8) + round(x[0].imag ,8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : int): __lowerCamelCase : Union[str, Any] = 'A = ' + ' + '.join( F"{coef}*x^{i}" for coef, i in enumerate(self.polyA[: self.len_A])) __lowerCamelCase : Tuple = 'B = ' + ' + '.join( F"{coef}*x^{i}" for coef, i in enumerate(self.polyB[: self.len_B])) __lowerCamelCase : List[Any] = 'A*B = ' + ' + '.join( F"{coef}*x^{i}" for coef, i in enumerate(self.product)) return F"{a}\n{b}\n{c}" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
73
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin SCREAMING_SNAKE_CASE__:Any = random.Random() if is_torch_available(): import torch def _lowerCamelCase( a , a=1.0 , a=None , a=None ): if rng is None: __a = global_rng __a = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=400 , lowerCamelCase=2000 , lowerCamelCase=1 , lowerCamelCase=0.0 , lowerCamelCase=16000 , lowerCamelCase=True , lowerCamelCase=True , ): __a = parent __a = batch_size __a = min_seq_length __a = max_seq_length __a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a = feature_size __a = padding_value __a = sampling_rate __a = return_attention_mask __a = do_normalize def a__ ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , lowerCamelCase=False , lowerCamelCase=False ): def _flatten(lowerCamelCase ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: __a = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __a = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case__ ( snake_case_, unittest.TestCase ): _snake_case : str = ASTFeatureExtractor def a__ ( self ): __a = ASTFeatureExtractionTester(self ) def a__ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input __a = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values __a = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched __a = feat_extract(lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values __a = feat_extract(lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __a = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a = np.asarray(lowerCamelCase ) __a = feat_extract(lowerCamelCase , return_tensors="np" ).input_values __a = feat_extract(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) @require_torch def a__ ( self ): import torch __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a = np.random.rand(100 ).astype(np.floataa ) __a = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __a = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __a = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def a__ ( self , lowerCamelCase ): from datasets import load_dataset __a = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __a = ds.sort("id" ).select(range(lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def a__ ( self ): # fmt: off __a = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on __a = self._load_datasamples(1 ) __a = ASTFeatureExtractor() __a = feature_extractor(lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCamelCase , atol=1E-4 ) )
261
0
from __future__ import annotations from math import pi def lowerCAmelCase__ ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if inductance < 0: raise ValueError('Inductance cannot be negative' ) if frequency < 0: raise ValueError('Frequency cannot be negative' ) if reactance < 0: raise ValueError('Inductive reactance cannot be negative' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
367
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def lowerCAmelCase__ ( _UpperCamelCase : int = 8 ) -> str: """simple docstring""" snake_case = ascii_letters + digits + punctuation return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : int ) -> str: """simple docstring""" i -= len(_UpperCamelCase ) snake_case = i // 3 snake_case = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) snake_case = ( chars_incl + random(_UpperCamelCase , quotient + remainder ) + random(_UpperCamelCase , _UpperCamelCase ) + random(_UpperCamelCase , _UpperCamelCase ) ) snake_case = list(_UpperCamelCase ) shuffle(_UpperCamelCase ) return "".join(_UpperCamelCase ) # random is a generalised function for letters, characters and numbers def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : int ) -> str: """simple docstring""" return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" pass # Put your code here... def lowerCAmelCase__ ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" pass # Put your code here... def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass # Put your code here... def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : int = 8 ) -> bool: """simple docstring""" if len(_UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False snake_case = any(char in ascii_uppercase for char in password ) snake_case = any(char in ascii_lowercase for char in password ) snake_case = any(char in digits for char in password ) snake_case = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def lowerCAmelCase__ ( ) -> Any: """simple docstring""" snake_case = int(input('Please indicate the max length of your password: ' ).strip() ) snake_case = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(_UpperCamelCase ) ) print( 'Alternative Password generated:' , alternative_password_generator(_UpperCamelCase , _UpperCamelCase ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
149
0
'''simple docstring''' from __future__ import annotations from math import gcd def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = 2 , UpperCAmelCase = 1 , UpperCAmelCase = 3 , ): # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('''The input value cannot be less than 2''' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: return (pow(__UpperCamelCase , 2 ) + step) % modulus for _ in range(__UpperCamelCase ): # These track the position within the cycle detection logic. lowercase__ : Any = seed lowercase__ : Dict = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowercase__ : List[str] = rand_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowercase__ : List[str] = rand_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowercase__ : Tuple = rand_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowercase__ : Optional[Any] = gcd(hare - tortoise , __UpperCamelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowercase__ : Tuple = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __a: Dict = argparse.ArgumentParser() parser.add_argument( """num""", type=int, help="""The value to find a divisor of""", ) parser.add_argument( """--attempts""", type=int, default=3, help="""The number of attempts before giving up""", ) __a: Dict = parser.parse_args() __a: Union[str, Any] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'{args.num} is probably prime') else: __a: Optional[Any] = args.num // divisor print(F'{args.num} = {divisor} * {quotient}')
198
import math from datetime import datetime, timedelta def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = year % 1_9 SCREAMING_SNAKE_CASE_ = year % 4 SCREAMING_SNAKE_CASE_ = year % 7 SCREAMING_SNAKE_CASE_ = math.floor(year / 1_0_0 ) SCREAMING_SNAKE_CASE_ = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) SCREAMING_SNAKE_CASE_ = leap_day_inhibits / 4 SCREAMING_SNAKE_CASE_ = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 SCREAMING_SNAKE_CASE_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 SCREAMING_SNAKE_CASE_ = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon SCREAMING_SNAKE_CASE_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(__UpperCamelCase , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(__UpperCamelCase , 4 , 1_8 ) else: return datetime(__UpperCamelCase , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): A : Dict = "will be" if year > datetime.now().year else "was" print(f"Easter in {year} {tense} {gauss_easter(year)}")
118
0
"""simple docstring""" from ...processing_utils import ProcessorMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "WhisperFeatureExtractor" lowercase = "WhisperTokenizer" def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = self.feature_extractor __UpperCamelCase = False def UpperCAmelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=__UpperCAmelCase , language=__UpperCAmelCase , no_timestamps=__UpperCAmelCase ) def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase ) __UpperCamelCase = kwargs.pop('audio' , __UpperCAmelCase ) __UpperCamelCase = kwargs.pop('sampling_rate' , __UpperCAmelCase ) __UpperCamelCase = kwargs.pop('text' , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: __UpperCamelCase = args[0] __UpperCamelCase = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: __UpperCamelCase = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None: __UpperCamelCase = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: __UpperCamelCase = encodings['input_ids'] return inputs def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase="np" ): '''simple docstring''' return self.tokenizer.get_prompt_ids(__UpperCAmelCase , return_tensors=__UpperCAmelCase )
263
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , 'num_attention_heads' ) ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=16 , __UpperCAmelCase=[128, 256, 384] , __UpperCAmelCase=[4, 6, 8] , __UpperCAmelCase=[2, 3, 4] , __UpperCAmelCase=[16, 16, 16] , __UpperCAmelCase=0 , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = num_channels __UpperCamelCase = kernel_size __UpperCamelCase = stride __UpperCamelCase = padding __UpperCamelCase = hidden_sizes __UpperCamelCase = num_attention_heads __UpperCamelCase = depths __UpperCamelCase = key_dim __UpperCamelCase = drop_path_rate __UpperCamelCase = patch_size __UpperCamelCase = attention_ratio __UpperCamelCase = mlp_ratio __UpperCamelCase = initializer_range __UpperCamelCase = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = num_labels __UpperCamelCase = initializer_range def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ): '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = LevitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = (self.image_size, self.image_size) __UpperCamelCase , __UpperCamelCase = image_size[0], image_size[1] for _ in range(4 ): __UpperCamelCase = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __UpperCamelCase = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = LevitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowercase = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = LevitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self ): '''simple docstring''' return @unittest.skip(reason='Levit does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Levit does not output attentions' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase = outputs.hidden_states __UpperCamelCase = len(self.model_tester.depths ) + 1 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __UpperCamelCase = (self.model_tester.image_size, self.model_tester.image_size) __UpperCamelCase , __UpperCamelCase = image_size[0], image_size[1] for _ in range(4 ): __UpperCamelCase = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __UpperCamelCase = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' __UpperCamelCase = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__UpperCAmelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: if model_class in get_values(__UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__UpperCAmelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ): __UpperCamelCase = problem_type['title'] __UpperCamelCase = problem_type['num_labels'] __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if problem_type["num_labels"] > 1: __UpperCamelCase = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) __UpperCamelCase = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__UpperCAmelCase ) as warning_list: __UpperCamelCase = model(**__UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = LevitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> Union[str, Any]: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
263
1
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def _snake_case ( lowercase__ : str ) -> Optional[Any]: '''simple docstring''' def decorator(lowercase__ : Any ): lowerCAmelCase_ :Optional[Any] = getattr(lowercase__ , """handle_key""" , [] ) handle += [key] setattr(lowercase__ , """handle_key""" , lowercase__ ) return func return decorator def _snake_case ( *lowercase__ : List[str] ) -> List[str]: '''simple docstring''' def decorator(lowercase__ : List[str] ): lowerCAmelCase_ :List[str] = getattr(lowercase__ , """handle_key""" , [] ) handle += keys setattr(lowercase__ , """handle_key""" , lowercase__ ) return func return decorator class _SCREAMING_SNAKE_CASE ( A__ ): def __new__( cls , __A , __A , __A ) -> Union[str, Any]: lowerCAmelCase_ :Tuple = super().__new__(cls , __A , __A , __A ) if not hasattr(__A , """key_handler""" ): setattr(__A , """key_handler""" , {} ) setattr(__A , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): lowerCAmelCase_ :str = getattr(__A , """handle_key""" , [] ) for key in handled_keys: lowerCAmelCase_ :str = value return new_cls @staticmethod def __lowerCAmelCase ( cls ) -> str: lowerCAmelCase_ :Optional[int] = get_character() if char != KEYMAP["undefined"]: lowerCAmelCase_ :Optional[Any] = ord(__A ) lowerCAmelCase_ :int = cls.key_handler.get(__A ) if handler: lowerCAmelCase_ :Any = char return handler(cls ) else: return None def _snake_case ( cls : Dict ) -> Tuple: '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
84
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __lowerCAmelCase = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) __lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase_ (): """simple docstring""" _a : Optional[int] = 'https://pypi.org/pypi/diffusers/json' _a : int = json.loads(request.urlopen(__a ).read() )['releases'].keys() return sorted(__a , key=lambda __a : version.Version(__a ) ) def UpperCAmelCase_ (): """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(__a ) os.makedirs(__a , exist_ok=__a ) _a : str = Path(__a ) / '__init__.py' if not init_path.exists(): init_path.touch() def UpperCAmelCase_ (__a : Union[str, os.PathLike] ): """simple docstring""" init_hf_modules() _a : Dict = Path(__a ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__a , exist_ok=__a ) _a : Optional[int] = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def UpperCAmelCase_ (__a : str ): """simple docstring""" with open(__a , 'r' , encoding='utf-8' ) as f: _a : int = f.read() # Imports of the form `import .xxx` _a : Tuple = re.findall('^\s*import\s+\.(\S+)\s*$' , __a , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , __a , flags=re.MULTILINE ) # Unique-ify return list(set(__a ) ) def UpperCAmelCase_ (__a : Any ): """simple docstring""" _a : Optional[int] = False _a : Optional[int] = [module_file] _a : List[str] = [] # Let's recurse through all relative imports while not no_change: _a : str = [] for f in files_to_check: new_imports.extend(get_relative_imports(__a ) ) _a : Union[str, Any] = Path(__a ).parent _a : str = [str(module_path / m ) for m in new_imports] _a : Tuple = [f for f in new_import_files if f not in all_relative_imports] _a : Dict = [f"""{f}.py""" for f in new_import_files] _a : List[str] = len(__a ) == 0 all_relative_imports.extend(__a ) return all_relative_imports def UpperCAmelCase_ (__a : Tuple ): """simple docstring""" with open(__a , 'r' , encoding='utf-8' ) as f: _a : Dict = f.read() # Imports of the form `import xxx` _a : Optional[int] = re.findall('^\s*import\s+(\S+)\s*$' , __a , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , __a , flags=re.MULTILINE ) # Only keep the top-level module _a : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all _a : Optional[int] = list(set(__a ) ) _a : List[str] = [] for imp in imports: try: importlib.import_module(__a ) except ImportError: missing_packages.append(__a ) if len(__a ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' f"""{', '.join(__a )}. Run `pip install {' '.join(__a )}`""" ) return get_relative_imports(__a ) def UpperCAmelCase_ (__a : Any , __a : str ): """simple docstring""" _a : Any = module_path.replace(os.path.sep , '.' ) _a : Union[str, Any] = importlib.import_module(__a ) if class_name is None: return find_pipeline_class(__a ) return getattr(__a , __a ) def UpperCAmelCase_ (__a : Optional[int] ): """simple docstring""" from ..pipelines import DiffusionPipeline _a : List[str] = dict(inspect.getmembers(__a , inspect.isclass ) ) _a : str = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __a ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" f""" {loaded_module}.""" ) _a : Any = cls return pipeline_class def UpperCAmelCase_ (__a : Union[str, os.PathLike] , __a : str , __a : Optional[Union[str, os.PathLike]] = None , __a : bool = False , __a : bool = False , __a : Optional[Dict[str, str]] = None , __a : Optional[Union[bool, str]] = None , __a : Optional[str] = None , __a : bool = False , ): """simple docstring""" _a : str = str(__a ) _a : Optional[Any] = os.path.join(__a , __a ) if os.path.isfile(__a ): _a : Tuple = module_file_or_url _a : Optional[Any] = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: _a : int = get_diffusers_versions() # cut ".dev0" _a : Any = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: _a : Any = latest_version if latest_version[1:] in available_versions else 'main' logger.info(f"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: _a : Any = f"""v{revision}""" elif revision == "main": _a : Optional[int] = revision else: raise ValueError( f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" f""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub _a : Tuple = COMMUNITY_PIPELINES_URL.format(revision=__a , pipeline=__a ) try: _a : Any = cached_download( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , ) _a : List[Any] = 'git' _a : Any = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached _a : Optional[Any] = hf_hub_download( __a , __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , ) _a : List[Any] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment _a : Optional[int] = check_imports(__a ) # Now we move the module inside our cached dynamic modules. _a : Optional[Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__a ) _a : Any = Path(__a ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__a , submodule_path / module_file ) for module_needed in modules_needed: _a : Dict = f"""{module_needed}.py""" shutil.copy(os.path.join(__a , __a ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__a , __a ): _a : Optional[Any] = use_auth_token elif use_auth_token is True: _a : List[Any] = HfFolder.get_token() else: _a : Dict = None _a : int = model_info(__a , revision=__a , token=__a ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _a : Optional[int] = submodule_path / commit_hash _a : str = full_submodule + os.path.sep + commit_hash create_dynamic_module(__a ) if not (submodule_path / module_file).exists(): shutil.copy(__a , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __a , f"""{module_needed}.py""" , cache_dir=__a , force_download=__a , resume_download=__a , proxies=__a , use_auth_token=__a , revision=__a , local_files_only=__a , ) return os.path.join(__a , __a ) def UpperCAmelCase_ (__a : Union[str, os.PathLike] , __a : str , __a : Optional[str] = None , __a : Optional[Union[str, os.PathLike]] = None , __a : bool = False , __a : bool = False , __a : Optional[Dict[str, str]] = None , __a : Optional[Union[bool, str]] = None , __a : Optional[str] = None , __a : bool = False , **__a : str , ): """simple docstring""" _a : Dict = get_cached_module_file( __a , __a , cache_dir=__a , force_download=__a , resume_download=__a , proxies=__a , use_auth_token=__a , revision=__a , local_files_only=__a , ) return get_class_in_module(__a , final_module.replace('.py' , '' ) )
271
0
import requests lowercase__ = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(f'''{i}.) {article['title']}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
352
"""simple docstring""" import os import string import sys lowercase__ = 1 << 8 lowercase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowercase__ = KEYMAP["""up"""] lowercase__ = KEYMAP["""left"""] if sys.platform == "win32": lowercase__ = [] lowercase__ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowercase__ = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt _lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _lowerCamelCase : str = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase : int = cha[1] else: _lowerCamelCase : Optional[int] = ch.decode(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Tuple = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _lowerCamelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__ , termios.TCSADRAIN , lowercase__ ) return ch def _snake_case ( ): _lowerCamelCase : int = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _lowerCamelCase : Union[str, Any] = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _lowerCamelCase : List[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
0
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self, __a, __a=3, __a=32, __a=3, __a=10, __a=[10, 20, 30, 40], __a=[1, 1, 2, 1], __a=True, __a=True, __a="relu", __a=3, __a=None, ): '''simple docstring''' _lowerCAmelCase : str = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : Union[str, Any] = embeddings_size _lowerCAmelCase : Union[str, Any] = hidden_sizes _lowerCAmelCase : Union[str, Any] = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : Dict = use_labels _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Dict = num_labels _lowerCAmelCase : Tuple = scope _lowerCAmelCase : List[Any] = len(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase : str = self.get_config() return config, pixel_values def snake_case__ ( self): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, image_size=self.image_size, ) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = FlaxRegNetModel(config=__a) _lowerCAmelCase : str = model(__a) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_labels _lowerCAmelCase : Tuple = FlaxRegNetForImageClassification(config=__a) _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase : int = config_and_inputs _lowerCAmelCase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = FlaxRegNetModelTester(self) _lowerCAmelCase : Optional[Any] = ConfigTester(self, config_class=__a, has_text_modality=__a) def snake_case__ ( self): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self): '''simple docstring''' return def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) @unittest.skip(reason="RegNet does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="RegNet does not support input and output embeddings") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(__a) _lowerCAmelCase : Any = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Union[str, Any] = [*signature.parameters.keys()] _lowerCAmelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1], __a) def snake_case__ ( self): '''simple docstring''' def check_hidden_states_output(__a, __a, __a): _lowerCAmelCase : Any = model_class(__a) _lowerCAmelCase : Tuple = model(**self._prepare_for_class(__a, __a)) _lowerCAmelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : Dict = self.model_tester.num_stages self.assertEqual(len(__a), expected_num_stages + 1) _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = True check_hidden_states_output(__a, __a, __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Optional[Any] = True check_hidden_states_output(__a, __a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _lowerCAmelCase : Tuple = self._prepare_for_class(__a, __a) _lowerCAmelCase : List[str] = model_class(__a) @jax.jit def model_jitted(__a, **__a): return model(pixel_values=__a, **__a) with self.subTest("JIT Enabled"): _lowerCAmelCase : Dict = model_jitted(**__a).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): _lowerCAmelCase : Optional[int] = model_jitted(**__a).to_tuple() self.assertEqual(len(__a), len(__a)) for jitted_output, output in zip(__a, __a): self.assertEqual(jitted_output.shape, output.shape) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class UpperCAmelCase_ ( unittest.TestCase): @cached_property def snake_case__ ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained("facebook/regnet-y-040") if is_vision_available() else None @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040") _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : str = prepare_img() _lowerCAmelCase : Tuple = image_processor(images=__a, return_tensors="np") _lowerCAmelCase : str = model(**__a) # verify the logits _lowerCAmelCase : List[Any] = (1, 1000) self.assertEqual(outputs.logits.shape, __a) _lowerCAmelCase : Tuple = jnp.array([-0.4_180, -1.5_051, -3.4_836]) self.assertTrue(jnp.allclose(outputs.logits[0, :3], __a, atol=1E-4))
36
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=False ) -> Any: lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" lowerCamelCase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=False ) -> str: for i in range(config.num_hidden_layers ): if base_model: lowerCamelCase : Optional[int] = "" else: lowerCamelCase : List[str] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase : List[str] = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) lowerCamelCase : Optional[int] = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase : List[Any] = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase : Any = in_proj_bias[: config.hidden_size] lowerCamelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase : List[Any] = in_proj_bias[-config.hidden_size :] def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> str: lowerCamelCase : List[str] = dct.pop(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Any = val def A ( ) -> List[str]: lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase : str = Image.open(requests.get(_SCREAMING_SNAKE_CASE ,stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowerCamelCase : Union[str, Any] = DeiTConfig() # all deit models have fine-tuned heads lowerCamelCase : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size lowerCamelCase : Dict = 1000 lowerCamelCase : Tuple = "huggingface/label-files" lowerCamelCase : List[str] = "imagenet-1k-id2label.json" lowerCamelCase : List[Any] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,repo_type="dataset" ) ,"r" ) ) lowerCamelCase : Optional[int] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCamelCase : Tuple = idalabel lowerCamelCase : str = {v: k for k, v in idalabel.items()} lowerCamelCase : Dict = int(deit_name[-6:-4] ) lowerCamelCase : Optional[Any] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): lowerCamelCase : Optional[Any] = 192 lowerCamelCase : List[str] = 768 lowerCamelCase : Tuple = 12 lowerCamelCase : Optional[Any] = 3 elif deit_name[9:].startswith("small" ): lowerCamelCase : str = 384 lowerCamelCase : Optional[Any] = 1536 lowerCamelCase : Dict = 12 lowerCamelCase : Optional[int] = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): lowerCamelCase : str = 1024 lowerCamelCase : List[str] = 4096 lowerCamelCase : Any = 24 lowerCamelCase : Dict = 16 # load original model from timm lowerCamelCase : List[Any] = timm.create_model(_SCREAMING_SNAKE_CASE ,pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase : Dict = timm_model.state_dict() lowerCamelCase : Dict = create_rename_keys(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) read_in_q_k_v(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # load HuggingFace model lowerCamelCase : Optional[Any] = DeiTForImageClassificationWithTeacher(_SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by DeiTImageProcessor lowerCamelCase : Any = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=_SCREAMING_SNAKE_CASE ,crop_size=config.image_size ) lowerCamelCase : str = image_processor(images=prepare_img() ,return_tensors="pt" ) lowerCamelCase : int = encoding["pixel_values"] lowerCamelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = timm_model(_SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_SCREAMING_SNAKE_CASE ,outputs.logits ,atol=1e-3 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(f'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE__ : List[str] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
48
0
from __future__ import annotations def lowerCAmelCase__ ( _a : list , _a : int | None = None , _a : int | None = None ): if start is None: snake_case_ : Dict = 0 if end is None: snake_case_ : Tuple = len(_a ) - 1 if start >= end: return snake_case_ : Union[str, Any] = (start + end) // 2 slowsort(_a , _a , _a ) slowsort(_a , mid + 1 , _a ) if sequence[end] < sequence[mid]: snake_case_ : Any = sequence[mid], sequence[end] slowsort(_a , _a , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
364
import datasets from .evaluate import evaluate lowercase : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' lowercase : int = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' lowercase : int = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ : Union[str, Any] = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} snake_case_ : Optional[Any] = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] snake_case_ : Any = evaluate(dataset=_SCREAMING_SNAKE_CASE , predictions=_SCREAMING_SNAKE_CASE ) return score
36
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase = 10 , UpperCAmelCase = 1000 , UpperCAmelCase = True ) -> List[Any]: assert ( isinstance(A_ , A_ ) and isinstance(A_ , A_ ) and isinstance(A_ , A_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: return int((number_a + number_a) / 2 ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: assert ( isinstance(A_ , A_ ) and isinstance(A_ , A_ ) and isinstance(A_ , A_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(UpperCAmelCase ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) snake_case_ = lower snake_case_ = higher snake_case_ = [] while True: snake_case_ = get_avg(A_ , A_ ) last_numbers.append(A_ ) if answer(A_ ) == "low": snake_case_ = number elif answer(A_ ) == "high": snake_case_ = number else: break print(f'guess the number : {last_numbers[-1]}' ) print(f'details : {last_numbers!s}' ) def UpperCAmelCase ( ) -> Tuple: snake_case_ = int(input('Enter lower value : ' ).strip() ) snake_case_ = int(input('Enter high value : ' ).strip() ) snake_case_ = int(input('Enter value to guess : ' ).strip() ) guess_the_number(A_ , A_ , A_ ) if __name__ == "__main__": main()
69
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A__: List[Any] = logging.get_logger(__name__) A__: Any = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) A__: Dict = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) A__: Optional[int] = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) A__: Optional[Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) A__: Optional[Any] = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) A__: List[Any] = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) A__: int = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) A__: Optional[Any] = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) A__: Optional[Any] = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) A__: List[Any] = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) A__: Optional[int] = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) A__: Optional[Any] = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) A__: Dict = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) A__: Dict = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) A__: Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A__: List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A__: str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A__: int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A__: str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A__: List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A__: List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A__: int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A__: str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A__: Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A__: Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A__: Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A__: str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A__: Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_MAPPING A__: int = auto_class_update(FlaxAutoModel) class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING A__: Dict = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A__: Any = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING A__: List[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A__: int = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A__: Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A__: Optional[Any] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A__: str = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A__: List[Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A__: Any = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A__: Dict = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A__: Dict = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class _a ( _BaseAutoModelClass): """simple docstring""" UpperCamelCase__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A__: List[Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
149
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple=False ) ->str: A__ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" A__ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]=False ) ->str: for i in range(config.num_hidden_layers ): if base_model: A__ : Any = """""" else: A__ : Tuple = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) A__ : Tuple = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ : List[Any] = in_proj_weight[ : config.hidden_size, : ] A__ : str = in_proj_bias[: config.hidden_size] A__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] A__ : Any = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any] ) ->Any: A__ : int = dct.pop(UpperCAmelCase__ ) A__ : Tuple = val def _lowerCAmelCase ( ) ->List[Any]: A__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any ) ->Tuple: A__ : List[Any] = DeiTConfig() # all deit models have fine-tuned heads A__ : Tuple = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size A__ : str = 1_0_0_0 A__ : List[str] = """huggingface/label-files""" A__ : Dict = """imagenet-1k-id2label.json""" A__ : List[str] = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) ) A__ : Dict = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : Optional[int] = idalabel A__ : Dict = {v: k for k, v in idalabel.items()} A__ : List[str] = int(deit_name[-6:-4] ) A__ : str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): A__ : List[str] = 1_9_2 A__ : int = 7_6_8 A__ : List[Any] = 1_2 A__ : Dict = 3 elif deit_name[9:].startswith("""small""" ): A__ : List[Any] = 3_8_4 A__ : List[str] = 1_5_3_6 A__ : Any = 1_2 A__ : Union[str, Any] = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): A__ : int = 1_0_2_4 A__ : str = 4_0_9_6 A__ : Any = 2_4 A__ : int = 1_6 # load original model from timm A__ : Dict = timm.create_model(UpperCAmelCase__, pretrained=UpperCAmelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ : Tuple = timm_model.state_dict() A__ : str = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A__ : str = DeiTForImageClassificationWithTeacher(UpperCAmelCase__ ).eval() model.load_state_dict(UpperCAmelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor A__ : int = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 A__ : Any = DeiTImageProcessor(size=UpperCAmelCase__, crop_size=config.image_size ) A__ : Union[str, Any] = image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Optional[Any] = encoding["""pixel_values"""] A__ : Union[str, Any] = model(UpperCAmelCase__ ) A__ : Union[str, Any] = timm_model(UpperCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase__, outputs.logits, atol=1e-3 ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
296
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'Salesforce/blip-image-captioning-base' snake_case_ = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) snake_case_ = 'image_captioner' snake_case_ = AutoModelForVisionaSeq snake_case_ = ['image'] snake_case_ = ['text'] def __init__( self : int , *snake_case : Optional[int] , **snake_case : Optional[int] ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*snake_case , **snake_case ) def _UpperCamelCase ( self : int , snake_case : "Image" ): '''simple docstring''' return self.pre_processor(images=snake_case , return_tensors="""pt""" ) def _UpperCamelCase ( self : int , snake_case : List[Any] ): '''simple docstring''' return self.model.generate(**snake_case ) def _UpperCamelCase ( self : Optional[int] , snake_case : Any ): '''simple docstring''' return self.pre_processor.batch_decode(snake_case , skip_special_tokens=snake_case )[0].strip()
296
1
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict=0.999 , UpperCamelCase__ : Any="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ : str ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase : Dict = [] for i in range(UpperCamelCase__ ): _UpperCAmelCase : List[str] = i / num_diffusion_timesteps _UpperCAmelCase : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase__ ) / alpha_bar_fn(UpperCamelCase__ ) , UpperCamelCase__ ) ) return torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) class _UpperCAmelCase ( a ,a ): '''simple docstring''' a__ =[e.name for e in KarrasDiffusionSchedulers] a__ =2 @register_to_config def __init__( self , A = 1_0_0_0 , A = 0.00_085 , A = 0.012 , A = "linear" , A = None , A = "epsilon" , A = False , A = False , A = 1.0 , A = "linspace" , A = 0 , ) -> Optional[int]: if trained_betas is not None: _UpperCAmelCase : Optional[Any] = torch.tensor(A , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase : Union[str, Any] = torch.linspace(A , A , A , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase : Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , A , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase : str = betas_for_alpha_bar(A , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": _UpperCAmelCase : int = betas_for_alpha_bar(A , alpha_transform_type='''exp''' ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase : List[str] = 1.0 - self.betas _UpperCAmelCase : str = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(A , A , A ) _UpperCAmelCase : Any = use_karras_sigmas def __lowerCAmelCase ( self , A , A=None ) -> Optional[int]: if schedule_timesteps is None: _UpperCAmelCase : List[str] = self.timesteps _UpperCAmelCase : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _UpperCAmelCase : Any = 1 if len(A ) > 1 else 0 else: _UpperCAmelCase : Tuple = timestep.cpu().item() if torch.is_tensor(A ) else timestep _UpperCAmelCase : Tuple = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCAmelCase ( self ) -> Any: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCAmelCase ( self , A , A , ) -> torch.FloatTensor: _UpperCAmelCase : Tuple = self.index_for_timestep(A ) _UpperCAmelCase : Any = self.sigmas[step_index] _UpperCAmelCase : Tuple = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCAmelCase ( self , A , A = None , A = None , ) -> Union[str, Any]: _UpperCAmelCase : int = num_inference_steps _UpperCAmelCase : List[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _UpperCAmelCase : Optional[int] = np.linspace(0 , num_train_timesteps - 1 , A , dtype=A )[::-1].copy() elif self.config.timestep_spacing == "leading": _UpperCAmelCase : str = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase : List[Any] = (np.arange(0 , A ) * step_ratio).round()[::-1].copy().astype(A ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _UpperCAmelCase : Optional[int] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase : Tuple = (np.arange(A , 0 , -step_ratio )).round().copy().astype(A ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) _UpperCAmelCase : List[str] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _UpperCAmelCase : Union[str, Any] = np.log(A ) _UpperCAmelCase : str = np.interp(A , np.arange(0 , len(A ) ) , A ) if self.config.use_karras_sigmas: _UpperCAmelCase : Any = self._convert_to_karras(in_sigmas=A , num_inference_steps=self.num_inference_steps ) _UpperCAmelCase : int = np.array([self._sigma_to_t(A , A ) for sigma in sigmas] ) _UpperCAmelCase : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _UpperCAmelCase : Dict = torch.from_numpy(A ).to(device=A ) _UpperCAmelCase : Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _UpperCAmelCase : Optional[int] = torch.from_numpy(A ) _UpperCAmelCase : List[Any] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(A ).startswith('''mps''' ): # mps does not support float64 _UpperCAmelCase : List[Any] = timesteps.to(A , dtype=torch.floataa ) else: _UpperCAmelCase : Tuple = timesteps.to(device=A ) # empty dt and derivative _UpperCAmelCase : Dict = None _UpperCAmelCase : Dict = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _UpperCAmelCase : Optional[Any] = defaultdict(A ) def __lowerCAmelCase ( self , A , A ) -> Tuple: # get log sigma _UpperCAmelCase : Dict = np.log(A ) # get distribution _UpperCAmelCase : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _UpperCAmelCase : str = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _UpperCAmelCase : List[str] = low_idx + 1 _UpperCAmelCase : int = log_sigmas[low_idx] _UpperCAmelCase : Any = log_sigmas[high_idx] # interpolate sigmas _UpperCAmelCase : Optional[Any] = (low - log_sigma) / (low - high) _UpperCAmelCase : Optional[int] = np.clip(A , 0 , 1 ) # transform interpolation to time range _UpperCAmelCase : List[str] = (1 - w) * low_idx + w * high_idx _UpperCAmelCase : List[str] = t.reshape(sigma.shape ) return t def __lowerCAmelCase ( self , A , A ) -> torch.FloatTensor: _UpperCAmelCase : float = in_sigmas[-1].item() _UpperCAmelCase : float = in_sigmas[0].item() _UpperCAmelCase : List[Any] = 7.0 # 7.0 is the value used in the paper _UpperCAmelCase : Optional[Any] = np.linspace(0 , 1 , A ) _UpperCAmelCase : Any = sigma_min ** (1 / rho) _UpperCAmelCase : str = sigma_max ** (1 / rho) _UpperCAmelCase : Optional[int] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __lowerCAmelCase ( self ) -> Any: return self.dt is None def __lowerCAmelCase ( self , A , A , A , A = True , ) -> Union[SchedulerOutput, Tuple]: _UpperCAmelCase : Union[str, Any] = self.index_for_timestep(A ) # advance index counter by 1 _UpperCAmelCase : int = timestep.cpu().item() if torch.is_tensor(A ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _UpperCAmelCase : List[Any] = self.sigmas[step_index] _UpperCAmelCase : List[str] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _UpperCAmelCase : Dict = self.sigmas[step_index - 1] _UpperCAmelCase : List[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _UpperCAmelCase : Optional[Any] = sigma_hat if self.state_in_first_order else sigma_next _UpperCAmelCase : List[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _UpperCAmelCase : Any = sigma_hat if self.state_in_first_order else sigma_next _UpperCAmelCase : Any = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _UpperCAmelCase : int = model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: _UpperCAmelCase : int = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _UpperCAmelCase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _UpperCAmelCase : Optional[int] = sigma_next - sigma_hat # store for 2nd order step _UpperCAmelCase : int = derivative _UpperCAmelCase : Optional[int] = dt _UpperCAmelCase : int = sample else: # 2. 2nd order / Heun's method _UpperCAmelCase : List[Any] = (sample - pred_original_sample) / sigma_next _UpperCAmelCase : str = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _UpperCAmelCase : Dict = self.dt _UpperCAmelCase : Tuple = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : int = None _UpperCAmelCase : int = None _UpperCAmelCase : int = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A ) def __lowerCAmelCase ( self , A , A , A , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _UpperCAmelCase : Dict = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(A ): # mps does not support float64 _UpperCAmelCase : Tuple = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _UpperCAmelCase : List[Any] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _UpperCAmelCase : Union[str, Any] = self.timesteps.to(original_samples.device ) _UpperCAmelCase : Dict = timesteps.to(original_samples.device ) _UpperCAmelCase : Optional[Any] = [self.index_for_timestep(A , A ) for t in timesteps] _UpperCAmelCase : str = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _UpperCAmelCase : Optional[int] = sigma.unsqueeze(-1 ) _UpperCAmelCase : Any = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Any: return self.config.num_train_timesteps
263
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase :int = logging.get_logger(__name__) _lowerCAmelCase :Union[str, Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''mgp-str''' def __init__( self , A=[3_2, 1_2_8] , A=4 , A=3 , A=2_7 , A=3_8 , A=5_0_2_5_7 , A=3_0_5_2_2 , A=7_6_8 , A=1_2 , A=1_2 , A=4.0 , A=True , A=False , A=1E-5 , A=0.0 , A=0.0 , A=0.0 , A=False , A=0.02 , **A , ) -> Union[str, Any]: super().__init__(**A ) _UpperCAmelCase : Any = image_size _UpperCAmelCase : str = patch_size _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : Dict = max_token_length _UpperCAmelCase : Optional[Any] = num_character_labels _UpperCAmelCase : int = num_bpe_labels _UpperCAmelCase : List[str] = num_wordpiece_labels _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : List[Any] = mlp_ratio _UpperCAmelCase : List[str] = distilled _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : str = drop_rate _UpperCAmelCase : List[Any] = qkv_bias _UpperCAmelCase : List[str] = attn_drop_rate _UpperCAmelCase : Dict = drop_path_rate _UpperCAmelCase : Union[str, Any] = output_aa_attentions _UpperCAmelCase : List[str] = initializer_range
263
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class A ( unittest.TestCase ): def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _a = tempfile.mkdtemp() _a = BlipImageProcessor() _a = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' ) _a = BlipProcessor(lowerCAmelCase_ , lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Dict , **lowerCAmelCase_ : str ) -> Union[str, Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).tokenizer def __lowerCAmelCase ( self : Optional[int] , **lowerCAmelCase_ : Optional[int] ) -> int: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).image_processor def __lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _a = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _a = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" _a = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a = self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) _a = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _a = self.prepare_image_inputs() _a = image_processor(lowerCAmelCase_ , return_tensors='''np''' ) _a = processor(images=lowerCAmelCase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _a = '''lower newer''' _a = processor(text=lowerCAmelCase_ ) _a = tokenizer(lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _a = '''lower newer''' _a = self.prepare_image_inputs() _a = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def __lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a = processor.batch_decode(lowerCAmelCase_ ) _a = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _a = '''lower newer''' _a = self.prepare_image_inputs() _a = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
179
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _snake_case : Any = logging.get_logger(__name__) _snake_case : Any = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : List[str] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } _snake_case : int = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } _snake_case : int = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class A ( _a ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = BertTokenizer def __init__( self : str , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Any="[UNK]" , lowerCAmelCase_ : Union[str, Any]="[SEP]" , lowerCAmelCase_ : Tuple="[PAD]" , lowerCAmelCase_ : Tuple="[CLS]" , lowerCAmelCase_ : Optional[int]="[MASK]" , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase_ ) != tokenize_chinese_chars ): _a = getattr(lowerCAmelCase_ , normalizer_state.pop('''type''' ) ) _a = do_lower_case _a = strip_accents _a = tokenize_chinese_chars _a = normalizer_class(**lowerCAmelCase_ ) _a = do_lower_case def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int=None ) -> List[str]: """simple docstring""" _a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" _a = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
179
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ : Optional[Any] = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = ['BeitFeatureExtractor'] UpperCAmelCase__ : Any = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[Any] = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys UpperCAmelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase__: def __init__( self: str , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: str ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) __lowerCamelCase = model __lowerCamelCase = kwargs.get("""model_save_dir""" , UpperCamelCase_ ) __lowerCamelCase = kwargs.get("""latest_model_name""" , UpperCamelCase_ ) def __call__( self: Dict , **UpperCamelCase_: Any ): __lowerCamelCase = {k: np.array(UpperCamelCase_ ) for k, v in kwargs.items()} return self.model.run(UpperCamelCase_ , UpperCamelCase_ ) @staticmethod def lowerCAmelCase__ ( UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Tuple=None , UpperCamelCase_: Tuple=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) __lowerCamelCase = """CPUExecutionProvider""" return ort.InferenceSession(UpperCamelCase_ , providers=[provider] , sess_options=UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: Optional[int] ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME __lowerCamelCase = self.model_save_dir.joinpath(self.latest_model_name ) __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __lowerCamelCase = self.model_save_dir.joinpath(UpperCamelCase_ ) if src_path.exists(): __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, os.PathLike] , **UpperCamelCase_: Optional[Any] , ): if os.path.isfile(UpperCamelCase_ ): logger.error(F'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) # saving model weights/files self._save_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[Union[bool, str, None]] = None , UpperCamelCase_: Optional[Union[str, None]] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional["ort.SessionOptions"] = None , **UpperCamelCase_: int , ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCamelCase_ ): __lowerCamelCase = OnnxRuntimeModel.load_model( os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) __lowerCamelCase = Path(UpperCamelCase_ ) # load model from hub else: # download model __lowerCamelCase = hf_hub_download( repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , ) __lowerCamelCase = Path(UpperCamelCase_ ).parent __lowerCamelCase = Path(UpperCamelCase_ ).name __lowerCamelCase = OnnxRuntimeModel.load_model(UpperCamelCase_ , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) return cls(model=UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: Optional[int] , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: int , ): __lowerCamelCase = None if len(str(UpperCamelCase_ ).split("""@""" ) ) == 2: __lowerCamelCase, __lowerCamelCase = model_id.split("""@""" ) return cls._from_pretrained( model_id=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , **UpperCamelCase_ , )
12
0
"""simple docstring""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() _a : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ) -> Optional[Any]: _lowerCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) _lowerCAmelCase : List[Any] = re.match(r"""^mobilenet_v1_([^_]*)_([^_]*)$""" ,lowercase__ ) if matches: _lowerCAmelCase : Optional[int] = float(matches[1] ) _lowerCAmelCase : Dict = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". _lowerCAmelCase : Union[str, Any] = 1001 _lowerCAmelCase : Dict = """imagenet-1k-id2label.json""" _lowerCAmelCase : List[str] = """huggingface/label-files""" _lowerCAmelCase : Dict = json.load(open(hf_hub_download(lowercase__ ,lowercase__ ,repo_type="""dataset""" ) ,"""r""" ) ) _lowerCAmelCase : Tuple = {int(lowercase__ ) + 1: v for k, v in idalabel.items()} _lowerCAmelCase : str = """background""" _lowerCAmelCase : Union[str, Any] = idalabel _lowerCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase : Optional[int] = Image.open(requests.get(lowercase__ ,stream=lowercase__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : str=False ) -> Union[str, Any]: _lowerCAmelCase : Dict = get_mobilenet_va_config(lowercase__ ) # Load 🤗 model _lowerCAmelCase : str = MobileNetVaForImageClassification(lowercase__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase__ ,lowercase__ ,lowercase__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor _lowerCAmelCase : Optional[int] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} ,size={"""shortest_edge""": config.image_size + 32} ,) _lowerCAmelCase : List[str] = image_processor(images=prepare_img() ,return_tensors="""pt""" ) _lowerCAmelCase : int = model(**lowercase__ ) _lowerCAmelCase : List[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": _lowerCAmelCase : str = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": _lowerCAmelCase : Optional[int] = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: _lowerCAmelCase : List[str] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] ,lowercase__ ,atol=1e-4 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase__ ) if push_to_hub: print("""Pushing to the hub...""" ) _lowerCAmelCase : Union[str, Any] = """google/""" + model_name image_processor.push_to_hub(lowercase__ ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": _a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _a : Optional[Any] = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
351
"""simple docstring""" import socket def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Optional[int] = socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) _lowerCAmelCase : Optional[int] = socket.gethostname() _lowerCAmelCase : Tuple = 12312 sock.connect((host, port) ) sock.send(b"""Hello server!""" ) with open("""Received_file""" ,"""wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: _lowerCAmelCase : List[Any] = sock.recv(1024 ) if not data: break out_file.write(_lowerCamelCase ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
126
0
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def __lowerCamelCase ( __UpperCamelCase = 8 ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : int = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: """simple docstring""" i -= len(_lowerCamelCase ) lowerCAmelCase_ : int = i // 3 lowerCAmelCase_ : Any = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCAmelCase_ : Union[str, Any] = ( chars_incl + random(_lowerCamelCase , quotient + remainder ) + random(_lowerCamelCase , _lowerCamelCase ) + random(_lowerCamelCase , _lowerCamelCase ) ) lowerCAmelCase_ : Tuple = list(_lowerCamelCase ) shuffle(_lowerCamelCase ) return "".join(_lowerCamelCase ) # random is a generalised function for letters, characters and numbers def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> str: """simple docstring""" return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: """simple docstring""" pass # Put your code here... def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Any: """simple docstring""" pass # Put your code here... def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> List[Any]: """simple docstring""" pass # Put your code here... def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase = 8 ) -> str: """simple docstring""" if len(_lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False lowerCAmelCase_ : Tuple = any(char in ascii_uppercase for char in password ) lowerCAmelCase_ : Optional[int] = any(char in ascii_lowercase for char in password ) lowerCAmelCase_ : List[str] = any(char in digits for char in password ) lowerCAmelCase_ : Any = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def __lowerCamelCase ( ) -> str: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = int(input("Please indicate the max length of your password: " ).strip() ) lowerCAmelCase_ : Optional[Any] = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowerCamelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowerCamelCase , _lowerCamelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
241
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=24, __a=2, __a=6, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=None, __a=1000, ): '''simple docstring''' _lowerCAmelCase : Tuple = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : int = seq_length _lowerCAmelCase : Optional[int] = is_training _lowerCAmelCase : Dict = use_input_mask _lowerCAmelCase : List[str] = use_token_type_ids _lowerCAmelCase : str = use_labels _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Optional[Any] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : int = max_position_embeddings _lowerCAmelCase : Optional[int] = type_vocab_size _lowerCAmelCase : Optional[Any] = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : List[Any] = num_labels _lowerCAmelCase : Tuple = scope _lowerCAmelCase : str = range_bbox def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : Dict = bbox[i, j, 3] _lowerCAmelCase : int = bbox[i, j, 1] _lowerCAmelCase : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : str = bbox[i, j, 2] _lowerCAmelCase : List[Any] = bbox[i, j, 0] _lowerCAmelCase : str = t _lowerCAmelCase : Optional[Any] = None if self.use_input_mask: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) _lowerCAmelCase : Dict = None if self.use_token_type_ids: _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : Optional[int] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case__ ( self): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = LiltModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Dict = model(__a, bbox=__a, attention_mask=__a, token_type_ids=__a) _lowerCAmelCase : str = model(__a, bbox=__a, token_type_ids=__a) _lowerCAmelCase : List[Any] = model(__a, bbox=__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : Optional[Any] = LiltForTokenClassification(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Dict = model( __a, bbox=__a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = LiltForQuestionAnswering(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Tuple = model( __a, bbox=__a, attention_mask=__a, token_type_ids=__a, start_positions=__a, end_positions=__a, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , a , unittest.TestCase): lowerCamelCase__ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a, __a, __a): '''simple docstring''' return True def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = LiltModelTester(self) _lowerCAmelCase : Union[str, Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : Any = type self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : str = LiltModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_torch @slow class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(__a) _lowerCAmelCase : Any = torch.tensor([[1, 2]], device=__a) _lowerCAmelCase : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]], device=__a) # forward pass with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(input_ids=__a, bbox=__a) _lowerCAmelCase : Optional[int] = torch.Size([1, 2, 768]) _lowerCAmelCase : List[str] = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]], device=__a, ) self.assertTrue(outputs.last_hidden_state.shape, __a) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3], __a, atol=1E-3))
36
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowercase : def __init__( self : int , snake_case : Optional[Any] , snake_case : int=1_3 , snake_case : int=7 , snake_case : List[Any]=True , snake_case : List[str]=True , snake_case : Tuple=True , snake_case : Optional[Any]=True , snake_case : int=9_9 , snake_case : Optional[Any]=2_4 , snake_case : Union[str, Any]=2 , snake_case : Union[str, Any]=6 , snake_case : Union[str, Any]=3_7 , snake_case : Union[str, Any]="gelu" , snake_case : str=0.1 , snake_case : int=0.1 , snake_case : Optional[Any]=5_1_2 , snake_case : Optional[Any]=1_6 , snake_case : Optional[int]=2 , snake_case : Optional[int]=0.02 , snake_case : Tuple=3 , snake_case : Dict=None , snake_case : str=1_0_0_0 , ) -> str: """simple docstring""" UpperCamelCase_ : Any = parent UpperCamelCase_ : int = batch_size UpperCamelCase_ : Optional[Any] = seq_length UpperCamelCase_ : Union[str, Any] = is_training UpperCamelCase_ : Optional[int] = use_input_mask UpperCamelCase_ : Optional[Any] = use_token_type_ids UpperCamelCase_ : str = use_labels UpperCamelCase_ : Tuple = vocab_size UpperCamelCase_ : int = hidden_size UpperCamelCase_ : Dict = num_hidden_layers UpperCamelCase_ : Dict = num_attention_heads UpperCamelCase_ : Dict = intermediate_size UpperCamelCase_ : Optional[Any] = hidden_act UpperCamelCase_ : Any = hidden_dropout_prob UpperCamelCase_ : List[str] = attention_probs_dropout_prob UpperCamelCase_ : Union[str, Any] = max_position_embeddings UpperCamelCase_ : List[str] = type_vocab_size UpperCamelCase_ : int = type_sequence_label_size UpperCamelCase_ : str = initializer_range UpperCamelCase_ : Dict = num_labels UpperCamelCase_ : int = scope UpperCamelCase_ : int = range_bbox def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase_ : Tuple = bbox[i, j, 3] UpperCamelCase_ : Any = bbox[i, j, 1] UpperCamelCase_ : int = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase_ : str = bbox[i, j, 2] UpperCamelCase_ : Dict = bbox[i, j, 0] UpperCamelCase_ : Tuple = t UpperCamelCase_ : Optional[Any] = None if self.use_input_mask: UpperCamelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase_ : Optional[int] = None if self.use_token_type_ids: UpperCamelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ : int = None UpperCamelCase_ : List[str] = None if self.use_labels: UpperCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ : List[str] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Dict , snake_case : int , snake_case : Optional[Any] , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : List[str] , ) -> Tuple: """simple docstring""" UpperCamelCase_ : List[str] = LiltModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : Dict = model(snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) UpperCamelCase_ : Any = model(snake_case , bbox=snake_case , token_type_ids=snake_case ) UpperCamelCase_ : Any = model(snake_case , bbox=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Union[str, Any] , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Any , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Optional[Any] , ) -> Dict: """simple docstring""" UpperCamelCase_ : Optional[Any] = self.num_labels UpperCamelCase_ : Tuple = LiltForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : str = model( snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Optional[int] , snake_case : Dict , snake_case : Tuple , snake_case : str , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Optional[Any] , ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = LiltForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : Union[str, Any] = model( snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: """simple docstring""" UpperCamelCase_ : List[str] = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ) : List[str] = config_and_inputs UpperCamelCase_ : Any = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class _lowercase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowercase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowercase = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : Optional[int] , snake_case : Any , snake_case : List[Any] , snake_case : Union[str, Any] , snake_case : Optional[int] ) -> Dict: """simple docstring""" return True def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: """simple docstring""" UpperCamelCase_ : Optional[Any] = LiltModelTester(self ) UpperCamelCase_ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]: """simple docstring""" UpperCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> str: """simple docstring""" UpperCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase_ : Optional[Any] = type self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ : List[Any] = LiltModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch @slow class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Dict = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(snake_case ) UpperCamelCase_ : List[str] = torch.tensor([[1, 2]] , device=snake_case ) UpperCamelCase_ : Union[str, Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=snake_case ) # forward pass with torch.no_grad(): UpperCamelCase_ : Dict = model(input_ids=snake_case , bbox=snake_case ) UpperCamelCase_ : Dict = torch.Size([1, 2, 7_6_8] ) UpperCamelCase_ : Tuple = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=snake_case , ) self.assertTrue(outputs.last_hidden_state.shape , snake_case ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , snake_case , atol=1e-3 ) )
50
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline a_ = datasets.utils.logging.get_logger(__name__) @dataclass class _lowercase ( datasets.BuilderConfig ): lowercase = None lowercase = "utf-8" lowercase = None lowercase = None lowercase = True # deprecated lowercase = None # deprecated lowercase = 1_0 << 2_0 # 10MB lowercase = None class _lowercase ( datasets.ArrowBasedBuilder ): lowercase = JsonConfig def SCREAMING_SNAKE_CASE__ ( self : int ) -> Union[str, Any]: """simple docstring""" if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead' ) UpperCamelCase_ : Any = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.' ) if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported' ) return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) UpperCamelCase_ : Any = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case , (str, list, tuple) ): UpperCamelCase_ : int = data_files if isinstance(snake_case , snake_case ): UpperCamelCase_ : Tuple = [files] UpperCamelCase_ : Union[str, Any] = [dl_manager.iter_files(snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] UpperCamelCase_ : str = [] for split_name, files in data_files.items(): if isinstance(snake_case , snake_case ): UpperCamelCase_ : Dict = [files] UpperCamelCase_ : List[str] = [dl_manager.iter_files(snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): UpperCamelCase_ : int = self.config.features.arrow_schema.field(snake_case ).type UpperCamelCase_ : Optional[int] = pa_table.append_column(snake_case , pa.array([None] * len(snake_case ) , type=snake_case ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example UpperCamelCase_ : Optional[int] = table_cast(snake_case , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : List[Any] ) -> Dict: """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(snake_case , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCamelCase_ : List[Any] = json.load(snake_case ) # We keep only the field we are interested in UpperCamelCase_ : int = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(snake_case , (list, tuple) ): UpperCamelCase_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) UpperCamelCase_ : Dict = {col: [row.get(snake_case ) for row in dataset] for col in keys} else: UpperCamelCase_ : Tuple = dataset UpperCamelCase_ : str = pa.Table.from_pydict(snake_case ) yield file_idx, self._cast_table(snake_case ) # If the file has one json object per line else: with open(snake_case , 'rb' ) as f: UpperCamelCase_ : List[Any] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small UpperCamelCase_ : Any = max(self.config.chunksize // 3_2 , 1_6 << 1_0 ) UpperCamelCase_ : Optional[int] = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: UpperCamelCase_ : List[Any] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(snake_case ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": UpperCamelCase_ : Tuple = batch.decode(self.config.encoding , errors=snake_case ).encode('utf-8' ) try: while True: try: UpperCamelCase_ : List[str] = paj.read_json( io.BytesIO(snake_case ) , read_options=paj.ReadOptions(block_size=snake_case ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(snake_case , pa.ArrowInvalid ) and "straddling" not in str(snake_case ) or block_size > len(snake_case ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"Batch of {len(snake_case )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}." ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( snake_case , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCamelCase_ : Union[str, Any] = json.load(snake_case ) except json.JSONDecodeError: logger.error(f"Failed to read file '{file}' with error {type(snake_case )}: {e}" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(snake_case , snake_case ): # list is the only sequence type supported in JSON try: UpperCamelCase_ : List[Any] = set().union(*[row.keys() for row in dataset] ) UpperCamelCase_ : Union[str, Any] = {col: [row.get(snake_case ) for row in dataset] for col in keys} UpperCamelCase_ : List[str] = pa.Table.from_pydict(snake_case ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"Failed to read file '{file}' with error {type(snake_case )}: {e}" ) raise ValueError(f"Not able to read records in the JSON file at {file}." ) from None yield file_idx, self._cast_table(snake_case ) break else: logger.error(f"Failed to read file '{file}' with error {type(snake_case )}: {e}" ) raise ValueError( f"Not able to read records in the JSON file at {file}. " f"You should probably indicate the field of the JSON file containing your records. " f"This JSON file contain the following fields: {str(list(dataset.keys() ) )}. " f"Select the correct one and provide it as `field='XXX'` to the dataset loading method. " ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case ) batch_idx += 1
50
1
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 10**-10 ) -> float: '''simple docstring''' SCREAMING_SNAKE_CASE = a while True: SCREAMING_SNAKE_CASE = Decimal(_SCREAMING_SNAKE_CASE ) - ( Decimal(eval(_SCREAMING_SNAKE_CASE ) ) / Decimal(eval(str(diff(_SCREAMING_SNAKE_CASE ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_SCREAMING_SNAKE_CASE ) ) < precision: # noqa: S307 return float(_SCREAMING_SNAKE_CASE ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
296
def __lowercase ( _SCREAMING_SNAKE_CASE = 10 ) -> str: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or n < 0: raise ValueError("""Invalid input""" ) SCREAMING_SNAKE_CASE = 10**n SCREAMING_SNAKE_CASE = 2_84_33 * (pow(2 , 7_83_04_57 , _SCREAMING_SNAKE_CASE )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(1_0) = }''')
296
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = '▁' SCREAMING_SNAKE_CASE__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE__ = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } SCREAMING_SNAKE_CASE__ = { 'google/pegasus-xsum': 5_1_2, } class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = PegasusTokenizer lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<pad>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<mask_2>" , UpperCAmelCase="<mask_1>" , UpperCAmelCase=None , UpperCAmelCase=103 , **UpperCAmelCase , ) -> Any: '''simple docstring''' lowercase_ = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( F'additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is' F' {type(_SCREAMING_SNAKE_CASE )}' ) lowercase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'<unk_{i}>' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" F' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) lowercase_ = additional_special_tokens_extended else: lowercase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'<unk_{i}>' for i in range(2 , self.offset )] super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True def A__ ( self , UpperCAmelCase ) -> Any: '''simple docstring''' lowercase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" F' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}' ) return [1 if x in all_special_ids else 0 for x in seq] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def A__ ( self , UpperCAmelCase , UpperCAmelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
364
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__ = { """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any ): '''simple docstring''' with open(__lowerCamelCase , "r" ) as f: lowercase_ = f.read().splitlines() return [l.strip() for l in lines] class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<unk>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase="<eos>" , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = load_vocab_file(UpperCAmelCase ) lowercase_ = dict(enumerate(self.all_tokens ) ) lowercase_ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ = unk_token lowercase_ = cls_token lowercase_ = pad_token lowercase_ = mask_token lowercase_ = eos_token lowercase_ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return text.split() def A__ ( self , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' return len(self._id_to_token ) def A__ ( self ) -> Tuple: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.cls_token_id] lowercase_ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ = [1] + ([0] * len(UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase ) + [1] return mask def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = os.path.join(UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(UpperCAmelCase , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def A__ ( self ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = False ) -> int: '''simple docstring''' return super()._add_tokens(UpperCAmelCase , special_tokens=UpperCAmelCase )
297
0
"""simple docstring""" def __lowercase ( snake_case_ : int = 100 ) ->int: '''simple docstring''' __A : Optional[int] = (n * (n + 1) // 2) ** 2 __A : Optional[Any] = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'''{solution() = }''')
179
"""simple docstring""" def __lowercase ( snake_case_ : int ) ->int: '''simple docstring''' assert ( isinstance(snake_case_ ,snake_case_ ) and number_of_steps > 0 ), F"""number_of_steps needs to be positive integer, your input {number_of_steps}""" if number_of_steps == 1: return 1 __A , __A : List[Any] = 1, 1 for _ in range(number_of_steps - 1 ): __A , __A : List[str] = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
179
1
'''simple docstring''' def lowerCamelCase__ ( _A , _A ): def get_matched_characters(_A , _A ) -> str: a : str = [] a : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a : List[Any] = int(max(0 , i - limit ) ) a : Any = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_a ) a : int = f"""{_stra[0:_stra.index(_a )]} {_stra[_stra.index(_a ) + 1:]}""" return "".join(_a ) # matching characters a : Tuple = get_matched_characters(_a , _a ) a : Optional[Any] = get_matched_characters(_a , _a ) a : str = len(_a ) # transposition a : Dict = ( len([(ca, ca) for ca, ca in zip(_a , _a ) if ca != ca] ) // 2 ) if not match_count: a : int = 0.0 else: a : List[str] = ( 1 / 3 * ( match_count / len(_a ) + match_count / len(_a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a : List[str] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
365
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class a__: def __init__( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[int]=2 , __snake_case : Union[str, Any]=8 , __snake_case : List[str]=True , __snake_case : Dict=True , __snake_case : Optional[Any]=True , __snake_case : List[str]=True , __snake_case : Tuple=99 , __snake_case : int=16 , __snake_case : Optional[int]=5 , __snake_case : int=2 , __snake_case : Tuple=36 , __snake_case : Optional[Any]="gelu" , __snake_case : str=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Tuple=5_12 , __snake_case : str=16 , __snake_case : str=2 , __snake_case : int=0.02 , __snake_case : Optional[int]=3 , __snake_case : List[Any]=4 , __snake_case : Any=None , ): a : int = parent a : Any = batch_size a : Optional[int] = seq_length a : List[str] = is_training a : Dict = use_input_mask a : Union[str, Any] = use_token_type_ids a : Tuple = use_labels a : Dict = vocab_size a : Optional[int] = hidden_size a : List[Any] = num_hidden_layers a : Optional[Any] = num_attention_heads a : str = intermediate_size a : Dict = hidden_act a : str = hidden_dropout_prob a : Tuple = attention_probs_dropout_prob a : Optional[Any] = max_position_embeddings a : Tuple = type_vocab_size a : int = type_sequence_label_size a : List[Any] = initializer_range a : List[str] = num_labels a : List[str] = num_choices a : Optional[Any] = scope def lowercase_ ( self : Union[str, Any] ): a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : Optional[Any] = None if self.use_input_mask: a : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) a : Tuple = None if self.use_token_type_ids: a : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a : str = None a : int = None a : Any = None if self.use_labels: a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a : List[str] = ids_tensor([self.batch_size] , self.num_choices ) a : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : Union[str, Any] ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def lowercase_ ( self : List[str] ): a : List[Any] = self.get_config() a : Optional[Any] = 3_00 return config def lowercase_ ( self : Union[str, Any] ): ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Optional[Any] = self.prepare_config_and_inputs() a : Union[str, Any] = True a : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase_ ( self : int , __snake_case : int , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Any ): a : Dict = MraModel(config=__snake_case ) model.to(__snake_case ) model.eval() a : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) a : List[str] = model(__snake_case , token_type_ids=__snake_case ) a : Union[str, Any] = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : List[str] , __snake_case : Tuple , __snake_case : List[str] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : List[Any] , ): a : Optional[Any] = True a : Optional[int] = MraModel(__snake_case ) model.to(__snake_case ) model.eval() a : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) a : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , ) a : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Optional[Any] , __snake_case : int , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Dict , __snake_case : Optional[Any] ): a : Union[str, Any] = MraForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() a : List[str] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Tuple , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : int ): a : Optional[int] = MraForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() a : Optional[int] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self : Dict , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : str ): a : Tuple = self.num_labels a : Dict = MraForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a : Any = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : int , __snake_case : List[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : int ): a : Tuple = self.num_labels a : Tuple = MraForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() a : List[Any] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : Any , __snake_case : Any , __snake_case : str , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Any , __snake_case : Any , __snake_case : str ): a : Optional[int] = self.num_choices a : int = MraForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() a : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a : int = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self : Optional[Any] ): a : Union[str, Any] = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Union[str, Any] = config_and_inputs a : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = () def lowercase_ ( self : Any ): a : Tuple = MraModelTester(self ) a : str = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def lowercase_ ( self : List[str] ): self.config_tester.run_common_tests() def lowercase_ ( self : List[str] ): a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowercase_ ( self : Any ): a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a : Dict = type self.model_tester.create_and_check_model(*__snake_case ) def lowercase_ ( self : List[Any] ): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def lowercase_ ( self : Optional[Any] ): a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def lowercase_ ( self : List[Any] ): a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def lowercase_ ( self : Tuple ): a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def lowercase_ ( self : Optional[Any] ): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def lowercase_ ( self : int ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Dict = MraModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase_ ( self : Union[str, Any] ): return @require_torch class a__( unittest.TestCase ): @slow def lowercase_ ( self : Union[str, Any] ): a : Union[str, Any] = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) a : List[str] = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): a : Optional[int] = model(__snake_case )[0] a : Any = torch.Size((1, 2_56, 7_68) ) self.assertEqual(output.shape , __snake_case ) a : str = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) ) @slow def lowercase_ ( self : Optional[int] ): a : Dict = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) a : Optional[int] = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): a : Dict = model(__snake_case )[0] a : Union[str, Any] = 5_02_65 a : Dict = torch.Size((1, 2_56, vocab_size) ) self.assertEqual(output.shape , __snake_case ) a : Dict = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) ) @slow def lowercase_ ( self : Any ): a : Dict = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) a : Optional[int] = torch.arange(40_96 ).unsqueeze(0 ) with torch.no_grad(): a : Tuple = model(__snake_case )[0] a : List[Any] = 5_02_65 a : str = torch.Size((1, 40_96, vocab_size) ) self.assertEqual(output.shape , __snake_case ) a : int = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) )
96
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = """pix2struct_text_model""" SCREAMING_SNAKE_CASE_ = ["""past_key_values"""] SCREAMING_SNAKE_CASE_ = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Dict , lowerCamelCase_ :Tuple=50_244 , lowerCamelCase_ :List[Any]=768 , lowerCamelCase_ :Dict=64 , lowerCamelCase_ :Any=2_048 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :Dict=32 , lowerCamelCase_ :Tuple=128 , lowerCamelCase_ :List[str]=0.1 , lowerCamelCase_ :List[Any]=1e-6 , lowerCamelCase_ :Tuple=1.0 , lowerCamelCase_ :int="gelu_new" , lowerCamelCase_ :Any=0 , lowerCamelCase_ :Union[str, Any]=False , lowerCamelCase_ :List[Any]=0 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :Union[str, Any]=False , lowerCamelCase_ :List[Any]=True , **lowerCamelCase_ :Any , ): """simple docstring""" lowerCamelCase__ : Optional[int] =vocab_size lowerCamelCase__ : Optional[Any] =hidden_size lowerCamelCase__ : Tuple =d_kv lowerCamelCase__ : Union[str, Any] =d_ff lowerCamelCase__ : Tuple =num_layers lowerCamelCase__ : Optional[int] =num_heads lowerCamelCase__ : str =relative_attention_num_buckets lowerCamelCase__ : List[str] =relative_attention_max_distance lowerCamelCase__ : Optional[Any] =dropout_rate lowerCamelCase__ : List[Any] =layer_norm_epsilon lowerCamelCase__ : str =initializer_factor lowerCamelCase__ : Optional[Any] =use_cache lowerCamelCase__ : Tuple =eos_token_id lowerCamelCase__ : List[str] =decoder_start_token_id # for backwards compatibility lowerCamelCase__ : int =dense_act_fn super().__init__( pad_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , tie_word_embeddings=lowerCamelCase_ , is_decoder=lowerCamelCase_ , **lowerCamelCase_ , ) @classmethod def UpperCAmelCase__ ( cls :Union[str, Any] , lowerCamelCase_ :Union[str, os.PathLike] , **lowerCamelCase_ :Tuple ): """simple docstring""" cls._set_token_in_kwargs(lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : str =cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": lowerCamelCase__ : Dict =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = """pix2struct_vision_model""" def __init__( self :Optional[Any] , lowerCamelCase_ :List[Any]=768 , lowerCamelCase_ :Optional[Any]=768 , lowerCamelCase_ :str=2_048 , lowerCamelCase_ :Tuple=64 , lowerCamelCase_ :int=12 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :Any="gelu_new" , lowerCamelCase_ :Dict=1e-6 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :int=0.0 , lowerCamelCase_ :Tuple=1e-10 , lowerCamelCase_ :int=1.0 , lowerCamelCase_ :List[str]=4_096 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :List[str]=128 , **lowerCamelCase_ :Union[str, Any] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Any =hidden_size lowerCamelCase__ : Optional[int] =patch_embed_hidden_size lowerCamelCase__ : Optional[int] =d_ff lowerCamelCase__ : Dict =dropout_rate lowerCamelCase__ : Union[str, Any] =num_hidden_layers lowerCamelCase__ : int =num_attention_heads lowerCamelCase__ : str =initializer_range lowerCamelCase__ : Union[str, Any] =initializer_factor lowerCamelCase__ : Union[str, Any] =attention_dropout lowerCamelCase__ : int =layer_norm_eps lowerCamelCase__ : Optional[int] =dense_act_fn lowerCamelCase__ : Union[str, Any] =seq_len lowerCamelCase__ : Any =relative_attention_num_buckets lowerCamelCase__ : str =relative_attention_max_distance lowerCamelCase__ : Optional[Any] =d_kv @classmethod def UpperCAmelCase__ ( cls :List[str] , lowerCamelCase_ :Union[str, os.PathLike] , **lowerCamelCase_ :Tuple ): """simple docstring""" cls._set_token_in_kwargs(lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[Any] =cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": lowerCamelCase__ : List[Any] =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = """pix2struct""" SCREAMING_SNAKE_CASE_ = True def __init__( self :Dict , lowerCamelCase_ :List[Any]=None , lowerCamelCase_ :str=None , lowerCamelCase_ :Tuple=1.0 , lowerCamelCase_ :int=0.02 , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :int=False , lowerCamelCase_ :Optional[int]=True , **lowerCamelCase_ :Union[str, Any] , ): """simple docstring""" super().__init__(tie_word_embeddings=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , **lowerCamelCase_ ) if text_config is None: lowerCamelCase__ : int ={} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: lowerCamelCase__ : str ={} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) lowerCamelCase__ : str =PixaStructTextConfig(**lowerCamelCase_ ) lowerCamelCase__ : Tuple =PixaStructVisionConfig(**lowerCamelCase_ ) lowerCamelCase__ : int =self.text_config.decoder_start_token_id lowerCamelCase__ : Union[str, Any] =self.text_config.pad_token_id lowerCamelCase__ : Tuple =self.text_config.eos_token_id lowerCamelCase__ : int =initializer_factor lowerCamelCase__ : Optional[int] =initializer_range lowerCamelCase__ : Tuple =self.initializer_range lowerCamelCase__ : Optional[Any] =self.initializer_range lowerCamelCase__ : List[Any] =is_vqa @classmethod def UpperCAmelCase__ ( cls :int , lowerCamelCase_ :PixaStructTextConfig , lowerCamelCase_ :PixaStructVisionConfig , **lowerCamelCase_ :List[str] ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :Dict ): """simple docstring""" lowerCamelCase__ : List[str] =copy.deepcopy(self.__dict__ ) lowerCamelCase__ : Any =self.text_config.to_dict() lowerCamelCase__ : str =self.vision_config.to_dict() lowerCamelCase__ : int =self.__class__.model_type return output
126
"""simple docstring""" import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class A_ ( A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = AlbertTokenizer SCREAMING_SNAKE_CASE_ = AlbertTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def UpperCAmelCase__ ( self :Any ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ : Optional[int] =AlbertTokenizer(lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self :Tuple , lowerCamelCase_ :Optional[Any] ): """simple docstring""" lowerCamelCase__ : Dict ='this is a test' lowerCamelCase__ : Union[str, Any] ='this is a test' return input_text, output_text def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" lowerCamelCase__ : Any ='<pad>' lowerCamelCase__ : int =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" lowerCamelCase__ : int =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(lowerCamelCase_ ) , 30_000 ) def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" if not self.test_rust_tokenizer: return lowerCamelCase__ : str =self.get_tokenizer() lowerCamelCase__ : int =self.get_rust_tokenizer() lowerCamelCase__ : Optional[Any] ='I was born in 92000, and this is falsé.' lowerCamelCase__ : str =tokenizer.tokenize(lowerCamelCase_ ) lowerCamelCase__ : Any =rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : Any =tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) lowerCamelCase__ : Any =rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =self.get_rust_tokenizer() lowerCamelCase__ : List[str] =tokenizer.encode(lowerCamelCase_ ) lowerCamelCase__ : int =rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" lowerCamelCase__ : str =AlbertTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) lowerCamelCase__ : List[Any] =tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCamelCase_ , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [48, 25, 21, 1_289] ) lowerCamelCase__ : Union[str, Any] =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase_ , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) lowerCamelCase__ : List[str] =tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , [31, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] ) lowerCamelCase__ : Optional[int] =tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" lowerCamelCase__ : Optional[Any] =AlbertTokenizer(lowerCamelCase_ ) lowerCamelCase__ : List[Any] =tokenizer.encode('sequence builders' ) lowerCamelCase__ : Optional[Any] =tokenizer.encode('multi-sequence build' ) lowerCamelCase__ : str =tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) lowerCamelCase__ : Dict =tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" lowerCamelCase__ : Dict ={'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 21_970, 13, 5, 6_092, 167, 28, 7_103, 2_153, 673, 8, 7_028, 12_051, 18, 17, 7_103, 2_153, 673, 8, 3_515, 18_684, 8, 4_461, 6, 1_927, 297, 8, 12_060, 2_607, 18, 13, 5, 4_461, 15, 10_538, 38, 8, 135, 15, 822, 58, 15, 993, 10_363, 15, 1_460, 8_005, 4_461, 15, 993, 255, 2_328, 9, 9, 9, 6, 26, 1_112, 816, 3_260, 13, 5, 103, 2_377, 6, 17, 1_112, 816, 2_782, 13, 5, 103, 10_641, 6, 29, 84, 2_512, 2_430, 782, 18_684, 2_761, 19, 808, 2_430, 2_556, 17, 855, 1_480, 9_477, 4_091, 128, 11_712, 15, 7_103, 2_153, 673, 17, 24_883, 9_990, 9, 3], [2, 11_502, 25, 1_006, 20, 782, 8, 11_809, 855, 1_732, 19_393, 18_667, 37, 367, 21_018, 69, 1_854, 34, 11_860, 19_124, 27, 156, 225, 17, 193, 4_141, 19, 65, 9_124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2_231, 886, 2_385, 17_659, 84, 14, 16_792, 1_952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
126
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( A__ , unittest.TestCase ): A__ = DiTPipeline A__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS A__ = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } A__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS A__ = False def A ( self : int ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_a , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=_a , ) _SCREAMING_SNAKE_CASE =AutoencoderKL() _SCREAMING_SNAKE_CASE =DDIMScheduler() _SCREAMING_SNAKE_CASE ={'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def A ( self : int , _a : str , _a : Union[str, Any]=0 ) -> str: '''simple docstring''' if str(_a ).startswith('mps' ): _SCREAMING_SNAKE_CASE =torch.manual_seed(_a ) else: _SCREAMING_SNAKE_CASE =torch.Generator(device=_a ).manual_seed(_a ) _SCREAMING_SNAKE_CASE ={ 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def A ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE ='cpu' _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) _SCREAMING_SNAKE_CASE =pipe(**_a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _SCREAMING_SNAKE_CASE =np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) _SCREAMING_SNAKE_CASE =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def A ( self : Dict ) -> Any: '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=_a , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def A ( self : Optional[int] ) -> Dict: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class A__ ( unittest.TestCase ): def A ( self : int ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : str ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _SCREAMING_SNAKE_CASE =['vase', 'umbrella', 'white shark', 'white wolf'] _SCREAMING_SNAKE_CASE =pipe.get_label_ids(_a ) _SCREAMING_SNAKE_CASE =pipe(_a , generator=_a , num_inference_steps=40 , output_type='np' ).images for word, image in zip(_a , _a ): _SCREAMING_SNAKE_CASE =load_numpy( f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def A ( self : int ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _SCREAMING_SNAKE_CASE =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _SCREAMING_SNAKE_CASE =['vase', 'umbrella'] _SCREAMING_SNAKE_CASE =pipe.get_label_ids(_a ) _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =pipe(_a , generator=_a , num_inference_steps=25 , output_type='np' ).images for word, image in zip(_a , _a ): _SCREAMING_SNAKE_CASE =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
114
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : int = 50 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =[[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
114
1
import baseaa def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bytes: return baseaa.baaencode(string.encode('utf-8' ) ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: return baseaa.baadecode(_UpperCAmelCase ).decode('utf-8' ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = """Hello World!""" _UpperCAmelCase : int = baseaa_encode(test) print(encoded) _UpperCAmelCase : Optional[int] = baseaa_decode(encoded) print(decoded)
50
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: create_state_space_tree(_UpperCAmelCase , [] , 0 ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: if index == len(_UpperCAmelCase ): print(_UpperCAmelCase ) return create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _UpperCAmelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
50
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} ) lowerCamelCase = Features({'audio': Audio()} ) lowerCamelCase = Features({'transcription': Value('string' )} ) lowerCamelCase = "audio" lowerCamelCase = "transcription" def snake_case__ ( self : Optional[int],lowercase_ : Any )-> List[Any]: '''simple docstring''' if self.audio_column not in features: raise ValueError(F'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column],lowercase_ ): raise ValueError(F'Column {self.audio_column} is not an Audio type.' ) A__ = copy.deepcopy(self ) A__ = self.input_schema.copy() A__ = features[self.audio_column] A__ = input_schema return task_template @property def snake_case__ ( self : Optional[int] )-> Dict[str, str]: '''simple docstring''' return {self.audio_column: "audio", self.transcription_column: "transcription"}
282
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[Any],lowercase_ : str )-> List[Any]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'],model_result['ss'] ): A__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(lowercase_ ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' A__ = 'sgugger/tiny-distilbert-classification' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,only_pretrain_model=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,torchscript=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu','Cant do half precision' ) def snake_case__ ( self : Any )-> Dict: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,fpaa=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : Any )-> Optional[Any]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = AutoConfig.from_pretrained(lowercase_ ) # set architectures equal to `None` A__ = None A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : Union[str, Any] )-> int: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu','Can\'t do half precision' ) def snake_case__ ( self : List[Any] )-> Dict: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],fpaa=lowercase_,multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__ ( self : int )-> Optional[int]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' A__ = 'sshleifer/tinier_bart' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : List[str] )-> List[str]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__ ( self : int )-> Union[str, Any]: '''simple docstring''' A__ = 'sshleifer/tinier_bart' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__ ( self : Optional[Any] )-> Tuple: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,save_to_csv=lowercase_,sequence_lengths=[8],batch_sizes=[1],inference_time_csv_file=os.path.join(lowercase_,'inf_time.csv' ),train_memory_csv_file=os.path.join(lowercase_,'train_mem.csv' ),inference_memory_csv_file=os.path.join(lowercase_,'inf_mem.csv' ),train_time_csv_file=os.path.join(lowercase_,'train_time.csv' ),env_info_csv_file=os.path.join(lowercase_,'env.csv' ),multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) benchmark.run() self.assertTrue(Path(os.path.join(lowercase_,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'env.csv' ) ).exists() ) def snake_case__ ( self : Tuple )-> str: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(lowercase_ : Optional[Any] ): self.assertTrue(hasattr(lowercase_,'sequential' ) ) self.assertTrue(hasattr(lowercase_,'cumulative' ) ) self.assertTrue(hasattr(lowercase_,'current' ) ) self.assertTrue(hasattr(lowercase_,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],log_filename=os.path.join(lowercase_,'log.txt' ),log_print=lowercase_,trace_memory_line_by_line=lowercase_,multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowercase_,'log.txt' ) ).exists() )
282
1
def A (__A : str , __A : int ) -> list: """simple docstring""" UpperCAmelCase_ = word.split() def justify(__A : list , __A : int , __A : int ) -> str: UpperCAmelCase_ = max_width - width UpperCAmelCase_ = len(__A ) if len(__A ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: UpperCAmelCase_ = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] UpperCAmelCase_ = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] UpperCAmelCase_ = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__A ): num_spaces_between_words_list[i] += 1 UpperCAmelCase_ = [] for i in range(__A ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__A ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = 0 for word in words: if width + len(__A ) + len(__A ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__A ) width += len(__A ) else: # justify the line and add it to result answer.append(justify(__A , __A , __A ) ) # reset new line and new width UpperCAmelCase_ , UpperCAmelCase_ = [word], len(__A ) UpperCAmelCase_ = max_width - width - len(__A ) answer.append(''' '''.join(__A ) + (remaining_spaces + 1) * ''' ''' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
51
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def lowerCamelCase__ ( _A , _A ): if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
297
0
from __future__ import annotations __UpperCAmelCase = [True] * 1_00_00_01 __UpperCAmelCase = 2 while i * i <= 1_00_00_00: if seive[i]: for j in range(i * i, 1_00_00_01, i): __UpperCAmelCase = False i += 1 def __UpperCamelCase ( lowercase__ : int ) -> bool: '''simple docstring''' return seive[n] def __UpperCamelCase ( lowercase__ : int ) -> bool: '''simple docstring''' return any(digit in """02468""" for digit in str(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : int = 1000000 ) -> list[int]: '''simple docstring''' lowerCAmelCase_ : int = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(lowercase__ ) and not contains_an_even_digit(lowercase__ ): lowerCAmelCase_ : Tuple = str(lowercase__ ) lowerCAmelCase_ : List[Any] = [int(str_num[j:] + str_num[:j] ) for j in range(len(lowercase__ ) )] if all(is_prime(lowercase__ ) for i in list_nums ): result.append(lowercase__ ) return result def __UpperCamelCase ( ) -> int: '''simple docstring''' return len(find_circular_primes() ) if __name__ == "__main__": print(f"""{len(find_circular_primes()) = }""")
354
from __future__ import annotations from typing import Any class __a : def __init__( self : Dict , UpperCAmelCase : int = 6 ): lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None self.create_linked_list(UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : int = current_node lowerCAmelCase_ : str = current_node lowerCAmelCase_ : Union[str, Any] = current_node for _ in range(1 , UpperCAmelCase ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : Dict = current_node lowerCAmelCase_ : Optional[int] = previous_node lowerCAmelCase_ : Optional[Any] = current_node lowerCAmelCase_ : List[str] = self.front lowerCAmelCase_ : Optional[int] = previous_node def A ( self : Any ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A ( self : List[str] ): self.check_can_perform_operation() return self.front.data if self.front else None def A ( self : Optional[int] , UpperCAmelCase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase_ : int = self.rear.next if self.rear: lowerCAmelCase_ : Union[str, Any] = data def A ( self : List[Any] ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase_ : int = self.front.data lowerCAmelCase_ : Optional[Any] = None return data lowerCAmelCase_ : Optional[int] = self.front lowerCAmelCase_ : Any = old_front.next lowerCAmelCase_ : Tuple = old_front.data lowerCAmelCase_ : str = None return data def A ( self : Tuple ): if self.is_empty(): raise Exception("""Empty Queue""" ) def A ( self : List[str] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __a : def __init__( self : Any ): lowerCAmelCase_ : Any | None = None lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
28
0
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A : List[str] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=None ): '''simple docstring''' require_version(deps[pkg] , _UpperCamelCase )
57
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = DDIMPipeline lowerCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowerCamelCase__ = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } lowerCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowerCamelCase__ = False def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) _lowerCamelCase : List[str] = DDIMScheduler() _lowerCamelCase : Optional[int] = {'unet': unet, 'scheduler': scheduler} return components def A_ ( self , lowercase , lowercase=0 ): if str(lowercase ).startswith('mps' ): _lowerCamelCase : Dict = torch.manual_seed(lowercase ) else: _lowerCamelCase : List[str] = torch.Generator(device=lowercase ).manual_seed(lowercase ) _lowerCamelCase : Tuple = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def A_ ( self ): _lowerCamelCase : Any = 'cpu' _lowerCamelCase : Tuple = self.get_dummy_components() _lowerCamelCase : Optional[Any] = self.pipeline_class(**lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : str = self.get_dummy_inputs(lowercase ) _lowerCamelCase : int = pipe(**lowercase ).images _lowerCamelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) _lowerCamelCase : Tuple = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) _lowerCamelCase : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase , 1E-3 ) def A_ ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def A_ ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def A_ ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def A_ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Optional[Any] = 'google/ddpm-cifar10-32' _lowerCamelCase : Optional[Any] = UNetaDModel.from_pretrained(lowercase ) _lowerCamelCase : Dict = DDIMScheduler() _lowerCamelCase : Dict = DDIMPipeline(unet=lowercase , scheduler=lowercase ) ddim.to(lowercase ) ddim.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : List[str] = torch.manual_seed(0 ) _lowerCamelCase : str = ddim(generator=lowercase , eta=0.0 , output_type='numpy' ).images _lowerCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCamelCase : List[Any] = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A_ ( self ): _lowerCamelCase : Optional[int] = 'google/ddpm-ema-bedroom-256' _lowerCamelCase : str = UNetaDModel.from_pretrained(lowercase ) _lowerCamelCase : str = DDIMScheduler.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = DDIMPipeline(unet=lowercase , scheduler=lowercase ) ddpm.to(lowercase ) ddpm.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = torch.manual_seed(0 ) _lowerCamelCase : int = ddpm(generator=lowercase , output_type='numpy' ).images _lowerCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCamelCase : str = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
96
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( lowerCAmelCase ): lowerCAmelCase_ : str = ["image_processor", "tokenizer"] lowerCAmelCase_ : Optional[int] = "Pix2StructImageProcessor" lowerCAmelCase_ : Union[str, Any] = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] ): lowerCAmelCase : List[Any] = False super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Union[str, Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = 2048 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : Any , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: lowerCAmelCase : List[str] = self.tokenizer lowerCAmelCase : int = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowerCAmelCase : List[str] = self.image_processor( UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , max_patches=UpperCAmelCase_ , **UpperCAmelCase_ ) else: # add pixel_values and bbox lowerCAmelCase : List[Any] = self.image_processor( UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , max_patches=UpperCAmelCase_ , header_text=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and not self.image_processor.is_vqa: lowerCAmelCase : Dict = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) if "attention_mask" in text_encoding: lowerCAmelCase : Optional[Any] = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: lowerCAmelCase : str = text_encoding.pop('input_ids' ) else: lowerCAmelCase : List[str] = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase_ ) return encoding_image_processor def lowercase__ ( self : List[Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Tuple ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def lowercase__ ( self : str , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : str ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.tokenizer.model_input_names lowerCAmelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
323
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
1
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase ( self : int ) -> Optional[Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase ( self : Any ) -> Any: __UpperCAmelCase : List[str] = ort.SessionOptions() __UpperCAmelCase : List[str] = False return options def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: __UpperCAmelCase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) __UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) __UpperCAmelCase : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default __UpperCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=__lowercase , feature_extractor=__lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Optional[Any] = """A red cat sitting on a park bench""" __UpperCAmelCase : List[str] = np.random.RandomState(0 ) __UpperCAmelCase : Union[str, Any] = pipe( prompt=__lowercase , image=__lowercase , mask_image=__lowercase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=__lowercase , output_type="""np""" , ) __UpperCAmelCase : List[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
114
def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] ): __UpperCAmelCase : Tuple = [1] for i in range(2 , __lowerCamelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : str = list(range(__lowerCamelCase ) ) # Find permutation while factorials: __UpperCAmelCase : Any = factorials.pop() __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = divmod(__lowerCamelCase , __lowerCamelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
114
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _snake_case = 0 _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _snake_case = tuple[int, int] class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: Dict , ) -> Any: __UpperCAmelCase : Union[str, Any] = pos_x __UpperCAmelCase : Union[str, Any] = pos_y __UpperCAmelCase : Tuple = (pos_y, pos_x) __UpperCAmelCase : Union[str, Any] = goal_x __UpperCAmelCase : str = goal_y __UpperCAmelCase : List[Any] = g_cost __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : Union[str, Any] = self.calculate_heuristic() __UpperCAmelCase : List[str] = self.g_cost + self.h_cost def _lowerCamelCase ( self: Any ) -> Union[str, Any]: __UpperCAmelCase : Optional[int] = self.pos_x - self.goal_x __UpperCAmelCase : Optional[int] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(__SCREAMING_SNAKE_CASE ) + abs(__SCREAMING_SNAKE_CASE ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self: str , __lowerCamelCase: List[str] ) -> List[str]: return self.f_cost < other.f_cost class _snake_case : def __init__( self: Optional[int] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : Optional[int] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Any = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Tuple = [self.start] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Dict = False def _lowerCamelCase ( self: str ) -> Optional[int]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __UpperCAmelCase : Union[str, Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(__SCREAMING_SNAKE_CASE ) self.closed_nodes.append(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Union[str, Any] = self.get_successors(__SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__SCREAMING_SNAKE_CASE ) else: # retrieve the best current path __UpperCAmelCase : Tuple = self.open_nodes.pop(self.open_nodes.index(__SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(__SCREAMING_SNAKE_CASE ) return [self.start.pos] def _lowerCamelCase ( self: Dict , __lowerCamelCase: Any ) -> List[Any]: __UpperCAmelCase : int = [] for action in delta: __UpperCAmelCase : Union[str, Any] = parent.pos_x + action[1] __UpperCAmelCase : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __SCREAMING_SNAKE_CASE , ) ) return successors def _lowerCamelCase ( self: Tuple , __lowerCamelCase: int ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = node __UpperCAmelCase : Optional[int] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __UpperCAmelCase : int = current_node.parent path.reverse() return path class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: int ) -> List[str]: __UpperCAmelCase : int = AStar(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Dict = AStar(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Tuple = False def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __UpperCAmelCase : Optional[Any] = self.fwd_astar.open_nodes.pop(0 ) __UpperCAmelCase : str = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.fwd_astar.closed_nodes.append(__SCREAMING_SNAKE_CASE ) self.bwd_astar.closed_nodes.append(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : str = current_bwd_node __UpperCAmelCase : Dict = current_fwd_node __UpperCAmelCase : Optional[Any] = { self.fwd_astar: self.fwd_astar.get_successors(__SCREAMING_SNAKE_CASE ), self.bwd_astar: self.bwd_astar.get_successors(__SCREAMING_SNAKE_CASE ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(__SCREAMING_SNAKE_CASE ) else: # retrieve the best current path __UpperCAmelCase : Union[str, Any] = astar.open_nodes.pop( astar.open_nodes.index(__SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(__SCREAMING_SNAKE_CASE ) else: astar.open_nodes.append(__SCREAMING_SNAKE_CASE ) return [self.fwd_astar.start.pos] def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: List[str] , __lowerCamelCase: Dict ) -> List[str]: __UpperCAmelCase : List[str] = self.fwd_astar.retrace_path(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Optional[Any] = self.bwd_astar.retrace_path(__SCREAMING_SNAKE_CASE ) bwd_path.pop() bwd_path.reverse() __UpperCAmelCase : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case = time.time() _snake_case = AStar(init, goal) _snake_case = a_star.search() _snake_case = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') _snake_case = time.time() _snake_case = BidirectionalAStar(init, goal) _snake_case = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
352
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
import random class SCREAMING_SNAKE_CASE__ : '''simple docstring''' @staticmethod def A ( lowercase : str ): '''simple docstring''' _snake_case = [ord(lowercase ) for i in text] _snake_case = [] _snake_case = [] for i in plain: _snake_case = random.randint(1 , 300 ) _snake_case = (i + k) * k cipher.append(lowercase ) key.append(lowercase ) return cipher, key @staticmethod def A ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' _snake_case = [] for i in range(len(lowercase ) ): _snake_case = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowercase ) ) return "".join(lowercase ) if __name__ == "__main__": _lowerCamelCase , _lowerCamelCase : Union[str, Any] = Onepad().encrypt('''Hello''') print(c, k) print(Onepad().decrypt(c, k))
282
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def A ( self : int ): '''simple docstring''' _snake_case = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) _snake_case = AutoTokenizer.from_pretrained('xlm-roberta-base' ) _snake_case = 'The dog is cute and lives in the garden house' _snake_case = jnp.array([tokenizer.encode(lowercase )] ) _snake_case = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim _snake_case = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) _snake_case = model(lowercase )['last_hidden_state'] self.assertEqual(output.shape , lowercase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , lowercase , atol=1E-3 ) )
282
1
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase : str = { """susnato/ernie-m-base_pytorch""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json""", """susnato/ernie-m-large_pytorch""": """https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json""", } class UpperCamelCase ( a_ ): """simple docstring""" A : List[Any] = "ernie_m" A : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : str , UpperCAmelCase_ : int = 2_5_0_0_0_2 , UpperCAmelCase_ : int = 7_6_8 , UpperCAmelCase_ : int = 1_2 , UpperCAmelCase_ : int = 1_2 , UpperCAmelCase_ : int = 3_0_7_2 , UpperCAmelCase_ : str = "gelu" , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : int = 5_1_4 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : float = 1e-05 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[str]=0.0 , **UpperCAmelCase_ : Any , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) a : int = vocab_size a : Dict = hidden_size a : Optional[int] = num_hidden_layers a : Any = num_attention_heads a : Tuple = intermediate_size a : Union[str, Any] = hidden_act a : Optional[Any] = hidden_dropout_prob a : Dict = attention_probs_dropout_prob a : Union[str, Any] = max_position_embeddings a : Dict = initializer_range a : Optional[Any] = layer_norm_eps a : Any = classifier_dropout a : List[str] = is_decoder a : Dict = act_dropout
345
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any): """simple docstring""" super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) a : str = {} def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Tuple , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int): """simple docstring""" a : Dict = super().add_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.') def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str]=1 , **UpperCAmelCase_ : Optional[int]): """simple docstring""" a : Any = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) else: a : int = [] for i in range(UpperCAmelCase_): a : Union[str, Any] = placeholder_token + f"""_{i}""" self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""") a : Any = output def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=1.0): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): a : Any = [] for i in range(len(UpperCAmelCase_)): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCAmelCase_)) return output for placeholder_token in self.token_map: if placeholder_token in text: a : List[Any] = self.token_map[placeholder_token] a : int = tokens[: 1 + int(len(UpperCAmelCase_) * prop_tokens_to_load)] if vector_shuffle: a : List[Any] = copy.copy(UpperCAmelCase_) random.shuffle(UpperCAmelCase_) a : List[str] = text.replace(UpperCAmelCase_ , ' '.join(UpperCAmelCase_)) return text def __call__( self : Optional[int] , UpperCAmelCase_ : Any , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Optional[int]=1.0 , **UpperCAmelCase_ : str): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1.0 , **UpperCAmelCase_ : Dict): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , )
345
1
from __future__ import annotations import math class lowercase : def __init__( self , _a ) -> List[Any]: _A : Optional[Any] = size # approximate the overall size of segment tree with given value _A : int = [0 for i in range(0 , 4 * size )] # create array to store lazy update _A : Tuple = [0 for i in range(0 , 4 * size )] _A : Optional[Any] = [0 for i in range(0 , 4 * size )] # flag for lazy update def a__ ( self , _a ) -> Any: return idx * 2 def a__ ( self , _a ) -> int: return idx * 2 + 1 def a__ ( self , _a , _a , _a , _a ) -> List[Any]: if left_element == right_element: _A : Union[str, Any] = a[left_element - 1] else: _A : Any = (left_element + right_element) // 2 self.build(self.left(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.build(self.right(UpperCamelCase__ ) , mid + 1 , UpperCamelCase__ , UpperCamelCase__ ) _A : List[str] = max( self.segment_tree[self.left(UpperCamelCase__ )] , self.segment_tree[self.right(UpperCamelCase__ )] ) def a__ ( self , _a , _a , _a , _a , _a , _a ) -> Optional[Any]: if self.flag[idx] is True: _A : Tuple = self.lazy[idx] _A : List[Any] = False if left_element != right_element: _A : Tuple = self.lazy[idx] _A : Tuple = self.lazy[idx] _A : Dict = True _A : List[str] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: _A : Any = val if left_element != right_element: _A : Union[str, Any] = val _A : Optional[Any] = val _A : str = True _A : Any = True return True _A : Union[str, Any] = (left_element + right_element) // 2 self.update(self.left(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.update(self.right(UpperCamelCase__ ) , mid + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _A : Optional[Any] = max( self.segment_tree[self.left(UpperCamelCase__ )] , self.segment_tree[self.right(UpperCamelCase__ )] ) return True def a__ ( self , _a , _a , _a , _a , _a ) -> int: if self.flag[idx] is True: _A : Dict = self.lazy[idx] _A : Tuple = False if left_element != right_element: _A : str = self.lazy[idx] _A : Union[str, Any] = self.lazy[idx] _A : str = True _A : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] _A : Optional[Any] = (left_element + right_element) // 2 _A : int = self.query(self.left(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _A : List[Any] = self.query(self.right(UpperCamelCase__ ) , mid + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return max(UpperCamelCase__ , UpperCamelCase__ ) def __str__( self ) -> Any: return str([self.query(1 , 1 , self.size , UpperCamelCase__ , UpperCamelCase__ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _snake_case = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _snake_case = 15 _snake_case = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
26
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any=1_3 , UpperCamelCase__ : Optional[int]=3_2 , UpperCamelCase__ : Any=3 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : str=[1_0, 2_0, 3_0, 4_0] , UpperCamelCase__ : str=[2, 2, 3, 2] , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=3_7 , UpperCamelCase__ : Union[str, Any]="gelu" , UpperCamelCase__ : Dict=1_0 , UpperCamelCase__ : Union[str, Any]=0.0_2 , UpperCamelCase__ : int=["stage2", "stage3", "stage4"] , UpperCamelCase__ : List[str]=[2, 3, 4] , UpperCamelCase__ : Any=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = num_stages UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = initializer_range UpperCamelCase = out_features UpperCamelCase = out_indices UpperCamelCase = scope def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def A ( self : List[str] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def A ( self : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : str ): """simple docstring""" UpperCamelCase = ConvNextModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def A ( self : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int ): """simple docstring""" UpperCamelCase = ConvNextForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str ): """simple docstring""" UpperCamelCase = ConvNextBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase = None UpperCamelCase = ConvNextBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def A ( self : Tuple ): """simple docstring""" UpperCamelCase = ConvNextModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=3_7 ) def A ( self : List[str] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Optional[int] ): """simple docstring""" return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def A ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def A ( self : List[Any] ): """simple docstring""" pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def A ( self : Optional[int] ): """simple docstring""" pass def A ( self : Any ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(UpperCamelCase__ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase__ ) def A ( self : Optional[Any] ): """simple docstring""" def check_hidden_states_output(UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ): UpperCamelCase = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def A ( self : Dict ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = ConvNextModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __lowerCamelCase ( ) -> Any: """simple docstring""" UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : Optional[Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(UpperCamelCase__ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**UpperCamelCase__ ) # verify the logits UpperCamelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) UpperCamelCase = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase , _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = (ConvNextBackbone,) if is_torch_available() else () _SCREAMING_SNAKE_CASE = ConvNextConfig _SCREAMING_SNAKE_CASE = False def A ( self : Tuple ): """simple docstring""" UpperCamelCase = ConvNextModelTester(self )
28
0
from __future__ import annotations __A = 10 def __a ( lowerCAmelCase_ : list[int] ) -> list[int]: '''simple docstring''' UpperCAmelCase_= 1 UpperCAmelCase_= max(lowerCAmelCase_ ) while placement <= max_digit: # declare and initialize empty buckets UpperCAmelCase_= [[] for _ in range(lowerCAmelCase_ )] # split list_of_ints between the buckets for i in list_of_ints: UpperCAmelCase_= int((i / placement) % RADIX ) buckets[tmp].append(lowerCAmelCase_ ) # put each buckets' contents into list_of_ints UpperCAmelCase_= 0 for b in range(lowerCAmelCase_ ): for i in buckets[b]: UpperCAmelCase_= i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
277
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowercase ( snake_case__): """simple docstring""" a__ : str = ["vqvae"] def __init__( self : List[Any] , __UpperCAmelCase : AutoencoderKL , __UpperCAmelCase : UNetaDConditionModel , __UpperCAmelCase : Mel , __UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ) -> str: super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , mel=__UpperCAmelCase , vqvae=__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return 50 if isinstance(self.scheduler , __UpperCAmelCase ) else 1_000 @torch.no_grad() def __call__( self : List[Any] , __UpperCAmelCase : int = 1 , __UpperCAmelCase : str = None , __UpperCAmelCase : np.ndarray = None , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = None , __UpperCAmelCase : torch.Generator = None , __UpperCAmelCase : float = 0 , __UpperCAmelCase : float = 0 , __UpperCAmelCase : torch.Generator = None , __UpperCAmelCase : float = 0 , __UpperCAmelCase : torch.Tensor = None , __UpperCAmelCase : torch.Tensor = None , __UpperCAmelCase : Union[str, Any]=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: UpperCAmelCase_= steps or self.get_default_steps() self.scheduler.set_timesteps(__UpperCAmelCase ) UpperCAmelCase_= step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: UpperCAmelCase_= (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: UpperCAmelCase_= randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__UpperCAmelCase , device=self.device , ) UpperCAmelCase_= noise UpperCAmelCase_= None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= self.mel.audio_slice_to_image(__UpperCAmelCase ) UpperCAmelCase_= np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) UpperCAmelCase_= (input_image / 255) * 2 - 1 UpperCAmelCase_= torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: UpperCAmelCase_= self.vqvae.encode(torch.unsqueeze(__UpperCAmelCase , 0 ) ).latent_dist.sample( generator=__UpperCAmelCase )[0] UpperCAmelCase_= self.vqvae.config.scaling_factor * input_images if start_step > 0: UpperCAmelCase_= self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , self.scheduler.timesteps[start_step - 1] ) UpperCAmelCase_= ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) UpperCAmelCase_= int(mask_start_secs * pixels_per_second ) UpperCAmelCase_= int(mask_end_secs * pixels_per_second ) UpperCAmelCase_= self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __UpperCAmelCase ): UpperCAmelCase_= self.unet(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )["""sample"""] else: UpperCAmelCase_= self.unet(__UpperCAmelCase , __UpperCAmelCase )["""sample"""] if isinstance(self.scheduler , __UpperCAmelCase ): UpperCAmelCase_= self.scheduler.step( model_output=__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , )["""prev_sample"""] else: UpperCAmelCase_= self.scheduler.step( model_output=__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , generator=__UpperCAmelCase , )["""prev_sample"""] if mask is not None: if mask_start > 0: UpperCAmelCase_= mask[:, step, :, :mask_start] if mask_end > 0: UpperCAmelCase_= mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance UpperCAmelCase_= 1 / self.vqvae.config.scaling_factor * images UpperCAmelCase_= self.vqvae.decode(__UpperCAmelCase )["""sample"""] UpperCAmelCase_= (images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_= images.cpu().permute(0 , 2 , 3 , 1 ).numpy() UpperCAmelCase_= (images * 255).round().astype("""uint8""" ) UpperCAmelCase_= list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__UpperCAmelCase , mode="""RGB""" ).convert("""L""" ) for _ in images) ) UpperCAmelCase_= [self.mel.image_to_audio(__UpperCAmelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(__UpperCAmelCase ) ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : List[Image.Image] , __UpperCAmelCase : int = 50 ) -> np.ndarray: assert isinstance(self.scheduler , __UpperCAmelCase ) self.scheduler.set_timesteps(__UpperCAmelCase ) UpperCAmelCase_= np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) UpperCAmelCase_= (sample / 255) * 2 - 1 UpperCAmelCase_= torch.Tensor(__UpperCAmelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): UpperCAmelCase_= t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps UpperCAmelCase_= self.scheduler.alphas_cumprod[t] UpperCAmelCase_= ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) UpperCAmelCase_= 1 - alpha_prod_t UpperCAmelCase_= self.unet(__UpperCAmelCase , __UpperCAmelCase )["""sample"""] UpperCAmelCase_= (1 - alpha_prod_t_prev) ** 0.5 * model_output UpperCAmelCase_= (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) UpperCAmelCase_= sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _SCREAMING_SNAKE_CASE ( __UpperCAmelCase : torch.Tensor , __UpperCAmelCase : torch.Tensor , __UpperCAmelCase : float ) -> torch.Tensor: UpperCAmelCase_= acos(torch.dot(torch.flatten(__UpperCAmelCase ) , torch.flatten(__UpperCAmelCase ) ) / torch.norm(__UpperCAmelCase ) / torch.norm(__UpperCAmelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(__UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(__UpperCAmelCase )
277
1
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE__ = '''Pix2StructImageProcessor''' SCREAMING_SNAKE_CASE__ = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : Optional[int] , lowerCamelCase_ : Dict , lowerCamelCase_ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = False super().__init__(lowerCamelCase_ , lowerCamelCase_ ) def __call__( self : str , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase_ : bool = True , lowerCamelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[int] = 20_48 , lowerCamelCase_ : int = 0 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , **lowerCamelCase_ : Any , ): '''simple docstring''' if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE : Dict = self.tokenizer SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values SCREAMING_SNAKE_CASE : str = self.image_processor( lowerCamelCase_ , return_tensors=lowerCamelCase_ , max_patches=lowerCamelCase_ , **lowerCamelCase_ ) else: # add pixel_values and bbox SCREAMING_SNAKE_CASE : int = self.image_processor( lowerCamelCase_ , return_tensors=lowerCamelCase_ , max_patches=lowerCamelCase_ , header_text=lowerCamelCase_ , **lowerCamelCase_ ) if text is not None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) if "attention_mask" in text_encoding: SCREAMING_SNAKE_CASE : List[str] = text_encoding.pop("""attention_mask""" ) if "input_ids" in text_encoding: SCREAMING_SNAKE_CASE : Union[str, Any] = text_encoding.pop("""input_ids""" ) else: SCREAMING_SNAKE_CASE : Tuple = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase_ ) return encoding_image_processor def lowerCamelCase_ ( self : List[Any] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : int , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
323
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCAmelCase = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
323
1
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : int , __A : List[str]=10_24 , __A : Tuple=10_24 , __A : int=False , **__A : Dict ) -> Tuple: """simple docstring""" a_ : Any = AutoTokenizer.from_pretrained(__A ) a_ : Union[str, Any] = SeqaSeqDataset(__A , __A , __A , __A , type_path='train' , **__A ) a_ : int = tok.pad_token_id def get_lens(__A : Optional[int] ): a_ : int = tqdm( DataLoader(__A , batch_size=5_12 , num_workers=8 , shuffle=__A , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) a_ : Union[str, Any] = [] for batch in dl: a_ : Optional[int] = batch['input_ids'].ne(__A ).sum(1 ).tolist() a_ : Dict = batch['labels'].ne(__A ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__A , __A ): max_lens.append(max(__A , __A ) ) else: max_lens.extend(__A ) return max_lens a_ : List[str] = get_lens(__A ) a_ : Dict = SeqaSeqDataset(__A , __A , __A , __A , type_path='val' , **__A ) a_ : int = get_lens(__A ) pickle_save(__A , train_ds.len_file ) pickle_save(__A , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
120
from string import ascii_uppercase UpperCAmelCase_ : Dict = {char: i for i, char in enumerate(ascii_uppercase)} UpperCAmelCase_ : Optional[int] = dict(enumerate(ascii_uppercase)) def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str ) -> str: """simple docstring""" a_ : Tuple = len(__A ) a_ : int = 0 while True: if x == i: a_ : Tuple = 0 if len(__A ) == len(__A ): break key += key[i] i += 1 return key def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str ) -> str: """simple docstring""" a_ : Optional[int] = '' a_ : Any = 0 for letter in message: if letter == " ": cipher_text += " " else: a_ : Optional[Any] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str ) -> str: """simple docstring""" a_ : Any = '' a_ : Optional[Any] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: a_ : Union[str, Any] = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def SCREAMING_SNAKE_CASE_ ( ) -> None: """simple docstring""" a_ : Tuple = 'THE GERMAN ATTACK' a_ : Dict = 'SECRET' a_ : Optional[Any] = generate_key(__A , __A ) a_ : Union[str, Any] = cipher_text(__A , __A ) print(F"""Encrypted Text = {s}""" ) print(F"""Original Text = {original_text(__A , __A )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
120
1
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class a : """simple docstring""" def __init__( self: Any , UpperCamelCase: Any , UpperCamelCase: Any=13 , UpperCamelCase: int=7 , UpperCamelCase: Tuple=True , UpperCamelCase: Optional[Any]=True , UpperCamelCase: List[Any]=True , UpperCamelCase: str=True , UpperCamelCase: Dict=99 , UpperCamelCase: Dict=32 , UpperCamelCase: Optional[Any]=2 , UpperCamelCase: Union[str, Any]=4 , UpperCamelCase: Dict=37 , UpperCamelCase: Tuple="gelu" , UpperCamelCase: str=0.1 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: Any=5_12 , UpperCamelCase: Tuple=16 , UpperCamelCase: int=2 , UpperCamelCase: Tuple=0.02 , UpperCamelCase: str=3 , UpperCamelCase: Any=4 , UpperCamelCase: Optional[Any]=None , ): """simple docstring""" A__ = parent A__ = 13 A__ = 7 A__ = True A__ = True A__ = True A__ = True A__ = 99 A__ = 3_84 A__ = 2 A__ = 4 A__ = 37 A__ = """gelu""" A__ = 0.1 A__ = 0.1 A__ = 5_12 A__ = 16 A__ = 2 A__ = 0.02 A__ = 3 A__ = 4 A__ = 1_28 A__ = 2 A__ = 9 A__ = 1 A__ = None def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Any , UpperCamelCase: Optional[int] , UpperCamelCase: str , UpperCamelCase: List[str] , UpperCamelCase: Tuple , UpperCamelCase: int , UpperCamelCase: List[str] , UpperCamelCase: str ): """simple docstring""" A__ = TFConvBertModel(config=UpperCamelCase ) A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A__ = [input_ids, input_mask] A__ = model(UpperCamelCase ) A__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCamelCase: Tuple , UpperCamelCase: Any , UpperCamelCase: int , UpperCamelCase: Optional[Any] , UpperCamelCase: str , UpperCamelCase: Dict , UpperCamelCase: Any ): """simple docstring""" A__ = TFConvBertForMaskedLM(config=UpperCamelCase ) A__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } A__ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCamelCase: Any , UpperCamelCase: str , UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any] , UpperCamelCase: List[str] ): """simple docstring""" A__ = self.num_labels A__ = TFConvBertForSequenceClassification(config=UpperCamelCase ) A__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } A__ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Tuple , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Optional[Any] ): """simple docstring""" A__ = self.num_choices A__ = TFConvBertForMultipleChoice(config=UpperCamelCase ) A__ = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) A__ = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) A__ = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) A__ = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } A__ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self: List[str] , UpperCamelCase: Dict , UpperCamelCase: int , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: Any ): """simple docstring""" A__ = self.num_labels A__ = TFConvBertForTokenClassification(config=UpperCamelCase ) A__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } A__ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: str , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[Any] , UpperCamelCase: Dict , UpperCamelCase: str , UpperCamelCase: Union[str, Any] ): """simple docstring""" A__ = TFConvBertForQuestionAnswering(config=UpperCamelCase ) A__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } A__ = model(UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class a ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = TFConvBertModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def UpperCamelCase ( self: List[str] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase ) def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase ) @slow def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = True if hasattr(UpperCamelCase , """use_cache""" ): A__ = True A__ = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) A__ = getattr(self.model_tester , """key_length""" , UpperCamelCase ) for model_class in self.all_model_classes: A__ = self._prepare_for_class(UpperCamelCase , UpperCamelCase ) A__ = model_class(UpperCamelCase ) A__ = len(model(UpperCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase , saved_model=UpperCamelCase ) A__ = os.path.join(UpperCamelCase , """saved_model""" , """1""" ) A__ = tf.keras.models.load_model(UpperCamelCase ) A__ = model(UpperCamelCase ) if self.is_encoder_decoder: A__ = outputs["""encoder_hidden_states"""] A__ = outputs["""encoder_attentions"""] else: A__ = outputs["""hidden_states"""] A__ = outputs["""attentions"""] self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) A__ = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) A__ = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) A__ = getattr(self.model_tester , """key_length""" , UpperCamelCase ) A__ = getattr(self.model_tester , """key_length""" , UpperCamelCase ) def check_decoder_attentions_output(UpperCamelCase: Union[str, Any] ): A__ = len(UpperCamelCase ) self.assertEqual(out_len % 2 , 0 ) A__ = outputs.decoder_attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCamelCase: Tuple ): A__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A__ = True A__ = False A__ = model_class(UpperCamelCase ) A__ = model(self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = len(UpperCamelCase ) self.assertEqual(config.output_hidden_states , UpperCamelCase ) check_encoder_attentions_output(UpperCamelCase ) if self.is_encoder_decoder: A__ = model_class(UpperCamelCase ) A__ = model(self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , UpperCamelCase ) check_decoder_attentions_output(UpperCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCamelCase ) A__ = model(self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , UpperCamelCase ) check_encoder_attentions_output(UpperCamelCase ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(UpperCamelCase ) A__ = model(self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCamelCase ) ) self.assertEqual(model.config.output_hidden_states , UpperCamelCase ) check_encoder_attentions_output(UpperCamelCase ) @require_tf class a ( unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) A__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A__ = model(UpperCamelCase )[0] A__ = [1, 6, 7_68] self.assertEqual(output.shape , UpperCamelCase ) A__ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase , atol=1e-4 )
335
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class a ( unittest.TestCase ): """simple docstring""" def __init__( self: Optional[Any] , UpperCamelCase: Any , UpperCamelCase: Optional[int]=7 , UpperCamelCase: str=3 , UpperCamelCase: int=30 , UpperCamelCase: int=4_00 , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: Tuple=None , UpperCamelCase: Any=True , UpperCamelCase: int=[0.5, 0.5, 0.5] , UpperCamelCase: Any=[0.5, 0.5, 0.5] , UpperCamelCase: Optional[Any]=True , UpperCamelCase: List[Any]=1 / 2_55 , UpperCamelCase: Tuple=True , ): """simple docstring""" A__ = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase ( self: Any , UpperCamelCase: List[str] , UpperCamelCase: int=False ): """simple docstring""" if not batched: A__ = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size["""shortest_edge"""] * h / w ) A__ = self.size["""shortest_edge"""] elif w > h: A__ = self.size["""shortest_edge"""] A__ = int(self.size["""shortest_edge"""] * w / h ) else: A__ = self.size["""shortest_edge"""] A__ = self.size["""shortest_edge"""] else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] A__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a ( _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = YolosImageProcessor if is_vision_available() else None def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = YolosImageProcessingTester(self ) @property def UpperCamelCase ( self: Optional[int] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """size""" ) ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" pass def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) A__ = self.image_processing_class(do_resize=UpperCamelCase , do_normalize=UpperCamelCase , do_rescale=UpperCamelCase ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors A__ = image_processing_a.pad(UpperCamelCase , return_tensors="""pt""" ) A__ = image_processing_a(UpperCamelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def UpperCamelCase ( self: str ): """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: A__ = json.loads(f.read() ) A__ = {"""image_id""": 3_97_69, """annotations""": target} # encode them A__ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) A__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , return_tensors="""pt""" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area A__ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase ) A__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) ) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) ) @slow def UpperCamelCase ( self: int ): """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: A__ = json.loads(f.read() ) A__ = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} A__ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them A__ = YolosImageProcessor(format="""coco_panoptic""" ) A__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , masks_path=UpperCamelCase , return_tensors="""pt""" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area A__ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) ) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) ) # verify masks A__ = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCamelCase ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) )
335
1
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = StableUnCLIPPipeline UpperCAmelCase : int = TEXT_TO_IMAGE_PARAMS UpperCAmelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase : int = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase : str = False def lowerCAmelCase_ ( self : Dict ): _A = 32 _A = embedder_hidden_size # prior components torch.manual_seed(0 ) _A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) _A = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCAmelCase , projection_dim=_UpperCAmelCase , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) _A = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_UpperCAmelCase , num_layers=1 , ) torch.manual_seed(0 ) _A = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_000 , clip_sample=_UpperCAmelCase , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) _A = StableUnCLIPImageNormalizer(embedding_dim=_UpperCAmelCase ) _A = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) _A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) _A = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) _A = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_UpperCAmelCase , layers_per_block=1 , upcast_attention=_UpperCAmelCase , use_linear_projection=_UpperCAmelCase , ) torch.manual_seed(0 ) _A = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) _A = AutoencoderKL() _A = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any]=0 ): if str(_UpperCAmelCase ).startswith('mps' ): _A = torch.manual_seed(_UpperCAmelCase ) else: _A = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) _A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCAmelCase_ ( self : str ): _A = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): _A = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=_UpperCAmelCase ) @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : List[Any] ): _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) _A = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _A = torch.Generator(device='cpu' ).manual_seed(0 ) _A = pipe('anime turle' , generator=_UpperCAmelCase , output_type='np' ) _A = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _A = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) _A = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _A = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) _A = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
369
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings a = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) UpperCAmelCase : Optional[Union[str, Path, GenerationConfig]] = field( default=__lowerCAmelCase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def lowerCAmelCase_ ( self : int ): _A = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _A = v.to_dict() return d
271
0
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase_ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Union[str, Any] = "ernie_m" A__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self: str ,lowerCamelCase_: int = 250002 ,lowerCamelCase_: int = 768 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 3072 ,lowerCamelCase_: str = "gelu" ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: int = 514 ,lowerCamelCase_: float = 0.0_2 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: float = 1e-05 ,lowerCamelCase_: Any=None ,lowerCamelCase_: List[Any]=False ,lowerCamelCase_: Tuple=0.0 ,**lowerCamelCase_: Optional[int] ,) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : List[Any] = classifier_dropout UpperCAmelCase_ : str = is_decoder UpperCAmelCase_ : List[str] = act_dropout
345
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase_ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Union[str, Any] = "ernie_m" A__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self: str ,lowerCamelCase_: int = 250002 ,lowerCamelCase_: int = 768 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 3072 ,lowerCamelCase_: str = "gelu" ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: int = 514 ,lowerCamelCase_: float = 0.0_2 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: float = 1e-05 ,lowerCamelCase_: Any=None ,lowerCamelCase_: List[Any]=False ,lowerCamelCase_: Tuple=0.0 ,**lowerCamelCase_: Optional[int] ,) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : List[Any] = classifier_dropout UpperCAmelCase_ : str = is_decoder UpperCAmelCase_ : List[str] = act_dropout
345
1
from datetime import datetime import requests def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Tuple = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" __snake_case : Dict = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(__lowerCamelCase ).content if __name__ == "__main__": _snake_case : Dict = input("Enter Video/IGTV url: ").strip() _snake_case : int = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
352
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[str] = ["image_processor", "tokenizer"] __UpperCAmelCase : str = "OwlViTImageProcessor" __UpperCAmelCase : Dict = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : str , lowerCamelCase : Any=None , lowerCamelCase : Any=None , **lowerCamelCase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self : Union[str, Any] , lowerCamelCase : Tuple=None , lowerCamelCase : int=None , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : List[str]="max_length" , lowerCamelCase : Dict="np" , **lowerCamelCase : str ) -> List[Any]: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(lowerCamelCase , lowerCamelCase ) or (isinstance(lowerCamelCase , lowerCamelCase ) and not isinstance(text[0] , lowerCamelCase )): __snake_case : Union[str, Any] = [self.tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase )] elif isinstance(lowerCamelCase , lowerCamelCase ) and isinstance(text[0] , lowerCamelCase ): __snake_case : Tuple = [] # Maximum number of queries across batch __snake_case : str = max([len(lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCamelCase ) != max_num_queries: __snake_case : Dict = t + [" "] * (max_num_queries - len(lowerCamelCase )) __snake_case : int = self.tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) encodings.append(lowerCamelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": __snake_case : Any = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __snake_case : Tuple = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __snake_case : List[Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __snake_case : Any = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __snake_case : int = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) __snake_case : int = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __snake_case : int = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) __snake_case : Dict = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) __snake_case : Any = BatchEncoding() __snake_case : Tuple = input_ids __snake_case : int = attention_mask if query_images is not None: __snake_case : List[Any] = BatchEncoding() __snake_case : Union[str, Any] = self.image_processor( lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ).pixel_values __snake_case : str = query_pixel_values if images is not None: __snake_case : Optional[int] = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif query_images is not None and images is not None: __snake_case : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase ) , tensor_type=lowerCamelCase ) def __snake_case ( self : Dict , *lowerCamelCase : List[Any] , **lowerCamelCase : Union[str, Any] ) -> str: return self.image_processor.post_process(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Union[str, Any] , *lowerCamelCase : str , **lowerCamelCase : List[str] ) -> Tuple: return self.image_processor.post_process_object_detection(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Optional[Any] , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Optional[Any] ) -> Any: return self.image_processor.post_process_image_guided_detection(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : List[Any] , *lowerCamelCase : Tuple , **lowerCamelCase : Optional[int] ) -> str: return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Union[str, Any] , *lowerCamelCase : Tuple , **lowerCamelCase : List[Any] ) -> Tuple: return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def __snake_case ( self : Any ) -> Dict: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCamelCase , ) return self.image_processor_class @property def __snake_case ( self : List[str] ) -> Union[str, Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCamelCase , ) return self.image_processor
134
0
class snake_case__ : """simple docstring""" def __init__( self : Optional[int], _snake_case : int, _snake_case : Union[str, Any]=None, _snake_case : List[Any]=None ) ->Optional[Any]: snake_case__ : Dict = data snake_case__ : int = previous snake_case__ : Tuple = next_node def __str__( self : Optional[Any] ) ->str: return F'''{self.data}''' def lowercase_ ( self : List[Any] ) ->int: return self.data def lowercase_ ( self : Any ) ->Dict: return self.next def lowercase_ ( self : Any ) ->int: return self.previous class snake_case__ : """simple docstring""" def __init__( self : Optional[Any], _snake_case : List[Any] ) ->Any: snake_case__ : int = head def __iter__( self : Dict ) ->int: return self def lowercase_ ( self : List[str] ) ->List[Any]: if not self.current: raise StopIteration else: snake_case__ : Union[str, Any] = self.current.get_data() snake_case__ : Optional[int] = self.current.get_next() return value class snake_case__ : """simple docstring""" def __init__( self : List[Any] ) ->Tuple: snake_case__ : List[str] = None # First node in list snake_case__ : List[str] = None # Last node in list def __str__( self : Optional[Any] ) ->int: snake_case__ : int = self.head snake_case__ : Union[str, Any] = [] while current is not None: nodes.append(current.get_data() ) snake_case__ : Any = current.get_next() return " ".join(str(_snake_case ) for node in nodes ) def __contains__( self : List[Any], _snake_case : int ) ->int: snake_case__ : Union[str, Any] = self.head while current: if current.get_data() == value: return True snake_case__ : Optional[Any] = current.get_next() return False def __iter__( self : str ) ->Dict: return LinkedListIterator(self.head ) def lowercase_ ( self : Dict ) ->List[Any]: if self.head: return self.head.get_data() return None def lowercase_ ( self : List[Any] ) ->Optional[Any]: if self.tail: return self.tail.get_data() return None def lowercase_ ( self : List[Any], _snake_case : Node ) ->None: if self.head is None: snake_case__ : Union[str, Any] = node snake_case__ : Union[str, Any] = node else: self.insert_before_node(self.head, _snake_case ) def lowercase_ ( self : List[Any], _snake_case : Node ) ->None: if self.head is None: self.set_head(_snake_case ) else: self.insert_after_node(self.tail, _snake_case ) def lowercase_ ( self : List[Any], _snake_case : int ) ->None: snake_case__ : Any = Node(_snake_case ) if self.head is None: self.set_head(_snake_case ) else: self.set_tail(_snake_case ) def lowercase_ ( self : List[Any], _snake_case : Node, _snake_case : Node ) ->None: snake_case__ : List[str] = node snake_case__ : str = node.previous if node.get_previous() is None: snake_case__ : int = node_to_insert else: snake_case__ : Union[str, Any] = node_to_insert snake_case__ : int = node_to_insert def lowercase_ ( self : str, _snake_case : Node, _snake_case : Node ) ->None: snake_case__ : Tuple = node snake_case__ : Any = node.next if node.get_next() is None: snake_case__ : Optional[Any] = node_to_insert else: snake_case__ : Optional[int] = node_to_insert snake_case__ : List[Any] = node_to_insert def lowercase_ ( self : Dict, _snake_case : int, _snake_case : int ) ->None: snake_case__ : Optional[int] = 1 snake_case__ : List[Any] = Node(_snake_case ) snake_case__ : Tuple = self.head while node: if current_position == position: self.insert_before_node(_snake_case, _snake_case ) return current_position += 1 snake_case__ : Union[str, Any] = node.next self.insert_after_node(self.tail, _snake_case ) def lowercase_ ( self : str, _snake_case : int ) ->Node: snake_case__ : Optional[Any] = self.head while node: if node.get_data() == item: return node snake_case__ : Optional[Any] = node.get_next() raise Exception('Node not found' ) def lowercase_ ( self : Optional[Any], _snake_case : Tuple ) ->Optional[int]: if (node := self.get_node(_snake_case )) is not None: if node == self.head: snake_case__ : Tuple = self.head.get_next() if node == self.tail: snake_case__ : Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(_snake_case ) @staticmethod def lowercase_ ( _snake_case : Node ) ->None: if node.get_next(): snake_case__ : Dict = node.previous if node.get_previous(): snake_case__ : Optional[int] = node.next snake_case__ : Tuple = None snake_case__ : List[Any] = None def lowercase_ ( self : List[str] ) ->str: return self.head is None def lowercase_ (): pass if __name__ == "__main__": import doctest doctest.testmod()
277
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ :Optional[int] = logging.get_logger(__name__) a_ :Dict = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """openai-gpt""" _SCREAMING_SNAKE_CASE = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Optional[int], _snake_case : Dict=4_0_4_7_8, _snake_case : str=5_1_2, _snake_case : int=7_6_8, _snake_case : Tuple=1_2, _snake_case : Any=1_2, _snake_case : str="gelu", _snake_case : List[str]=0.1, _snake_case : Any=0.1, _snake_case : Dict=0.1, _snake_case : int=1e-5, _snake_case : Optional[Any]=0.0_2, _snake_case : List[Any]="cls_index", _snake_case : Any=True, _snake_case : Any=None, _snake_case : int=True, _snake_case : Optional[Any]=0.1, **_snake_case : List[Any], ) ->Optional[int]: snake_case__ : int = vocab_size snake_case__ : Dict = n_positions snake_case__ : str = n_embd snake_case__ : str = n_layer snake_case__ : List[Any] = n_head snake_case__ : List[Any] = afn snake_case__ : Optional[Any] = resid_pdrop snake_case__ : List[str] = embd_pdrop snake_case__ : List[Any] = attn_pdrop snake_case__ : Optional[int] = layer_norm_epsilon snake_case__ : str = initializer_range snake_case__ : List[str] = summary_type snake_case__ : Optional[int] = summary_use_proj snake_case__ : List[str] = summary_activation snake_case__ : Optional[Any] = summary_first_dropout snake_case__ : int = summary_proj_to_labels super().__init__(**_snake_case )
277
1
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
355
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __lowerCAmelCase = 3 def __lowerCamelCase ( lowerCAmelCase_ ) -> int: print('Generating primitive root of p' ) while True: _a : List[Any] = random.randrange(3 , lowerCAmelCase_ ) if pow(lowerCAmelCase_ , 2 , lowerCAmelCase_ ) == 1: continue if pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) == 1: continue return g def __lowerCamelCase ( lowerCAmelCase_ ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...' ) _a : int = rabin_miller.generate_large_prime(lowerCAmelCase_ ) # select large prime number. _a : List[str] = primitive_root(lowerCAmelCase_ ) # one primitive root on modulo p. _a : Any = random.randrange(3 , lowerCAmelCase_ ) # private_key -> have to be greater than 2 for safety. _a : List[Any] = cryptomath.find_mod_inverse(pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) _a : Tuple = (key_size, e_a, e_a, p) _a : str = (key_size, d) return public_key, private_key def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() _a , _a : Dict = generate_key(lowerCAmelCase_ ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def __lowerCamelCase ( ) -> None: print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
107
0
'''simple docstring''' def UpperCamelCase_ ( A__ : str ): '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) lowerCAmelCase_ : int = sorted(string.lower() ) return len(A__ ) == len(set(A__ ) ) if __name__ == "__main__": __A : Union[str, Any] = input("Enter a string ").strip() __A : Union[str, Any] = is_isogram(input_str) print(F'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
120
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'philschmid/bart-large-cnn-samsum' lowercase = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) lowercase = 'summarizer' lowercase = AutoTokenizer lowercase = AutoModelForSeqaSeqLM lowercase = ['text'] lowercase = ['text'] def __lowercase ( self : Dict , lowerCamelCase : Dict ) -> Any: return self.pre_processor(lowerCamelCase , return_tensors="""pt""" , truncation=lowerCamelCase ) def __lowercase ( self : Optional[Any] , lowerCamelCase : Tuple ) -> List[str]: return self.model.generate(**lowerCamelCase )[0] def __lowercase ( self : str , lowerCamelCase : Dict ) -> List[Any]: return self.pre_processor.decode(lowerCamelCase , skip_special_tokens=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase )
120
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : int = XGLMTokenizer __UpperCamelCase : Optional[Any] = XGLMTokenizerFast __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[int] = True def __magic_name__ ( self : List[Any] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _A: Tuple = XGLMTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = '''<pad>''' _A: str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(lowerCAmelCase_ ) , 1_0_0_8 ) def __magic_name__ ( self : List[Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8 ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Optional[int] = XGLMTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) _A: Optional[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _A: str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _A: Dict = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _A: Optional[int] = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __magic_name__ ( self : Any ): """simple docstring""" return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def __magic_name__ ( self : int ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase_ , f.name ) _A: Optional[Any] = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase_ ) _A: List[Any] = pickle.dumps(lowerCAmelCase_ ) pickle.loads(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" if not self.test_rust_tokenizer: return _A: int = self.get_tokenizer() _A: str = self.get_rust_tokenizer() _A: Union[str, Any] = '''I was born in 92000, and this is falsé.''' _A: List[str] = tokenizer.tokenize(lowerCAmelCase_ ) _A: str = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _A: List[Any] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Any = self.get_rust_tokenizer() _A: List[Any] = tokenizer.encode(lowerCAmelCase_ ) _A: List[str] = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: List[str] = '''Hello World!''' _A: Optional[Any] = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Dict = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off _A: List[str] = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def __magic_name__ ( self : Dict ): """simple docstring""" _A: str = { '''input_ids''': [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='''facebook/xglm-564M''' , padding=lowerCAmelCase_ , )
354
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : Tuple=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[Any]=[1, 1, 2, 1] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : List[Any]=None , ): """simple docstring""" _A: str = parent _A: List[Any] = batch_size _A: Optional[int] = image_size _A: Dict = num_channels _A: str = embeddings_size _A: Any = hidden_sizes _A: Dict = depths _A: Any = is_training _A: int = use_labels _A: Tuple = hidden_act _A: int = num_labels _A: int = scope _A: str = len(lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A: Union[str, Any] = self.get_config() return config, pixel_values def __magic_name__ ( self : str ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ): """simple docstring""" _A: str = FlaxRegNetModel(config=lowerCAmelCase_ ) _A: Optional[int] = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Union[str, Any] = self.num_labels _A: Union[str, Any] = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) _A: str = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: str = self.prepare_config_and_inputs() _A , _A: Optional[int] = config_and_inputs _A: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : int = False def __magic_name__ ( self : int ): """simple docstring""" _A: int = FlaxRegNetModelTester(self ) _A: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : int ): """simple docstring""" return def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __magic_name__ ( self : str ): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass def __magic_name__ ( self : List[Any] ): """simple docstring""" _A , _A: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Union[str, Any] = model_class(lowerCAmelCase_ ) _A: Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A: Any = [*signature.parameters.keys()] _A: Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): _A: int = model_class(lowerCAmelCase_ ) _A: List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _A: str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A: Tuple = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) _A , _A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A: Optional[Any] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A: int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A , _A: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A: int = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _A: Union[str, Any] = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('''JIT Enabled''' ): _A: str = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A: List[Any] = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: _A: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[str] = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _A: str = self.default_image_processor _A: int = prepare_img() _A: List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='''np''' ) _A: str = model(**lowerCAmelCase_ ) # verify the logits _A: str = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _A: Tuple = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
301
0