code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import pytest __UpperCamelCase : Optional[Any] = '__dummy_dataset1__' __UpperCamelCase : int = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def _a ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _a ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int ): """simple docstring""" UpperCamelCase__ : Tuple = dataset_loading_script_name UpperCamelCase__ : Optional[Any] = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=lowerCamelCase_ ) UpperCamelCase__ : str = script_dir / F"{script_name}.py" with open(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ )
146
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Dict, *lowerCamelCase : Union[str, Any], lowerCamelCase : Union[str, Any]=None, lowerCamelCase : Any=None, **lowerCamelCase : str ): '''simple docstring''' super().__init__(*lowerCamelCase, **lowerCamelCase ) lowercase__ = eval_examples lowercase__ = post_process_function def lowercase__ ( self : int, lowerCamelCase : str=None, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Union[str, Any]=None, lowerCamelCase : str = "eval" ): '''simple docstring''' lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(lowerCamelCase ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowercase__ = time.time() try: lowercase__ = eval_loop( lowerCamelCase, description='''Evaluation''', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCamelCase, metric_key_prefix=lowerCamelCase, ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowerCamelCase, lowerCamelCase, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size ), ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(lowerCamelCase, lowerCamelCase, output.predictions ) lowercase__ = self.compute_metrics(lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): lowercase__ = metrics.pop(lowerCamelCase ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args, self.state, self.control, lowerCamelCase ) return metrics def lowercase__ ( self : List[Any], lowerCamelCase : Any, lowerCamelCase : Dict, lowerCamelCase : int=None, lowerCamelCase : str = "test" ): '''simple docstring''' lowercase__ = self.get_test_dataloader(lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowercase__ = time.time() try: lowercase__ = eval_loop( lowerCamelCase, description='''Prediction''', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCamelCase, metric_key_prefix=lowerCamelCase, ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowerCamelCase, lowerCamelCase, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size ), ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(lowerCamelCase, lowerCamelCase, output.predictions, '''predict''' ) lowercase__ = self.compute_metrics(lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): lowercase__ = metrics.pop(lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=lowerCamelCase )
207
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__snake_case ) class lowercase_ ( __snake_case ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _lowerCamelCase = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) _lowerCamelCase = Features({'question': Value('string' ), 'context': Value('string' )} ) _lowerCamelCase = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) _lowerCamelCase = 'question' _lowerCamelCase = 'context' _lowerCamelCase = 'answers' @property def UpperCamelCase ( self ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
362
def snake_case () -> Dict: '''simple docstring''' _snake_case : List[str] = 0 for i in range(1 , 1_001 ): total += i**i return str(__lowercase )[-10:] if __name__ == "__main__": print(solution())
284
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = tempfile.mkdtemp() lowercase__ = BlipImageProcessor() lowercase__ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) lowercase__ = BlipaProcessor(lowerCamelCase, lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[str], **lowerCamelCase : int ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ).tokenizer def lowercase__ ( self : Optional[Any], **lowerCamelCase : Any ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase ).image_processor def lowercase__ ( self : List[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = BlipaProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowercase__ = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0 ) lowercase__ = BlipaProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCamelCase, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = BlipaProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCamelCase, return_tensors='''np''' ) lowercase__ = processor(images=lowerCamelCase, return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = BlipaProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''lower newer''' lowercase__ = processor(text=lowerCamelCase ) lowercase__ = tokenizer(lowerCamelCase, return_token_type_ids=lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = BlipaProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''lower newer''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = BlipaProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(lowerCamelCase ) lowercase__ = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = BlipaProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase ) lowercase__ = '''lower newer''' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCamelCase, images=lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
207
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase, '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCamelCase, '''num_attention_heads''' ) ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple, lowerCamelCase : str, lowerCamelCase : str=13, lowerCamelCase : Union[str, Any]=64, lowerCamelCase : str=3, lowerCamelCase : int=3, lowerCamelCase : Dict=2, lowerCamelCase : int=1, lowerCamelCase : Optional[Any]=16, lowerCamelCase : Dict=[128, 256, 384], lowerCamelCase : Tuple=[4, 6, 8], lowerCamelCase : Optional[Any]=[2, 3, 4], lowerCamelCase : str=[16, 16, 16], lowerCamelCase : Dict=0, lowerCamelCase : List[str]=[2, 2, 2], lowerCamelCase : str=[2, 2, 2], lowerCamelCase : List[Any]=0.02, lowerCamelCase : Any=True, lowerCamelCase : Tuple=True, lowerCamelCase : Optional[Any]=2, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = kernel_size lowercase__ = stride lowercase__ = padding lowercase__ = hidden_sizes lowercase__ = num_attention_heads lowercase__ = depths lowercase__ = key_dim lowercase__ = drop_path_rate lowercase__ = patch_size lowercase__ = attention_ratio lowercase__ = mlp_ratio lowercase__ = initializer_range lowercase__ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowercase__ = is_training lowercase__ = use_labels lowercase__ = num_labels lowercase__ = initializer_range def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[str] ): '''simple docstring''' return LevitConfig( image_size=self.image_size, num_channels=self.num_channels, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, patch_size=self.patch_size, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, depths=self.depths, key_dim=self.key_dim, drop_path_rate=self.drop_path_rate, mlp_ratio=self.mlp_ratio, attention_ratio=self.attention_ratio, initializer_range=self.initializer_range, down_ops=self.down_ops, ) def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = LevitModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) lowercase__ = (self.image_size, self.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for _ in range(4 ): lowercase__ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowercase__ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]), ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : List[Any], lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = LevitForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowercase__ = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = LevitModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : str ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Tuple ): '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def lowercase__ ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def lowercase__ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''' ) def lowercase__ ( self : Dict ): '''simple docstring''' pass def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : Optional[int], lowerCamelCase : str, lowerCamelCase : Tuple ): lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) lowercase__ = (self.model_tester.image_size, self.model_tester.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for _ in range(4 ): lowercase__ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowercase__ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [ height * width, self.model_tester.hidden_sizes[0], ], ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' pass def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Any, lowerCamelCase : Any=False ): '''simple docstring''' lowercase__ = super()._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase__ = False lowercase__ = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowercase__ = model_class(lowerCamelCase ) model.gradient_checkpointing_enable() model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): lowercase__ = problem_type['''title'''] lowercase__ = problem_type['''num_labels'''] lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) if problem_type["num_labels"] > 1: lowercase__ = inputs['''labels'''].unsqueeze(1 ).repeat(1, problem_type['''num_labels'''] ) lowercase__ = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase ) as warning_list: lowercase__ = model(**lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = LevitModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : int ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowercase__ = torch.tensor([1.0448, -0.3745, -1.8317] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4 ) )
207
1
def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = set() # To detect a back edge, keep track of vertices currently in the recursion stack snake_case = set() return any( node not in visited and depth_first_search(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) for node in graph ) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" visited.add(UpperCamelCase_ ) rec_stk.add(UpperCamelCase_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(UpperCamelCase_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
213
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _SCREAMING_SNAKE_CASE : str = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def UpperCAmelCase__ (UpperCamelCase_ = "mumbai" ): """simple docstring""" snake_case = BeautifulSoup(requests.get(url + location ).content ,'''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' ,attrs={'''data-tn-component''': '''organicJob'''} ): snake_case = job.find('''a''' ,attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() snake_case = job.find('''span''' ,{'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
213
1
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Any = 3 _lowerCamelCase : str = 2_5_0 _lowerCamelCase : Optional[Any] = ids_tensor((batch_size, length) , __lowerCAmelCase ) _lowerCamelCase : List[str] = torch.ones((batch_size, length) , device=__lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[str] = self._get_tensors(5 ) _lowerCamelCase : str = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase , _lowerCamelCase : List[Any] = self._get_tensors(9 ) self.assertFalse(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase , _lowerCamelCase : Any = self._get_tensors(1_0 ) self.assertTrue(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[Any] = MaxLengthCriteria(max_length=1_0 ) _lowerCamelCase , _lowerCamelCase : Optional[int] = self._get_tensors(5 ) self.assertFalse(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase , _lowerCamelCase : Any = self._get_tensors(9 ) self.assertFalse(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase , _lowerCamelCase : int = self._get_tensors(1_0 ) self.assertTrue(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Tuple = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) _lowerCamelCase , _lowerCamelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase , _lowerCamelCase : Tuple = self._get_tensors(9 ) self.assertFalse(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase , _lowerCamelCase : Any = self._get_tensors(1_0 ) self.assertTrue(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase : str = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Optional[Any] = self._get_tensors(5 ) _lowerCamelCase : List[str] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase : Dict = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(__lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) _lowerCamelCase : Dict = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(__lowerCAmelCase ) , 1 )
72
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case : List[Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys _snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
284
0
"""simple docstring""" def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : str = " " ) -> list: """simple docstring""" snake_case = [] snake_case = 0 for index, char in enumerate(_UpperCamelCase ): if char == separator: split_words.append(string[last_index:index] ) snake_case = index + 1 elif index + 1 == len(_UpperCamelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
149
"""simple docstring""" import os def lowerCAmelCase__ ( _UpperCamelCase : str = "matrix.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(_UpperCamelCase ) , _UpperCamelCase ) ) as in_file: snake_case = in_file.read() snake_case = [[int(_UpperCamelCase ) for cell in row.split(',' )] for row in data.strip().splitlines()] snake_case = [[0 for cell in row] for row in grid] snake_case = len(grid[0] ) snake_case = [[0 for i in range(_UpperCamelCase )] for j in range(_UpperCamelCase )] snake_case = grid[0][0] for i in range(1 , _UpperCamelCase ): snake_case = grid[0][i] + dp[0][i - 1] for i in range(1 , _UpperCamelCase ): snake_case = grid[i][0] + dp[i - 1][0] for i in range(1 , _UpperCamelCase ): for j in range(1 , _UpperCamelCase ): snake_case = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f"""{solution() = }""")
149
1
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def __lowerCamelCase ( ) -> Any: _a : Dict = 10 _a : Union[str, Any] = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) _a : Optional[int] = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(lowerCAmelCase_ ) ), } , features=lowerCAmelCase_ , ) return dataset @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _a : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowerCAmelCase_ ) return filename # FILE_CONTENT + files __lowerCAmelCase = '''\ Text data. Second line of data.''' @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> List[Any]: _a : str = tmp_path_factory.mktemp('data' ) / 'file.txt' _a : Optional[Any] = FILE_CONTENT with open(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ ) return filename @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Union[str, Any]: import bza _a : Dict = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' _a : Any = bytes(lowerCAmelCase_ , 'utf-8' ) with bza.open(lowerCAmelCase_ , 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> List[Any]: import gzip _a : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) _a : Union[str, Any] = bytes(lowerCAmelCase_ , 'utf-8' ) with gzip.open(lowerCAmelCase_ , 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> str: if datasets.config.LZ4_AVAILABLE: import lza.frame _a : List[str] = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' _a : Optional[int] = bytes(lowerCAmelCase_ , 'utf-8' ) with lza.frame.open(lowerCAmelCase_ , 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: if datasets.config.PY7ZR_AVAILABLE: import pyazr _a : Tuple = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowerCAmelCase_ , 'w' ) as archive: archive.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: import tarfile _a : Tuple = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowerCAmelCase_ , 'w' ) as f: f.add(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Union[str, Any]: import lzma _a : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' _a : int = bytes(lowerCAmelCase_ , 'utf-8' ) with lzma.open(lowerCAmelCase_ , 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: import zipfile _a : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> List[Any]: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _a : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' _a : Optional[Any] = bytes(lowerCAmelCase_ , 'utf-8' ) with zstd.open(lowerCAmelCase_ , 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]: _a : Any = tmp_path_factory.mktemp('data' ) / 'file.xml' _a : int = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ ) return filename __lowerCAmelCase = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope='session' ) def __lowerCamelCase ( ) -> List[str]: return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> int: _a : Dict = datasets.Dataset.from_dict(lowerCAmelCase_ ) _a : str = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> int: _a : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowerCAmelCase_ ) ) as con: _a : Tuple = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]: _a : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowerCAmelCase_ , 'w' , newline='' ) as f: _a : Dict = csv.DictWriter(lowerCAmelCase_ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Tuple: _a : int = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowerCAmelCase_ , 'w' , newline='' ) as f: _a : int = csv.DictWriter(lowerCAmelCase_ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: import bza _a : str = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowerCAmelCase_ , 'rb' ) as f: _a : Optional[Any] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCAmelCase_ , 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _a : int = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _a : str = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowerCAmelCase_ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _a : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCAmelCase_ ) ) ) f.write(lowerCAmelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> str: _a : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) _a : Optional[int] = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowerCAmelCase_ , 'wb' ) as f: _a : Optional[int] = pq.ParquetWriter(lowerCAmelCase_ , schema=lowerCAmelCase_ ) _a : List[str] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCAmelCase_ ) )] for k in DATA[0]} , schema=lowerCAmelCase_ ) writer.write_table(lowerCAmelCase_ ) writer.close() return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> List[Any]: _a : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _a : Tuple = {'data': DATA} with open(lowerCAmelCase_ , 'w' ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> str: _a : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _a : Optional[int] = {'data': DATA_DICT_OF_LISTS} with open(lowerCAmelCase_ , 'w' ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> int: _a : List[str] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowerCAmelCase_ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowerCAmelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[int]: _a : int = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowerCAmelCase_ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowerCAmelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Dict: _a : int = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowerCAmelCase_ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowerCAmelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Dict: _a : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowerCAmelCase_ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowerCAmelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: import gzip _a : str = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowerCAmelCase_ , 'rb' ) as orig_file: with gzip.open(lowerCAmelCase_ , 'wb' ) as zipped_file: zipped_file.writelines(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str: import gzip _a : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowerCAmelCase_ , 'rb' ) as orig_file: with gzip.open(lowerCAmelCase_ , 'wb' ) as zipped_file: zipped_file.writelines(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _a : int = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _a : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.join('nested' , os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _a : Tuple = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCAmelCase_ ) ) ) f.write(lowerCAmelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _a : int = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowerCAmelCase_ , 'w' ) as f: f.add(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) f.add(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _a : Any = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowerCAmelCase_ , 'w' ) as f: f.add(lowerCAmelCase_ , arcname=os.path.join('nested' , os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]: _a : Any = ['0', '1', '2', '3'] _a : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowerCAmelCase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]: _a : List[Any] = ['0', '1', '2', '3'] _a : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowerCAmelCase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Tuple: _a : List[str] = ['0', '1', '2', '3'] _a : Any = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowerCAmelCase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _a : Dict = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _a : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCAmelCase_ ) ) ) f.write(lowerCAmelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _a : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowerCAmelCase_ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> int: _a : int = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) _a : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( ) -> List[str]: return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def __lowerCamelCase ( ) -> Union[str, Any]: return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _a : Dict = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowerCAmelCase_ , 'w' ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> str: _a : Tuple = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
89
'''simple docstring''' import math def __lowerCamelCase ( lowerCAmelCase_ ) -> bool: _a : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ = 1 / 12345 ) -> int: _a : int = 0 _a : Optional[Any] = 0 _a : int = 3 while True: _a : Tuple = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(lowerCAmelCase_ ): _a : Union[str, Any] = int(lowerCAmelCase_ ) total_partitions += 1 if check_partition_perfect(lowerCAmelCase_ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(lowerCAmelCase_ ) integer += 1 if __name__ == "__main__": print(f"""{solution() = }""")
89
1
from __future__ import annotations def __snake_case ( _UpperCAmelCase ): __a = str(_lowerCAmelCase ) return len(_lowerCAmelCase ) == 9 and set(_lowerCAmelCase ) == set('''123456789''' ) def __snake_case ( ): for base_num in range(9999 , 4999 , -1 ): __a = 100002 * base_num if is_9_pandigital(_lowerCAmelCase ): return candidate for base_num in range(333 , 99 , -1 ): __a = 1002003 * base_num if is_9_pandigital(_lowerCAmelCase ): return candidate return None if __name__ == "__main__": print(f'{solution() = }')
371
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __snake_case :int = logging.get_logger(__name__) class _A : def __init__( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = question_encoder __a = generator __a = self.question_encoder def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' if os.path.isfile(__SCREAMING_SNAKE_CASE): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file') os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE) __a = os.path.join(__SCREAMING_SNAKE_CASE , '''question_encoder_tokenizer''') __a = os.path.join(__SCREAMING_SNAKE_CASE , '''generator_tokenizer''') self.question_encoder.save_pretrained(__SCREAMING_SNAKE_CASE) self.generator.save_pretrained(__SCREAMING_SNAKE_CASE) @classmethod def _lowerCamelCase ( cls : List[Any] , __SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer __a = kwargs.pop('''config''' , __SCREAMING_SNAKE_CASE) if config is None: __a = RagConfig.from_pretrained(__SCREAMING_SNAKE_CASE) __a = AutoTokenizer.from_pretrained( __SCREAMING_SNAKE_CASE , config=config.question_encoder , subfolder='''question_encoder_tokenizer''') __a = AutoTokenizer.from_pretrained( __SCREAMING_SNAKE_CASE , config=config.generator , subfolder='''generator_tokenizer''') return cls(question_encoder=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE) def __call__( self : Dict , *__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' return self.current_tokenizer(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[Any] , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Any): '''simple docstring''' return self.generator.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int] , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' return self.generator.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : int): '''simple docstring''' __a = self.question_encoder def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.generator def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[List[str]] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : str = "longest" , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : bool = True , **__SCREAMING_SNAKE_CASE : List[str] , ): '''simple docstring''' warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , __SCREAMING_SNAKE_CASE , ) if max_length is None: __a = self.current_tokenizer.model_max_length __a = self( __SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __a = self.current_tokenizer.model_max_length __a = self( text_target=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __a = labels['''input_ids'''] return model_inputs
131
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase__ ={ 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowercase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
216
import re from filelock import FileLock try: import nltk _snake_case : Any = True except (ImportError, ModuleNotFoundError): _snake_case : Union[str, Any] = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def a_ ( lowerCAmelCase_ : str ): re.sub('<n>', '', lowerCAmelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowerCAmelCase_ ) )
284
0
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : Tuple ): if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase : '''simple docstring''' def lowerCAmelCase ( self : Any , __a : Any , __a : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : np.ndarray , __a : float ) -> List[Any]: """simple docstring""" __lowercase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(__a , __a , F"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : Tuple , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any]=None , **__a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Optional[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : Dict , __a : List[str] , __a : Optional[Any]=None , **__a : str ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Any = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : int=None , **__a : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : List[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Tuple = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = after_output[0] __lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-3 ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Tuple , __a : Optional[int] , __a : str , __a : Optional[Any]=None , **__a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : str = self.get_vision_text_model(__a , __a ) __lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Union[str, Any] = model( input_ids=__a , pixel_values=__a , attention_mask=__a , output_attentions=__a ) __lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) __lowercase : List[str] = to_atuple(vision_model.config.patch_size ) __lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase : Dict = output.text_model_output.attentions self.assertEqual(len(__a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[Any] ) -> Optional[int]: """simple docstring""" pt_model.to(__a ) pt_model.eval() # prepare inputs __lowercase : Union[str, Any] = inputs_dict __lowercase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase : Union[str, Any] = pt_model(**__a ).to_tuple() __lowercase : Tuple = fx_model(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__a ) __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__a , from_pt=__a ) __lowercase : Dict = fx_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__a ) __lowercase : str = VisionTextDualEncoderModel.from_pretrained(__a , from_flax=__a ) pt_model_loaded.to(__a ) pt_model_loaded.eval() with torch.no_grad(): __lowercase : List[Any] = pt_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__a , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = VisionTextDualEncoderModel(__a ) __lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(__a ) __lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __a ) __lowercase : Any = fx_state self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : Any , __a : Any , __a : Dict , __a : Tuple ) -> str: """simple docstring""" __lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : Union[str, Any] = VisionTextDualEncoderModel(__a ) __lowercase : Dict = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Tuple = load_flax_weights_in_pytorch_model(__a , fx_model.params ) self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__a ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__a ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() __lowercase : Optional[int] = config_inputs_dict.pop("""vision_config""" ) __lowercase : Optional[int] = config_inputs_dict.pop("""text_config""" ) __lowercase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__a , __a , __a ) self.check_equivalence_flax_to_pt(__a , __a , __a ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[Any] = self.get_pretrained_model_and_inputs() __lowercase : Dict = model_a(**__a ) __lowercase : Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__a ) __lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Optional[int] = model_a(**__a ) __lowercase : Tuple = after_outputs[0] __lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : int = 13 __lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : Tuple = random_attention_mask([batch_size, 4] ) __lowercase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : int = FlaxViTModel(__a ) __lowercase : List[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = FlaxViTModelTester(self ) __lowercase : str = FlaxBertModelTester(self ) __lowercase : List[str] = vit_model_tester.prepare_config_and_inputs() __lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Optional[int] = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : Tuple = 13 __lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : List[Any] = random_attention_mask([batch_size, 4] ) __lowercase : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = FlaxCLIPVisionModel(__a ) __lowercase : Optional[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = FlaxCLIPVisionModelTester(self ) __lowercase : Optional[Any] = FlaxBertModelTester(self ) __lowercase : Any = clip_model_tester.prepare_config_and_inputs() __lowercase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Dict = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __lowercase : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__a , padding=__a , return_tensors="""np""" ) __lowercase : Optional[int] = model(**__a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __a , atol=1E-3 ) )
306
1
"""simple docstring""" from math import pow, sqrt def lowercase__( *__SCREAMING_SNAKE_CASE : float ): lowercase_ : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) > 0 and all(value > 0.0 for value in values ) return result def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
213
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase : @staticmethod def _UpperCAmelCase ( *__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class UpperCamelCase ( unittest.TestCase ): lowercase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : int = pipeline( 'zero-shot-object-detection' ,model='hf-internal-testing/tiny-random-owlvit-object-detection' ) lowercase_ : Optional[int] = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Tuple = object_detector(examples[0] ,threshold=0.0 ) lowercase_ : Any = len(__UpperCamelCase ) self.assertGreater(__UpperCamelCase ,0 ) self.assertEqual( __UpperCamelCase ,[ { 'score': ANY(__UpperCamelCase ), 'label': ANY(__UpperCamelCase ), 'box': {'xmin': ANY(__UpperCamelCase ), 'ymin': ANY(__UpperCamelCase ), 'xmax': ANY(__UpperCamelCase ), 'ymax': ANY(__UpperCamelCase )}, } for i in range(__UpperCamelCase ) ] ,) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @require_torch def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : List[Any] = pipeline( 'zero-shot-object-detection' ,model='hf-internal-testing/tiny-random-owlvit-object-detection' ) lowercase_ : Optional[int] = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' ,candidate_labels=['cat', 'remote', 'couch'] ,threshold=0.64 ,) self.assertEqual( nested_simplify(__UpperCamelCase ,decimals=4 ) ,[ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] ,) lowercase_ : Union[str, Any] = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] ,threshold=0.64 ,) self.assertEqual( nested_simplify(__UpperCamelCase ,decimals=4 ) ,[ [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] ] ,) @require_torch @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Any = pipeline('zero-shot-object-detection' ) lowercase_ : List[str] = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' ,candidate_labels=['cat', 'remote', 'couch'] ,) self.assertEqual( nested_simplify(__UpperCamelCase ,decimals=4 ) ,[ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ] ,) lowercase_ : Union[str, Any] = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] ,) self.assertEqual( nested_simplify(__UpperCamelCase ,decimals=4 ) ,[ [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], ] ,) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @require_torch @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = 0.2 lowercase_ : Any = pipeline('zero-shot-object-detection' ) lowercase_ : str = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' ,candidate_labels=['cat', 'remote', 'couch'] ,threshold=__UpperCamelCase ,) self.assertEqual( nested_simplify(__UpperCamelCase ,decimals=4 ) ,[ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, ] ,) @require_torch @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Tuple = 2 lowercase_ : Optional[Any] = pipeline('zero-shot-object-detection' ) lowercase_ : List[Any] = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' ,candidate_labels=['cat', 'remote', 'couch'] ,top_k=__UpperCamelCase ,) self.assertEqual( nested_simplify(__UpperCamelCase ,decimals=4 ) ,[ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, ] ,)
213
1
'''simple docstring''' UpperCAmelCase : Any = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def a__ ( a__ ): """simple docstring""" if not isinstance(a__ , a__ ): __SCREAMING_SNAKE_CASE = F'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(a__ ) __SCREAMING_SNAKE_CASE = """""".join(bin(a__ )[2:].zfill(8 ) for byte in data ) __SCREAMING_SNAKE_CASE = len(a__ ) % 6 != 0 if padding_needed: # The padding that will be added later __SCREAMING_SNAKE_CASE = B"""=""" * ((6 - len(a__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(a__ ) % 6) else: __SCREAMING_SNAKE_CASE = B"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(a__ ) , 6 ) ).encode() + padding ) def a__ ( a__ ): """simple docstring""" if not isinstance(a__ , a__ ) and not isinstance(a__ , a__ ): __SCREAMING_SNAKE_CASE = ( """argument should be a bytes-like object or ASCII string, """ F'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(a__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(a__ , a__ ): try: __SCREAMING_SNAKE_CASE = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) __SCREAMING_SNAKE_CASE = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(a__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __SCREAMING_SNAKE_CASE = encoded_data[:-padding] __SCREAMING_SNAKE_CASE = """""".join( bin(B64_CHARSET.index(a__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __SCREAMING_SNAKE_CASE = """""".join( bin(B64_CHARSET.index(a__ ) )[2:].zfill(6 ) for char in encoded_data ) __SCREAMING_SNAKE_CASE = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(a__ ) , 8 ) ] return bytes(a__ ) if __name__ == "__main__": import doctest doctest.testmod()
331
'''simple docstring''' import os def a__ ( a__ = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(a__ ) , a__ ) ) as input_file: __SCREAMING_SNAKE_CASE = [ [int(a__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] __SCREAMING_SNAKE_CASE = len(a__ ) __SCREAMING_SNAKE_CASE = len(matrix[0] ) __SCREAMING_SNAKE_CASE = [[-1 for _ in range(a__ )] for _ in range(a__ )] for i in range(a__ ): __SCREAMING_SNAKE_CASE = matrix[i][0] for j in range(1 , a__ ): for i in range(a__ ): __SCREAMING_SNAKE_CASE = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , a__ ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
331
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase): """simple docstring""" @slow def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' UpperCamelCase__: Any = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-base" ) UpperCamelCase__: Optional[int] = { "input_ids": tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" "attention_mask": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } UpperCamelCase__: Optional[int] = model(__lowerCamelCase )["last_hidden_state"] UpperCamelCase__: int = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) # compare the actual values for a slice. UpperCamelCase__: Tuple = tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
149
def lowerCAmelCase_ ( A_ ,A_): if b == 0: return 1 if (b % 2) == 0: return actual_power(A_ ,int(b / 2)) * actual_power(A_ ,int(b / 2)) else: return a * actual_power(A_ ,int(b / 2)) * actual_power(A_ ,int(b / 2)) def lowerCAmelCase_ ( A_ ,A_): if b < 0: return 1 / actual_power(A_ ,A_) return actual_power(A_ ,A_) if __name__ == "__main__": print(power(-2, -3))
149
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase = logging.get_logger(__name__) # General docstring UpperCAmelCase = '''RegNetConfig''' # Base docstring UpperCAmelCase = '''facebook/regnet-y-040''' UpperCAmelCase = [1, 1088, 7, 7] # Image classification docstring UpperCAmelCase = '''facebook/regnet-y-040''' UpperCAmelCase = '''tabby, tabby cat''' UpperCAmelCase = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class a ( tf.keras.layers.Layer ): def __init__( self :Dict ,__lowercase :int ,__lowercase :int = 3 ,__lowercase :int = 1 ,__lowercase :int = 1 ,__lowercase :Optional[str] = "relu" ,**__lowercase :Tuple ,): super().__init__(**__lowercase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb snake_case__ : int = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) snake_case__ : Optional[int] = tf.keras.layers.ConvaD( filters=__lowercase ,kernel_size=__lowercase ,strides=__lowercase ,padding='''VALID''' ,groups=__lowercase ,use_bias=__lowercase ,name='''convolution''' ,) snake_case__ : Tuple = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' ) snake_case__ : Dict = ACTaFN[activation] if activation is not None else tf.identity def __lowerCamelCase ( self :Dict ,__lowercase :Optional[Any] ): snake_case__ : Optional[Any] = self.convolution(self.padding(__lowercase ) ) snake_case__ : Tuple = self.normalization(__lowercase ) snake_case__ : List[Any] = self.activation(__lowercase ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self :int ,__lowercase :RegNetConfig ,**__lowercase :Optional[Any] ): super().__init__(**__lowercase ) snake_case__ : Dict = config.num_channels snake_case__ : Union[str, Any] = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name='''embedder''' ,) def __lowerCamelCase ( self :Tuple ,__lowercase :Any ): snake_case__ : List[str] = shape_list(__lowercase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) snake_case__ : int = tf.transpose(__lowercase ,perm=(0, 2, 3, 1) ) snake_case__ : Optional[int] = self.embedder(__lowercase ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self :Any ,__lowercase :int ,__lowercase :int = 2 ,**__lowercase :Optional[Any] ): super().__init__(**__lowercase ) snake_case__ : List[str] = tf.keras.layers.ConvaD( filters=__lowercase ,kernel_size=1 ,strides=__lowercase ,use_bias=__lowercase ,name='''convolution''' ) snake_case__ : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' ) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :tf.Tensor ,__lowercase :bool = False ): return self.normalization(self.convolution(__lowercase ) ,training=__lowercase ) class a ( tf.keras.layers.Layer ): def __init__( self :Any ,__lowercase :int ,__lowercase :int ,**__lowercase :int ): super().__init__(**__lowercase ) snake_case__ : Optional[int] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowercase ,name='''pooler''' ) snake_case__ : Optional[Any] = [ tf.keras.layers.ConvaD(filters=__lowercase ,kernel_size=1 ,activation='''relu''' ,name='''attention.0''' ), tf.keras.layers.ConvaD(filters=__lowercase ,kernel_size=1 ,activation='''sigmoid''' ,name='''attention.2''' ), ] def __lowerCamelCase ( self :List[Any] ,__lowercase :Optional[int] ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] snake_case__ : Dict = self.pooler(__lowercase ) for layer_module in self.attention: snake_case__ : int = layer_module(__lowercase ) snake_case__ : Union[str, Any] = hidden_state * pooled return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self :List[Any] ,__lowercase :RegNetConfig ,__lowercase :int ,__lowercase :int ,__lowercase :int = 1 ,**__lowercase :int ): super().__init__(**__lowercase ) snake_case__ : int = in_channels != out_channels or stride != 1 snake_case__ : Optional[Any] = max(1 ,out_channels // config.groups_width ) snake_case__ : Union[str, Any] = ( TFRegNetShortCut(__lowercase ,stride=__lowercase ,name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. snake_case__ : int = [ TFRegNetConvLayer(__lowercase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ), TFRegNetConvLayer( __lowercase ,stride=__lowercase ,groups=__lowercase ,activation=config.hidden_act ,name='''layer.1''' ), TFRegNetConvLayer(__lowercase ,kernel_size=1 ,activation=__lowercase ,name='''layer.2''' ), ] snake_case__ : int = ACTaFN[config.hidden_act] def __lowerCamelCase ( self :List[str] ,__lowercase :Any ): snake_case__ : Dict = hidden_state for layer_module in self.layers: snake_case__ : Union[str, Any] = layer_module(__lowercase ) snake_case__ : Union[str, Any] = self.shortcut(__lowercase ) hidden_state += residual snake_case__ : str = self.activation(__lowercase ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self :List[Any] ,__lowercase :RegNetConfig ,__lowercase :int ,__lowercase :int ,__lowercase :int = 1 ,**__lowercase :List[str] ): super().__init__(**__lowercase ) snake_case__ : List[str] = in_channels != out_channels or stride != 1 snake_case__ : int = max(1 ,out_channels // config.groups_width ) snake_case__ : Any = ( TFRegNetShortCut(__lowercase ,stride=__lowercase ,name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' ) ) snake_case__ : int = [ TFRegNetConvLayer(__lowercase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ), TFRegNetConvLayer( __lowercase ,stride=__lowercase ,groups=__lowercase ,activation=config.hidden_act ,name='''layer.1''' ), TFRegNetSELayer(__lowercase ,reduced_channels=int(round(in_channels / 4 ) ) ,name='''layer.2''' ), TFRegNetConvLayer(__lowercase ,kernel_size=1 ,activation=__lowercase ,name='''layer.3''' ), ] snake_case__ : Optional[Any] = ACTaFN[config.hidden_act] def __lowerCamelCase ( self :int ,__lowercase :List[Any] ): snake_case__ : Optional[int] = hidden_state for layer_module in self.layers: snake_case__ : str = layer_module(__lowercase ) snake_case__ : Optional[Any] = self.shortcut(__lowercase ) hidden_state += residual snake_case__ : Union[str, Any] = self.activation(__lowercase ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self :Union[str, Any] ,__lowercase :RegNetConfig ,__lowercase :int ,__lowercase :int ,__lowercase :int = 2 ,__lowercase :int = 2 ,**__lowercase :Any ): super().__init__(**__lowercase ) snake_case__ : Optional[int] = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer snake_case__ : int = [ # downsampling is done in the first layer with stride of 2 layer(__lowercase ,__lowercase ,__lowercase ,stride=__lowercase ,name='''layers.0''' ), *[layer(__lowercase ,__lowercase ,__lowercase ,name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def __lowerCamelCase ( self :str ,__lowercase :Dict ): for layer_module in self.layers: snake_case__ : List[str] = layer_module(__lowercase ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self :Optional[Any] ,__lowercase :RegNetConfig ,**__lowercase :List[Any] ): super().__init__(**__lowercase ) snake_case__ : Optional[int] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __lowercase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name='''stages.0''' ,) ) snake_case__ : Dict = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowercase ,config.depths[1:] ) ): self.stages.append(TFRegNetStage(__lowercase ,__lowercase ,__lowercase ,depth=__lowercase ,name=F"""stages.{i+1}""" ) ) def __lowerCamelCase ( self :str ,__lowercase :tf.Tensor ,__lowercase :bool = False ,__lowercase :bool = True ): snake_case__ : Optional[int] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: snake_case__ : List[str] = hidden_states + (hidden_state,) snake_case__ : Optional[Any] = stage_module(__lowercase ) if output_hidden_states: snake_case__ : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowercase ,hidden_states=__lowercase ) @keras_serializable class a ( tf.keras.layers.Layer ): __lowerCAmelCase : Dict = RegNetConfig def __init__( self :List[Any] ,__lowercase :Optional[int] ,**__lowercase :Dict ): super().__init__(**__lowercase ) snake_case__ : Optional[int] = config snake_case__ : List[str] = TFRegNetEmbeddings(__lowercase ,name='''embedder''' ) snake_case__ : Dict = TFRegNetEncoder(__lowercase ,name='''encoder''' ) snake_case__ : Tuple = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowercase ,name='''pooler''' ) @unpack_inputs def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :tf.Tensor ,__lowercase :Optional[bool] = None ,__lowercase :Optional[bool] = None ,__lowercase :bool = False ,): snake_case__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : str = self.embedder(__lowercase ,training=__lowercase ) snake_case__ : Tuple = self.encoder( __lowercase ,output_hidden_states=__lowercase ,return_dict=__lowercase ,training=__lowercase ) snake_case__ : int = encoder_outputs[0] snake_case__ : Dict = self.pooler(__lowercase ) # Change to NCHW output format have uniformity in the modules snake_case__ : Optional[int] = tf.transpose(__lowercase ,perm=(0, 3, 1, 2) ) snake_case__ : Optional[Any] = tf.transpose(__lowercase ,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: snake_case__ : Optional[int] = tuple([tf.transpose(__lowercase ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowercase ,pooler_output=__lowercase ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class a ( __lowerCamelCase ): __lowerCAmelCase : Optional[Any] = RegNetConfig __lowerCAmelCase : List[str] = """regnet""" __lowerCAmelCase : Any = """pixel_values""" @property def __lowerCamelCase ( self :Tuple ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) ,dtype=tf.floataa )} UpperCAmelCase = r''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCAmelCase = r''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , __lowerCamelCase , ) class a ( __lowerCamelCase ): def __init__( self :Any ,__lowercase :RegNetConfig ,*__lowercase :Dict ,**__lowercase :Union[str, Any] ): super().__init__(__lowercase ,*__lowercase ,**__lowercase ) snake_case__ : Tuple = TFRegNetMainLayer(__lowercase ,name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(__lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__lowercase ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :tf.Tensor ,__lowercase :Optional[bool] = None ,__lowercase :Optional[bool] = None ,__lowercase :Tuple=False ,): snake_case__ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : Tuple = self.regnet( pixel_values=__lowercase ,output_hidden_states=__lowercase ,return_dict=__lowercase ,training=__lowercase ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , __lowerCamelCase , ) class a ( __lowerCamelCase , __lowerCamelCase ): def __init__( self :str ,__lowercase :RegNetConfig ,*__lowercase :str ,**__lowercase :str ): super().__init__(__lowercase ,*__lowercase ,**__lowercase ) snake_case__ : List[Any] = config.num_labels snake_case__ : Any = TFRegNetMainLayer(__lowercase ,name='''regnet''' ) # classification head snake_case__ : int = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__lowercase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :tf.Tensor = None ,__lowercase :tf.Tensor = None ,__lowercase :bool = None ,__lowercase :bool = None ,__lowercase :List[Any]=False ,): snake_case__ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : Optional[int] = self.regnet( __lowercase ,output_hidden_states=__lowercase ,return_dict=__lowercase ,training=__lowercase ) snake_case__ : Optional[int] = outputs.pooler_output if return_dict else outputs[1] snake_case__ : str = self.classifier[0](__lowercase ) snake_case__ : List[Any] = self.classifier[1](__lowercase ) snake_case__ : List[Any] = None if labels is None else self.hf_compute_loss(labels=__lowercase ,logits=__lowercase ) if not return_dict: snake_case__ : Union[str, Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__lowercase ,logits=__lowercase ,hidden_states=outputs.hidden_states )
370
def _lowerCAmelCase ( __lowerCAmelCase = 50 ) -> int: """simple docstring""" snake_case__ : Optional[int] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
44
0
"""simple docstring""" from itertools import permutations def lowercase ( A_ )-> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False a : Optional[int] = [7, 11, 13, 17] for i, test in enumerate(A_ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase ( A_ = 10 )-> int: '''simple docstring''' return sum( int("".join(map(A_ , A_ ) ) ) for num in permutations(range(A_ ) ) if is_substring_divisible(A_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
40
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } lowerCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } lowerCamelCase = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } lowerCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class _a ( _lowercase): _a : Any = VOCAB_FILES_NAMES _a : List[str] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _a ( _lowercase): _a : int = VOCAB_FILES_NAMES _a : List[Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a : List[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Any = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCamelCase = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCamelCase = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(_lowercase) class _a : def __call__( self : Tuple , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[str] = None , _SCREAMING_SNAKE_CASE : Optional[str] = None , _SCREAMING_SNAKE_CASE : Union[bool, str] = False , _SCREAMING_SNAKE_CASE : Union[bool, str] = False , _SCREAMING_SNAKE_CASE : Optional[int] = None , _SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , **_SCREAMING_SNAKE_CASE : str , )-> BatchEncoding: if titles is None and texts is None: return super().__call__( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) elif titles is None or texts is None: lowerCAmelCase__ : Tuple = titles if texts is None else texts return super().__call__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : int = titles if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else [titles] lowerCAmelCase__ : Dict = texts if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else [texts] lowerCAmelCase__ : Dict = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Dict = questions if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else [questions] * n_passages if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( F'There should be as many titles than texts but got {len(_SCREAMING_SNAKE_CASE )} titles and {len(_SCREAMING_SNAKE_CASE )} texts.' ) lowerCAmelCase__ : Union[str, Any] = super().__call__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE )['''input_ids'''] lowerCAmelCase__ : str = super().__call__(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE )['''input_ids'''] lowerCAmelCase__ : Dict = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] } if return_attention_mask is not False: lowerCAmelCase__ : Union[str, Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCAmelCase__ : Tuple = attention_mask return self.pad(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : BatchEncoding , _SCREAMING_SNAKE_CASE : DPRReaderOutput , _SCREAMING_SNAKE_CASE : int = 16 , _SCREAMING_SNAKE_CASE : int = 64 , _SCREAMING_SNAKE_CASE : int = 4 , )-> List[DPRSpanPrediction]: lowerCAmelCase__ : Optional[int] = reader_input['''input_ids'''] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = reader_output[:3] lowerCAmelCase__ : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = sorted(range(_SCREAMING_SNAKE_CASE ) , reverse=_SCREAMING_SNAKE_CASE , key=relevance_logits.__getitem__ ) lowerCAmelCase__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: lowerCAmelCase__ : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCAmelCase__ : Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCAmelCase__ : Any = sequence_ids.index(self.pad_token_id ) else: lowerCAmelCase__ : Optional[int] = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_SCREAMING_SNAKE_CASE , top_spans=_SCREAMING_SNAKE_CASE , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_SCREAMING_SNAKE_CASE , start_index=_SCREAMING_SNAKE_CASE , end_index=_SCREAMING_SNAKE_CASE , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_SCREAMING_SNAKE_CASE ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , )-> List[DPRSpanPrediction]: lowerCAmelCase__ : Union[str, Any] = [] for start_index, start_score in enumerate(_SCREAMING_SNAKE_CASE ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCAmelCase__ : List[Any] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x[1] , reverse=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'Wrong span indices: [{start_index}:{end_index}]' ) lowerCAmelCase__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'Span is too long: {length} > {max_answer_length}' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_SCREAMING_SNAKE_CASE ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_lowercase) class _a ( _lowercase , _lowercase): _a : List[str] = VOCAB_FILES_NAMES _a : str = READER_PRETRAINED_VOCAB_FILES_MAP _a : Optional[int] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION _a : Optional[int] = ['''input_ids''', '''attention_mask''']
131
0
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCAmelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( A_ : str, A_ : str ): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: _lowerCamelCase : Any = XLMProphetNetForConditionalGenerationOld.from_pretrained(A_ ) _lowerCamelCase : List[str] = XLMProphetNetForConditionalGeneration.from_pretrained( A_, output_loading_info=A_ ) else: _lowerCamelCase : str = ProphetNetForConditionalGenerationOld.from_pretrained(A_ ) _lowerCamelCase : Any = ProphetNetForConditionalGeneration.from_pretrained( A_, output_loading_info=A_ ) _lowerCamelCase : Optional[Any] = ['''key_proj''', '''value_proj''', '''query_proj'''] _lowerCamelCase : List[Any] = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: _lowerCamelCase : Union[str, Any] = key.split('''.''' ) if attributes[0] == "lm_head": _lowerCamelCase : str = prophet _lowerCamelCase : List[Any] = prophet_old else: _lowerCamelCase : Optional[int] = prophet.prophetnet _lowerCamelCase : Optional[Any] = prophet_old.model _lowerCamelCase : Any = False for attribute in attributes: if attribute in mapping: _lowerCamelCase : Optional[int] = mapping[attribute] if not hasattr(A_, A_ ) and len(A_ ) > 0: _lowerCamelCase : int = attribute elif hasattr(A_, A_ ): _lowerCamelCase : int = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _lowerCamelCase : Optional[int] = old_model.weight logger.info(F'''{attribute} is initialized.''' ) _lowerCamelCase : List[str] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _lowerCamelCase : int = old_model.bias logger.info(F'''{attribute} is initialized''' ) _lowerCamelCase : Union[str, Any] = True break elif attribute in special_keys and hasattr(A_, '''in_proj_weight''' ): _lowerCamelCase : Tuple = old_model.in_proj_weight.shape[0] // 3 _lowerCamelCase : List[Any] = getattr(A_, A_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _lowerCamelCase : Optional[Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _lowerCamelCase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _lowerCamelCase : int = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _lowerCamelCase : str = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _lowerCamelCase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _lowerCamelCase : str = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _lowerCamelCase : Dict = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _lowerCamelCase : List[str] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _lowerCamelCase : Optional[Any] = True break if attribute.isdigit(): _lowerCamelCase : Optional[int] = model[int(A_ )] _lowerCamelCase : List[Any] = old_model[int(A_ )] else: _lowerCamelCase : List[str] = getattr(A_, A_ ) if old_attribute == "": _lowerCamelCase : str = old_model else: if not hasattr(A_, A_ ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) _lowerCamelCase : Optional[int] = getattr(A_, A_ ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
351
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowerCAmelCase__ = logging.getLogger(__name__) class __snake_case ( _lowercase): def __init__( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int=None ): """simple docstring""" super().__init__( __lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , index=__lowerCAmelCase , init_retrieval=__lowerCAmelCase , ) _lowerCamelCase : Dict = None def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : int ): """simple docstring""" logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually _lowerCamelCase : List[str] = self._infer_socket_ifname() # avoid clash with the NCCL port _lowerCamelCase : Dict = str(distributed_port + 1 ) _lowerCamelCase : str = dist.new_group(ranks=__lowerCAmelCase , backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple=torch.floataa ): """simple docstring""" _lowerCamelCase : Optional[Any] = torch.empty(__lowerCAmelCase , dtype=__lowerCAmelCase ) dist.scatter(__lowerCAmelCase , src=0 , scatter_list=__lowerCAmelCase , group=self.process_group ) return target_tensor def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : List[str] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _lowerCamelCase : str = next((addr for addr in addrs if addr.startswith('''e''' )) , __lowerCAmelCase ) return ifname def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : int ): """simple docstring""" if not dist.is_initialized(): _lowerCamelCase , _lowerCamelCase : Any = self._main_retrieve(__lowerCAmelCase , __lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCAmelCase ) # distributed training _lowerCamelCase : Dict = dist.get_world_size(group=self.process_group ) # gather logic _lowerCamelCase : str = None if self._is_main(): _lowerCamelCase : List[Any] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__lowerCAmelCase )] dist.gather(torch.tensor(__lowerCAmelCase ) , dst=0 , gather_list=__lowerCAmelCase , group=self.process_group ) # scatter logic _lowerCamelCase : int = question_hidden_states.shape[0] _lowerCamelCase : str = [] _lowerCamelCase : Optional[int] = [] if self._is_main(): assert len(__lowerCAmelCase ) == world_size _lowerCamelCase , _lowerCamelCase : Tuple = self._main_retrieve(torch.cat(__lowerCAmelCase ).numpy() , __lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : List[str] = torch.tensor(__lowerCAmelCase ), torch.tensor(__lowerCAmelCase ) _lowerCamelCase : List[Any] = self._chunk_tensor(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self._chunk_tensor(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : int = self._scattered(__lowerCAmelCase , [n_queries, n_docs] , target_type=torch.intaa ) _lowerCamelCase : str = self._scattered(__lowerCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowerCAmelCase )
175
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__="attention" ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) _SCREAMING_SNAKE_CASE = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) _SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) _SCREAMING_SNAKE_CASE = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) _SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) _SCREAMING_SNAKE_CASE = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) _SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) _SCREAMING_SNAKE_CASE = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=False ) -> Optional[Any]: """simple docstring""" if split_mlp_wi: _SCREAMING_SNAKE_CASE = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] _SCREAMING_SNAKE_CASE = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] _SCREAMING_SNAKE_CASE = (wi_a, wi_a) else: _SCREAMING_SNAKE_CASE = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] _SCREAMING_SNAKE_CASE = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def __lowerCamelCase ( snake_case__ ,*, snake_case__ ,snake_case__ ,snake_case__ = False ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = traverse_util.flatten_dict(variables["""target"""] ) _SCREAMING_SNAKE_CASE = {"""/""".join(snake_case__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _SCREAMING_SNAKE_CASE = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" ,snake_case__ ) _SCREAMING_SNAKE_CASE = collections.OrderedDict() # Shared embeddings. _SCREAMING_SNAKE_CASE = old["""token_embedder/embedding"""] # Encoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). _SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(snake_case__ ,snake_case__ ,"""encoder""" ,"""pre_attention_layer_norm""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = tax_attention_lookup(snake_case__ ,snake_case__ ,"""encoder""" ,"""attention""" ) _SCREAMING_SNAKE_CASE = layer_norm _SCREAMING_SNAKE_CASE = k.T _SCREAMING_SNAKE_CASE = o.T _SCREAMING_SNAKE_CASE = q.T _SCREAMING_SNAKE_CASE = v.T # Block i, layer 1 (MLP). _SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(snake_case__ ,snake_case__ ,"""encoder""" ,"""pre_mlp_layer_norm""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = tax_mlp_lookup(snake_case__ ,snake_case__ ,"""encoder""" ,snake_case__ ) _SCREAMING_SNAKE_CASE = layer_norm if split_mlp_wi: _SCREAMING_SNAKE_CASE = wi[0].T _SCREAMING_SNAKE_CASE = wi[1].T else: _SCREAMING_SNAKE_CASE = wi.T _SCREAMING_SNAKE_CASE = wo.T if scalable_attention: # convert the rel_embedding of each layer _SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup( snake_case__ ,snake_case__ ,"""encoder""" ).T _SCREAMING_SNAKE_CASE = old["""encoder/encoder_norm/scale"""] if not scalable_attention: _SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup( snake_case__ ,0 ,"""encoder""" ).T _SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup( snake_case__ ,0 ,"""decoder""" ).T if not is_encoder_only: # Decoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). _SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(snake_case__ ,snake_case__ ,"""decoder""" ,"""pre_self_attention_layer_norm""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = tax_attention_lookup(snake_case__ ,snake_case__ ,"""decoder""" ,"""self_attention""" ) _SCREAMING_SNAKE_CASE = layer_norm _SCREAMING_SNAKE_CASE = k.T _SCREAMING_SNAKE_CASE = o.T _SCREAMING_SNAKE_CASE = q.T _SCREAMING_SNAKE_CASE = v.T # Block i, layer 1 (Cross Attention). _SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(snake_case__ ,snake_case__ ,"""decoder""" ,"""pre_cross_attention_layer_norm""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = tax_attention_lookup(snake_case__ ,snake_case__ ,"""decoder""" ,"""encoder_decoder_attention""" ) _SCREAMING_SNAKE_CASE = layer_norm _SCREAMING_SNAKE_CASE = k.T _SCREAMING_SNAKE_CASE = o.T _SCREAMING_SNAKE_CASE = q.T _SCREAMING_SNAKE_CASE = v.T # Block i, layer 2 (MLP). _SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(snake_case__ ,snake_case__ ,"""decoder""" ,"""pre_mlp_layer_norm""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = tax_mlp_lookup(snake_case__ ,snake_case__ ,"""decoder""" ,snake_case__ ) _SCREAMING_SNAKE_CASE = layer_norm if split_mlp_wi: _SCREAMING_SNAKE_CASE = wi[0].T _SCREAMING_SNAKE_CASE = wi[1].T else: _SCREAMING_SNAKE_CASE = wi.T _SCREAMING_SNAKE_CASE = wo.T if scalable_attention: # convert the rel_embedding of each layer _SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup(snake_case__ ,snake_case__ ,"""decoder""" ).T _SCREAMING_SNAKE_CASE = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _SCREAMING_SNAKE_CASE = old["""decoder/logits_dense/kernel"""].T return new def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _SCREAMING_SNAKE_CASE = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _SCREAMING_SNAKE_CASE = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) _SCREAMING_SNAKE_CASE = state_dict["""shared.weight"""] return state_dict def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(snake_case__ ) _SCREAMING_SNAKE_CASE = convert_tax_to_pytorch( snake_case__ ,num_layers=config.num_layers ,is_encoder_only=snake_case__ ,scalable_attention=snake_case__ ) _SCREAMING_SNAKE_CASE = make_state_dict(snake_case__ ,snake_case__ ) model.load_state_dict(snake_case__ ,strict=snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = False ,snake_case__ = False ,) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = MTaConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _SCREAMING_SNAKE_CASE = UMTaEncoderModel(snake_case__ ) else: _SCREAMING_SNAKE_CASE = UMTaForConditionalGeneration(snake_case__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(snake_case__ ) # Verify that we can load the checkpoint. model.from_pretrained(snake_case__ ) print("""Done""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
306
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [randint(-10_00 ,10_00 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-50_00 ,50_00 ) return (arr, r) UpperCamelCase = make_dataset() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(snake_case__ ,3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ) -> tuple[float, float]: """simple docstring""" _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
306
1
import itertools import os import re lowerCAmelCase__ = re.compile(r'''([A-Z]+)([A-Z][a-z])''') lowerCAmelCase__ = re.compile(r'''([a-z\d])([A-Z])''') lowerCAmelCase__ = re.compile(r'''(?<!_)_(?!_)''') lowerCAmelCase__ = re.compile(r'''(_{2,})''') lowerCAmelCase__ = r'''^\w+(\.\w+)*$''' lowerCAmelCase__ = r'''<>:/\|?*''' def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = _uppercase_uppercase_re.sub(r"\1_\2" , _SCREAMING_SNAKE_CASE ) UpperCamelCase = _lowercase_uppercase_re.sub(r"\1_\2" , _SCREAMING_SNAKE_CASE ) return name.lower() def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = _single_underscore_re.split(_SCREAMING_SNAKE_CASE ) UpperCamelCase = [_multiple_underscores_re.split(_SCREAMING_SNAKE_CASE ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_SCREAMING_SNAKE_CASE ) if n != "" ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" if os.path.basename(_SCREAMING_SNAKE_CASE ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if os.path.basename(_SCREAMING_SNAKE_CASE ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , _SCREAMING_SNAKE_CASE ): raise ValueError(F"Split name should match '{_split_re}'' but got '{split}'." ) return F"{filename_prefix_for_name(_SCREAMING_SNAKE_CASE )}-{split}" def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase = filename_prefix_for_split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if filetype_suffix: prefix += F".{filetype_suffix}" UpperCamelCase = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return F"{filepath}*" def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase = filename_prefix_for_split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if shard_lengths: UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(_SCREAMING_SNAKE_CASE )] if filetype_suffix: UpperCamelCase = [filename + F".{filetype_suffix}" for filename in filenames] return filenames else: UpperCamelCase = prefix if filetype_suffix: filename += F".{filetype_suffix}" return [filename]
360
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''▁''' lowerCAmelCase__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase__ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), } } lowerCAmelCase__ = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off lowerCAmelCase__ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = ["input_ids", "attention_mask"] UpperCAmelCase_ = [] UpperCAmelCase_ = [] def __init__(self , __a , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a=None , __a=None , __a=None , __a = None , __a=None , **__a , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , tokenizer_file=__a , src_lang=__a , tgt_lang=__a , additional_special_tokens=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__a ) ) UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase = 1 UpperCamelCase = len(self.sp_model ) UpperCamelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__a ) } UpperCamelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCamelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCamelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCamelCase = src_lang if src_lang is not None else "en_XX" UpperCamelCase = self.lang_code_to_id[self._src_lang] UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__(self ) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__(self , __a ) -> Tuple: UpperCamelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def snake_case_ (self ) -> Any: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def snake_case_ (self ) -> str: return self._src_lang @src_lang.setter def snake_case_ (self , __a ) -> None: UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case_ (self , __a , __a = None , __a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) UpperCamelCase = [1] * len(self.prefix_tokens ) UpperCamelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__a )) + suffix_ones return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones def snake_case_ (self , __a , __a = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case_ (self , __a , __a = None ) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ (self , __a , __a , __a , __a , **__a ) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCamelCase = src_lang UpperCamelCase = self(__a , add_special_tokens=__a , return_tensors=__a , **__a ) UpperCamelCase = self.convert_tokens_to_ids(__a ) UpperCamelCase = tgt_lang_id return inputs def snake_case_ (self ) -> List[str]: UpperCamelCase = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ (self , __a ) -> List[str]: return self.sp_model.encode(__a , out_type=__a ) def snake_case_ (self , __a ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase = self.sp_model.PieceToId(__a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ (self , __a ) -> Optional[int]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ (self , __a ) -> Optional[int]: UpperCamelCase = "".join(__a ).replace(__a , " " ).strip() return out_string def snake_case_ (self , __a , __a = None ) -> Tuple[str]: if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , "wb" ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,) def snake_case_ (self , __a , __a = "en_XX" , __a = None , __a = "ro_RO" , **__a , ) -> BatchEncoding: UpperCamelCase = src_lang UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(__a , __a , **__a ) def snake_case_ (self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def snake_case_ (self ) -> Optional[int]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case_ (self , __a ) -> None: UpperCamelCase = self.lang_code_to_id[src_lang] UpperCamelCase = [] UpperCamelCase = [self.eos_token_id, self.cur_lang_code] def snake_case_ (self , __a ) -> None: UpperCamelCase = self.lang_code_to_id[lang] UpperCamelCase = [] UpperCamelCase = [self.eos_token_id, self.cur_lang_code]
244
0
'''simple docstring''' lowerCAmelCase :Tuple = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def lowerCamelCase ( lowerCAmelCase : bytes ): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): __magic_name__ : Dict = f'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(lowerCAmelCase ) __magic_name__ : Any = ''.join(bin(lowerCAmelCase )[2:].zfill(8 ) for byte in data ) __magic_name__ : Optional[Any] = len(lowerCAmelCase ) % 6 != 0 if padding_needed: # The padding that will be added later __magic_name__ : Union[str, Any] = b'=' * ((6 - len(lowerCAmelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(lowerCAmelCase ) % 6) else: __magic_name__ : Optional[int] = b'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(lowerCAmelCase ) , 6 ) ).encode() + padding ) def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ) and not isinstance(lowerCAmelCase , lowerCAmelCase ): __magic_name__ : List[str] = ( 'argument should be a bytes-like object or ASCII string, ' f'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(lowerCAmelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(lowerCAmelCase , lowerCAmelCase ): try: __magic_name__ : Dict = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) __magic_name__ : Union[str, Any] = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(lowerCAmelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __magic_name__ : str = encoded_data[:-padding] __magic_name__ : Optional[Any] = ''.join( bin(B64_CHARSET.index(lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __magic_name__ : Any = ''.join( bin(B64_CHARSET.index(lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data ) __magic_name__ : Dict = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(lowerCAmelCase ) , 8 ) ] return bytes(lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
1
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : torch.FloatTensor UpperCAmelCase : Optional[torch.FloatTensor] = None def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Optional[int]=0.999 , _snake_case : Any="cosine" , ) -> Optional[int]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_snake_case : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_snake_case : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _A = [] for i in range(_snake_case ): _A = i / num_diffusion_timesteps _A = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_snake_case ) / alpha_bar_fn(_snake_case ) , _snake_case ) ) return torch.tensor(_snake_case , dtype=torch.floataa ) class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = 1 @register_to_config def __init__( self : int , _UpperCAmelCase : int = 1_000 , _UpperCAmelCase : float = 0.0001 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : str = "linear" , _UpperCAmelCase : Optional[Union[np.ndarray, List[float]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , _UpperCAmelCase : int = 0 , _UpperCAmelCase : str = "epsilon" , _UpperCAmelCase : float = 1.0 , **_UpperCAmelCase : Tuple , ): if kwargs.get('set_alpha_to_one' , _UpperCAmelCase ) is not None: _A = ( 'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.' ) deprecate('set_alpha_to_one' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) _A = kwargs['set_alpha_to_one'] if trained_betas is not None: _A = torch.tensor(_UpperCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _A = torch.linspace(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _UpperCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A = betas_for_alpha_bar(_UpperCAmelCase ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _A = 1.0 - self.betas _A = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _A = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _A = 1.0 # setable values _A = None _A = torch.from_numpy(np.arange(0 , _UpperCAmelCase ).copy().astype(np.intaa ) ) def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : Optional[int] = None ): return sample def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, torch.device] = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) _A = num_inference_steps _A = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A = (np.arange(0 , _UpperCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) _A = torch.from_numpy(_UpperCAmelCase ).to(_UpperCAmelCase ) self.timesteps += self.config.steps_offset def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : int , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : bool = True , ): # 1. get previous step value (=t+1) _A = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _A = self.alphas_cumprod[timestep] _A = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _A = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _A = model_output elif self.config.prediction_type == "sample": _A = model_output _A = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _A = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _A = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ' `v_prediction`' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _A = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _A = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _A = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_UpperCAmelCase , pred_original_sample=_UpperCAmelCase ) def __len__( self : Optional[Any] ): return self.config.num_train_timesteps
271
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1_000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } a = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1_000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } a = { '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } a = { '''num_train_timesteps''': 40, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } a = { '''num_train_timesteps''': 201, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } a = { '''num_train_timesteps''': 151, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } def _snake_case ( _snake_case : Dict ) -> int: '''simple docstring''' if isinstance(_snake_case , _snake_case ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def _snake_case ( _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Dict , _snake_case : Dict , _snake_case : Optional[Any]=False ) -> List[str]: '''simple docstring''' _A = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _A = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _A = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _A = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _A = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _A = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _A = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _A = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _A = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _A = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _A = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _A = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def _snake_case ( _snake_case : List[Any] , _snake_case : int , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : int=None ) -> Optional[int]: '''simple docstring''' _A , _A , _A = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _A , _A , _A = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _A = checkpoint[F'''{old_prefix}.norm.weight'''] _A = checkpoint[F'''{old_prefix}.norm.bias'''] _A = weight_q.squeeze(-1 ).squeeze(-1 ) _A = bias_q.squeeze(-1 ).squeeze(-1 ) _A = weight_k.squeeze(-1 ).squeeze(-1 ) _A = bias_k.squeeze(-1 ).squeeze(-1 ) _A = weight_v.squeeze(-1 ).squeeze(-1 ) _A = bias_v.squeeze(-1 ).squeeze(-1 ) _A = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _A = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _snake_case ( _snake_case : str , _snake_case : Any ) -> str: '''simple docstring''' _A = torch.load(_snake_case , map_location='cpu' ) _A = {} _A = checkpoint['time_embed.0.weight'] _A = checkpoint['time_embed.0.bias'] _A = checkpoint['time_embed.2.weight'] _A = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _A = checkpoint['label_emb.weight'] _A = checkpoint['input_blocks.0.0.weight'] _A = checkpoint['input_blocks.0.0.bias'] _A = unet_config['down_block_types'] _A = unet_config['layers_per_block'] _A = unet_config['attention_head_dim'] _A = unet_config['block_out_channels'] _A = 1 _A = channels_list[0] for i, layer_type in enumerate(_snake_case ): _A = channels_list[i] _A = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_snake_case ): _A = F'''down_blocks.{i}.resnets.{j}''' _A = F'''input_blocks.{current_layer}.0''' _A = True if j == 0 and downsample_block_has_skip else False _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_snake_case ): _A = F'''down_blocks.{i}.resnets.{j}''' _A = F'''input_blocks.{current_layer}.0''' _A = True if j == 0 and downsample_block_has_skip else False _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) _A = F'''down_blocks.{i}.attentions.{j}''' _A = F'''input_blocks.{current_layer}.1''' _A = convert_attention( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) current_layer += 1 if i != len(_snake_case ) - 1: _A = F'''down_blocks.{i}.downsamplers.0''' _A = F'''input_blocks.{current_layer}.0''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) current_layer += 1 _A = current_channels # hardcoded the mid-block for now _A = 'mid_block.resnets.0' _A = 'middle_block.0' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) _A = 'mid_block.attentions.0' _A = 'middle_block.1' _A = convert_attention(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) _A = 'mid_block.resnets.1' _A = 'middle_block.2' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) _A = 0 _A = unet_config['up_block_types'] for i, layer_type in enumerate(_snake_case ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _A = F'''up_blocks.{i}.resnets.{j}''' _A = F'''output_blocks.{current_layer}.0''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) current_layer += 1 if i != len(_snake_case ) - 1: _A = F'''up_blocks.{i}.upsamplers.0''' _A = F'''output_blocks.{current_layer-1}.1''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _A = F'''up_blocks.{i}.resnets.{j}''' _A = F'''output_blocks.{current_layer}.0''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) _A = F'''up_blocks.{i}.attentions.{j}''' _A = F'''output_blocks.{current_layer}.1''' _A = convert_attention( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) current_layer += 1 if i != len(_snake_case ) - 1: _A = F'''up_blocks.{i}.upsamplers.0''' _A = F'''output_blocks.{current_layer-1}.2''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) _A = checkpoint['out.0.weight'] _A = checkpoint['out.0.bias'] _A = checkpoint['out.2.weight'] _A = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
271
1
"""simple docstring""" from functools import lru_cache def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->set: '''simple docstring''' a : Optional[int] = 2 a : List[Any] = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_lowerCamelCase ) if n > 1: factors.add(_lowerCamelCase ) return factors @lru_cache def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->int: '''simple docstring''' return len(unique_prime_factors(_lowerCamelCase ) ) def _SCREAMING_SNAKE_CASE ( _lowercase : list ) ->bool: '''simple docstring''' return len(set(_lowerCamelCase ) ) in (0, 1) def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->list: '''simple docstring''' a : Any = 2 while True: # Increment each value of a generated range a : str = [base + i for i in range(_lowerCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. a : List[str] = [upf_len(_lowerCamelCase ) for x in group] checker.append(_lowerCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(_lowerCamelCase ): return group # Increment our base variable by 1 base += 1 def _SCREAMING_SNAKE_CASE ( _lowercase : int = 4 ) ->int: '''simple docstring''' a : Optional[Any] = run(_lowerCamelCase ) return results[0] if len(_lowerCamelCase ) else None if __name__ == "__main__": print(solution())
105
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = "" _UpperCamelCase : str = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self , a__ = None , a__ = None , **a__ , ): super().__init__(self , **a__ ) _lowerCAmelCase : Any = repo_info _lowerCAmelCase : Optional[Any] = token _lowerCAmelCase : Optional[int] = None def __A ( self ): if self.dir_cache is None: _lowerCAmelCase : Optional[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _lowerCAmelCase : Any = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(a__ ): {"""name""": str(a__ ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __A ( self , a__ , a__ = "rb" , **a__ , ): if not isinstance(self.repo_info , a__ ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) _lowerCAmelCase : Tuple = hf_hub_url(self.repo_info.id , a__ , revision=self.repo_info.sha ) return fsspec.open( a__ , mode=a__ , headers=get_authentication_headers_for_url(a__ , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def __A ( self , a__ , **a__ ): self._get_dirs() _lowerCAmelCase : Union[str, Any] = self._strip_protocol(a__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(a__ ) def __A ( self , a__ , a__=False , **a__ ): self._get_dirs() _lowerCAmelCase : Any = PurePosixPath(path.strip("""/""" ) ) _lowerCAmelCase : List[str] = {} for p, f in self.dir_cache.items(): _lowerCAmelCase : Any = PurePosixPath(p.strip("""/""" ) ) _lowerCAmelCase : Optional[int] = p.parent if root == path: _lowerCAmelCase : Dict = f _lowerCAmelCase : Union[str, Any] = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
44
0
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _snake_case ( a__ , unittest.TestCase ): lowerCAmelCase :Tuple = GPTSanJapaneseTokenizer lowerCAmelCase :List[Any] = False lowerCAmelCase :List[Any] = {"""do_clean_text""": False, """add_prefix_space""": False} def snake_case__ ( self): super().setUp() # fmt: off UpperCAmelCase__ : str = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on UpperCAmelCase__ : Union[str, Any] = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 UpperCAmelCase__ : Tuple = {"""unk_token""": """<unk>"""} UpperCAmelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) UpperCAmelCase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) with open(self.emoji_file , """w""") as emoji_writer: emoji_writer.write(json.dumps(_lowercase)) def snake_case__ ( self , **_lowerCamelCase): kwargs.update(self.special_tokens_map) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **_lowercase) def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : Any = """こんにちは、世界。 \nこんばんは、㔺界。😀""" UpperCAmelCase__ : Any = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.get_input_output_texts(_lowercase) UpperCAmelCase__ : int = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase__ : Optional[int] = tokenizer.decode(_lowercase , clean_up_tokenization_spaces=_lowercase) return text, ids def snake_case__ ( self): pass # TODO add if relevant def snake_case__ ( self): pass # TODO add if relevant def snake_case__ ( self): pass # TODO add if relevant def snake_case__ ( self): UpperCAmelCase__ : Dict = self.get_tokenizer() # Testing tokenization UpperCAmelCase__ : Optional[Any] = """こんにちは、世界。 こんばんは、㔺界。""" UpperCAmelCase__ : Optional[Any] = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] UpperCAmelCase__ : str = tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) # Testing conversion to ids without special tokens UpperCAmelCase__ : Dict = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCAmelCase__ : List[Any] = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual(_lowercase , _lowercase) # Testing conversion to ids with special tokens UpperCAmelCase__ : Any = tokens + [tokenizer.unk_token] UpperCAmelCase__ : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] UpperCAmelCase__ : Tuple = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual(_lowercase , _lowercase) def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() # Testing tokenization UpperCAmelCase__ : str = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" UpperCAmelCase__ : List[str] = """こんにちは、、、、世界。こんばんは、、、、世界。""" UpperCAmelCase__ : str = tokenizer.encode(_lowercase) UpperCAmelCase__ : int = tokenizer.decode(_lowercase) self.assertEqual(_lowercase , _lowercase) @slow def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""") # Testing tokenization UpperCAmelCase__ : List[Any] = """こんにちは、世界。""" UpperCAmelCase__ : Optional[int] = """こんばんは、㔺界。😀""" UpperCAmelCase__ : Dict = """こんにちは、世界。こんばんは、世界。😀""" UpperCAmelCase__ : Tuple = tokenizer.encode(prefix_text + input_text) UpperCAmelCase__ : int = tokenizer.encode("""""" , prefix_text=prefix_text + input_text) UpperCAmelCase__ : Union[str, Any] = tokenizer.encode(_lowercase , prefix_text=_lowercase) UpperCAmelCase__ : Dict = tokenizer.decode(_lowercase) UpperCAmelCase__ : List[str] = tokenizer.decode(_lowercase) UpperCAmelCase__ : Tuple = tokenizer.decode(_lowercase) self.assertEqual(_lowercase , _lowercase) self.assertEqual(_lowercase , _lowercase) self.assertEqual(_lowercase , _lowercase) @slow def snake_case__ ( self): UpperCAmelCase__ : int = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""") # Testing tokenization UpperCAmelCase__ : Union[str, Any] = """こんにちは、世界。""" UpperCAmelCase__ : Dict = """こんばんは、㔺界。😀""" UpperCAmelCase__ : Union[str, Any] = len(tokenizer.encode(_lowercase)) - 2 UpperCAmelCase__ : List[str] = len(tokenizer.encode(_lowercase)) - 2 UpperCAmelCase__ : int = [1] + [0] * (len_prefix + len_text + 1) UpperCAmelCase__ : Any = [1] * (len_prefix + len_text + 1) + [0] UpperCAmelCase__ : Optional[Any] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCAmelCase__ : List[str] = tokenizer(prefix_text + input_text).token_type_ids UpperCAmelCase__ : Union[str, Any] = tokenizer("""""" , prefix_text=prefix_text + input_text).token_type_ids UpperCAmelCase__ : List[str] = tokenizer(_lowercase , prefix_text=_lowercase).token_type_ids self.assertListEqual(_lowercase , _lowercase) self.assertListEqual(_lowercase , _lowercase) self.assertListEqual(_lowercase , _lowercase) @slow def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""") UpperCAmelCase__ : int = tokenizer.encode("""あンいワ""") UpperCAmelCase__ : Optional[Any] = tokenizer.encode("""""" , prefix_text="""あンいワ""") UpperCAmelCase__ : Union[str, Any] = tokenizer.encode("""いワ""" , prefix_text="""あン""") self.assertEqual(tokenizer.decode(_lowercase) , tokenizer.decode(_lowercase)) self.assertEqual(tokenizer.decode(_lowercase) , tokenizer.decode(_lowercase)) self.assertNotEqual(_lowercase , _lowercase) self.assertNotEqual(_lowercase , _lowercase) self.assertEqual(x_token_a[1] , x_token_a[-1]) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3]) # SEG token @slow def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""") UpperCAmelCase__ : Optional[Any] = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] UpperCAmelCase__ : Optional[int] = tokenizer(_lowercase , padding=_lowercase) UpperCAmelCase__ : Optional[Any] = tokenizer.batch_encode_plus(_lowercase , padding=_lowercase) # fmt: off UpperCAmelCase__ : Optional[int] = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] UpperCAmelCase__ : List[Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCAmelCase__ : Dict = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , _lowercase) self.assertListEqual(x_token.token_type_ids , _lowercase) self.assertListEqual(x_token.attention_mask , _lowercase) self.assertListEqual(x_token_a.input_ids , _lowercase) self.assertListEqual(x_token_a.token_type_ids , _lowercase) self.assertListEqual(x_token_a.attention_mask , _lowercase) def snake_case__ ( self): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def snake_case__ ( self): # tokenizer has no padding token pass
366
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _snake_case ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=4 , ): UpperCAmelCase__ : Union[str, Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Tuple = seq_length UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : Tuple = use_attention_mask UpperCAmelCase__ : Optional[Any] = use_token_type_ids UpperCAmelCase__ : Optional[Any] = use_labels UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : Dict = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : Optional[int] = intermediate_size UpperCAmelCase__ : Tuple = hidden_act UpperCAmelCase__ : Optional[Any] = hidden_dropout_prob UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase__ : List[Any] = max_position_embeddings UpperCAmelCase__ : Optional[int] = type_vocab_size UpperCAmelCase__ : str = type_sequence_label_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : str = num_choices def snake_case__ ( self): UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase__ : Union[str, Any] = None if self.use_attention_mask: UpperCAmelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase__ : Dict = None if self.use_token_type_ids: UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCAmelCase__ : Optional[Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self): UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = config_and_inputs UpperCAmelCase__ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _snake_case ( a__ , unittest.TestCase ): lowerCAmelCase :Optional[int] = True lowerCAmelCase :Any = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self): UpperCAmelCase__ : List[str] = FlaxRoFormerModelTester(self) @slow def snake_case__ ( self): for model_class_name in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowerCamelCase) UpperCAmelCase__ : Dict = model(np.ones((1, 1))) self.assertIsNotNone(_lowerCamelCase) @require_flax class _snake_case ( unittest.TestCase ): @slow def snake_case__ ( self): UpperCAmelCase__ : Any = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""") UpperCAmelCase__ : int = jnp.array([[0, 1, 2, 3, 4, 5]]) UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase)[0] UpperCAmelCase__ : Union[str, Any] = 5_0000 UpperCAmelCase__ : Any = (1, 6, vocab_size) self.assertEqual(output.shape , _lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]]) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1e-4))
283
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCamelCase = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class __UpperCAmelCase (datasets.BuilderConfig ): __snake_case : Tuple = None def __lowerCamelCase ( snake_case__ ,snake_case__ ,) -> Optional[Any]: """simple docstring""" import pyspark def generate_fn(): _SCREAMING_SNAKE_CASE = df.select("""*""" ,pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: _SCREAMING_SNAKE_CASE = df_with_partition_id.select("""*""" ).where(F'part_id = {partition_id}' ).drop("""part_id""" ) _SCREAMING_SNAKE_CASE = partition_df.collect() _SCREAMING_SNAKE_CASE = 0 for row in rows: yield F'{partition_id}_{row_id}', row.asDict() row_id += 1 return generate_fn class __UpperCAmelCase (_BaseExamplesIterable ): def __init__( self: Optional[int] , UpperCAmelCase_: "pyspark.sql.DataFrame" , UpperCAmelCase_: Tuple=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = df _SCREAMING_SNAKE_CASE = partition_order or range(self.df.rdd.getNumPartitions() ) _SCREAMING_SNAKE_CASE = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self: Optional[int] ): '''simple docstring''' yield from self.generate_examples_fn() def UpperCamelCase ( self: Any , UpperCAmelCase_: np.random.Generator ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCAmelCase_ ) return SparkExamplesIterable(self.df , partition_order=UpperCAmelCase_ ) def UpperCamelCase ( self: int , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.split_shard_indices_by_worker(UpperCAmelCase_ , UpperCAmelCase_ ) return SparkExamplesIterable(self.df , partition_order=UpperCAmelCase_ ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return len(self.partition_order ) class __UpperCAmelCase (datasets.DatasetBuilder ): __snake_case : Optional[int] = SparkConfig def __init__( self: List[Any] , UpperCAmelCase_: "pyspark.sql.DataFrame" , UpperCAmelCase_: str = None , UpperCAmelCase_: str = None , **UpperCAmelCase_: Optional[Any] , ): '''simple docstring''' import pyspark _SCREAMING_SNAKE_CASE = pyspark.sql.SparkSession.builder.getOrCreate() _SCREAMING_SNAKE_CASE = df _SCREAMING_SNAKE_CASE = working_dir super().__init__( cache_dir=UpperCAmelCase_ , config_name=str(self.df.semanticHash() ) , **UpperCAmelCase_ , ) def UpperCamelCase ( self: Any ): '''simple docstring''' def create_cache_and_write_probe(UpperCAmelCase_: str ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCAmelCase_ , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _SCREAMING_SNAKE_CASE = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(UpperCAmelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def UpperCamelCase ( self: int ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: datasets.download.download_manager.DownloadManager ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] ): '''simple docstring''' import pyspark def get_arrow_batch_size(UpperCAmelCase_: Dict ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) _SCREAMING_SNAKE_CASE = self.df.count() _SCREAMING_SNAKE_CASE = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _SCREAMING_SNAKE_CASE = ( self.df.limit(UpperCAmelCase_ ) .repartition(1 ) .mapInArrow(UpperCAmelCase_ , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) _SCREAMING_SNAKE_CASE = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _SCREAMING_SNAKE_CASE = min(UpperCAmelCase_ , int(approx_total_size / max_shard_size ) ) _SCREAMING_SNAKE_CASE = self.df.repartition(UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: int , ): '''simple docstring''' import pyspark _SCREAMING_SNAKE_CASE = ParquetWriter if file_format == 'parquet' else ArrowWriter _SCREAMING_SNAKE_CASE = os.path.join(self._working_dir , os.path.basename(UpperCAmelCase_ ) ) if self._working_dir else fpath _SCREAMING_SNAKE_CASE = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _SCREAMING_SNAKE_CASE = self.config.features _SCREAMING_SNAKE_CASE = self._writer_batch_size _SCREAMING_SNAKE_CASE = self._fs.storage_options def write_arrow(UpperCAmelCase_: List[str] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _SCREAMING_SNAKE_CASE = pyspark.TaskContext().taskAttemptId() _SCREAMING_SNAKE_CASE = next(UpperCAmelCase_ , UpperCAmelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = writer_class( features=UpperCAmelCase_ , path=working_fpath.replace("""SSSSS""" , F'{shard_id:05d}' ).replace("""TTTTT""" , F'{task_id:05d}' ) , writer_batch_size=UpperCAmelCase_ , storage_options=UpperCAmelCase_ , embed_local_files=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCAmelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _SCREAMING_SNAKE_CASE = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 _SCREAMING_SNAKE_CASE = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , F'{shard_id:05d}' ).replace("""TTTTT""" , F'{task_id:05d}' ) , writer_batch_size=UpperCAmelCase_ , storage_options=UpperCAmelCase_ , embed_local_files=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = pa.Table.from_batches([batch] ) writer.write_table(UpperCAmelCase_ ) if writer._num_bytes > 0: _SCREAMING_SNAKE_CASE = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCAmelCase_ ) ): _SCREAMING_SNAKE_CASE = os.path.join(os.path.dirname(UpperCAmelCase_ ) , os.path.basename(UpperCAmelCase_ ) ) shutil.move(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = ( self.df.mapInArrow(UpperCAmelCase_ , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def UpperCamelCase ( self: int , UpperCAmelCase_: "datasets.SplitGenerator" , UpperCAmelCase_: str = "arrow" , UpperCAmelCase_: Optional[Union[str, int]] = None , UpperCAmelCase_: Optional[int] = None , **UpperCAmelCase_: Any , ): '''simple docstring''' self._validate_cache_dir() _SCREAMING_SNAKE_CASE = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = not is_remote_filesystem(self._fs ) _SCREAMING_SNAKE_CASE = os.path.join if is_local else posixpath.join _SCREAMING_SNAKE_CASE = '-TTTTT-SSSSS-of-NNNNN' _SCREAMING_SNAKE_CASE = F'{self.name}-{split_generator.name}{SUFFIX}.{file_format}' _SCREAMING_SNAKE_CASE = path_join(self._output_dir , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for task_id, content in self._prepare_split_single(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): ( _SCREAMING_SNAKE_CASE ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = total_num_examples _SCREAMING_SNAKE_CASE = total_num_bytes # should rename everything at the end logger.debug(F'Renaming {total_shards} shards.' ) if total_shards > 1: _SCREAMING_SNAKE_CASE = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _SCREAMING_SNAKE_CASE = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , ): rename( UpperCAmelCase_ , fpath.replace("""SSSSS""" , F'{shard_id:05d}' ).replace("""TTTTT""" , F'{task_id:05d}' ) , fpath.replace("""TTTTT-SSSSS""" , F'{global_shard_id:05d}' ).replace("""NNNNN""" , F'{total_shards:05d}' ) , ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = 0 for i in range(len(UpperCAmelCase_ ) ): _SCREAMING_SNAKE_CASE = task_id_and_num_shards[i] for shard_id in range(UpperCAmelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCAmelCase_ , len(UpperCAmelCase_ ) ).map(lambda UpperCAmelCase_ : _rename_shard(*UpperCAmelCase_ ) ).collect() else: # don't use any pattern _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , F'{shard_id:05d}' ).replace("""TTTTT""" , F'{task_id:05d}' ) , fpath.replace(UpperCAmelCase_ , """""" ) , ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "datasets.SplitGenerator" , ): '''simple docstring''' return SparkExamplesIterable(self.df )
306
def __lowercase ( lowerCamelCase : str , lowerCamelCase : str ): def get_matched_characters(lowerCamelCase : str , lowerCamelCase : str ) -> str: UpperCamelCase_ : Tuple = [] UpperCamelCase_ : List[Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): UpperCamelCase_ : int = int(max(0 , i - limit ) ) UpperCamelCase_ : Dict = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowerCamelCase ) UpperCamelCase_ : Dict = F"{_stra[0:_stra.index(lowerCamelCase )]} {_stra[_stra.index(lowerCamelCase ) + 1:]}" return "".join(lowerCamelCase ) # matching characters UpperCamelCase_ : str = get_matched_characters(lowerCamelCase , lowerCamelCase ) UpperCamelCase_ : str = get_matched_characters(lowerCamelCase , lowerCamelCase ) UpperCamelCase_ : Union[str, Any] = len(lowerCamelCase ) # transposition UpperCamelCase_ : int = ( len([(ca, ca) for ca, ca in zip(lowerCamelCase , lowerCamelCase ) if ca != ca] ) // 2 ) if not match_count: UpperCamelCase_ : Union[str, Any] = 0.0 else: UpperCamelCase_ : str = ( 1 / 3 * ( match_count / len(lowerCamelCase ) + match_count / len(lowerCamelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters UpperCamelCase_ : Dict = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
175
0
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class A__ : """simple docstring""" def __init__( self , __snake_case , __snake_case=1_3 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=9_9 , __snake_case=3_2 , __snake_case=5 , __snake_case=4 , __snake_case=4 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.1 , __snake_case=True , __snake_case=5_1_2 , __snake_case=1_6 , __snake_case=2 , __snake_case=0.02 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_multiple_size snake_case = hidden_act snake_case = hidden_dropout snake_case = attention_dropout snake_case = weight_tying snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope def a_ ( self ): snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = self.get_config() return config, input_ids, input_mask, token_labels def a_ ( self ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def a_ ( self ): snake_case , snake_case , snake_case , snake_case = self.prepare_config_and_inputs() snake_case = True return config, input_ids, input_mask, token_labels def a_ ( self , __snake_case , __snake_case , __snake_case ): snake_case = GPTNeoXJapaneseModel(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case ) snake_case = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , __snake_case , __snake_case , __snake_case ): snake_case = True snake_case = GPTNeoXJapaneseModel(__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ): snake_case = GPTNeoXJapaneseForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , __snake_case , __snake_case , __snake_case ): snake_case = True snake_case = GPTNeoXJapaneseForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() # first forward pass snake_case = model(__snake_case , attention_mask=__snake_case , use_cache=__snake_case ) snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case = model(__snake_case , attention_mask=__snake_case , output_hidden_states=__snake_case ) snake_case = output_from_no_past['''hidden_states'''][0] snake_case = model( __snake_case , attention_mask=__snake_case , past_key_values=__snake_case , output_hidden_states=__snake_case , )['''hidden_states'''][0] # select random slice snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-3 ) ) def a_ ( self ): snake_case = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case = config_and_inputs snake_case = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A__ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () __magic_name__ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () __magic_name__ = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def a_ ( self ): snake_case = GPTNeoXJapaneseModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , hidden_size=3_7 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__snake_case , __snake_case , __snake_case ) def a_ ( self ): snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__snake_case , __snake_case , __snake_case ) def a_ ( self ): # This regression test was failing with PyTorch < 1.3 snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case = None self.model_tester.create_and_check_model_as_decoder(__snake_case , __snake_case , __snake_case ) def a_ ( self ): snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__snake_case , __snake_case , __snake_case ) def a_ ( self ): snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__snake_case ) @slow def a_ ( self ): snake_case = '''abeja/gpt-neox-japanese-2.7b''' snake_case = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] snake_case = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] snake_case = GPTNeoXJapaneseTokenizer.from_pretrained(__snake_case ) snake_case = GPTNeoXJapaneseForCausalLM.from_pretrained(__snake_case ) snake_case = [] for prompt in prompts: snake_case = tokenizer(__snake_case , return_tensors='''pt''' ).input_ids snake_case = model.generate(__snake_case , max_length=5_0 ) snake_case = tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) predicted_outputs += generated_string self.assertListEqual(__snake_case , __snake_case )
359
import math class A__ : """simple docstring""" def a_ ( self , __snake_case , __snake_case ): snake_case = 0.0 snake_case = 0.0 for i in range(len(__snake_case ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ): for i in range(len(__snake_case ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def UpperCAmelCase__ (): """simple docstring""" snake_case = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case = SelfOrganizingMap() snake_case = 3 snake_case = 0.5 for _ in range(UpperCamelCase_ ): for j in range(len(UpperCamelCase_ ) ): # training sample snake_case = training_samples[j] # Compute the winning vector snake_case = self_organizing_map.get_winner(UpperCamelCase_ ,UpperCamelCase_ ) # Update the winning vector snake_case = self_organizing_map.update(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) # classify test sample snake_case = [0, 0, 0, 1] snake_case = self_organizing_map.get_winner(UpperCamelCase_ ,UpperCamelCase_ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
213
0
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class UpperCamelCase ( nn.Module ): UpperCAmelCase : Union[str, Any] = 42 UpperCAmelCase : List[Any] = jnp.floataa def _lowercase (self : Any) -> List[str]: __snake_case : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self : int , _A : Tuple) -> List[Any]: __snake_case , __snake_case , __snake_case , __snake_case : List[str] = hidden_states.shape __snake_case : Union[str, Any] = jax.image.resize( SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __snake_case : Any = self.conv(SCREAMING_SNAKE_CASE_) return hidden_states class UpperCamelCase ( nn.Module ): UpperCAmelCase : int = 42 UpperCAmelCase : Union[str, Any] = jnp.floataa def _lowercase (self : Optional[Any]) -> int: __snake_case : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self : Union[str, Any] , _A : int) -> Dict: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __snake_case : Dict = self.conv(SCREAMING_SNAKE_CASE_) return hidden_states class UpperCamelCase ( nn.Module ): UpperCAmelCase : int = 42 UpperCAmelCase : Any = None UpperCAmelCase : Dict = 0.0 UpperCAmelCase : Dict = None UpperCAmelCase : List[Any] = jnp.floataa def _lowercase (self : Optional[Any]) -> Tuple: __snake_case : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels __snake_case : Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1E-5) __snake_case : str = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __snake_case : Any = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype) __snake_case : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5) __snake_case : Dict = nn.Dropout(self.dropout_prob) __snake_case : Union[str, Any] = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __snake_case : Tuple = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __snake_case : Dict = None if use_nin_shortcut: __snake_case : Any = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__(self : int , _A : List[str] , _A : str , _A : Optional[int]=True) -> Tuple: __snake_case : List[str] = hidden_states __snake_case : List[str] = self.norma(SCREAMING_SNAKE_CASE_) __snake_case : Any = nn.swish(SCREAMING_SNAKE_CASE_) __snake_case : int = self.conva(SCREAMING_SNAKE_CASE_) __snake_case : List[Any] = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_)) __snake_case : Any = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1) , 1) __snake_case : Optional[int] = hidden_states + temb __snake_case : Optional[int] = self.norma(SCREAMING_SNAKE_CASE_) __snake_case : int = nn.swish(SCREAMING_SNAKE_CASE_) __snake_case : Tuple = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) __snake_case : List[str] = self.conva(SCREAMING_SNAKE_CASE_) if self.conv_shortcut is not None: __snake_case : Dict = self.conv_shortcut(SCREAMING_SNAKE_CASE_) return hidden_states + residual
172
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase_ = '''CompVis/stable-diffusion-v1-1''' lowerCamelCase_ = '''CompVis/stable-diffusion-v1-2''' lowerCamelCase_ = '''CompVis/stable-diffusion-v1-3''' lowerCamelCase_ = '''CompVis/stable-diffusion-v1-4''' class __A( __lowerCamelCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True , ): super()._init_() UpperCamelCase__ = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = StableDiffusionPipeline( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , requires_safety_checker=SCREAMING_SNAKE_CASE_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def UpperCAmelCase_ (self ): return {k: getattr(self , SCREAMING_SNAKE_CASE_ ) for k in self.config.keys() if not k.startswith("""_""" )} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , **SCREAMING_SNAKE_CASE_ , ): return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , **SCREAMING_SNAKE_CASE_ , ): return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , **SCREAMING_SNAKE_CASE_ , ): return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , **SCREAMING_SNAKE_CASE_ , ): return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(SCREAMING_SNAKE_CASE_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCamelCase__ = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCamelCase__ = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCamelCase__ = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCamelCase__ = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
244
0
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCamelCase__ ( _lowercase ): '''simple docstring''' return 1 / (1 + np.exp(-z )) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' return (-y * np.log(_lowercase ) - (1 - y) * np.log(1 - h )).mean() def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = np.dot(_lowercase , _lowercase ) return np.sum(y * scores - np.log(1 + np.exp(_lowercase ) ) ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase=70000 ): '''simple docstring''' UpperCAmelCase_ : int = np.zeros(x.shape[1] ) for iterations in range(_lowercase ): UpperCAmelCase_ : int = np.dot(_lowercase , _lowercase ) UpperCAmelCase_ : Dict = sigmoid_function(_lowercase ) UpperCAmelCase_ : List[str] = np.dot(x.T , h - y ) / y.size UpperCAmelCase_ : List[str] = theta - alpha * gradient # updating the weights UpperCAmelCase_ : Tuple = np.dot(_lowercase , _lowercase ) UpperCAmelCase_ : Dict = sigmoid_function(_lowercase ) UpperCAmelCase_ : Union[str, Any] = cost_function(_lowercase , _lowercase ) if iterations % 100 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __a = datasets.load_iris() __a = iris.data[:, :2] __a = (iris.target != 0) * 1 __a = 0.1 __a = logistic_reg(alpha, x, y, max_iterations=70_000) print('theta: ', theta) # printing the theta i.e our weights vector def lowerCamelCase__ ( _lowercase ): '''simple docstring''' return sigmoid_function( np.dot(_lowercase , _lowercase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((__a) ,(__a)) = (x[:, 0].min(), x[:, 0].max()) ((__a) ,(__a)) = (x[:, 1].min(), x[:, 1].max()) ((__a) ,(__a)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __a = np.c_[xxa.ravel(), xxa.ravel()] __a = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
235
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __a( _a ): """simple docstring""" lowerCAmelCase = 42 class __a( _a , _a ): """simple docstring""" lowerCAmelCase = True @register_to_config def __init__( self ,_SCREAMING_SNAKE_CASE = 3 ,_SCREAMING_SNAKE_CASE = 3 ,_SCREAMING_SNAKE_CASE = ("DownEncoderBlock2D",) ,_SCREAMING_SNAKE_CASE = ("UpDecoderBlock2D",) ,_SCREAMING_SNAKE_CASE = (64,) ,_SCREAMING_SNAKE_CASE = 1 ,_SCREAMING_SNAKE_CASE = "silu" ,_SCREAMING_SNAKE_CASE = 4 ,_SCREAMING_SNAKE_CASE = 32 ,_SCREAMING_SNAKE_CASE = 32 ,_SCREAMING_SNAKE_CASE = 0.1_82_15 ,) -> Optional[int]: super().__init__() # pass init params to Encoder UpperCAmelCase_ : List[Any] = Encoder( in_channels=_SCREAMING_SNAKE_CASE ,out_channels=_SCREAMING_SNAKE_CASE ,down_block_types=_SCREAMING_SNAKE_CASE ,block_out_channels=_SCREAMING_SNAKE_CASE ,layers_per_block=_SCREAMING_SNAKE_CASE ,act_fn=_SCREAMING_SNAKE_CASE ,norm_num_groups=_SCREAMING_SNAKE_CASE ,double_z=_SCREAMING_SNAKE_CASE ,) # pass init params to Decoder UpperCAmelCase_ : List[str] = Decoder( in_channels=_SCREAMING_SNAKE_CASE ,out_channels=_SCREAMING_SNAKE_CASE ,up_block_types=_SCREAMING_SNAKE_CASE ,block_out_channels=_SCREAMING_SNAKE_CASE ,layers_per_block=_SCREAMING_SNAKE_CASE ,norm_num_groups=_SCREAMING_SNAKE_CASE ,act_fn=_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : int = nn.Convad(2 * latent_channels ,2 * latent_channels ,1 ) UpperCAmelCase_ : Union[str, Any] = nn.Convad(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,1 ) UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Dict = False # only relevant if vae tiling is enabled UpperCAmelCase_ : List[Any] = self.config.sample_size UpperCAmelCase_ : List[str] = ( self.config.sample_size[0] if isinstance(self.config.sample_size ,(list, tuple) ) else self.config.sample_size ) UpperCAmelCase_ : List[str] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCAmelCase_ : int = 0.25 def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=False ) -> int: if isinstance(_SCREAMING_SNAKE_CASE ,(Encoder, Decoder) ): UpperCAmelCase_ : Union[str, Any] = value def a__ ( self ,_SCREAMING_SNAKE_CASE = True ) -> Optional[Any]: UpperCAmelCase_ : Dict = use_tiling def a__ ( self ) -> Optional[Any]: self.enable_tiling(_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : str = True def a__ ( self ) -> Any: UpperCAmelCase_ : Any = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self ) -> Dict[str, AttentionProcessor]: UpperCAmelCase_ : int = {} def fn_recursive_add_processors(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): if hasattr(_SCREAMING_SNAKE_CASE ,'''set_processor''' ): UpperCAmelCase_ : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) return processors def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(_SCREAMING_SNAKE_CASE )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): if hasattr(_SCREAMING_SNAKE_CASE ,'''set_processor''' ): if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): module.set_processor(_SCREAMING_SNAKE_CASE ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) for name, module in self.named_children(): fn_recursive_attn_processor(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Tuple: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_SCREAMING_SNAKE_CASE ,return_dict=_SCREAMING_SNAKE_CASE ) if self.use_slicing and x.shape[0] > 1: UpperCAmelCase_ : int = [self.encoder(_SCREAMING_SNAKE_CASE ) for x_slice in x.split(1 )] UpperCAmelCase_ : List[str] = torch.cat(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : Optional[Any] = self.encoder(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = self.quant_conv(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = DiagonalGaussianDistribution(_SCREAMING_SNAKE_CASE ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_SCREAMING_SNAKE_CASE ,return_dict=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = self.post_quant_conv(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = self.decoder(_SCREAMING_SNAKE_CASE ) if not return_dict: return (dec,) return DecoderOutput(sample=_SCREAMING_SNAKE_CASE ) @apply_forward_hook def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: UpperCAmelCase_ : Tuple = [self._decode(_SCREAMING_SNAKE_CASE ).sample for z_slice in z.split(1 )] UpperCAmelCase_ : str = torch.cat(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : str = self._decode(_SCREAMING_SNAKE_CASE ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ : str = min(a.shape[2] ,b.shape[2] ,_SCREAMING_SNAKE_CASE ) for y in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : str = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ : Any = min(a.shape[3] ,b.shape[3] ,_SCREAMING_SNAKE_CASE ) for x in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[str] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = True ) -> AutoencoderKLOutput: UpperCAmelCase_ : Optional[int] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : Any = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : str = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCAmelCase_ : Tuple = [] for i in range(0 ,x.shape[2] ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[str] = [] for j in range(0 ,x.shape[3] ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[str] = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCAmelCase_ : int = self.encoder(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = self.quant_conv(_SCREAMING_SNAKE_CASE ) row.append(_SCREAMING_SNAKE_CASE ) rows.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = [] for i, row in enumerate(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : str = [] for j, tile in enumerate(_SCREAMING_SNAKE_CASE ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Optional[Any] = self.blend_v(rows[i - 1][j] ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if j > 0: UpperCAmelCase_ : List[str] = self.blend_h(row[j - 1] ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_SCREAMING_SNAKE_CASE ,dim=3 ) ) UpperCAmelCase_ : Optional[Any] = torch.cat(_SCREAMING_SNAKE_CASE ,dim=2 ) UpperCAmelCase_ : Union[str, Any] = DiagonalGaussianDistribution(_SCREAMING_SNAKE_CASE ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = True ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : Optional[Any] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : str = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : Any = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCAmelCase_ : Tuple = [] for i in range(0 ,z.shape[2] ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = [] for j in range(0 ,z.shape[3] ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Optional[int] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCAmelCase_ : List[str] = self.post_quant_conv(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = self.decoder(_SCREAMING_SNAKE_CASE ) row.append(_SCREAMING_SNAKE_CASE ) rows.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = [] for i, row in enumerate(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : int = [] for j, tile in enumerate(_SCREAMING_SNAKE_CASE ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Optional[int] = self.blend_v(rows[i - 1][j] ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if j > 0: UpperCAmelCase_ : Optional[int] = self.blend_h(row[j - 1] ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_SCREAMING_SNAKE_CASE ,dim=3 ) ) UpperCAmelCase_ : Dict = torch.cat(_SCREAMING_SNAKE_CASE ,dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : str = sample UpperCAmelCase_ : Optional[Any] = self.encode(_SCREAMING_SNAKE_CASE ).latent_dist if sample_posterior: UpperCAmelCase_ : List[Any] = posterior.sample(generator=_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : Union[str, Any] = posterior.mode() UpperCAmelCase_ : List[Any] = self.decode(_SCREAMING_SNAKE_CASE ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_SCREAMING_SNAKE_CASE )
235
1
'''simple docstring''' __lowerCAmelCase = 8.3_144_598 def UpperCAmelCase_ (__a : float , __a : float ): """simple docstring""" if temperature < 0: raise Exception('Temperature cannot be less than 0 K' ) if molar_mass <= 0: raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example __lowerCAmelCase = 3_0_0 __lowerCAmelCase = 2_8 __lowerCAmelCase = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
271
'''simple docstring''' def UpperCAmelCase_ (__a : list , __a : list , __a : int ): """simple docstring""" _a : Optional[Any] = len(__a ) _a : int = [[0] * n for i in range(__a )] for i in range(__a ): _a : Tuple = y_points[i] for i in range(2 , __a ): for j in range(__a , __a ): _a : Tuple = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
271
1
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowerCamelCase :Optional[Any] = ['text', 'image', 'audio'] def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[int] = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((5_12, 5_12) ) ) elif input_type == "audio": inputs.append(torch.ones(30_00 ) ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): inputs.append(create_inputs(UpperCamelCase__ ) ) else: raise ValueError(f'Invalid type requested: {input_type}' ) return inputs def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = [] for output in outputs: if isinstance(UpperCamelCase__ , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(UpperCamelCase__ , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(UpperCamelCase__ , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f'Invalid output: {output}' ) return output_types @is_tool_test class _lowerCAmelCase : def _a (self ): self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) A_ : Tuple = self.tool.inputs for _input in inputs: if isinstance(_input , __lowerCamelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) A_ : List[Any] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _a (self ): A_ : List[str] = create_inputs(self.tool.inputs ) A_ : List[Any] = self.tool(*__lowerCamelCase ) # There is a single output if len(self.tool.outputs ) == 1: A_ : Optional[int] = [outputs] self.assertListEqual(output_types(__lowerCamelCase ) , self.tool.outputs ) def _a (self ): self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def _a (self ): A_ : List[str] = create_inputs(self.tool.inputs ) A_ : Dict = self.tool(*__lowerCamelCase ) if not isinstance(__lowerCamelCase , __lowerCamelCase ): A_ : str = [outputs] self.assertEqual(len(__lowerCamelCase ) , len(self.tool.outputs ) ) for output, output_type in zip(__lowerCamelCase , self.tool.outputs ): A_ : Dict = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(__lowerCamelCase , __lowerCamelCase ) ) def _a (self ): A_ : Tuple = create_inputs(self.tool.inputs ) A_ : Optional[int] = [] for _input, input_type in zip(__lowerCamelCase , self.tool.inputs ): if isinstance(__lowerCamelCase , __lowerCamelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error A_ : Tuple = self.tool(*__lowerCamelCase ) if not isinstance(__lowerCamelCase , __lowerCamelCase ): A_ : List[str] = [outputs] self.assertEqual(len(__lowerCamelCase ) , len(self.tool.outputs ) )
367
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
135
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : List[str] =logging.get_logger(__name__) a__ : Any ='''▁''' a__ : Dict ={'''vocab_file''': '''sentencepiece.bpe.model'''} a__ : List[Any] ={ '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } a__ : List[Any] ={ '''facebook/xglm-564M''': 2_048, } class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[Any] =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Optional[Any] =["input_ids", "attention_mask"] def __init__( self : Dict , __A : List[Any] , __A : Dict="<s>" , __A : Any="</s>" , __A : Union[str, Any]="</s>" , __A : Optional[int]="<s>" , __A : Dict="<unk>" , __A : Optional[Any]="<pad>" , __A : Optional[Dict[str, Any]] = None , **__A : Union[str, Any] , ): __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __UpperCamelCase = 7 __UpperCamelCase = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )] __UpperCamelCase = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__A ) ) __UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCamelCase = 1 # Mimic fairseq token-to-id alignment for the first 4 token __UpperCamelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} __UpperCamelCase = len(self.sp_model ) __UpperCamelCase = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__A ) __UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Tuple ): __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None __UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Any , __A : Optional[int] ): __UpperCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _lowerCamelCase ( self : Any , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a __UpperCamelCase = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _lowerCamelCase ( self : Any , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) def _lowerCamelCase ( self : Dict , __A : List[int] , __A : Optional[List[int]] = None ): __UpperCamelCase = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _lowerCamelCase ( self : Optional[int] ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCamelCase ( self : List[Any] , __A : str ): return self.sp_model.encode(__A , out_type=__A ) def _lowerCamelCase ( self : int , __A : Any ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCamelCase = self.sp_model.PieceToId(__A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowerCamelCase ( self : List[str] , __A : List[str] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _lowerCamelCase ( self : Dict , __A : int ): __UpperCamelCase = ''.join(__A ).replace(__A , ' ' ).strip() return out_string def _lowerCamelCase ( self : int , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCamelCase = os.path.join( __A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , 'wb' ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,)
53
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' def __init__( self , *__A , **__A ): """simple docstring""" warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __A , ) super().__init__(*__A , **__A )
283
0
"""simple docstring""" import math def UpperCAmelCase ( a_ ): '''simple docstring''' assert isinstance(a_, a_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False lowerCamelCase : int = range(3, int(math.sqrt(a_ ) + 1 ), 2 ) return not any(not number % i for i in odd_numbers ) def UpperCAmelCase ( a_, a_=1, **a_ ): '''simple docstring''' lowerCamelCase : str = factor * value lowerCamelCase : str = value while not is_prime(a_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1, **a_ ) return value
205
"""simple docstring""" def UpperCAmelCase ( a_ ): '''simple docstring''' return str(a_ ) == str(a_ )[::-1] def UpperCAmelCase ( a_ ): '''simple docstring''' return int(a_ ) + int(str(a_ )[::-1] ) def UpperCAmelCase ( a_ = 1_0000 ): '''simple docstring''' lowerCamelCase : Optional[Any] = [] for num in range(1, a_ ): lowerCamelCase : List[str] = 0 lowerCamelCase : Union[str, Any] = num while iterations < 50: lowerCamelCase : Optional[int] = sum_reverse(a_ ) iterations += 1 if is_palindrome(a_ ): break else: lychrel_nums.append(a_ ) return len(a_ ) if __name__ == "__main__": print(F"""{solution() = }""")
205
1
'''simple docstring''' import math class A_ : def lowercase ( self : Any , snake_case_ : int , snake_case_ : List[str] ): _UpperCAmelCase = 0.0 _UpperCAmelCase = 0.0 for i in range(len(__UpperCamelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowercase ( self : Dict , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : List[str] ): for i in range(len(__UpperCamelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def UpperCAmelCase_ ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCAmelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCAmelCase = SelfOrganizingMap() _UpperCAmelCase = 3 _UpperCAmelCase = 0.5 for _ in range(__SCREAMING_SNAKE_CASE ): for j in range(len(__SCREAMING_SNAKE_CASE ) ): # training sample _UpperCAmelCase = training_samples[j] # Compute the winning vector _UpperCAmelCase = self_organizing_map.get_winner(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Update the winning vector _UpperCAmelCase = self_organizing_map.update(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # classify test sample _UpperCAmelCase = [0, 0, 0, 1] _UpperCAmelCase = self_organizing_map.get_winner(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
22
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]=None ): require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
213
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase :Dict = { 'configuration_longformer': [ 'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongformerConfig', 'LongformerOnnxConfig', ], 'tokenization_longformer': ['LongformerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Optional[Any] = ['LongformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Dict = [ 'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongformerForMaskedLM', 'LongformerForMultipleChoice', 'LongformerForQuestionAnswering', 'LongformerForSequenceClassification', 'LongformerForTokenClassification', 'LongformerModel', 'LongformerPreTrainedModel', 'LongformerSelfAttention', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Union[str, Any] = [ 'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLongformerForMaskedLM', 'TFLongformerForMultipleChoice', 'TFLongformerForQuestionAnswering', 'TFLongformerForSequenceClassification', 'TFLongformerForTokenClassification', 'TFLongformerModel', 'TFLongformerPreTrainedModel', 'TFLongformerSelfAttention', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _lowerCAmelCase :Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
365
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _UpperCAmelCase : '''simple docstring''' a__ =42 a__ =None # Automatically constructed a__ ="dict" a__ =None a__ =field(default='''Translation''' ,init=a ,repr=a ) def __call__( self ) -> List[Any]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __lowerCAmelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class _UpperCAmelCase : '''simple docstring''' a__ =None a__ =None a__ =None # Automatically constructed a__ ="dict" a__ =None a__ =field(default='''TranslationVariableLanguages''' ,init=a ,repr=a ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : int = sorted(set(self.languages ) ) if self.languages else None _UpperCAmelCase : List[str] = len(self.languages ) if self.languages else None def __call__( self ) -> str: return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def __lowerCAmelCase ( self , A ) -> List[Any]: _UpperCAmelCase : List[str] = set(self.languages ) if self.languages and set(A ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(A ) - lang_set ) )}) are not in valid set ({", ".join(A )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _UpperCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(A , A ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = zip(*sorted(A ) ) return {"language": languages, "translation": translations} def __lowerCAmelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
68
0
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : np.ndarray ,__a : Union[int, Iterable[int]] ,__a : bool ,__a : int ) -> Tuple[int, int]: """simple docstring""" def constraint_to_multiple_of(__a : List[str] ,__a : Dict ,__a : Any=0 ,__a : int=None ): _a : Dict = round(val / multiple ) * multiple if max_val is not None and x > max_val: _a : Any = math.floor(val / multiple ) * multiple if x < min_val: _a : Dict = math.ceil(val / multiple ) * multiple return x _a : Union[str, Any] = (output_size, output_size) if isinstance(__a ,__a ) else output_size _a , _a : List[Any] = get_image_size(__a ) _a , _a : Any = output_size # determine new height and width _a : Union[str, Any] = output_height / input_height _a : Tuple = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _a : Optional[Any] = scale_width else: # fit height _a : Tuple = scale_height _a : Optional[Any] = constraint_to_multiple_of(scale_height * input_height ,multiple=__a ) _a : int = constraint_to_multiple_of(scale_width * input_width ,multiple=__a ) return (new_height, new_width) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = False , _a = 1 , _a = True , _a = 1 / 2_5_5 , _a = True , _a = None , _a = None , **_a , ) -> None: super().__init__(**_a ) _a : Optional[int] = size if size is not None else {'''height''': 3_8_4, '''width''': 3_8_4} _a : Optional[Any] = get_size_dict(_a ) _a : Any = do_resize _a : Dict = size _a : str = keep_aspect_ratio _a : Any = ensure_multiple_of _a : Optional[Any] = resample _a : List[Any] = do_rescale _a : int = rescale_factor _a : Any = do_normalize _a : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowercase ( self , _a , _a , _a = False , _a = 1 , _a = PILImageResampling.BICUBIC , _a = None , **_a , ) -> np.ndarray: _a : str = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _a : Optional[Any] = get_resize_output_image_size( _a , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_a , multiple=_a , ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a = None , **_a , ) -> int: return rescale(_a , scale=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __lowercase ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _a : Optional[int] = do_resize if do_resize is not None else self.do_resize _a : Union[str, Any] = size if size is not None else self.size _a : str = get_size_dict(_a ) _a : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _a : Optional[Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _a : str = resample if resample is not None else self.resample _a : str = do_rescale if do_rescale is not None else self.do_rescale _a : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _a : List[Any] = do_normalize if do_normalize is not None else self.do_normalize _a : str = image_mean if image_mean is not None else self.image_mean _a : Tuple = image_std if image_std is not None else self.image_std _a : Dict = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _a : Dict = [to_numpy_array(_a ) for image in images] if do_resize: _a : int = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: _a : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _a : Optional[int] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _a : int = [to_channel_dimension_format(_a , _a ) for image in images] _a : Tuple = {'''pixel_values''': images} return BatchFeature(data=_a , tensor_type=_a ) def __lowercase ( self , _a , _a = None ) -> Any: _a : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_a ) != len(_a ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_a ): _a : List[Any] = target_sizes.numpy() _a : str = [] for idx in range(len(_a ) ): _a : str = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_a ) _a : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_a ) else: _a : Tuple = logits.argmax(dim=1 ) _a : Union[str, Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
235
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "roformer" def __init__( self , _a=5_0_0_0_0 , _a=None , _a=7_6_8 , _a=1_2 , _a=1_2 , _a=3_0_7_2 , _a="gelu" , _a=0.1 , _a=0.1 , _a=1_5_3_6 , _a=2 , _a=0.02 , _a=1e-1_2 , _a=0 , _a=False , _a=True , **_a , ) -> List[str]: super().__init__(pad_token_id=_a , **_a ) _a : Tuple = vocab_size _a : List[Any] = hidden_size if embedding_size is None else embedding_size _a : Any = hidden_size _a : Any = num_hidden_layers _a : List[Any] = num_attention_heads _a : str = hidden_act _a : Any = intermediate_size _a : Dict = hidden_dropout_prob _a : Optional[Any] = attention_probs_dropout_prob _a : str = max_position_embeddings _a : Dict = type_vocab_size _a : List[Any] = initializer_range _a : Dict = layer_norm_eps _a : Dict = rotary_value _a : Dict = use_cache class UpperCAmelCase_ ( __lowercase ): """simple docstring""" @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a : List[Any] = {0: '''batch''', 1: '''sequence'''} _a : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
235
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal A : str = datasets.utils.logging.get_logger(__name__) A : List[Any] = ['names', 'prefix'] A : List[Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] A : List[Any] = ['encoding_errors', 'on_bad_lines'] A : str = ['date_format'] @dataclass class A ( datasets.BuilderConfig ): '''simple docstring''' A__ = "," A__ = None A__ = "infer" A__ = None A__ = None A__ = None A__ = None A__ = None A__ = True A__ = None A__ = None A__ = None A__ = None A__ = False A__ = None A__ = None A__ = None A__ = True A__ = True A__ = False A__ = True A__ = None A__ = "." A__ = None A__ = '"' A__ = 0 A__ = None A__ = None A__ = None A__ = None A__ = True A__ = True A__ = 0 A__ = True A__ = False A__ = None A__ = 1_00_00 A__ = None A__ = "strict" A__ = "error" A__ = None def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" if self.delimiter is not None: lowercase__ = self.delimiter if self.column_names is not None: lowercase__ = self.column_names @property def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _UpperCAmelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A ( datasets.ArrowBasedBuilder ): '''simple docstring''' A__ = CsvConfig def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowercase__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): lowercase__ = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [files] lowercase__ = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] lowercase__ = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [files] lowercase__ = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={"""files""": files} ) ) return splits def lowerCamelCase__ (self : Dict , _UpperCAmelCase : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: lowercase__ = self.config.features.arrow_schema if all(not require_storage_cast(_UpperCAmelCase ) for feature in self.config.features.values() ): # cheaper cast lowercase__ = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_UpperCAmelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example lowercase__ = table_cast(_UpperCAmelCase , _UpperCAmelCase ) return pa_table def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : int ) -> Dict: """simple docstring""" lowercase__ = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str lowercase__ = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_UpperCAmelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): lowercase__ = pd.read_csv(_UpperCAmelCase , iterator=_UpperCAmelCase , dtype=_UpperCAmelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_UpperCAmelCase ): lowercase__ = pa.Table.from_pandas(_UpperCAmelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_UpperCAmelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_UpperCAmelCase )}: {e}''' ) raise
146
import pytest A : Optional[Any] = '__dummy_dataset1__' A : Tuple = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def UpperCamelCase ( ) -> Any: """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Dict , __magic_name__ : Any ) -> str: """simple docstring""" lowercase__ = dataset_loading_script_name lowercase__ = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=__magic_name__ ) lowercase__ = script_dir / f'''{script_name}.py''' with open(__magic_name__ , """w""" ) as f: f.write(__magic_name__ ) return str(__magic_name__ )
146
1
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def constraint_to_multiple_of(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=None ): _lowerCAmelCase : Tuple = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowerCAmelCase : Optional[int] = math.floor(val / multiple ) * multiple if x < min_val: _lowerCAmelCase : List[str] = math.ceil(val / multiple ) * multiple return x _lowerCAmelCase : Union[str, Any] = (output_size, output_size) if isinstance(_lowerCamelCase , _lowerCamelCase ) else output_size _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = get_image_size(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Any = output_size # determine new height and width _lowerCAmelCase : List[Any] = output_height / input_height _lowerCAmelCase : Any = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowerCAmelCase : Union[str, Any] = scale_width else: # fit height _lowerCAmelCase : Union[str, Any] = scale_height _lowerCAmelCase : List[str] = constraint_to_multiple_of(scale_height * input_height , multiple=_lowerCamelCase ) _lowerCAmelCase : Dict = constraint_to_multiple_of(scale_width * input_width , multiple=_lowerCamelCase ) return (new_height, new_width) class UpperCAmelCase_ ( a): lowerCamelCase__ = ['pixel_values'] def __init__( self, __a = True, __a = None, __a = PILImageResampling.BILINEAR, __a = False, __a = 1, __a = True, __a = 1 / 255, __a = True, __a = None, __a = None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Any = size if size is not None else {"height": 384, "width": 384} _lowerCAmelCase : Optional[int] = get_size_dict(__a) _lowerCAmelCase : Optional[Any] = do_resize _lowerCAmelCase : Dict = size _lowerCAmelCase : Any = keep_aspect_ratio _lowerCAmelCase : str = ensure_multiple_of _lowerCAmelCase : str = resample _lowerCAmelCase : Dict = do_rescale _lowerCAmelCase : Optional[int] = rescale_factor _lowerCAmelCase : Dict = do_normalize _lowerCAmelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self, __a, __a, __a = False, __a = 1, __a = PILImageResampling.BICUBIC, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : List[Any] = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}") _lowerCAmelCase : List[Any] = get_resize_output_image_size( __a, output_size=(size["height"], size["width"]), keep_aspect_ratio=__a, multiple=__a, ) return resize(__a, size=__a, resample=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a = None, **__a, ): '''simple docstring''' return rescale(__a, scale=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a, __a = None, **__a, ): '''simple docstring''' return normalize(__a, mean=__a, std=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = ChannelDimension.FIRST, **__a, ): '''simple docstring''' _lowerCAmelCase : int = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : List[Any] = size if size is not None else self.size _lowerCAmelCase : str = get_size_dict(__a) _lowerCAmelCase : Dict = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowerCAmelCase : Any = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowerCAmelCase : int = resample if resample is not None else self.resample _lowerCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : List[str] = image_std if image_std is not None else self.image_std _lowerCAmelCase : Optional[Any] = make_list_of_images(__a) if not valid_images(__a): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. _lowerCAmelCase : List[Any] = [to_numpy_array(__a) for image in images] if do_resize: _lowerCAmelCase : Any = [self.resize(image=__a, size=__a, resample=__a) for image in images] if do_rescale: _lowerCAmelCase : List[str] = [self.rescale(image=__a, scale=__a) for image in images] if do_normalize: _lowerCAmelCase : Dict = [self.normalize(image=__a, mean=__a, std=__a) for image in images] _lowerCAmelCase : List[str] = [to_channel_dimension_format(__a, __a) for image in images] _lowerCAmelCase : Optional[Any] = {"pixel_values": images} return BatchFeature(data=__a, tensor_type=__a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__a) != len(__a): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits") if is_torch_tensor(__a): _lowerCAmelCase : List[Any] = target_sizes.numpy() _lowerCAmelCase : Dict = [] for idx in range(len(__a)): _lowerCAmelCase : int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=__a) _lowerCAmelCase : int = resized_logits[0].argmax(dim=0) semantic_segmentation.append(__a) else: _lowerCAmelCase : Dict = logits.argmax(dim=1) _lowerCAmelCase : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
36
"""simple docstring""" import numpy as np from PIL import Image def lowercase_ ( _lowerCamelCase: np.ndarray , _lowerCamelCase: int , _lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __lowerCamelCase : Dict = np.array(_lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : List[Any] = 0 __lowerCamelCase : Union[str, Any] = 0 # compute the shape of the output matrix __lowerCamelCase : Any = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __lowerCamelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __lowerCamelCase : int = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowerCamelCase : Any = 0 __lowerCamelCase : Optional[int] = 0 return updated_arr def lowercase_ ( _lowerCamelCase: np.ndarray , _lowerCamelCase: int , _lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) __lowerCamelCase : List[Any] = 0 __lowerCamelCase : Tuple = 0 __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : str = 0 # compute the shape of the output matrix __lowerCamelCase : List[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __lowerCamelCase : List[str] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __lowerCamelCase : Optional[Any] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowerCamelCase : List[Any] = 0 __lowerCamelCase : Tuple = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image __A = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
135
0
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger UpperCamelCase__ =get_logger(__name__) class lowerCAmelCase__( enum.Enum ): '''simple docstring''' __snake_case = 'all_checks' __snake_case = 'basic_checks' __snake_case = 'no_checks' class lowerCAmelCase__( __lowercase ): '''simple docstring''' class lowerCAmelCase__( __lowercase ): '''simple docstring''' class lowerCAmelCase__( __lowercase ): '''simple docstring''' class lowerCAmelCase__( __lowercase ): '''simple docstring''' def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None ): if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) _SCREAMING_SNAKE_CASE : Dict = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _SCREAMING_SNAKE_CASE : List[str] = " for " + verification_name if verification_name is not None else "" if len(__lowerCamelCase ) > 0: raise NonMatchingChecksumError( f"""Checksums didn't match{for_verification_name}:\n""" f"""{bad_urls}\n""" "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class lowerCAmelCase__( __lowercase ): '''simple docstring''' class lowerCAmelCase__( __lowercase ): '''simple docstring''' class lowerCAmelCase__( __lowercase ): '''simple docstring''' class lowerCAmelCase__( __lowercase ): '''simple docstring''' def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise UnexpectedSplits(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) _SCREAMING_SNAKE_CASE : int = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__lowerCamelCase ) > 0: raise NonMatchingSplitsSizesError(str(__lowerCamelCase ) ) logger.info("All the splits matched successfully." ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase = True ): if record_checksum: _SCREAMING_SNAKE_CASE : int = shaaaa() with open(__lowerCamelCase, "rb" ) as f: for chunk in iter(lambda: f.read(1 << 20 ), B"" ): m.update(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = m.hexdigest() else: _SCREAMING_SNAKE_CASE : Dict = None return {"num_bytes": os.path.getsize(__lowerCamelCase ), "checksum": checksum} def lowerCamelCase__ (__lowerCamelCase ): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
325
import numpy as np import datasets UpperCamelCase__ ='\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' UpperCamelCase__ ='\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' UpperCamelCase__ ='\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> int: # convert to numpy arrays _SCREAMING_SNAKE_CASE : Dict = np.array(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction _SCREAMING_SNAKE_CASE : Any = X - np.mean(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.cov(reference_distribution.T ) try: _SCREAMING_SNAKE_CASE : Optional[int] = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: _SCREAMING_SNAKE_CASE : List[str] = np.linalg.pinv(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
325
1
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class __lowerCAmelCase : _a = field( metadata={"""help""": """The output directory where the model will be written."""} , ) _a = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } , ) _a = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } , ) _a = field( default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) _a = field( default=SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def a ( ) -> List[Any]: """simple docstring""" _lowercase =HfArgumentParser((ModelArguments,) ) ((_lowercase) , ) =parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: _lowercase =AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: _lowercase =AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: _lowercase =AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: _lowercase =AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed _lowercase =True _lowercase =True _lowercase =FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=A__ , decoder_config=A__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens _lowercase =decoder_config.decoder_start_token_id _lowercase =decoder_config.pad_token_id if decoder_start_token_id is None: _lowercase =decoder_config.bos_token_id if pad_token_id is None: _lowercase =decoder_config.eos_token_id # This is necessary to make Flax's generate() work _lowercase =decoder_config.eos_token_id _lowercase =decoder_start_token_id _lowercase =pad_token_id _lowercase =AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) _lowercase =AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) _lowercase =tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
205
from __future__ import annotations def a ( A__ : list[int] ) -> int: """simple docstring""" if not nums: return 0 _lowercase =nums[0] _lowercase =0 for num in nums[1:]: _lowercase , _lowercase =( max_excluding + num, max(A__ , A__ ), ) return max(A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod()
205
1
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def lowerCAmelCase_ ( __a ) -> Dict: # picklable for multiprocessing """simple docstring""" return x.sum() def lowerCAmelCase_ ( __a ) -> Optional[Any]: # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = 42 lowercase_ = 42 class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] ={} lowerCamelCase__: Dict =[] lowerCamelCase__: Any =1 lowerCamelCase__: List[str] =[1, 2] lowerCamelCase__: List[str] ={"a": 1, "b": 2} lowerCamelCase__: Optional[Any] ={"a": [1, 2], "b": [3, 4]} lowerCamelCase__: Union[str, Any] ={"a": {"1": 1}, "b": 2} lowerCamelCase__: Tuple ={"a": 1, "b": 2, "c": 3, "d": 4} lowerCamelCase__: Any ={} lowerCamelCase__: Union[str, Any] =[] lowerCamelCase__: int =2 lowerCamelCase__: Dict =[2, 3] lowerCamelCase__: List[str] ={"a": 2, "b": 3} lowerCamelCase__: str ={"a": [2, 3], "b": [4, 5]} lowerCamelCase__: List[str] ={"a": {"1": 2}, "b": 3} lowerCamelCase__: Union[str, Any] ={"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(UpperCAmelCase_ , UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(map_nested(UpperCAmelCase_ , UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(map_nested(UpperCAmelCase_ , UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(map_nested(UpperCAmelCase_ , UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(map_nested(UpperCAmelCase_ , UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(map_nested(UpperCAmelCase_ , UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(map_nested(UpperCAmelCase_ , UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(map_nested(UpperCAmelCase_ , UpperCAmelCase_) , UpperCAmelCase_) lowerCamelCase__: List[str] =2 self.assertEqual(map_nested(UpperCAmelCase_ , UpperCAmelCase_ , num_proc=UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(map_nested(UpperCAmelCase_ , UpperCAmelCase_ , num_proc=UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(map_nested(UpperCAmelCase_ , UpperCAmelCase_ , num_proc=UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(map_nested(UpperCAmelCase_ , UpperCAmelCase_ , num_proc=UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(map_nested(UpperCAmelCase_ , UpperCAmelCase_ , num_proc=UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(map_nested(UpperCAmelCase_ , UpperCAmelCase_ , num_proc=UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(map_nested(UpperCAmelCase_ , UpperCAmelCase_ , num_proc=UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(map_nested(UpperCAmelCase_ , UpperCAmelCase_ , num_proc=UpperCAmelCase_) , UpperCAmelCase_) lowerCamelCase__: int ={"a": np.eye(2), "b": np.zeros(3), "c": np.ones(2)} lowerCamelCase__: Dict ={"a": 2, "b": 0, "c": 2} lowerCamelCase__: Dict ={ "a": np.eye(2).astype(UpperCAmelCase_), "b": np.zeros(3).astype(UpperCAmelCase_), "c": np.ones(2).astype(UpperCAmelCase_), } self.assertEqual(map_nested(UpperCAmelCase_ , UpperCAmelCase_ , map_numpy=UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase_ , UpperCAmelCase_ , map_numpy=UpperCAmelCase_).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(UpperCAmelCase_ , UpperCAmelCase_ , map_numpy=UpperCAmelCase_ , num_proc=UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase_ , UpperCAmelCase_ , map_numpy=UpperCAmelCase_ , num_proc=UpperCAmelCase_).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(UpperCAmelCase_): # can't pickle a local lambda map_nested(lambda UpperCAmelCase_: x + 1 , UpperCAmelCase_ , num_proc=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->int: '''simple docstring''' lowerCamelCase__: List[Any] ={"a": 1, "b": 2} lowerCamelCase__: int ={"a": 3, "b": 4} lowerCamelCase__: Union[str, Any] ={"a": 5, "b": 6} lowerCamelCase__: List[Any] =sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))]) self.assertEqual(sorted(zip_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)) , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = "bar" lowerCamelCase__: Dict =Foo() self.assertEqual(foo.my_attr , "bar") with temporary_assignment(UpperCAmelCase_ , "my_attr" , "BAR"): self.assertEqual(foo.my_attr , "BAR") self.assertEqual(foo.my_attr , "bar") @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: lowerCamelCase__: List[str] ={F"""{i}""": i for i in range(__a )} lowerCamelCase__: str =map_nested(lambda __a : x + 10 , __a , num_proc=__a , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_tf def SCREAMING_SNAKE_CASE_ (self : Dict) ->int: '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers lowerCamelCase__: Optional[Any] =layers.Dense(2) def gen_random_output(): lowerCamelCase__: Optional[int] =tf.random.uniform((1, 3)) return model(UpperCAmelCase_).numpy() with temp_seed(42 , set_tensorflow=UpperCAmelCase_): lowerCamelCase__: Optional[Any] =gen_random_output() with temp_seed(42 , set_tensorflow=UpperCAmelCase_): lowerCamelCase__: Any =gen_random_output() lowerCamelCase__: Union[str, Any] =gen_random_output() np.testing.assert_equal(UpperCAmelCase_ , UpperCAmelCase_) self.assertGreater(np.abs(outa - outa).sum() , 0) @require_torch def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->str: '''simple docstring''' import torch def gen_random_output(): lowerCamelCase__: Union[str, Any] =torch.nn.Linear(3 , 2) lowerCamelCase__: List[Any] =torch.rand(1 , 3) return model(UpperCAmelCase_).detach().numpy() with temp_seed(42 , set_pytorch=UpperCAmelCase_): lowerCamelCase__: Tuple =gen_random_output() with temp_seed(42 , set_pytorch=UpperCAmelCase_): lowerCamelCase__: Tuple =gen_random_output() lowerCamelCase__: Optional[Any] =gen_random_output() np.testing.assert_equal(UpperCAmelCase_ , UpperCAmelCase_) self.assertGreater(np.abs(outa - outa).sum() , 0) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Union[str, Any]: '''simple docstring''' def gen_random_output(): return np.random.rand(1 , 3) with temp_seed(42): lowerCamelCase__: Optional[int] =gen_random_output() with temp_seed(42): lowerCamelCase__: Tuple =gen_random_output() lowerCamelCase__: Dict =gen_random_output() np.testing.assert_equal(UpperCAmelCase_ , UpperCAmelCase_) self.assertGreater(np.abs(outa - outa).sum() , 0) @pytest.mark.parametrize("input_data" , [{}] ) def lowerCAmelCase_ ( __a ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: List[str] =NestedDataStructure(__a ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Optional[int]: """simple docstring""" lowerCamelCase__: List[str] =NestedDataStructure(__a ).flatten() assert output == expected_output def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__: Optional[Any] =A(x=1 , y="foobar" ) lowerCamelCase__: Dict ={"x": 1, "y": "foobar"} assert asdict(__a ) == expected_output lowerCamelCase__: str ={"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} lowerCamelCase__: Optional[Any] ={"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__a ) == expected_output with pytest.raises(__a ): asdict([1, A(x=10 , y="foo" )] ) def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" return text.split() def lowerCAmelCase_ ( __a ) -> Optional[Any]: """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" with Pool(2 ) as pool: lowerCamelCase__: Any =list(iflatmap_unordered(__a , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__a ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: lowerCamelCase__: Optional[int] =list(iflatmap_unordered(__a , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__a ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: lowerCamelCase__: str =[] for yield_time, content in iflatmap_unordered( __a , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__a ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__a ) == 4
368
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Dict=30 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : List[str]=37 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str=10 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Dict=None , ) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: int =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: List[str] =image_size lowerCamelCase__: Tuple =patch_size lowerCamelCase__: Tuple =num_channels lowerCamelCase__: Tuple =is_training lowerCamelCase__: Optional[int] =use_labels lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: Optional[Any] =num_attention_heads lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: List[str] =hidden_act lowerCamelCase__: Optional[Any] =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: str =type_sequence_label_size lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: Optional[int] =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__: List[str] =(image_size // patch_size) ** 2 lowerCamelCase__: Optional[Any] =num_patches + 1 def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCamelCase__: List[str] =None if self.use_labels: lowerCamelCase__: Any =ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCamelCase__: List[str] =self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->List[str]: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Tuple: '''simple docstring''' lowerCamelCase__: List[str] =TFViTModel(config=UpperCAmelCase_) lowerCamelCase__: Tuple =model(UpperCAmelCase_ , training=UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) # Test with an image with different size than the one specified in config. lowerCamelCase__: Dict =self.image_size // 2 lowerCamelCase__: List[str] =pixel_values[:, :, :image_size, :image_size] lowerCamelCase__: List[str] =model(UpperCAmelCase_ , interpolate_pos_encoding=UpperCAmelCase_ , training=UpperCAmelCase_) lowerCamelCase__: List[str] =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Any) ->str: '''simple docstring''' lowerCamelCase__: Any =self.type_sequence_label_size lowerCamelCase__: str =TFViTForImageClassification(UpperCAmelCase_) lowerCamelCase__: List[str] =model(UpperCAmelCase_ , labels=UpperCAmelCase_ , training=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # Test with an image with different size than the one specified in config. lowerCamelCase__: Union[str, Any] =self.image_size // 2 lowerCamelCase__: Dict =pixel_values[:, :, :image_size, :image_size] lowerCamelCase__: Tuple =model(UpperCAmelCase_ , interpolate_pos_encoding=UpperCAmelCase_ , training=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images lowerCamelCase__: int =1 lowerCamelCase__: List[str] =TFViTForImageClassification(UpperCAmelCase_) lowerCamelCase__: List[str] =floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) lowerCamelCase__: Any =model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =config_and_inputs lowerCamelCase__: Optional[Any] ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () lowercase_ = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: int =TFViTModelTester(self) lowerCamelCase__: List[str] =ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def SCREAMING_SNAKE_CASE_ (self : str) ->Tuple: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds") def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: int =model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer)) lowerCamelCase__: Tuple =model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , tf.keras.layers.Layer)) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: List[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: Tuple =inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__: str =[*signature.parameters.keys()] lowerCamelCase__: str =["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[Any]: '''simple docstring''' lowerCamelCase__: Any =TFViTModel.from_pretrained("google/vit-base-patch16-224") self.assertIsNotNone(UpperCAmelCase_) def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" lowerCamelCase__: Any =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE_ (self : str) ->List[Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Tuple: '''simple docstring''' lowerCamelCase__: List[str] =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224") lowerCamelCase__: List[str] =self.default_image_processor lowerCamelCase__: Union[str, Any] =prepare_img() lowerCamelCase__: List[Any] =image_processor(images=UpperCAmelCase_ , return_tensors="tf") # forward pass lowerCamelCase__: Dict =model(**UpperCAmelCase_) # verify the logits lowerCamelCase__: List[Any] =tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) lowerCamelCase__: List[Any] =tf.constant([-0.2744, 0.8215, -0.0836]) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4)
273
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _snake_case ( UpperCamelCase : Tuple ): UpperCAmelCase : List[Any] = SwinConfig(image_size=192 ) if "base" in model_name: UpperCAmelCase : str = 6 UpperCAmelCase : List[Any] = 128 UpperCAmelCase : Any = (2, 2, 18, 2) UpperCAmelCase : int = (4, 8, 16, 32) elif "large" in model_name: UpperCAmelCase : str = 12 UpperCAmelCase : Union[str, Any] = 192 UpperCAmelCase : Dict = (2, 2, 18, 2) UpperCAmelCase : Union[str, Any] = (6, 12, 24, 48) else: raise ValueError("""Model not supported, only supports base and large variants""" ) UpperCAmelCase : Tuple = window_size UpperCAmelCase : List[Any] = embed_dim UpperCAmelCase : List[str] = depths UpperCAmelCase : Union[str, Any] = num_heads return config def _snake_case ( UpperCamelCase : List[Any] ): if "encoder.mask_token" in name: UpperCAmelCase : Optional[int] = name.replace("""encoder.mask_token""" , """embeddings.mask_token""" ) if "encoder.patch_embed.proj" in name: UpperCAmelCase : int = name.replace("""encoder.patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "encoder.patch_embed.norm" in name: UpperCAmelCase : Optional[int] = name.replace("""encoder.patch_embed.norm""" , """embeddings.norm""" ) if "attn.proj" in name: UpperCAmelCase : Union[str, Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: UpperCAmelCase : Any = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: UpperCAmelCase : List[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCAmelCase : List[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: UpperCAmelCase : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCAmelCase : int = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": UpperCAmelCase : int = """layernorm.weight""" if name == "encoder.norm.bias": UpperCAmelCase : str = """layernorm.bias""" if "decoder" in name: pass else: UpperCAmelCase : Union[str, Any] = """swin.""" + name return name def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] ): for key in orig_state_dict.copy().keys(): UpperCAmelCase : Union[str, Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "attn_mask" in key: pass elif "qkv" in key: UpperCAmelCase : Tuple = key.split(""".""" ) UpperCAmelCase : Dict = int(key_split[2] ) UpperCAmelCase : Optional[int] = int(key_split[4] ) UpperCAmelCase : Dict = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase : Dict = val[:dim, :] UpperCAmelCase : Any = val[ dim : dim * 2, : ] UpperCAmelCase : Optional[Any] = val[-dim:, :] else: UpperCAmelCase : List[str] = val[ :dim ] UpperCAmelCase : Dict = val[ dim : dim * 2 ] UpperCAmelCase : List[str] = val[ -dim: ] else: UpperCAmelCase : List[str] = val return orig_state_dict def _snake_case ( UpperCamelCase : Optional[int] , UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] ): UpperCAmelCase : Any = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" )["""model"""] UpperCAmelCase : Optional[Any] = get_swin_config(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : Dict = SwinForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase : str = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = ViTImageProcessor(size={"""height""": 192, """width""": 192} ) UpperCAmelCase : List[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) UpperCAmelCase : Optional[int] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(**SCREAMING_SNAKE_CASE_ ).logits print(outputs.keys() ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print(F"Pushing model and image processor for {model_name} to hub" ) model.push_to_hub(F"microsoft/{model_name}" ) image_processor.push_to_hub(F"microsoft/{model_name}" ) if __name__ == "__main__": A: str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A: Union[str, Any] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
109
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'gpt_neox_japanese' def __init__( self , lowercase=32000 , lowercase=2560 , lowercase=32 , lowercase=32 , lowercase=4 , lowercase="gelu" , lowercase=1.00 , lowercase=10000 , lowercase=2048 , lowercase=0.02 , lowercase=1e-5 , lowercase=True , lowercase=31996 , lowercase=31999 , lowercase=0.1 , lowercase=0.0 , **lowercase , ) -> Dict: '''simple docstring''' super().__init__(bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_multiple_size A__ = hidden_act A__ = rotary_pct A__ = rotary_emb_base A__ = initializer_range A__ = layer_norm_eps A__ = use_cache A__ = attention_dropout A__ = hidden_dropout
68
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Optional[int] , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = data def __iter__( self : int): """simple docstring""" for element in self.data: yield element def _SCREAMING_SNAKE_CASE (__lowerCAmelCase=True ) -> Optional[Any]: '''simple docstring''' lowercase_ = Accelerator(even_batches=__lowerCAmelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> List[Any]: '''simple docstring''' if iterable: lowercase_ = DummyIterableDataset(torch.as_tensor(range(__lowerCAmelCase ) ) ) else: lowercase_ = TensorDataset(torch.as_tensor(range(__lowerCAmelCase ) ) ) lowercase_ = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase ) lowercase_ = accelerator.prepare(__lowerCAmelCase ) return dl def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Dict: '''simple docstring''' lowercase_ = create_dataloader(accelerator=__lowerCAmelCase , dataset_size=__lowerCAmelCase , batch_size=__lowerCAmelCase ) lowercase_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def _SCREAMING_SNAKE_CASE () -> int: '''simple docstring''' lowercase_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def _SCREAMING_SNAKE_CASE () -> Optional[Any]: '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCAmelCase ) verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def _SCREAMING_SNAKE_CASE () -> Tuple: '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCAmelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCAmelCase ) lowercase_ = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) lowercase_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__lowerCAmelCase ): lowercase_ = ddp_model(batch[0].float() ) lowercase_ = output.sum() loss.backward() batch_idxs.append(__lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' with warnings.catch_warnings(record=__lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __lowerCAmelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def _SCREAMING_SNAKE_CASE () -> Dict: '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCAmelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCAmelCase ) lowercase_ = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) lowercase_ = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): lowercase_ = train_dl.batch_sampler.even_batches lowercase_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def _SCREAMING_SNAKE_CASE () -> Any: '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCAmelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCAmelCase ) create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCAmelCase ) lowercase_ = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): lowercase_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def _SCREAMING_SNAKE_CASE () -> str: '''simple docstring''' lowercase_ = create_accelerator() lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCAmelCase ) create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCAmelCase ) with warnings.catch_warnings(record=__lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): pass assert issubclass(w[-1].category , __lowerCAmelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def _SCREAMING_SNAKE_CASE () -> List[str]: '''simple docstring''' lowercase_ = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) lowercase_ = accelerator.state.distributed_type lowercase_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowerCAmelCase ) lowercase_ = original_state if __name__ == "__main__": main()
313
"""simple docstring""" from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , lowerCAmelCase_ : int = 6): """simple docstring""" lowercase_ = None lowercase_ = None self.create_linked_list(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = Node() lowercase_ = current_node lowercase_ = current_node lowercase_ = current_node for _ in range(1 , lowerCAmelCase_): lowercase_ = Node() lowercase_ = current_node lowercase_ = previous_node lowercase_ = current_node lowercase_ = self.front lowercase_ = previous_node def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase_ = self.rear.next if self.rear: lowercase_ = data def _UpperCAmelCase ( self : str): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase_ = self.front.data lowercase_ = None return data lowercase_ = self.front lowercase_ = old_front.next lowercase_ = old_front.data lowercase_ = None return data def _UpperCAmelCase ( self : Any): """simple docstring""" if self.is_empty(): raise Exception("""Empty Queue""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""") class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str]): """simple docstring""" lowercase_ = None lowercase_ = None lowercase_ = None if __name__ == "__main__": import doctest doctest.testmod()
313
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class __magic_name__ ( __lowerCAmelCase): A: Any = "luke" def __init__( self : int , lowerCamelCase__ : Dict=50267 , lowerCamelCase__ : Tuple=500000 , lowerCamelCase__ : Optional[Any]=768 , lowerCamelCase__ : List[str]=256 , lowerCamelCase__ : int=12 , lowerCamelCase__ : Optional[Any]=12 , lowerCamelCase__ : Union[str, Any]=3072 , lowerCamelCase__ : Any="gelu" , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : List[str]=0.1 , lowerCamelCase__ : int=512 , lowerCamelCase__ : Optional[int]=2 , lowerCamelCase__ : Optional[Any]=0.02 , lowerCamelCase__ : Union[str, Any]=1E-1_2 , lowerCamelCase__ : int=True , lowerCamelCase__ : int=None , lowerCamelCase__ : List[Any]=1 , lowerCamelCase__ : str=0 , lowerCamelCase__ : Dict=2 , **lowerCamelCase__ : Union[str, Any] , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ : str = vocab_size UpperCamelCase__ : Optional[Any] = entity_vocab_size UpperCamelCase__ : Union[str, Any] = hidden_size UpperCamelCase__ : Dict = entity_emb_size UpperCamelCase__ : List[Any] = num_hidden_layers UpperCamelCase__ : int = num_attention_heads UpperCamelCase__ : Dict = hidden_act UpperCamelCase__ : Dict = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_dropout_prob UpperCamelCase__ : List[Any] = attention_probs_dropout_prob UpperCamelCase__ : Dict = max_position_embeddings UpperCamelCase__ : Any = type_vocab_size UpperCamelCase__ : Optional[Any] = initializer_range UpperCamelCase__ : List[str] = layer_norm_eps UpperCamelCase__ : Tuple = use_entity_aware_attention UpperCamelCase__ : Tuple = classifier_dropout
146
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __UpperCamelCase : Dict = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def _a ( SCREAMING_SNAKE_CASE : str = "dhaka" , SCREAMING_SNAKE_CASE : int = 5 ): """simple docstring""" UpperCamelCase__ : Optional[int] = min(SCREAMING_SNAKE_CASE , 50 ) # Prevent abuse! UpperCamelCase__ : str = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } UpperCamelCase__ : List[str] = requests.get('''https://www.google.com/search''' , params=SCREAMING_SNAKE_CASE , headers=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = BeautifulSoup(html.text , '''html.parser''' ) UpperCamelCase__ : Union[str, Any] = ''''''.join( re.findall(r'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) ) UpperCamelCase__ : Optional[Any] = json.dumps(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = json.loads(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = re.findall( r'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , SCREAMING_SNAKE_CASE , ) if not matched_google_image_data: return 0 UpperCamelCase__ : Optional[Any] = re.sub( r'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(SCREAMING_SNAKE_CASE ) , ) UpperCamelCase__ : List[Any] = re.findall( r'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , SCREAMING_SNAKE_CASE , ) for index, fixed_full_res_image in enumerate(SCREAMING_SNAKE_CASE ): if index >= max_images: return index UpperCamelCase__ : Optional[int] = bytes(SCREAMING_SNAKE_CASE , '''ascii''' ).decode( '''unicode-escape''' ) UpperCamelCase__ : List[Any] = bytes(SCREAMING_SNAKE_CASE , '''ascii''' ).decode( '''unicode-escape''' ) UpperCamelCase__ : List[Any] = urllib.request.build_opener() UpperCamelCase__ : Optional[Any] = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = F"query_{query.replace(' ' , '_' )}" if not os.path.exists(SCREAMING_SNAKE_CASE ): os.makedirs(SCREAMING_SNAKE_CASE ) urllib.request.urlretrieve( # noqa: S310 SCREAMING_SNAKE_CASE , F"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: __UpperCamelCase : List[Any] = download_images_from_google_query(sys.argv[1]) print(f"{image_count} images were downloaded to disk.") except IndexError: print("Please provide a search term.") raise
146
1
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCAmelCase_ : int = TypeVar('KEY') UpperCAmelCase_ : Dict = TypeVar('VAL') @dataclass(frozen=__lowerCamelCase , slots=__lowerCamelCase ) class lowercase__ ( Generic[KEY, VAL] ): '''simple docstring''' a : KEY a : VAL class lowercase__ ( _Item ): '''simple docstring''' def __init__( self ) -> None: """simple docstring""" super().__init__(__magic_name__, __magic_name__ ) def __bool__( self ) -> bool: """simple docstring""" return False UpperCAmelCase_ : Optional[Any] = _DeletedItem() class lowercase__ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self, __magic_name__ = 8, __magic_name__ = 0.75 ) -> None: """simple docstring""" UpperCamelCase__ : Dict = initial_block_size UpperCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 UpperCamelCase__ : Optional[Any] = capacity_factor UpperCamelCase__ : Union[str, Any] = 0 def UpperCamelCase__ ( self, __magic_name__ ) -> int: """simple docstring""" return hash(__magic_name__ ) % len(self._buckets ) def UpperCamelCase__ ( self, __magic_name__ ) -> int: """simple docstring""" return (ind + 1) % len(self._buckets ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> bool: """simple docstring""" UpperCamelCase__ : Union[str, Any] = self._buckets[ind] if not stored: UpperCamelCase__ : Any = _Item(__magic_name__, __magic_name__ ) self._len += 1 return True elif stored.key == key: UpperCamelCase__ : Union[str, Any] = _Item(__magic_name__, __magic_name__ ) return True else: return False def UpperCamelCase__ ( self ) -> bool: """simple docstring""" UpperCamelCase__ : List[Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__magic_name__ ) def UpperCamelCase__ ( self ) -> bool: """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False UpperCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" UpperCamelCase__ : Union[str, Any] = self._buckets UpperCamelCase__ : Optional[int] = [None] * new_size UpperCamelCase__ : int = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def UpperCamelCase__ ( self ) -> None: """simple docstring""" self._resize(len(self._buckets ) * 2 ) def UpperCamelCase__ ( self ) -> None: """simple docstring""" self._resize(len(self._buckets ) // 2 ) def UpperCamelCase__ ( self, __magic_name__ ) -> Iterator[int]: """simple docstring""" UpperCamelCase__ : str = self._get_bucket_index(__magic_name__ ) for _ in range(len(self._buckets ) ): yield ind UpperCamelCase__ : Dict = self._get_next_ind(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ ) -> None: """simple docstring""" for ind in self._iterate_buckets(__magic_name__ ): if self._try_set(__magic_name__, __magic_name__, __magic_name__ ): break def __setitem__( self, __magic_name__, __magic_name__ ) -> None: """simple docstring""" if self._is_full(): self._size_up() self._add_item(__magic_name__, __magic_name__ ) def __delitem__( self, __magic_name__ ) -> None: """simple docstring""" for ind in self._iterate_buckets(__magic_name__ ): UpperCamelCase__ : Any = self._buckets[ind] if item is None: raise KeyError(__magic_name__ ) if item is _deleted: continue if item.key == key: UpperCamelCase__ : List[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self, __magic_name__ ) -> VAL: """simple docstring""" for ind in self._iterate_buckets(__magic_name__ ): UpperCamelCase__ : Dict = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__magic_name__ ) def __len__( self ) -> int: """simple docstring""" return self._len def __iter__( self ) -> Iterator[KEY]: """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self ) -> str: """simple docstring""" UpperCamelCase__ : Optional[Any] = ''' ,'''.join( f"{item.key}: {item.val}" for item in self._buckets if item ) return f"HashMap({val_string})"
362
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] , __UpperCAmelCase: Optional[Any]=False ) -> List[Any]: UpperCamelCase__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowerCAmelCase_ ( __UpperCAmelCase: Dict , __UpperCAmelCase: Any , __UpperCAmelCase: Dict=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ : Tuple = '''''' else: UpperCamelCase__ : Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Dict = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) UpperCamelCase__ : Union[str, Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ : int = in_proj_bias[: config.hidden_size] UpperCamelCase__ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : List[Any] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] ) -> Optional[Any]: UpperCamelCase__ : int = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] , __UpperCAmelCase: str , __UpperCAmelCase: Tuple ) -> Dict: UpperCamelCase__ : List[str] = dct.pop(__UpperCAmelCase ) UpperCamelCase__ : int = val def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase__ : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ : int = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __UpperCAmelCase: List[str] , __UpperCAmelCase: Dict , __UpperCAmelCase: List[Any]=True ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ViTConfig() # patch_size if model_name[-1] == "8": UpperCamelCase__ : List[str] = 8 # set labels if required if not base_model: UpperCamelCase__ : Union[str, Any] = 1000 UpperCamelCase__ : Optional[Any] = '''huggingface/label-files''' UpperCamelCase__ : Dict = '''imagenet-1k-id2label.json''' UpperCamelCase__ : str = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase__ : Dict = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCamelCase__ : str = idalabel UpperCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: UpperCamelCase__ : str = 384 UpperCamelCase__ : str = 1536 UpperCamelCase__ : Tuple = 12 UpperCamelCase__ : Optional[int] = 6 # load original model from torch hub UpperCamelCase__ : Any = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase__ : str = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) UpperCamelCase__ : int = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: UpperCamelCase__ : int = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: UpperCamelCase__ : Optional[int] = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor UpperCamelCase__ : Dict = ViTImageProcessor() UpperCamelCase__ : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCamelCase__ : Optional[Any] = encoding['''pixel_values'''] UpperCamelCase__ : Optional[Any] = model(__UpperCAmelCase ) if base_model: UpperCamelCase__ : Union[str, Any] = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: UpperCamelCase__ : Any = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1e-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) UpperCAmelCase_ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
247
0
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ ( enum.Enum ): lowerCAmelCase__ : Dict = "all_checks" lowerCAmelCase__ : List[Any] = "basic_checks" lowerCAmelCase__ : Dict = "no_checks" class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]: if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) __lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __lowercase = ' for ' + verification_name if verification_name is not None else '' if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]: if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) __lowercase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) ) logger.info('All the splits matched successfully.' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict: if record_checksum: __lowercase = shaaaa() with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(SCREAMING_SNAKE_CASE ) __lowercase = m.hexdigest() else: __lowercase = None return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
325
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
325
1
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase = 16 _lowerCAmelCase = 32 def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 16 ): """simple docstring""" lowerCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ : Optional[int] = DatasetDict( { """train""": dataset["""train"""].select(UpperCamelCase ), """validation""": dataset["""train"""].select(UpperCamelCase ), """test""": dataset["""validation"""], } ) def tokenize_function(UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase , max_length=UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ : Tuple = datasets.map( UpperCamelCase , batched=UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ : Tuple = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ : Dict = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ : int = 8 else: lowerCAmelCase__ : Optional[int] = None return tokenizer.pad( UpperCamelCase , padding="""longest""" , max_length=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCAmelCase__ : List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase ) lowerCAmelCase__ : Dict = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase ) lowerCAmelCase__ : List[Any] = DataLoader( tokenized_datasets["""test"""] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase ) return train_dataloader, eval_dataloader, test_dataloader def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : str = [] # Download the dataset lowerCAmelCase__ : Optional[Any] = load_dataset("""glue""" , """mrpc""" ) # Create our splits lowerCAmelCase__ : str = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowerCAmelCase__ : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ : Optional[int] = config["""lr"""] lowerCAmelCase__ : List[Any] = int(config["""num_epochs"""] ) lowerCAmelCase__ : str = int(config["""seed"""] ) lowerCAmelCase__ : Union[str, Any] = int(config["""batch_size"""] ) lowerCAmelCase__ : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowerCAmelCase__ : Tuple = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase__ : str = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase__ : str = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase ) # New Code # # Create our folds: lowerCAmelCase__ : str = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) lowerCAmelCase__ : Any = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(UpperCamelCase ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = get_fold_dataloaders( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ : List[str] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ : int = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=UpperCamelCase ) # Instantiate scheduler lowerCAmelCase__ : Any = get_linear_schedule_with_warmup( optimizer=UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = accelerator.prepare( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Now we train the model for epoch in range(UpperCamelCase ): model.train() for step, batch in enumerate(UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase__ : Optional[int] = model(**UpperCamelCase ) lowerCAmelCase__ : Optional[int] = outputs.loss lowerCAmelCase__ : Any = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(**UpperCamelCase ) lowerCAmelCase__ : int = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCamelCase , references=UpperCamelCase , ) lowerCAmelCase__ : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , UpperCamelCase ) # New Code # # We also run predictions on the test set at the very end lowerCAmelCase__ : Union[str, Any] = [] for step, batch in enumerate(UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ : List[str] = model(**UpperCamelCase ) lowerCAmelCase__ : Any = outputs.logits lowerCAmelCase__ , lowerCAmelCase__ : Dict = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(UpperCamelCase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowerCAmelCase__ : List[Any] = torch.cat(UpperCamelCase , dim=0 ) lowerCAmelCase__ : str = torch.stack(UpperCamelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowerCAmelCase__ : Optional[int] = metric.compute(predictions=UpperCamelCase , references=UpperCamelCase ) accelerator.print("""Average test metrics from all folds:""" , UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Any = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase , default=UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=UpperCamelCase , default=3 , help="""The number of splits to perform across the dataset""" ) lowerCAmelCase__ : List[str] = parser.parse_args() lowerCAmelCase__ : Optional[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": main()
184
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
184
1
def __snake_case ( _lowerCAmelCase : Tuple ) -> bool: A_ : Dict = 0 for ch in input_str: A_ : str = ord(UpperCamelCase__ ) A_ : List[Any] = pow(2 , UpperCamelCase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
300
from __future__ import annotations from collections import namedtuple def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> tuple: '''simple docstring''' UpperCAmelCase = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
273
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class A__ ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: str) -> Dict: """simple docstring""" __lowerCAmelCase : Any = TextaTextGenerationPipeline(model=__a , tokenizer=__a) return generator, ["Something to write", "Something else"] def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : str = generator("Something there") self.assertEqual(__a , [{"generated_text": ANY(__a)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) __lowerCAmelCase : Optional[Any] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=__a) self.assertEqual( __a , [ [{"generated_text": ANY(__a)}, {"generated_text": ANY(__a)}], [{"generated_text": ANY(__a)}, {"generated_text": ANY(__a)}], ] , ) __lowerCAmelCase : Union[str, Any] = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=__a) self.assertEqual( __a , [ [{"generated_text": ANY(__a)}, {"generated_text": ANY(__a)}], [{"generated_text": ANY(__a)}, {"generated_text": ANY(__a)}], ] , ) with self.assertRaises(__a): generator(4) @require_torch def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[str] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility __lowerCAmelCase : Any = generator("Something there" , do_sample=__a) self.assertEqual(__a , [{"generated_text": ""}]) __lowerCAmelCase : str = 3 __lowerCAmelCase : Optional[Any] = generator( "Something there" , num_return_sequences=__a , num_beams=__a , ) __lowerCAmelCase : str = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(__a , __a) __lowerCAmelCase : List[Any] = generator("This is a test" , do_sample=__a , num_return_sequences=2 , return_tensors=__a) self.assertEqual( __a , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) __lowerCAmelCase : str = generator.model.config.eos_token_id __lowerCAmelCase : Union[str, Any] = "<pad>" __lowerCAmelCase : List[str] = generator( ["This is a test", "This is a second test"] , do_sample=__a , num_return_sequences=2 , batch_size=2 , return_tensors=__a , ) self.assertEqual( __a , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self: List[str]) -> int: """simple docstring""" __lowerCAmelCase : List[str] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility __lowerCAmelCase : Dict = generator("Something there" , do_sample=__a) self.assertEqual(__a , [{"generated_text": ""}])
361
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class A__ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Optional[int]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Any = ort.SessionOptions() __lowerCAmelCase : Dict = False return options def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") __lowerCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") __lowerCAmelCase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default __lowerCAmelCase : int = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = "A red cat sitting on a park bench" __lowerCAmelCase : Optional[int] = np.random.RandomState(0) __lowerCAmelCase : Optional[int] = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_SCREAMING_SNAKE_CASE , output_type="np" , ) __lowerCAmelCase : int = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1e-2
58
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : int = data def __iter__( self ) ->Dict: for element in self.data: yield element def UpperCAmelCase_( a__=True ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = Accelerator(even_batches=a__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def UpperCAmelCase_( a__ , a__ , a__ , a__ = False ): """simple docstring""" if iterable: SCREAMING_SNAKE_CASE : int = DummyIterableDataset(torch.as_tensor(range(a__ ) ) ) else: SCREAMING_SNAKE_CASE : int = TensorDataset(torch.as_tensor(range(a__ ) ) ) SCREAMING_SNAKE_CASE : List[Any] = DataLoader(a__ , batch_size=a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = accelerator.prepare(a__ ) return dl def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : str = create_dataloader(accelerator=a__ , dataset_size=a__ , batch_size=a__ ) SCREAMING_SNAKE_CASE : Optional[int] = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( a__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( a__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = create_accelerator(even_batches=a__ ) verify_dataloader_batch_sizes( a__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( a__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = create_accelerator(even_batches=a__ ) SCREAMING_SNAKE_CASE : str = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE : Dict = accelerator.prepare(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = create_dataloader(a__ , dataset_size=3 , batch_size=1 ) SCREAMING_SNAKE_CASE : List[Any] = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(a__ ): SCREAMING_SNAKE_CASE : Union[str, Any] = ddp_model(batch[0].float() ) SCREAMING_SNAKE_CASE : Dict = output.sum() loss.backward() batch_idxs.append(a__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def UpperCAmelCase_( a__ ): """simple docstring""" with warnings.catch_warnings(record=a__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , a__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = create_accelerator(even_batches=a__ ) SCREAMING_SNAKE_CASE : List[Any] = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE : str = accelerator.prepare(a__ ) SCREAMING_SNAKE_CASE : int = create_dataloader(a__ , dataset_size=3 , batch_size=1 ) SCREAMING_SNAKE_CASE : Dict = create_dataloader(a__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=a__ ): SCREAMING_SNAKE_CASE : Tuple = train_dl.batch_sampler.even_batches SCREAMING_SNAKE_CASE : List[Any] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : Tuple = create_accelerator(even_batches=a__ ) SCREAMING_SNAKE_CASE : int = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE : Dict = accelerator.prepare(a__ ) create_dataloader(a__ , dataset_size=3 , batch_size=1 , iterable=a__ ) SCREAMING_SNAKE_CASE : Any = create_dataloader(a__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('''ignore''' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=a__ ): SCREAMING_SNAKE_CASE : Optional[int] = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = create_accelerator() SCREAMING_SNAKE_CASE : Optional[Any] = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE : int = accelerator.prepare(a__ ) create_dataloader(a__ , dataset_size=3 , batch_size=1 , iterable=a__ ) with warnings.catch_warnings(record=a__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=a__ ): pass assert issubclass(w[-1].category , a__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = create_accelerator() accelerator.print('''Test that even_batches variable ensures uniform batches across processes''' ) test_default_ensures_even_batch_sizes() accelerator.print('''Run tests with even_batches disabled''' ) test_can_disable_even_batches() accelerator.print('''Test joining uneven inputs''' ) test_can_join_uneven_inputs() accelerator.print('''Test overriding even_batches when joining uneven inputs''' ) test_join_can_override_even_batches() accelerator.print('''Test overriding even_batches for mixed dataloader types''' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('''Test join with non DDP distributed raises warning''' ) SCREAMING_SNAKE_CASE : Tuple = accelerator.state.distributed_type SCREAMING_SNAKE_CASE : Optional[int] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(a__ ) SCREAMING_SNAKE_CASE : Tuple = original_state if __name__ == "__main__": main()
313
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : int = logging.get_logger(__name__) a__ : Optional[Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'deformable_detr' __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=3 , _lowerCamelCase=300 , _lowerCamelCase=1024 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="sine" , _lowerCamelCase="resnet50" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=300 , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2_5 , _lowerCamelCase=False , **_lowerCamelCase , ) ->Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) SCREAMING_SNAKE_CASE : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = backbone_config.get('''model_type''' ) SCREAMING_SNAKE_CASE : Optional[Any] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : int = config_class.from_dict(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = use_timm_backbone SCREAMING_SNAKE_CASE : Optional[int] = backbone_config SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = num_queries SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : str = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = decoder_ffn_dim SCREAMING_SNAKE_CASE : int = decoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[str] = init_xavier_std SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = backbone SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = dilation # deformable attributes SCREAMING_SNAKE_CASE : str = num_feature_levels SCREAMING_SNAKE_CASE : Optional[Any] = encoder_n_points SCREAMING_SNAKE_CASE : Any = decoder_n_points SCREAMING_SNAKE_CASE : str = two_stage SCREAMING_SNAKE_CASE : List[str] = two_stage_num_proposals SCREAMING_SNAKE_CASE : Dict = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher SCREAMING_SNAKE_CASE : int = class_cost SCREAMING_SNAKE_CASE : Union[str, Any] = bbox_cost SCREAMING_SNAKE_CASE : Optional[int] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE : Union[str, Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : str = bbox_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = giou_loss_coefficient SCREAMING_SNAKE_CASE : Optional[int] = eos_coefficient SCREAMING_SNAKE_CASE : Tuple = focal_alpha SCREAMING_SNAKE_CASE : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->int: return self.encoder_attention_heads @property def __lowerCAmelCase ( self ) ->int: return self.d_model def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
313
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
363
"""simple docstring""" import baseaa def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return baseaa.baaencode(string.encode("utf-8" ) ) def a__ ( SCREAMING_SNAKE_CASE : bytes ): '''simple docstring''' return baseaa.baadecode(SCREAMING_SNAKE_CASE ).decode("utf-8" ) if __name__ == "__main__": lowerCAmelCase__ = '''Hello World!''' lowerCAmelCase__ = baseaa_encode(test) print(encoded) lowerCAmelCase__ = baseaa_decode(encoded) print(decoded)
133
0
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __A ( A_ ): '''simple docstring''' def __init__( self , __lowerCAmelCase=0.01 , __lowerCAmelCase=1_0_0_0 ): '''simple docstring''' lowerCamelCase__ = p_stop lowerCamelCase__ = max_length def __iter__( self ): '''simple docstring''' lowerCamelCase__ = 0 lowerCamelCase__ = False while not stop and count < self.max_length: yield count count += 1 lowerCamelCase__ = random.random() < self.p_stop class __A ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=True ): '''simple docstring''' lowerCamelCase__ = [ BatchSamplerShard(snake_case_ , 2 , snake_case_ , split_batches=snake_case_ , even_batches=snake_case_ ) for i in range(2 ) ] lowerCamelCase__ = [list(snake_case_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(snake_case_ ) for shard in batch_sampler_shards] , [len(snake_case_ ) for e in expected] ) self.assertListEqual(snake_case_ , snake_case_ ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ ) lowerCamelCase__ = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=snake_case_ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case_ , snake_case_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowerCamelCase__ = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ ) lowerCamelCase__ = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowerCamelCase__ = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ ) lowerCamelCase__ = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowerCamelCase__ = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ ) lowerCamelCase__ = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ ) # Check the shards when the dataset is very small. lowerCamelCase__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case_ ) lowerCamelCase__ = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(snake_case_ , snake_case_ ) lowerCamelCase__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case_ ) lowerCamelCase__ = [[], []] self.check_batch_sampler_shards(snake_case_ , snake_case_ ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ ) lowerCamelCase__ = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=snake_case_ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ ) # Check the shards when the dataset is not a round multiple of batch size. lowerCamelCase__ = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ ) lowerCamelCase__ = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowerCamelCase__ = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ ) lowerCamelCase__ = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ ) # Check the shards when the dataset is very small. lowerCamelCase__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case_ ) lowerCamelCase__ = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ ) lowerCamelCase__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case_ ) lowerCamelCase__ = [[], []] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) lowerCamelCase__ = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=snake_case_ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowerCamelCase__ = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) lowerCamelCase__ = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowerCamelCase__ = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) lowerCamelCase__ = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowerCamelCase__ = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) lowerCamelCase__ = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) # Check the shards when the dataset is very small. lowerCamelCase__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case_ ) lowerCamelCase__ = [[[0, 1]], []] self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) lowerCamelCase__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case_ ) lowerCamelCase__ = [[], []] self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ , even_batches=snake_case_ ) lowerCamelCase__ = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=snake_case_ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ , even_batches=snake_case_ ) # Check the shards when the dataset is not a round multiple of batch size. lowerCamelCase__ = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ , even_batches=snake_case_ ) lowerCamelCase__ = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ , even_batches=snake_case_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowerCamelCase__ = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ , even_batches=snake_case_ ) lowerCamelCase__ = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=snake_case_ ) lowerCamelCase__ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ , even_batches=snake_case_ ) # Check the shards when the dataset is very small. lowerCamelCase__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case_ ) lowerCamelCase__ = [[[0, 1]], []] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ , even_batches=snake_case_ ) lowerCamelCase__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case_ ) lowerCamelCase__ = [[], []] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ , even_batches=snake_case_ ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] lowerCamelCase__ = [BatchSamplerShard(snake_case_ , 2 , snake_case_ , even_batches=snake_case_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 1_0, 1_1]] ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=2 , __lowerCAmelCase=False ): '''simple docstring''' random.seed(snake_case_ ) lowerCamelCase__ = list(snake_case_ ) lowerCamelCase__ = [ IterableDatasetShard( snake_case_ , batch_size=snake_case_ , drop_last=snake_case_ , num_processes=snake_case_ , process_index=snake_case_ , split_batches=snake_case_ , ) for i in range(snake_case_ ) ] lowerCamelCase__ = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(snake_case_ ) iterable_dataset_lists.append(list(snake_case_ ) ) lowerCamelCase__ = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size lowerCamelCase__ = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) self.assertTrue(len(snake_case_ ) % shard_batch_size == 0 ) lowerCamelCase__ = [] for idx in range(0 , len(snake_case_ ) , snake_case_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(snake_case_ ) < len(snake_case_ ): reference += reference self.assertListEqual(snake_case_ , reference[: len(snake_case_ )] ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = 4_2 lowerCamelCase__ = RandomIterableDataset() self.check_iterable_dataset_shards(snake_case_ , snake_case_ , batch_size=4 , drop_last=snake_case_ , split_batches=snake_case_ ) self.check_iterable_dataset_shards(snake_case_ , snake_case_ , batch_size=4 , drop_last=snake_case_ , split_batches=snake_case_ ) self.check_iterable_dataset_shards(snake_case_ , snake_case_ , batch_size=4 , drop_last=snake_case_ , split_batches=snake_case_ ) self.check_iterable_dataset_shards(snake_case_ , snake_case_ , batch_size=4 , drop_last=snake_case_ , split_batches=snake_case_ ) # Edge case with a very small dataset lowerCamelCase__ = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(snake_case_ , snake_case_ , batch_size=4 , drop_last=snake_case_ , split_batches=snake_case_ ) self.check_iterable_dataset_shards(snake_case_ , snake_case_ , batch_size=4 , drop_last=snake_case_ , split_batches=snake_case_ ) self.check_iterable_dataset_shards(snake_case_ , snake_case_ , batch_size=4 , drop_last=snake_case_ , split_batches=snake_case_ ) self.check_iterable_dataset_shards(snake_case_ , snake_case_ , batch_size=4 , drop_last=snake_case_ , split_batches=snake_case_ ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = BatchSampler(range(1_6 ) , batch_size=4 , drop_last=snake_case_ ) lowerCamelCase__ = SkipBatchSampler(snake_case_ , 2 ) self.assertListEqual(list(snake_case_ ) , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = SkipDataLoader(list(range(1_6 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = DataLoader(list(range(1_6 ) ) , batch_size=4 ) lowerCamelCase__ = skip_first_batches(snake_case_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = DataLoaderShard(list(range(1_6 ) ) , batch_size=4 ) for idx, _ in enumerate(snake_case_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(snake_case_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __lowerCamelCase ( self ): '''simple docstring''' Accelerator() lowerCamelCase__ = DataLoaderDispatcher(range(1_6 ) , batch_size=4 ) for idx, _ in enumerate(snake_case_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(snake_case_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
209
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCAmelCase_ ( A_ ): lowercase__ = '''openai/whisper-base''' lowercase__ = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) lowercase__ = '''transcriber''' lowercase__ = WhisperProcessor lowercase__ = WhisperForConditionalGeneration lowercase__ = ['''audio'''] lowercase__ = ['''text'''] def __magic_name__ ( self : Optional[int] , snake_case_ : Dict ) -> int: '''simple docstring''' return self.pre_processor(snake_case_ , return_tensors="pt" ).input_features def __magic_name__ ( self : int , snake_case_ : int ) -> str: '''simple docstring''' return self.model.generate(inputs=snake_case_ ) def __magic_name__ ( self : Tuple , snake_case_ : Optional[Any] ) -> Any: '''simple docstring''' return self.pre_processor.batch_decode(snake_case_ , skip_special_tokens=snake_case_ )[0]
247
0
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets __UpperCAmelCase = datasets.logging.get_logger(__name__) __UpperCAmelCase = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" __UpperCAmelCase = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" __UpperCAmelCase = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False, __lowerCamelCase=False, __lowerCamelCase=True, __lowerCamelCase=False, __lowerCamelCase="dummy_doc" ): SCREAMING_SNAKE_CASE_ = {doc: key_lines} SCREAMING_SNAKE_CASE_ = {doc: sys_lines} SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = reader.get_doc_mentions(__lowerCamelCase, key_doc_lines[doc], __lowerCamelCase ) key_singletons_num += singletons_num if NP_only or min_span: SCREAMING_SNAKE_CASE_ = reader.set_annotated_parse_trees(__lowerCamelCase, key_doc_lines[doc], __lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = reader.get_doc_mentions(__lowerCamelCase, sys_doc_lines[doc], __lowerCamelCase ) sys_singletons_num += singletons_num if NP_only or min_span: SCREAMING_SNAKE_CASE_ = reader.set_annotated_parse_trees(__lowerCamelCase, key_doc_lines[doc], __lowerCamelCase, __lowerCamelCase ) if remove_nested: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = reader.remove_nested_coref_mentions(__lowerCamelCase, __lowerCamelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = reader.remove_nested_coref_mentions(__lowerCamelCase, __lowerCamelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters SCREAMING_SNAKE_CASE_ = reader.get_mention_assignments(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = reader.get_mention_assignments(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( '''Number of resulting singleton clusters in the key ''' F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' '''files, respectively''' ) return doc_coref_infos def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = get_coref_infos(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 for name, metric in metrics: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = evaluator.evaluate_documents(__lowerCamelCase, __lowerCamelCase, beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(10 ), F'''Recall: {recall * 1_00:.2f}''', F''' Precision: {precision * 1_00:.2f}''', F''' F1: {fa * 1_00:.2f}''', ) if conll_subparts_num == 3: SCREAMING_SNAKE_CASE_ = (conll / 3) * 1_00 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({'''conll_score''': conll} ) return output_scores def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: SCREAMING_SNAKE_CASE_ = line.split()[5] if not parse_col == "-": SCREAMING_SNAKE_CASE_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def _UpperCamelCase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def _UpperCamelCase ( self , _A , _A , _A=True , _A=False , _A=False , _A=False ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: SCREAMING_SNAKE_CASE_ = util.check_gold_parse_annotation(_A ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" SCREAMING_SNAKE_CASE_ = evaluate( key_lines=_A , sys_lines=_A , metrics=_A , NP_only=_A , remove_nested=_A , keep_singletons=_A , min_span=_A , ) return score
257
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["transformers", "torch", "note_seq"] def __init__( self , *_A , **_A ) -> Any: requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> List[str]: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
257
1
from ...configuration_utils import PretrainedConfig class _lowercase ( lowercase__): """simple docstring""" A__ = "bert-generation" def __init__( self : Any , __lowerCamelCase : List[str]=50358 , __lowerCamelCase : str=1024 , __lowerCamelCase : int=24 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=4096 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : int=512 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : int=1E-1_2 , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : int=1 , __lowerCamelCase : List[Any]="absolute" , __lowerCamelCase : Optional[int]=True , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Tuple = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : Optional[Any] = max_position_embeddings lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : Optional[Any] = layer_norm_eps lowerCamelCase__ : Any = position_embedding_type lowerCamelCase__ : str = use_cache
184
class _lowercase : """simple docstring""" def __init__( self : List[Any] , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = size lowerCamelCase__ : List[str] = [0] * size lowerCamelCase__ : str = [0] * size @staticmethod def lowerCAmelCase ( __lowerCamelCase : int ): '''simple docstring''' return index | (index + 1) @staticmethod def lowerCAmelCase ( __lowerCamelCase : int ): '''simple docstring''' return (index & (index + 1)) - 1 def lowerCAmelCase ( self : int , __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = value while index < self.size: lowerCamelCase__ : Tuple = self.get_prev(__lowerCamelCase ) + 1 if current_left_border == index: lowerCamelCase__ : Optional[Any] = value else: lowerCamelCase__ : str = max(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Dict = self.get_next(__lowerCamelCase ) def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' right -= 1 # Because of right is exclusive lowerCamelCase__ : str = 0 while left <= right: lowerCamelCase__ : Optional[Any] = self.get_prev(__lowerCamelCase ) if left <= current_left: lowerCamelCase__ : Optional[Any] = max(__lowerCamelCase , self.tree[right] ) lowerCamelCase__ : Any = current_left else: lowerCamelCase__ : Optional[Any] = max(__lowerCamelCase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
184
1
import pytest _lowerCamelCase : Dict = '''__dummy_dataset1__''' _lowerCamelCase : Union[str, Any] = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def a_ ( ) -> Optional[Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def a_ ( ) -> Tuple: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def a_ ( __lowercase : Dict , __lowercase : Any , __lowercase : int ) -> Dict: _snake_case = dataset_loading_script_name _snake_case = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=__lowercase ) _snake_case = script_dir / f'''{script_name}.py''' with open(__lowercase , 'w' ) as f: f.write(__lowercase ) return str(__lowercase )
130
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "canine" def __init__( self : int , lowercase : Optional[int]=768 , lowercase : Tuple=12 , lowercase : Union[str, Any]=12 , lowercase : Optional[int]=3_072 , lowercase : Tuple="gelu" , lowercase : Optional[Any]=0.1 , lowercase : Tuple=0.1 , lowercase : int=16_384 , lowercase : Optional[int]=16 , lowercase : Optional[int]=0.02 , lowercase : Optional[Any]=1E-12 , lowercase : Optional[Any]=0 , lowercase : Dict=0xE000 , lowercase : Optional[Any]=0xE001 , lowercase : Union[str, Any]=4 , lowercase : str=4 , lowercase : Optional[int]=8 , lowercase : List[str]=16_384 , lowercase : Union[str, Any]=128 , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = type_vocab_size _snake_case = layer_norm_eps # Character config: _snake_case = downsampling_rate _snake_case = upsampling_kernel_size _snake_case = num_hash_functions _snake_case = num_hash_buckets _snake_case = local_transformer_stride
130
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase__ : int = 250_004 lowerCAmelCase__ : Optional[int] = 250_020 @require_sentencepiece @require_tokenizers class snake_case ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" snake_case__ = MBartTokenizer snake_case__ = MBartTokenizerFast snake_case__ = True snake_case__ = True def __lowerCAmelCase ( self : str ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ = MBartTokenizer(lowerCamelCase__ ,keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = MBartTokenizer(lowerCamelCase__ ,keep_accents=lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCamelCase__ ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) UpperCAmelCase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase__ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] ,) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] ,) def __lowerCAmelCase ( self : int ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase__ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) UpperCAmelCase__ = self.tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = tokenizer_r.save_pretrained(lowerCamelCase__ ) UpperCAmelCase__ = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) UpperCAmelCase__ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(lowerCamelCase__ ,lowerCamelCase__ ) # Checks everything loads correctly in the same way UpperCAmelCase__ = tokenizer_r.from_pretrained(lowerCamelCase__ ) UpperCAmelCase__ = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ ,lowerCamelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase__ ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = tokenizer_r.save_pretrained(lowerCamelCase__ ,legacy_format=lowerCamelCase__ ) UpperCAmelCase__ = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase__ ,lowerCamelCase__ ) # Checks everything loads correctly in the same way UpperCAmelCase__ = tokenizer_r.from_pretrained(lowerCamelCase__ ) UpperCAmelCase__ = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ ,lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = tokenizer_r.save_pretrained(lowerCamelCase__ ,legacy_format=lowerCamelCase__ ) UpperCAmelCase__ = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ = tokenizer_r.from_pretrained(lowerCamelCase__ ) UpperCAmelCase__ = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ ,lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase ): """simple docstring""" snake_case__ = "facebook/mbart-large-en-ro" snake_case__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] snake_case__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] snake_case__ = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def __lowerCAmelCase ( cls : int ): UpperCAmelCase__ = MBartTokenizer.from_pretrained( cls.checkpoint_name ,src_lang='en_XX' ,tgt_lang='ro_RO' ) UpperCAmelCase__ = 1 return cls def __lowerCAmelCase ( self : int ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] ,250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] ,250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] ,250_020 ) def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,lowerCamelCase__ ) def __lowerCAmelCase ( self : str ): self.assertIn(lowerCamelCase__ ,self.tokenizer.all_special_ids ) UpperCAmelCase__ = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] UpperCAmelCase__ = self.tokenizer.decode(lowerCamelCase__ ,skip_special_tokens=lowerCamelCase__ ) UpperCAmelCase__ = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertNotIn(self.tokenizer.eos_token ,lowerCamelCase__ ) def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] ,lowerCamelCase__ ) UpperCAmelCase__ = 10 UpperCAmelCase__ = self.tokenizer(lowerCamelCase__ ,max_length=lowerCamelCase__ ,truncation=lowerCamelCase__ ).input_ids[0] self.assertEqual(ids[-2] ,2 ) self.assertEqual(ids[-1] ,lowerCamelCase__ ) self.assertEqual(len(lowerCamelCase__ ) ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Union[str, Any] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) ,[250_026, 250_001] ) def __lowerCAmelCase ( self : str ): UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase__ ) UpperCAmelCase__ = MBartTokenizer.from_pretrained(lowerCamelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,lowerCamelCase__ ) @require_torch def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=lowerCamelCase__ ,return_tensors='pt' ) UpperCAmelCase__ = shift_tokens_right(batch['labels'] ,self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=len(self.expected_src_tokens ) ,return_tensors='pt' ,) UpperCAmelCase__ = shift_tokens_right(batch['labels'] ,self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) self.assertEqual((2, 14) ,batch.input_ids.shape ) self.assertEqual((2, 14) ,batch.attention_mask.shape ) UpperCAmelCase__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,lowerCamelCase__ ) self.assertEqual(2 ,batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id, EN_CODE] ) def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = self.tokenizer(self.src_text ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=3 ,return_tensors='pt' ) UpperCAmelCase__ = self.tokenizer( text_target=self.tgt_text ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=10 ,return_tensors='pt' ) UpperCAmelCase__ = targets['input_ids'] UpperCAmelCase__ = shift_tokens_right(lowerCamelCase__ ,self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = self.tokenizer._build_translation_inputs( 'A test' ,return_tensors='pt' ,src_lang='en_XX' ,tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(lowerCamelCase__ ) ,{ # A, test, EOS, en_XX 'input_ids': [[62, 3_034, 2, 250_004]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250_001, } ,)
98
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class a_ : '''simple docstring''' UpperCamelCase = PegasusConfig UpperCamelCase = {} UpperCamelCase = '''gelu''' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=40 , A=2 , A=1 , A=0 , ) -> Optional[int]: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = eos_token_id _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = bos_token_id def snake_case_( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _SCREAMING_SNAKE_CASE = prepare_pegasus_inputs_dict(A , A , A ) return config, inputs_dict def snake_case_( self , A , A ) -> int: _SCREAMING_SNAKE_CASE = TFPegasusModel(config=A ).get_decoder() _SCREAMING_SNAKE_CASE = inputs_dict["""input_ids"""] _SCREAMING_SNAKE_CASE = input_ids[:1, :] _SCREAMING_SNAKE_CASE = inputs_dict["""attention_mask"""][:1, :] _SCREAMING_SNAKE_CASE = inputs_dict["""head_mask"""] _SCREAMING_SNAKE_CASE = 1 # first forward pass _SCREAMING_SNAKE_CASE = model(A , attention_mask=A , head_mask=A , use_cache=A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens] , axis=-1 ) _SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _SCREAMING_SNAKE_CASE = model(A , attention_mask=A )[0] _SCREAMING_SNAKE_CASE = model(A , attention_mask=A , past_key_values=A )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _SCREAMING_SNAKE_CASE = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx] _SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A , A , rtol=1e-3 ) def lowerCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : int=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=None , ) ->int: if attention_mask is None: _SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCamelCase = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCamelCase = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False def snake_case_( self ) -> Any: _SCREAMING_SNAKE_CASE = TFPegasusModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A ) def snake_case_( self ) -> List[str]: self.config_tester.run_common_tests() def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] UpperCamelCase = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCamelCase = '''google/pegasus-xsum''' @cached_property def snake_case_( self ) -> List[str]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def snake_case_( self , **A ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.translate_src_text(**A ) assert self.expected_text == generated_words def snake_case_( self , **A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **A , padding=A , return_tensors="""tf""" ) _SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=A , ) _SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A ) return generated_words @slow def snake_case_( self ) -> Any: self._assert_generated_batch_equal_expected()
58
0
'''simple docstring''' import numpy as np def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' return vector * sigmoid(1.7_0_2 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
350
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): snake_case__ : str = KandinskyInpaintPipeline snake_case__ : Dict = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] snake_case__ : Union[str, Any] = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] snake_case__ : str = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] snake_case__ : List[Any] = False @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: return 3_2 @property def SCREAMING_SNAKE_CASE ( self : str ) -> str: return 3_2 @property def SCREAMING_SNAKE_CASE ( self : str ) -> Any: return self.time_input_dim @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: return 1_0_0 @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: a_ : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) a_ : Optional[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) a_ : Optional[int] = MultilingualCLIP(SCREAMING_SNAKE_CASE__ ) a_ : Any = text_encoder.eval() return text_encoder @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: torch.manual_seed(0 ) a_ : str = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } a_ : Optional[int] = UNetaDConditionModel(**SCREAMING_SNAKE_CASE__ ) return model @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: torch.manual_seed(0 ) a_ : Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: a_ : Tuple = self.dummy_text_encoder a_ : Union[str, Any] = self.dummy_tokenizer a_ : List[Any] = self.dummy_unet a_ : Optional[Any] = self.dummy_movq a_ : Any = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='linear' , beta_start=0.00085 , beta_end=0.012 , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , steps_offset=1 , prediction_type='epsilon' , thresholding=SCREAMING_SNAKE_CASE__ , ) a_ : List[Any] = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any=0 ) -> Dict: a_ : Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) a_ : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(SCREAMING_SNAKE_CASE__ ) # create init_image a_ : int = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] a_ : Union[str, Any] = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create mask a_ : Optional[int] = np.ones((6_4, 6_4) , dtype=np.floataa ) a_ : Dict = 0 if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): a_ : Optional[int] = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: a_ : int = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) a_ : Dict = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: a_ : Optional[Any] = 'cpu' a_ : List[Any] = self.get_dummy_components() a_ : List[str] = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) a_ : Any = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ) a_ : Tuple = output.images a_ : Optional[int] = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) , return_dict=SCREAMING_SNAKE_CASE__ , )[0] a_ : List[str] = image[0, -3:, -3:, -1] a_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) a_ : List[str] = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) a_ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) a_ : Union[str, Any] = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) a_ : Tuple = 0 a_ : Union[str, Any] = 'a hat' a_ : List[str] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE__ ) a_ : int = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa ) a_ : Union[str, Any] = pipeline.to(SCREAMING_SNAKE_CASE__ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) a_ , a_ : List[str] = pipe_prior( SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() a_ : str = pipeline( SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , image_embeds=SCREAMING_SNAKE_CASE__ , negative_image_embeds=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='np' , ) a_ : List[str] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
32
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING lowercase_ : Tuple = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class __lowerCAmelCase ( UpperCAmelCase__ ): def __init__( self : str , *snake_case__ : Any , **snake_case__ : str ): """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) requires_backends(self , "vision" ) self.check_model_type(snake_case__ ) def __call__( self : Dict , snake_case__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **snake_case__ : List[Any] ): """simple docstring""" return super().__call__(snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[Any] , **snake_case__ : Tuple ): """simple docstring""" return {}, {}, {} def UpperCamelCase ( self : Any , snake_case__ : Optional[int] ): """simple docstring""" _UpperCAmelCase = load_image(snake_case__ ) _UpperCAmelCase = image.size _UpperCAmelCase = self.image_processor(images=snake_case__ , return_tensors=self.framework ) return model_inputs def UpperCamelCase ( self : int , snake_case__ : int ): """simple docstring""" _UpperCAmelCase = self.model(**snake_case__ ) return model_outputs def UpperCamelCase ( self : List[Any] , snake_case__ : str ): """simple docstring""" _UpperCAmelCase = model_outputs.predicted_depth _UpperCAmelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=snake_case__ ) _UpperCAmelCase = prediction.squeeze().cpu().numpy() _UpperCAmelCase = (output * 255 / np.max(snake_case__ )).astype("uint8" ) _UpperCAmelCase = Image.fromarray(snake_case__ ) _UpperCAmelCase = {} _UpperCAmelCase = predicted_depth _UpperCAmelCase = depth return output_dict
133
0
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _a : """simple docstring""" _lowerCamelCase : Dict = XGLMConfig _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = 'gelu' def __init__( self : Any , UpperCAmelCase : Any , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int=99 , UpperCAmelCase : Optional[Any]=32 , UpperCAmelCase : Any=2 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : str=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : int=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=0.02 , ): A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_labels A_ = vocab_size A_ = d_model A_ = num_hidden_layers A_ = num_attention_heads A_ = ffn_dim A_ = activation_function A_ = activation_dropout A_ = attention_dropout A_ = max_position_embeddings A_ = initializer_range A_ = None A_ = 0 A_ = 2 A_ = 1 def __A ( self : Union[str, Any] ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def __A ( self : Any ): A_ = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = self.get_config() A_ = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __A ( self : List[str] ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCamelCase__ , ) def __A ( self : Any ): A_ = self.prepare_config_and_inputs() ( A_ ) = config_and_inputs A_ = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class _a ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Any = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowerCamelCase : Tuple = (TFXGLMForCausalLM,) if is_tf_available() else () _lowerCamelCase : Optional[Any] = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Dict = False _lowerCamelCase : Union[str, Any] = False def __A ( self : Optional[int] ): A_ = TFXGLMModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , n_embd=37 ) def __A ( self : str ): self.config_tester.run_common_tests() @slow def __A ( self : Optional[int] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFXGLMModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def __A ( self : int ): super().test_resize_token_embeddings() @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : str , UpperCAmelCase : Any=True ): A_ = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) A_ = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off A_ = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on A_ = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , UpperCamelCase__ ) @slow def __A ( self : Optional[Any] ): A_ = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) A_ = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) A_ = tokenizer("Today is a nice day and" , return_tensors="tf" ) A_ = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): A_ = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ , seed=[7, 0] ) A_ = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCamelCase__ ) A_ = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def __A ( self : Dict ): A_ = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) A_ = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) A_ = '''left''' # use different length sentences to test batching A_ = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] A_ = tokenizer(UpperCamelCase__ , return_tensors="tf" , padding=UpperCamelCase__ ) A_ = inputs['''input_ids'''] A_ = model.generate(input_ids=UpperCamelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=12 ) A_ = tokenizer(sentences[0] , return_tensors="tf" ).input_ids A_ = model.generate(input_ids=UpperCamelCase__ , max_new_tokens=12 ) A_ = tokenizer(sentences[1] , return_tensors="tf" ).input_ids A_ = model.generate(input_ids=UpperCamelCase__ , max_new_tokens=12 ) A_ = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) A_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCamelCase__ ) A_ = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCamelCase__ ) A_ = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , [non_padded_sentence, padded_sentence] )
367
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :Dict = logging.get_logger(__name__) __a :int = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = 'realm' def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) # Common config A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = retriever_proj_size A_ = num_hidden_layers A_ = num_attention_heads A_ = num_candidates A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = type_vocab_size A_ = layer_norm_eps # Reader config A_ = span_hidden_size A_ = max_span_width A_ = reader_layer_norm_eps A_ = reader_beam_size A_ = reader_seq_len # Retrieval config A_ = num_block_records A_ = searcher_beam_size
329
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() lowerCAmelCase__ : Tuple =logging.get_logger(__name__) lowerCAmelCase__ : Tuple ='''Hello world! cécé herlolip''' def __lowercase ( a__ , a__ , a__ ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = FairseqRobertaModel.from_pretrained(a__ ) roberta.eval() # disable dropout __SCREAMING_SNAKE_CASE = roberta.model.encoder.sentence_encoder __SCREAMING_SNAKE_CASE = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: __SCREAMING_SNAKE_CASE = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , a__ ) __SCREAMING_SNAKE_CASE = XLMRobertaXLForSequenceClassification(a__ ) if classification_head else XLMRobertaXLForMaskedLM(a__ ) model.eval() # Now let's copy all the weights. # Embeddings __SCREAMING_SNAKE_CASE = roberta_sent_encoder.embed_tokens.weight __SCREAMING_SNAKE_CASE = roberta_sent_encoder.embed_positions.weight __SCREAMING_SNAKE_CASE = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __SCREAMING_SNAKE_CASE = roberta_sent_encoder.layer_norm.weight __SCREAMING_SNAKE_CASE = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __SCREAMING_SNAKE_CASE = model.roberta.encoder.layer[i] __SCREAMING_SNAKE_CASE = roberta_sent_encoder.layers[i] __SCREAMING_SNAKE_CASE = layer.attention __SCREAMING_SNAKE_CASE = roberta_layer.self_attn_layer_norm.weight __SCREAMING_SNAKE_CASE = roberta_layer.self_attn_layer_norm.bias # self attention __SCREAMING_SNAKE_CASE = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __SCREAMING_SNAKE_CASE = roberta_layer.self_attn.q_proj.weight __SCREAMING_SNAKE_CASE = roberta_layer.self_attn.q_proj.bias __SCREAMING_SNAKE_CASE = roberta_layer.self_attn.k_proj.weight __SCREAMING_SNAKE_CASE = roberta_layer.self_attn.k_proj.bias __SCREAMING_SNAKE_CASE = roberta_layer.self_attn.v_proj.weight __SCREAMING_SNAKE_CASE = roberta_layer.self_attn.v_proj.bias # self-attention output __SCREAMING_SNAKE_CASE = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __SCREAMING_SNAKE_CASE = roberta_layer.self_attn.out_proj.weight __SCREAMING_SNAKE_CASE = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __SCREAMING_SNAKE_CASE = roberta_layer.final_layer_norm.weight __SCREAMING_SNAKE_CASE = roberta_layer.final_layer_norm.bias # intermediate __SCREAMING_SNAKE_CASE = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __SCREAMING_SNAKE_CASE = roberta_layer.fca.weight __SCREAMING_SNAKE_CASE = roberta_layer.fca.bias # output __SCREAMING_SNAKE_CASE = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __SCREAMING_SNAKE_CASE = roberta_layer.fca.weight __SCREAMING_SNAKE_CASE = roberta_layer.fca.bias # end of layer if classification_head: __SCREAMING_SNAKE_CASE = roberta.model.classification_heads['mnli'].dense.weight __SCREAMING_SNAKE_CASE = roberta.model.classification_heads['mnli'].dense.bias __SCREAMING_SNAKE_CASE = roberta.model.classification_heads['mnli'].out_proj.weight __SCREAMING_SNAKE_CASE = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head __SCREAMING_SNAKE_CASE = roberta.model.encoder.lm_head.dense.weight __SCREAMING_SNAKE_CASE = roberta.model.encoder.lm_head.dense.bias __SCREAMING_SNAKE_CASE = roberta.model.encoder.lm_head.layer_norm.weight __SCREAMING_SNAKE_CASE = roberta.model.encoder.lm_head.layer_norm.bias __SCREAMING_SNAKE_CASE = roberta.model.encoder.lm_head.weight __SCREAMING_SNAKE_CASE = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __SCREAMING_SNAKE_CASE = roberta.encode(a__ ).unsqueeze(0 ) # batch of size 1 __SCREAMING_SNAKE_CASE = model(a__ )[0] if classification_head: __SCREAMING_SNAKE_CASE = roberta.model.classification_heads['mnli'](roberta.extract_features(a__ ) ) else: __SCREAMING_SNAKE_CASE = roberta.model(a__ )[0] print(our_output.shape , their_output.shape ) __SCREAMING_SNAKE_CASE = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __SCREAMING_SNAKE_CASE = torch.allclose(a__ , a__ , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(a__ ).mkdir(parents=a__ , exist_ok=a__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) if __name__ == "__main__": lowerCAmelCase__ : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) lowerCAmelCase__ : int =parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
257
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase__ : List[Any] =None lowerCAmelCase__ : Optional[Any] =logging.get_logger(__name__) lowerCAmelCase__ : Optional[int] ={'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ : int ={ '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : int ={ '''facebook/nllb-large-en-ro''': 1024, '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off lowerCAmelCase__ : Dict =['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase__ : List[str] = NllbTokenizer UpperCamelCase__ : List[int] = [] UpperCamelCase__ : List[int] = [] def __init__( self , _A=None , _A=None , _A="<s>" , _A="</s>" , _A="</s>" , _A="<s>" , _A="<unk>" , _A="<pad>" , _A="<mask>" , _A=None , _A=None , _A=None , _A=False , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token __SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=_A , tokenizer_file=_A , bos_token=_A , eos_token=_A , sep_token=_A , cls_token=_A , unk_token=_A , pad_token=_A , mask_token=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , legacy_behaviour=_A , **_A , ) __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = False if not self.vocab_file else True __SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) __SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(_A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else 'eng_Latn' __SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) __SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _A ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _A ( self , _A , _A = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _A ( self , _A , _A = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _A ( self , _A , _A , _A , _A , **_A ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __SCREAMING_SNAKE_CASE = src_lang __SCREAMING_SNAKE_CASE = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) __SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(_A ) __SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def _A ( self , _A , _A = "eng_Latn" , _A = None , _A = "fra_Latn" , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = src_lang __SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def _A ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _A ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(_A ) if self.legacy_behaviour: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: __SCREAMING_SNAKE_CASE = [self.cur_lang_code] __SCREAMING_SNAKE_CASE = [self.eos_token_id] __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) __SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(_A ) if self.legacy_behaviour: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: __SCREAMING_SNAKE_CASE = [self.cur_lang_code] __SCREAMING_SNAKE_CASE = [self.eos_token_id] __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) __SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _A ( self , _A , _A = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __SCREAMING_SNAKE_CASE = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
257
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Any = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : int ) -> List[str]: __A : Optional[int] = original_name.split('.' )[0] __A : Dict = key.split('.' ) __A : List[Any] = int(key_list[key_list.index(__snake_case ) - 2] ) __A : List[Any] = int(key_list[key_list.index(__snake_case ) - 1] ) __A : int = orig_block_num - offset __A : Union[str, Any] = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _lowerCAmelCase ( __snake_case : Any ) -> int: __A : Dict = OrderedDict() __A : Optional[Any] = 0, 0 for key, value in state_dict.items(): if key.startswith('network' ): __A : Any = key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 __A : int = key[: key.find('proj' )] __A : int = key.replace(__snake_case , f'patch_embeddings.{total_embed_found}.' ) __A : Tuple = key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: __A : Optional[Any] = 'poolformer.encoder.' + key if "mlp.fc1" in key: __A : List[str] = replace_key_with_offset(__snake_case , __snake_case , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: __A : Dict = replace_key_with_offset(__snake_case , __snake_case , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: __A : List[Any] = replace_key_with_offset(__snake_case , __snake_case , 'norm1' , 'before_norm' ) if "norm2" in key: __A : List[Any] = replace_key_with_offset(__snake_case , __snake_case , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: __A : Optional[int] = replace_key_with_offset(__snake_case , __snake_case , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: __A : Optional[Any] = replace_key_with_offset(__snake_case , __snake_case , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: __A : Dict = key.replace('head' , 'classifier' ) __A : Optional[Any] = value return new_state_dict def _lowerCAmelCase ( ) -> str: __A : str = 'http://images.cocodataset.org/val2017/000000039769.jpg' __A : Any = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return image @torch.no_grad() def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Any ) -> List[Any]: __A : Dict = PoolFormerConfig() # set attributes based on model_name __A : Dict = 'huggingface/label-files' __A : List[str] = model_name[-3:] __A : Optional[int] = 10_00 __A : Tuple = 'imagenet-1k-id2label.json' __A : Optional[Any] = (1, 10_00) # set config attributes __A : Optional[Any] = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='dataset' ) , 'r' ) ) __A : Any = {int(__snake_case ): v for k, v in idalabel.items()} __A : List[Any] = idalabel __A : Tuple = {v: k for k, v in idalabel.items()} if size == "s12": __A : Union[str, Any] = [2, 2, 6, 2] __A : Union[str, Any] = [64, 1_28, 3_20, 5_12] __A : Tuple = 4.0 __A : int = 0.9 elif size == "s24": __A : Dict = [4, 4, 12, 4] __A : int = [64, 1_28, 3_20, 5_12] __A : str = 4.0 __A : List[Any] = 0.9 elif size == "s36": __A : List[Any] = [6, 6, 18, 6] __A : Optional[int] = [64, 1_28, 3_20, 5_12] __A : Any = 4.0 __A : Tuple = 1e-6 __A : Any = 0.9 elif size == "m36": __A : Tuple = [6, 6, 18, 6] __A : int = [96, 1_92, 3_84, 7_68] __A : List[str] = 4.0 __A : Dict = 1e-6 __A : List[str] = 0.95 elif size == "m48": __A : List[Any] = [8, 8, 24, 8] __A : Dict = [96, 1_92, 3_84, 7_68] __A : int = 4.0 __A : Any = 1e-6 __A : int = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor __A : List[Any] = PoolFormerImageProcessor(crop_pct=__snake_case ) # Prepare image __A : List[str] = prepare_img() __A : Union[str, Any] = image_processor(images=__snake_case , return_tensors='pt' ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict __A : str = torch.load(__snake_case , map_location=torch.device('cpu' ) ) # rename keys __A : Dict = rename_keys(__snake_case ) # create HuggingFace model and load state dict __A : Dict = PoolFormerForImageClassification(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Define image processor __A : Union[str, Any] = PoolFormerImageProcessor(crop_pct=__snake_case ) __A : List[str] = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass __A : Optional[int] = model(__snake_case ) __A : Optional[int] = outputs.logits # define expected logit slices for different models if size == "s12": __A : str = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": __A : int = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": __A : Dict = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": __A : Tuple = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": __A : Dict = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowercase__ : str = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
358
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
190
0
import os import sys import unittest lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCAmelCase__ = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') lowerCAmelCase__ = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : Optional[int] ): lowercase__ : List[str] = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = {"BertModelTest": "BertModelTester"} lowercase__ : Optional[Any] = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def snake_case ( self : Dict ): lowercase__ : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = get_model_to_test_mapping(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } lowercase__ : List[Any] = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[int] ): lowercase__ : str = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } lowercase__ : int = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
130
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class snake_case__(_UpperCamelCase ): """simple docstring""" def snake_case ( self : Optional[Any] ): lowercase__ : str = tempfile.mkdtemp() lowercase__ : Optional[Any] = 8 # DPR tok lowercase__ : Dict = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowercase__ : List[Any] = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) lowercase__ : str = os.path.join(SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok lowercase__ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ : List[str] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) lowercase__ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : List[Any] = {"unk_token": "<unk>"} lowercase__ : Any = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : str = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Any ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def snake_case ( self : Any ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def snake_case ( self : Any ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def snake_case ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def snake_case ( self : Optional[int] ): lowercase__ : int = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def snake_case ( self : List[str] ): lowercase__ : Union[str, Any] = self.get_dummy_dataset() lowercase__ : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: lowercase__ : Union[str, Any] = dataset lowercase__ : List[str] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : bool ): lowercase__ : Union[str, Any] = self.get_dummy_dataset() lowercase__ : Optional[int] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: lowercase__ : Any = os.path.join(self.tmpdirname , "dataset" ) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset lowercase__ : Tuple = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: lowercase__ : Dict = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , SCREAMING_SNAKE_CASE ) , ) return retriever def snake_case ( self : Tuple ): lowercase__ : Optional[int] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) lowercase__ : Optional[int] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) lowercase__ : List[str] = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(SCREAMING_SNAKE_CASE , open(SCREAMING_SNAKE_CASE , "wb" ) ) lowercase__ : int = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) lowercase__ : Any = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def snake_case ( self : int ): lowercase__ : Any = 1 lowercase__ : str = self.get_dummy_canonical_hf_index_retriever() lowercase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : str ): lowercase__ : Dict = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: lowercase__ : Tuple = self.get_dummy_dataset() retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self : str ): lowercase__ : Union[str, Any] = 1 lowercase__ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Optional[Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : Union[str, Any] ): lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self : Union[str, Any] ): lowercase__ : Optional[Any] = 1 lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Dict = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : List[str] ): lowercase__ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : int = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : Dict = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self : Union[str, Any] ): lowercase__ : List[Any] = 1 lowercase__ : List[str] = self.get_dummy_legacy_index_retriever() lowercase__ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : Dict ): lowercase__ : Optional[int] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def snake_case ( self : Any ): import torch lowercase__ : List[Any] = 1 lowercase__ : Union[str, Any] = self.get_dummy_canonical_hf_index_retriever() lowercase__ : Tuple = [[5, 7], [10, 11]] lowercase__ : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : int = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ , lowercase__ : List[str] = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) lowercase__ : List[str] = retriever( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE , return_tensors="pt" , ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def snake_case ( self : int ): lowercase__ : List[Any] = self.get_dpr_ctx_encoder_tokenizer() lowercase__ : Optional[int] = 1 lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = [[5, 7], [10, 11]] lowercase__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : List[Any] = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual( len(SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
130
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase: Union[str, Any] = logging.get_logger(__name__) _lowercase: str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class _lowercase ( __UpperCamelCase ): """simple docstring""" __A = "levit" def __init__(self , lowerCamelCase_=224 , lowerCamelCase_=3 , lowerCamelCase_=3 , lowerCamelCase_=2 , lowerCamelCase_=1 , lowerCamelCase_=16 , lowerCamelCase_=[128, 256, 384] , lowerCamelCase_=[4, 8, 12] , lowerCamelCase_=[4, 4, 4] , lowerCamelCase_=[16, 16, 16] , lowerCamelCase_=0 , lowerCamelCase_=[2, 2, 2] , lowerCamelCase_=[2, 2, 2] , lowerCamelCase_=0.02 , **lowerCamelCase_ , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) a = image_size a = num_channels a = kernel_size a = stride a = padding a = hidden_sizes a = num_attention_heads a = depths a = key_dim a = drop_path_rate a = patch_size a = attention_ratio a = mlp_ratio a = initializer_range a = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class _lowercase ( __UpperCamelCase ): """simple docstring""" __A = version.parse("1.11" ) @property def UpperCamelCase_ (self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCamelCase_ (self ): """simple docstring""" return 1E-4
351
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _lowercase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) __A = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) __A = False __A = False def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ): """simple docstring""" a = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): a = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _lowercase ( lowerCAmelCase ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=99 , lowerCamelCase_=32 , lowerCamelCase_=32 , lowerCamelCase_=2 , lowerCamelCase_=4 , lowerCamelCase_=37 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=512 , lowerCamelCase_=16 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_=None , ): """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = scope a = embedding_size def UpperCamelCase_ (self ): """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = ids_tensor([self.batch_size] , self.num_choices ) a = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = TFMobileBertModel(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) a = [input_ids, input_mask] a = model(lowerCamelCase_ ) a = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = TFMobileBertForMaskedLM(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = TFMobileBertForNextSentencePrediction(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = TFMobileBertForPreTraining(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self.num_labels a = TFMobileBertForSequenceClassification(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self.num_choices a = TFMobileBertForMultipleChoice(config=lowerCamelCase_ ) a = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) a = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) a = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) a = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } a = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self.num_labels a = TFMobileBertForTokenClassification(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = TFMobileBertForQuestionAnswering(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ (self ): """simple docstring""" a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def UpperCamelCase_ (self ): """simple docstring""" a = TFMobileBertModelTest.TFMobileBertModelTester(self ) a = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def UpperCamelCase_ (self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) @slow def UpperCamelCase_ (self ): """simple docstring""" for model_name in ["google/mobilebert-uncased"]: a = TFMobileBertModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_tf class _lowercase ( unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase_ (self ): """simple docstring""" a = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" ) a = tf.constant([[0, 1, 2, 3, 4, 5]] ) a = model(lowerCamelCase_ )[0] a = [1, 6, 30522] self.assertEqual(output.shape , lowerCamelCase_ ) a = tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 )
71
0
import re import string import numpy as np import datasets __lowerCAmelCase : Optional[int] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase : Optional[int] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase : Optional[int] = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self : str ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : int=False , UpperCamelCase__ : Tuple=False , ) -> Dict: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: __magic_name__ = np.array([re.sub(UpperCamelCase__ , """""" , UpperCamelCase__ ) for x in predictions] ) __magic_name__ = np.array([re.sub(UpperCamelCase__ , """""" , UpperCamelCase__ ) for x in references] ) else: __magic_name__ = np.asarray(UpperCamelCase__ ) __magic_name__ = np.asarray(UpperCamelCase__ ) if ignore_case: __magic_name__ = np.char.lower(UpperCamelCase__ ) __magic_name__ = np.char.lower(UpperCamelCase__ ) if ignore_punctuation: __magic_name__ = string.punctuation.maketrans("""""" , """""" , string.punctuation ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) if ignore_numbers: __magic_name__ = string.digits.maketrans("""""" , """""" , string.digits ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) __magic_name__ = predictions == references return {"exact_match": np.mean(UpperCamelCase__ ) * 100}
88
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase__ : def __init__( self , lowercase , ) -> Union[str, Any]: __UpperCamelCase = parent __UpperCamelCase = 1_3 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 9_9 __UpperCamelCase = 3_2 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 3_7 __UpperCamelCase = """gelu""" __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 5_1_2 __UpperCamelCase = 1_6 __UpperCamelCase = 2 __UpperCamelCase = 0.02 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = None def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: __UpperCamelCase = TFDistilBertModel(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __UpperCamelCase = TFDistilBertForMaskedLM(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = TFDistilBertForQuestionAnswering(config=lowercase ) __UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForSequenceClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: __UpperCamelCase = self.num_choices __UpperCamelCase = TFDistilBertForMultipleChoice(lowercase ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForTokenClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = TFDistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase , dim=3_7 ) def __lowerCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase ) def __lowerCamelCase ( self ) -> int: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase ) def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase ) @slow def __lowerCamelCase ( self ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCamelCase = TFDistilBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_tf class UpperCAmelCase__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase = model(lowercase )[0] __UpperCamelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , lowercase ) __UpperCamelCase = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 )
349
0
"""simple docstring""" import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : List[str] =LxmertTokenizer lowerCamelCase : Tuple =LxmertTokenizerFast lowerCamelCase : Dict =True lowerCamelCase : Tuple =True def __a ( self ) -> Any: super().setUp() a : Dict = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __a ( self , lowerCAmelCase__ ) -> Union[str, Any]: a : int = "UNwant\u00E9d,running" a : Optional[Any] = "unwanted, running" return input_text, output_text def __a ( self ) -> List[str]: a : Union[str, Any] = self.tokenizer_class(self.vocab_file ) a : Tuple = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCAmelCase__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [7, 4, 5, 10, 8, 9] ) def __a ( self ) -> Union[str, Any]: if not self.test_rust_tokenizer: return a : str = self.get_tokenizer() a : List[str] = self.get_rust_tokenizer() a : str = "I was born in 92000, and this is falsé." a : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ) a : Optional[int] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) a : Dict = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a : Dict = self.get_rust_tokenizer() a : int = tokenizer.encode(lowerCAmelCase__ ) a : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
79
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] ) ->Union[str, Any]: '''simple docstring''' if isinstance(_lowercase , collections.abc.Iterable ): return x return (x, x) @require_flax class __UpperCamelCase : def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: pass def __a ( self ) -> List[Any]: pass def __a ( self ) -> str: pass def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: a : Dict = np.abs((a - b) ).max() self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Dict: a : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) a : List[str] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) a : int = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Optional[Any]: a, a : Optional[int] = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) a : Dict = {"vision_model": vision_model, "text_model": text_model} a : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) a : List[str] = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Union[str, Any]: a, a : Dict = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) a : Tuple = {"vision_model": vision_model, "text_model": text_model} a : Tuple = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) a : List[str] = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) a : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ ) a : str = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) a : Dict = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) a : List[Any] = after_output[0] a : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1E-3 ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> List[Any]: a, a : Union[str, Any] = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) a : List[Any] = {"vision_model": vision_model, "text_model": text_model} a : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) a : Tuple = model( input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ ) a : int = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) a : Optional[int] = to_atuple(vision_model.config.image_size ) a : Tuple = to_atuple(vision_model.config.patch_size ) a : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) a : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) a : str = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: pt_model.to(lowerCAmelCase__ ) pt_model.eval() # prepare inputs a : List[Any] = inputs_dict a : Any = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): a : int = pt_model(**lowerCAmelCase__ ).to_tuple() a : Union[str, Any] = fx_model(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase__ ) a : Dict = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ ) a : Optional[int] = fx_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase__ ) a : Optional[int] = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ ) pt_model_loaded.to(lowerCAmelCase__ ) pt_model_loaded.eval() with torch.no_grad(): a : int = pt_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4E-2 ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: a : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) a : Dict = VisionTextDualEncoderModel(lowerCAmelCase__ ) a : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) a : Dict = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ ) a : List[str] = fx_state self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: a : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) a : Optional[int] = VisionTextDualEncoderModel(lowerCAmelCase__ ) a : List[Any] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) a : int = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params ) self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Dict: a : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase__ ) def __a ( self ) -> Dict: a : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ ) def __a ( self ) -> List[str]: a : int = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase__ ) def __a ( self ) -> List[str]: a : Tuple = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase__ ) @is_pt_flax_cross_test def __a ( self ) -> Any: a : List[Any] = self.prepare_config_and_inputs() a : Tuple = config_inputs_dict.pop("vision_config" ) a : int = config_inputs_dict.pop("text_config" ) a : List[str] = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __a ( self ) -> List[Any]: a, a : Optional[int] = self.get_pretrained_model_and_inputs() a : Optional[int] = model_a(**lowerCAmelCase__ ) a : Optional[int] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase__ ) a : Any = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) a : str = model_a(**lowerCAmelCase__ ) a : Dict = after_outputs[0] a : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1E-5 ) @require_flax class __UpperCamelCase ( a__ , unittest.TestCase ): def __a ( self ) -> List[Any]: a : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-bert" , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , ) a : Any = 13 a : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) a : str = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) a : Optional[Any] = random_attention_mask([batch_size, 4] ) a : Optional[Any] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: a : Dict = FlaxViTModel(lowerCAmelCase__ ) a : Dict = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def __a ( self ) -> str: a : Union[str, Any] = FlaxViTModelTester(self ) a : Dict = FlaxBertModelTester(self ) a : str = vit_model_tester.prepare_config_and_inputs() a : Any = bert_model_tester.prepare_config_and_inputs() a, a : Optional[int] = vision_config_and_inputs a, a, a, a : Dict = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __UpperCamelCase ( a__ , unittest.TestCase ): def __a ( self ) -> List[Any]: a : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" , "hf-internal-testing/tiny-bert" , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , ) a : Tuple = 13 a : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) a : Union[str, Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) a : Tuple = random_attention_mask([batch_size, 4] ) a : str = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : List[Any] = FlaxCLIPVisionModel(lowerCAmelCase__ ) a : Tuple = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def __a ( self ) -> List[Any]: a : Tuple = FlaxCLIPVisionModelTester(self ) a : Union[str, Any] = FlaxBertModelTester(self ) a : Dict = clip_model_tester.prepare_config_and_inputs() a : Optional[int] = bert_model_tester.prepare_config_and_inputs() a, a : Dict = vision_config_and_inputs a, a, a, a : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __UpperCamelCase ( unittest.TestCase ): @slow def __a ( self ) -> Dict: a : str = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" , logit_scale_init_value=1.0 ) a : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) a : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) a : Optional[int] = processor( text=["una foto di un gatto", "una foto di un cane"] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="np" ) a : Optional[Any] = model(**lowerCAmelCase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) a : List[str] = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1E-3 ) )
79
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase__ ( lowercase ): lowercase__ = ["""image_processor""", """tokenizer"""] lowercase__ = """ViTImageProcessor""" lowercase__ = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Optional[int] ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : Optional[Any]=None ,**lowerCamelCase__ : Optional[Any] ): '''simple docstring''' _UpperCamelCase : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' ,lowerCamelCase__ ,) _UpperCamelCase : List[Any] = kwargs.pop('feature_extractor' ) _UpperCamelCase : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase__ ,lowerCamelCase__ ) def __call__( self : List[Any] ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : Any=None ,lowerCamelCase__ : str=None ,lowerCamelCase__ : List[Any]=None ,**lowerCamelCase__ : List[str] ): '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: _UpperCamelCase : Optional[int] = self.tokenizer(lowerCamelCase__ ,return_tensors=lowerCamelCase__ ,**lowerCamelCase__ ) if visual_prompt is not None: _UpperCamelCase : Any = self.image_processor(lowerCamelCase__ ,return_tensors=lowerCamelCase__ ,**lowerCamelCase__ ) if images is not None: _UpperCamelCase : Union[str, Any] = self.image_processor(lowerCamelCase__ ,return_tensors=lowerCamelCase__ ,**lowerCamelCase__ ) if visual_prompt is not None and images is not None: _UpperCamelCase : Dict = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _UpperCamelCase : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _UpperCamelCase : Dict = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCamelCase__ ) ,tensor_type=lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ,*lowerCamelCase__ : Dict ,**lowerCamelCase__ : int ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ,*lowerCamelCase__ : Any ,**lowerCamelCase__ : int ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase__ ,**lowerCamelCase__ ) @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' ,lowerCamelCase__ ,) return self.image_processor_class @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' ,lowerCamelCase__ ,) return self.image_processor
83
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , _SCREAMING_SNAKE_CASE=[1, 2, 3] , ) -> List[str]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride _UpperCAmelCase = out_features _UpperCAmelCase = out_indices def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = ['stem'] _UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : int = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _a : str = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} _a : Optional[int] = False _a : List[str] = False _a : List[str] = False _a : Optional[int] = False _a : Tuple = False def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) @unittest.skip('Swin does not use inputs_embeds' ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swin has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 0 return t def check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE={} ): with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' f''' {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has''' f''' `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}.''' ) , ) recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} ) @require_torch class __a ( unittest.TestCase , UpperCAmelCase ): _a : Any = (MaskFormerSwinBackbone,) if is_torch_available() else () _a : Any = MaskFormerSwinConfig def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: _UpperCAmelCase = backbone_class(_SCREAMING_SNAKE_CASE ) backbone.to(_SCREAMING_SNAKE_CASE ) backbone.eval() _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
329
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : List[str] = logging.get_logger(__name__) def a_ ( __lowercase : List[Any] ) -> List[Any]: _snake_case = DPTConfig() if "large" in checkpoint_url: _snake_case = 1_024 _snake_case = 4_096 _snake_case = 24 _snake_case = 16 _snake_case = [5, 11, 17, 23] _snake_case = [256, 512, 1_024, 1_024] _snake_case = (1, 384, 384) if "ade" in checkpoint_url: _snake_case = True _snake_case = 150 _snake_case = 'huggingface/label-files' _snake_case = 'ade20k-id2label.json' _snake_case = json.load(open(cached_download(hf_hub_url(snake_case_ , snake_case_ , repo_type='dataset' ) ) , 'r' ) ) _snake_case = {int(snake_case_ ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} _snake_case = [1, 150, 480, 480] return config, expected_shape def a_ ( __lowercase : Any ) -> Dict: _snake_case = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def a_ ( __lowercase : List[Any] ) -> Optional[int]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _snake_case = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: _snake_case = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: _snake_case = name.replace('patch_embed' , 'patch_embeddings' ) if "pos_embed" in name: _snake_case = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: _snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: _snake_case = name.replace('proj' , 'projection' ) if "blocks" in name: _snake_case = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: _snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name: _snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _snake_case = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: _snake_case = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: _snake_case = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: _snake_case = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: _snake_case = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: _snake_case = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: _snake_case = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: _snake_case = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _snake_case = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: _snake_case = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: _snake_case = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: _snake_case = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: _snake_case = name.replace('conv1' , 'convolution1' ) if "conv2" in name: _snake_case = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _snake_case = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: _snake_case = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: _snake_case = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: _snake_case = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _snake_case = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: _snake_case = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: _snake_case = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: _snake_case = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: _snake_case = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: _snake_case = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: _snake_case = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: _snake_case = name.replace('pretrained' , 'dpt' ) if "bn" in name: _snake_case = name.replace('bn' , 'batch_norm' ) if "head" in name: _snake_case = name.replace('head' , 'head.head' ) if "encoder.norm" in name: _snake_case = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: _snake_case = name.replace('auxlayer' , 'auxiliary_head.head' ) return name def a_ ( __lowercase : Any , __lowercase : str ) -> List[str]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[: config.hidden_size, :] _snake_case = in_proj_bias[: config.hidden_size] _snake_case = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case = in_proj_weight[ -config.hidden_size :, : ] _snake_case = in_proj_bias[-config.hidden_size :] def a_ ( ) -> Dict: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def a_ ( __lowercase : Tuple , __lowercase : Tuple , __lowercase : List[Any] , __lowercase : int ) -> Optional[int]: _snake_case , _snake_case = get_dpt_config(snake_case_ ) # load original state_dict from URL _snake_case = torch.hub.load_state_dict_from_url(snake_case_ , map_location='cpu' ) # remove certain keys remove_ignore_keys_(snake_case_ ) # rename keys for key in state_dict.copy().keys(): _snake_case = state_dict.pop(snake_case_ ) _snake_case = val # read in qkv matrices read_in_q_k_v(snake_case_ , snake_case_ ) # load HuggingFace model _snake_case = DPTForSemanticSegmentation(snake_case_ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() # Check outputs on an image _snake_case = 480 if 'ade' in checkpoint_url else 384 _snake_case = DPTImageProcessor(size=snake_case_ ) _snake_case = prepare_img() _snake_case = image_processor(snake_case_ , return_tensors='pt' ) # forward pass _snake_case = model(**snake_case_ ).logits if 'ade' in checkpoint_url else model(**snake_case_ ).predicted_depth # Assert logits _snake_case = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: _snake_case = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(snake_case_ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , snake_case_ , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , snake_case_ ) ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case_ ) if push_to_hub: print('Pushing model to hub...' ) model.push_to_hub( repo_path_or_name=Path(snake_case_ , snake_case_ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=snake_case_ , ) image_processor.push_to_hub( repo_path_or_name=Path(snake_case_ , snake_case_ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=snake_case_ , ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) _lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
368
def a_ ( __lowercase : list[int] , __lowercase : list[int] ) -> tuple[float, float]: # Check if the input is valid if not len(__lowercase ) == len(__lowercase ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _snake_case , _snake_case , _snake_case = equationa _snake_case , _snake_case , _snake_case = equationa # Calculate the determinants of the matrices _snake_case = aa * ba - aa * ba _snake_case = ca * ba - ca * ba _snake_case = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _snake_case = determinant_x / determinant _snake_case = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
130
0
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __A : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=64 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , ): """simple docstring""" __UpperCamelCase : Any =parent __UpperCamelCase : Dict =batch_size __UpperCamelCase : Optional[int] =seq_length __UpperCamelCase : List[Any] =is_training __UpperCamelCase : Optional[Any] =use_input_mask __UpperCamelCase : List[str] =use_token_type_ids __UpperCamelCase : List[Any] =use_labels __UpperCamelCase : Union[str, Any] =vocab_size __UpperCamelCase : str =hidden_size __UpperCamelCase : Optional[Any] =num_hidden_layers __UpperCamelCase : Optional[Any] =num_attention_heads __UpperCamelCase : List[Any] =intermediate_size __UpperCamelCase : str =hidden_act __UpperCamelCase : List[str] =hidden_dropout_prob __UpperCamelCase : Optional[int] =attention_probs_dropout_prob __UpperCamelCase : Optional[Any] =max_position_embeddings __UpperCamelCase : List[Any] =type_vocab_size __UpperCamelCase : Tuple =type_sequence_label_size __UpperCamelCase : Union[str, Any] =initializer_range __UpperCamelCase : List[str] =num_labels __UpperCamelCase : Union[str, Any] =num_choices __UpperCamelCase : List[Any] =scope __UpperCamelCase : str =vocab_size - 1 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : int =None if self.use_input_mask: __UpperCamelCase : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : Optional[Any] =None if self.use_labels: __UpperCamelCase : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : str =self.get_config() return config, input_ids, input_mask, token_labels def __lowercase ( self ): """simple docstring""" return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =self.prepare_config_and_inputs() __UpperCamelCase : str =True return config, input_ids, input_mask, token_labels def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : str =GPTNeoXModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : Union[str, Any] =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) __UpperCamelCase : Any =model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : str =True __UpperCamelCase : Optional[Any] =GPTNeoXModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : Union[str, Any] =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : str =GPTNeoXForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : Union[str, Any] =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : int =self.num_labels __UpperCamelCase : Any =GPTNeoXForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : Any =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Any =self.num_labels __UpperCamelCase : Optional[Any] =GPTNeoXForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : int =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : Dict =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[str] =self.num_labels __UpperCamelCase : Union[str, Any] =GPTNeoXForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : Any =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =True __UpperCamelCase : str =GPTNeoXForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # first forward pass __UpperCamelCase : Optional[Any] =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) __UpperCamelCase : str =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase : int =ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase : Optional[Any] =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCamelCase : List[Any] =torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase : Optional[int] =torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCamelCase : int =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) __UpperCamelCase : Tuple =output_from_no_past['hidden_states'][0] __UpperCamelCase : Any =model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['hidden_states'][0] # select random slice __UpperCamelCase : Optional[int] =ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase : Dict =output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase : Union[str, Any] =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =self.prepare_config_and_inputs() __UpperCamelCase : Any =config_and_inputs __UpperCamelCase : str ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __A ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Optional[int] =( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase__ : Any =(GPTNeoXForCausalLM,) if is_torch_available() else () UpperCamelCase__ : Any =( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ : Optional[Any] =False UpperCamelCase__ : List[Any] =False UpperCamelCase__ : List[Any] =False UpperCamelCase__ : Any =False def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =GPTNeoXModelTester(self ) __UpperCamelCase : Union[str, Any] =ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=64 , num_attention_heads=8 ) def __lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =self.model_tester.prepare_config_and_inputs_for_decoder() __UpperCamelCase : Dict =None self.model_tester.create_and_check_model_as_decoder(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_UpperCAmelCase ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def __lowercase ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Any =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : Tuple =ids_tensor([1, 10] , config.vocab_size ) __UpperCamelCase : Tuple =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase : Union[str, Any] =GPTNeoXModel(_UpperCAmelCase ) original_model.to(_UpperCAmelCase ) original_model.eval() __UpperCamelCase : Tuple =original_model(_UpperCAmelCase ).last_hidden_state __UpperCamelCase : Optional[int] =original_model(_UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase : Union[str, Any] ={'type': scaling_type, 'factor': 10.0} __UpperCamelCase : int =GPTNeoXModel(_UpperCAmelCase ) scaled_model.to(_UpperCAmelCase ) scaled_model.eval() __UpperCamelCase : List[str] =scaled_model(_UpperCAmelCase ).last_hidden_state __UpperCamelCase : Any =scaled_model(_UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) ) @require_torch class __A ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: __UpperCamelCase : Dict =GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_UpperCAmelCase ) __UpperCamelCase : List[str] =tokenizer('My favorite food is' , return_tensors='pt' ).to(_UpperCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __UpperCamelCase : Any ='My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' __UpperCamelCase : Optional[int] =model.generate(**_UpperCAmelCase , do_sample=_UpperCAmelCase , max_new_tokens=20 ) __UpperCamelCase : Tuple =tokenizer.batch_decode(_UpperCAmelCase )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
71
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE : @staticmethod def SCREAMING_SNAKE_CASE ( *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase ): lowerCAmelCase = MODEL_FOR_OBJECT_DETECTION_MAPPING def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Dict = ObjectDetectionPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0) self.assertGreater(len(_UpperCAmelCase) , 0) for detected_object in outputs: self.assertEqual( _UpperCAmelCase , { 'score': ANY(_UpperCAmelCase), 'label': ANY(_UpperCAmelCase), 'box': {'xmin': ANY(_UpperCAmelCase), 'ymin': ANY(_UpperCAmelCase), 'xmax': ANY(_UpperCAmelCase), 'ymax': ANY(_UpperCAmelCase)}, } , ) import datasets __A : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test') __A : List[str] = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png'), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __A : Union[str, Any] = object_detector(_UpperCAmelCase , threshold=0.0) self.assertEqual(len(_UpperCAmelCase) , len(_UpperCAmelCase)) for outputs in batch_outputs: self.assertGreater(len(_UpperCAmelCase) , 0) for detected_object in outputs: self.assertEqual( _UpperCAmelCase , { 'score': ANY(_UpperCAmelCase), 'label': ANY(_UpperCAmelCase), 'box': {'xmin': ANY(_UpperCAmelCase), 'ymin': ANY(_UpperCAmelCase), 'xmax': ANY(_UpperCAmelCase), 'ymax': ANY(_UpperCAmelCase)}, } , ) @require_tf @unittest.skip('Object detection not implemented in TF') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @require_torch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = 'hf-internal-testing/tiny-detr-mobilenetsv3' __A : Any = AutoModelForObjectDetection.from_pretrained(_UpperCAmelCase) __A : int = AutoFeatureExtractor.from_pretrained(_UpperCAmelCase) __A : Any = ObjectDetectionPipeline(model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase) __A : Dict = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ] , ) __A : Optional[Any] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = 'facebook/detr-resnet-50' __A : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(_UpperCAmelCase) __A : Tuple = AutoFeatureExtractor.from_pretrained(_UpperCAmelCase) __A : List[Any] = ObjectDetectionPipeline(model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase) __A : Union[str, Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg') self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) __A : Tuple = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ]) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = 'facebook/detr-resnet-50' __A : str = pipeline('object-detection' , model=_UpperCAmelCase) __A : Any = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg') self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) __A : str = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ]) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = 0.9985 __A : List[Any] = 'facebook/detr-resnet-50' __A : List[str] = pipeline('object-detection' , model=_UpperCAmelCase) __A : List[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=_UpperCAmelCase) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) @require_torch @require_pytesseract @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = 'Narsil/layoutlmv3-finetuned-funsd' __A : Tuple = 0.9993 __A : str = pipeline('object-detection' , model=_UpperCAmelCase , threshold=_UpperCAmelCase) __A : Optional[int] = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png') self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ] , )
190
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __lowerCamelCase : """simple docstring""" def __init__( self ) -> Tuple: '''simple docstring''' lowercase_ = "" lowercase_ = "" lowercase_ = [] lowercase_ = 0 lowercase_ = 256 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 def A__ ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = cva.imread(UpperCAmelCase , 0 ) lowercase_ = copy.deepcopy(self.img ) lowercase_ , lowercase_ , lowercase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) lowercase_ = np.sum(UpperCAmelCase ) for i in range(len(UpperCAmelCase ) ): lowercase_ = x[i] / self.k self.sk += prk lowercase_ = (self.L - 1) * self.sk if self.rem != 0: lowercase_ = int(last % last ) lowercase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(UpperCAmelCase ) lowercase_ = int(np.ma.count(self.img ) / self.img[1].size ) lowercase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowercase_ = self.img[j][i] if num != self.last_list[num]: lowercase_ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def A__ ( self ) -> Optional[int]: '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def A__ ( self ) -> str: '''simple docstring''' cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") SCREAMING_SNAKE_CASE__ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
297
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" lowerCAmelCase__ = 1 @register_to_config def __init__( self , UpperCAmelCase = 1000 , UpperCAmelCase = None ) -> List[Any]: '''simple docstring''' self.set_timesteps(UpperCAmelCase ) # standard deviation of the initial noise distribution lowercase_ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase_ = 4 # running values lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[int]: '''simple docstring''' lowercase_ = num_inference_steps lowercase_ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase_ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase_ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase_ = torch.sin(steps * math.pi / 2 ) ** 2 lowercase_ = (1.0 - self.betas**2) ** 0.5 lowercase_ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase_ = timesteps.to(UpperCAmelCase ) lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) lowercase_ = (self.timesteps == timestep).nonzero().item() lowercase_ = timestep_index + 1 lowercase_ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCAmelCase ) if len(self.ets ) == 1: lowercase_ = self.ets[-1] elif len(self.ets ) == 2: lowercase_ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase_ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase_ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase_ = self._get_prev_sample(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> torch.FloatTensor: '''simple docstring''' return sample def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = self.alphas[timestep_index] lowercase_ = self.betas[timestep_index] lowercase_ = self.alphas[prev_timestep_index] lowercase_ = self.betas[prev_timestep_index] lowercase_ = (sample - sigma * ets) / max(UpperCAmelCase , 1e-8 ) lowercase_ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> List[str]: '''simple docstring''' return self.config.num_train_timesteps
297
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : List[Any] = """markuplm""" def __init__( self , __lowercase=30_522 , __lowercase=768 , __lowercase=12 , __lowercase=12 , __lowercase=3_072 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=2 , __lowercase=0.02 , __lowercase=1E-1_2 , __lowercase=0 , __lowercase=0 , __lowercase=2 , __lowercase=256 , __lowercase=1_024 , __lowercase=216 , __lowercase=1_001 , __lowercase=32 , __lowercase=50 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ) -> str: super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase , ) __UpperCamelCase :Any = vocab_size __UpperCamelCase :List[Any] = hidden_size __UpperCamelCase :str = num_hidden_layers __UpperCamelCase :str = num_attention_heads __UpperCamelCase :Dict = hidden_act __UpperCamelCase :List[str] = intermediate_size __UpperCamelCase :int = hidden_dropout_prob __UpperCamelCase :Union[str, Any] = attention_probs_dropout_prob __UpperCamelCase :Dict = max_position_embeddings __UpperCamelCase :List[str] = type_vocab_size __UpperCamelCase :Optional[int] = initializer_range __UpperCamelCase :Any = layer_norm_eps __UpperCamelCase :Optional[Any] = position_embedding_type __UpperCamelCase :List[Any] = use_cache __UpperCamelCase :Optional[int] = classifier_dropout # additional properties __UpperCamelCase :Optional[Any] = max_depth __UpperCamelCase :Optional[Any] = max_xpath_tag_unit_embeddings __UpperCamelCase :str = max_xpath_subs_unit_embeddings __UpperCamelCase :Union[str, Any] = tag_pad_id __UpperCamelCase :Optional[int] = subs_pad_id __UpperCamelCase :Optional[int] = xpath_unit_hidden_size
43
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __A ( a ): """simple docstring""" UpperCamelCase__ : Optional[int] ="""new-model""" if is_tf_available(): class __A ( a ): """simple docstring""" UpperCamelCase__ : List[str] =NewModelConfig @require_tf class __A ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] ='bert-base-cased' __UpperCamelCase : Union[str, Any] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =TFAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] ='bert-base-cased' __UpperCamelCase : Optional[int] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Tuple =TFAutoModelForPreTraining.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : str =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : str =TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : str =TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Optional[int] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Any =TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Union[str, Any] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Any =TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : Union[str, Any] =TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Union[str, Any] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : str =TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: __UpperCamelCase : Union[str, Any] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =TFAutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: __UpperCamelCase : List[Any] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[int] =TFAutoModelForQuestionAnswering.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow @require_tensorflow_probability def __lowercase ( self ): """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __UpperCamelCase : Any =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : str =TFAutoModelForTableQuestionAnswering.from_pretrained(lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : List[str] =TFAutoModelForTableQuestionAnswering.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[int] =copy.deepcopy(model.config ) __UpperCamelCase : Optional[Any] =['FunnelBaseModel'] __UpperCamelCase : Tuple =TFAutoModel.from_config(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : List[Any] =TFAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" try: AutoConfig.register('new-model' , lowerCamelCase__ ) __UpperCamelCase : int =[ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(lowerCamelCase__ ): auto_class.register(lowerCamelCase__ , lowerCamelCase__ ) auto_class.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): auto_class.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCamelCase : List[str] =BertModelTester(self ).get_config() __UpperCamelCase : Optional[Any] =NewModelConfig(**tiny_config.to_dict() ) __UpperCamelCase : Dict =auto_class.from_config(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =auto_class.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __lowercase ( self ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase__ , 'bert-base is not a local folder and is not a valid model identifier' ): __UpperCamelCase : Dict =TFAutoModel.from_pretrained('bert-base' ) def __lowercase ( self ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase__ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __UpperCamelCase : Union[str, Any] =TFAutoModel.from_pretrained(lowerCamelCase__ , revision='aaaaaa' ) def __lowercase ( self ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase__ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): __UpperCamelCase : List[str] =TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def __lowercase ( self ): """simple docstring""" with self.assertRaisesRegex(lowerCamelCase__ , 'Use `from_pt=True` to load this model' ): __UpperCamelCase : List[Any] =TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: __UpperCamelCase : Dict =TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __UpperCamelCase : Dict =TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: __UpperCamelCase : Union[str, Any] =TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
71
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): SCREAMING_SNAKE_CASE_ = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: SCREAMING_SNAKE_CASE_ = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> List[str]: _UpperCAmelCase : int = (images / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : Union[str, Any] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _UpperCAmelCase : Dict = numpy_to_pil(lowerCAmelCase ) return images def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> Any: if images.ndim == 3: _UpperCAmelCase : Dict = images[None, ...] _UpperCAmelCase : List[str] = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _UpperCAmelCase : List[str] = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: _UpperCAmelCase : List[Any] = [Image.fromarray(lowerCAmelCase ) for image in images] return pil_images
355
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE_ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE_ = direct_transformers_import(PATH_TO_TRANSFORMERS) SCREAMING_SNAKE_CASE_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` SCREAMING_SNAKE_CASE_ = re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)') SCREAMING_SNAKE_CASE_ = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = None # source code of `config_class` _UpperCAmelCase : int = inspect.getsource(lowerCAmelCase ) _UpperCAmelCase : Tuple = _re_checkpoint.findall(lowerCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): _UpperCAmelCase : Dict = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase : Any = F'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase : Union[str, Any] = ckpt_name break return checkpoint def __SCREAMING_SNAKE_CASE ( ) -> Dict: _UpperCAmelCase : Any = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _UpperCAmelCase : int = get_checkpoint_from_config_class(lowerCAmelCase ) _UpperCAmelCase : Tuple = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: _UpperCAmelCase : int = "\n".join(sorted(lowerCAmelCase ) ) raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
189
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = ['''image_processor''', '''tokenizer'''] snake_case = '''CLIPImageProcessor''' snake_case = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self : Any , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : List[Any]=None , **__UpperCAmelCase : str ): '''simple docstring''' _A = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) _A = kwargs.pop("feature_extractor" ) _A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : Any , __UpperCAmelCase : int=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : List[Any]=None , **__UpperCAmelCase : List[Any] ): '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: _A = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: _A = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: _A = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] , *__UpperCAmelCase : Any , **__UpperCAmelCase : Any ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = self.tokenizer.model_input_names _A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
79
'''simple docstring''' def __lowercase ( __lowercase , __lowercase , __lowercase=False ) -> Union[str, Any]: '''simple docstring''' if isinstance(__lowercase , __lowercase ) and isinstance(__lowercase , __lowercase ): _A = len(set_a.intersection(__lowercase ) ) if alternative_union: _A = len(__lowercase ) + len(__lowercase ) else: _A = len(set_a.union(__lowercase ) ) return intersection / union if isinstance(__lowercase , (list, tuple) ) and isinstance(__lowercase , (list, tuple) ): _A = [element for element in set_a if element in set_b] if alternative_union: _A = len(__lowercase ) + len(__lowercase ) return len(__lowercase ) / union else: _A = set_a + [element for element in set_b if element not in set_a] return len(__lowercase ) / len(__lowercase ) return len(__lowercase ) / len(__lowercase ) return None if __name__ == "__main__": lowerCamelCase_ = {'''a''', '''b''', '''c''', '''d''', '''e'''} lowerCamelCase_ = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
79
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig __snake_case = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : int = 'tapas' def __init__( self , __UpperCAmelCase=30522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1024 , __UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-1_2 , __UpperCAmelCase=0 , __UpperCAmelCase=10.0 , __UpperCAmelCase=0 , __UpperCAmelCase=1.0 , __UpperCAmelCase=None , __UpperCAmelCase=1.0 , __UpperCAmelCase=False , __UpperCAmelCase=None , __UpperCAmelCase=1.0 , __UpperCAmelCase=1.0 , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase="ratio" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=64 , __UpperCAmelCase=32 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> List[str]: super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_sizes _a = initializer_range _a = layer_norm_eps # Fine-tuning task hyperparameters _a = positive_label_weight _a = num_aggregation_labels _a = aggregation_loss_weight _a = use_answer_as_supervision _a = answer_loss_importance _a = use_normalized_answer_loss _a = huber_loss_delta _a = temperature _a = aggregation_temperature _a = use_gumbel_for_cells _a = use_gumbel_for_aggregation _a = average_approximation_function _a = cell_selection_preference _a = answer_loss_cutoff _a = max_num_rows _a = max_num_columns _a = average_logits_per_cell _a = select_one_column _a = allow_empty_column_selection _a = init_cell_selection_weights_to_zero _a = reset_position_index_per_cell _a = disable_per_token_loss # Aggregation hyperparameters _a = aggregation_labels _a = no_aggregation_label_index if isinstance(self.aggregation_labels , __UpperCAmelCase ): _a = {int(__UpperCAmelCase ): v for k, v in aggregation_labels.items()}
351
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
153
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : int , A_ : Any , A_ : List[Any]=1_3 , A_ : Any=3 , A_ : List[str]=2_2_4 , A_ : Optional[Any]=3_0 , A_ : Optional[Any]=4_0_0 , A_ : Any=True , A_ : str=None , A_ : Tuple=True , A_ : str=[0.5, 0.5, 0.5] , A_ : Optional[int]=[0.5, 0.5, 0.5] , ): lowerCAmelCase_ : Optional[Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} lowerCAmelCase_ : List[str] = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : List[str] = num_channels lowerCAmelCase_ : List[str] = image_size lowerCAmelCase_ : Dict = min_resolution lowerCAmelCase_ : Tuple = max_resolution lowerCAmelCase_ : List[Any] = do_resize lowerCAmelCase_ : Dict = size lowerCAmelCase_ : str = do_normalize lowerCAmelCase_ : Any = image_mean lowerCAmelCase_ : Optional[int] = image_std def UpperCAmelCase__ ( self : Optional[int]): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __snake_case ( UpperCamelCase_ ,unittest.TestCase ): _a = ViTImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : Optional[int] = EfficientFormerImageProcessorTester(self) @property def UpperCAmelCase__ ( self : Optional[int]): return self.image_proc_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(A_ , '''image_mean''')) self.assertTrue(hasattr(A_ , '''image_std''')) self.assertTrue(hasattr(A_ , '''do_normalize''')) self.assertTrue(hasattr(A_ , '''do_resize''')) self.assertTrue(hasattr(A_ , '''size''')) def UpperCAmelCase__ ( self : List[str]): pass def UpperCAmelCase__ ( self : Optional[int]): # Initialize image_processor lowerCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCAmelCase_ : Tuple = prepare_image_inputs(self.image_proc_tester , equal_resolution=A_) for image in image_inputs: self.assertIsInstance(A_ , Image.Image) # Test not batched input lowerCAmelCase_ : Optional[Any] = image_processor(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched lowerCAmelCase_ : str = image_processor(A_ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def UpperCAmelCase__ ( self : str): # Initialize image_processor lowerCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCAmelCase_ : Tuple = prepare_image_inputs(self.image_proc_tester , equal_resolution=A_ , numpify=A_) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray) # Test not batched input lowerCAmelCase_ : str = image_processor(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched lowerCAmelCase_ : str = image_processor(A_ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def UpperCAmelCase__ ( self : str): # Initialize image_processor lowerCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCAmelCase_ : Tuple = prepare_image_inputs(self.image_proc_tester , equal_resolution=A_ , torchify=A_) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor) # Test not batched input lowerCAmelCase_ : Dict = image_processor(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched lowerCAmelCase_ : Dict = image_processor(A_ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
103
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class snake_case__(_UpperCamelCase ): """simple docstring""" def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[Any] ): warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , SCREAMING_SNAKE_CASE , ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
130
0
def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return "".join([hex(UpperCamelCase__ )[2:].zfill(2 ).upper() for byte in list(UpperCamelCase__ )] ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if (len(UpperCamelCase__ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(UpperCamelCase__ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(UpperCamelCase__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
200
# Lint as: python3 import itertools import os import re _UpperCAmelCase : str = re.compile(R"""([A-Z]+)([A-Z][a-z])""") _UpperCAmelCase : Dict = re.compile(R"""([a-z\d])([A-Z])""") _UpperCAmelCase : Dict = re.compile(R"""(?<!_)_(?!_)""") _UpperCAmelCase : Tuple = re.compile(R"""(_{2,})""") _UpperCAmelCase : Any = R"""^\w+(\.\w+)*$""" _UpperCAmelCase : List[str] = R"""<>:/\|?*""" def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = _uppercase_uppercase_re.sub(r'\1_\2' , UpperCamelCase__ ) snake_case_ = _lowercase_uppercase_re.sub(r'\1_\2' , UpperCamelCase__ ) return name.lower() def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = _single_underscore_re.split(UpperCamelCase__ ) snake_case_ = [_multiple_underscores_re.split(UpperCamelCase__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(UpperCamelCase__ ) if n != '' ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if os.path.basename(UpperCamelCase__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if os.path.basename(UpperCamelCase__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , UpperCamelCase__ ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(UpperCamelCase__ )}-{split}''' def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): '''simple docstring''' snake_case_ = filename_prefix_for_split(UpperCamelCase__ , UpperCamelCase__ ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' snake_case_ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) return F'''{filepath}*''' def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ): '''simple docstring''' snake_case_ = filename_prefix_for_split(UpperCamelCase__ , UpperCamelCase__ ) snake_case_ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if shard_lengths: snake_case_ = len(UpperCamelCase__ ) snake_case_ = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(UpperCamelCase__ )] if filetype_suffix: snake_case_ = [filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: snake_case_ = prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
200
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class a__( lowerCamelCase__ ): lowercase__ = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowercase__ = Features({"""text""": Value("""string""" )} ) lowercase__ = Features({} ) lowercase__ = "text" @property def lowercase_ ( self : Any ): return {self.text_column: "text"}
297
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase__ ( _A , _A ): assert isinstance(_A , _A ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase__ ( _A , _A , _A ): a : str = tmp_path / 'cache' a : Optional[int] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a : List[Any] = JsonDatasetReader(_A , cache_dir=_A , keep_in_memory=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def lowerCamelCase__ ( _A , _A , _A ): a : str = tmp_path / 'cache' a : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a : Dict = features.copy() if features else default_expected_features a : Union[str, Any] = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) a : Any = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def lowerCamelCase__ ( _A , _A , _A ): a : Tuple = tmp_path / 'cache' a : Optional[Any] = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} a : Optional[int] = features.copy() if features else default_expected_features a : Dict = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) a : Optional[int] = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowerCamelCase__ ( _A , _A ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} a : Dict = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} a : int = features.copy() a : List[Any] = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) a : Dict = tmp_path / 'cache' a : Any = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCamelCase__ ( _A , _A , _A ): a : Dict = tmp_path / 'cache' a : List[str] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a : List[Any] = JsonDatasetReader(_A , cache_dir=_A , split=_A ).read() _check_json_dataset(_A , _A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def lowerCamelCase__ ( _A , _A , _A ): if issubclass(_A , _A ): a : Optional[int] = jsonl_path elif issubclass(_A , _A ): a : Optional[int] = [jsonl_path] a : List[str] = tmp_path / 'cache' a : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a : Tuple = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) def lowerCamelCase__ ( _A , _A , _A=("train",) ): assert isinstance(_A , _A ) for split in splits: a : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase__ ( _A , _A , _A ): a : Dict = tmp_path / 'cache' a : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a : int = JsonDatasetReader({'train': jsonl_path} , cache_dir=_A , keep_in_memory=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def lowerCamelCase__ ( _A , _A , _A ): a : Dict = tmp_path / 'cache' a : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a : List[Any] = features.copy() if features else default_expected_features a : Any = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) a : List[str] = JsonDatasetReader({'train': jsonl_path} , features=_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCamelCase__ ( _A , _A , _A ): if split: a : Any = {split: jsonl_path} else: a : List[Any] = 'train' a : List[str] = {'train': jsonl_path, 'test': jsonl_path} a : List[Any] = tmp_path / 'cache' a : str = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a : Tuple = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase__ ( _A ): return json.load(_A ) def lowerCamelCase__ ( _A ): return [json.loads(_A ) for line in buffer] class a__: @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def lowercase_ ( self : Tuple , __snake_case : int , __snake_case : Optional[int] , __snake_case : Any ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case ).write() buffer.seek(0 ) a : List[str] = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def lowercase_ ( self : Tuple , __snake_case : Tuple , __snake_case : Any , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case ).write() buffer.seek(0 ) a : int = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def lowercase_ ( self : List[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , num_proc=2 ).write() buffer.seek(0 ) a : List[Any] = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def lowercase_ ( self : Optional[int] , __snake_case : Any , __snake_case : str , __snake_case : int , __snake_case : List[Any] , __snake_case : Dict ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case , num_proc=2 ).write() buffer.seek(0 ) a : int = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 def lowercase_ ( self : List[str] , __snake_case : str ): with pytest.raises(__snake_case ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def lowercase_ ( self : Tuple , __snake_case : Dict , __snake_case : List[Any] , __snake_case : int , __snake_case : List[str] , __snake_case : Optional[int] ): a : Tuple = tmp_path_factory.mktemp('data' ) / F"""test.json.{extension}""" a : List[Any] = str(shared_datadir / F"""test_file.json.{extension}""" ) JsonDatasetWriter(__snake_case , __snake_case , compression=__snake_case ).write() with fsspec.open(__snake_case , 'rb' , compression='infer' ) as f: a : Union[str, Any] = f.read() with fsspec.open(__snake_case , 'rb' , compression='infer' ) as f: a : Union[str, Any] = f.read() assert exported_content == original_content
297
1
from __future__ import annotations from typing import Any def A ( _UpperCAmelCase : list[Any] ) -> None: '''simple docstring''' create_state_space_tree(lowercase__ , [] , 0 ) def A ( _UpperCAmelCase : list[Any] , _UpperCAmelCase : list[Any] , _UpperCAmelCase : int ) -> None: '''simple docstring''' if index == len(lowercase__ ): print(lowercase__ ) return create_state_space_tree(lowercase__ , lowercase__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(lowercase__ , lowercase__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": UpperCAmelCase__ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
356
def A ( _UpperCAmelCase : int ) -> "list[int]": '''simple docstring''' if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) _UpperCAmelCase = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 _UpperCAmelCase = 1 if upper_limit > 0: _UpperCAmelCase = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(_UpperCAmelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("\n********* Catalan Numbers Using Dynamic Programming ************\n") print("\n*** Enter -1 at any time to quit ***") print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="") try: while True: UpperCAmelCase__ = int(input().strip()) if N < 0: print("\n********* Goodbye!! ************") break else: print(f"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("Try another upper limit for the sequence: ", end="") except (NameError, ValueError): print("\n********* Invalid input, goodbye! ************\n") import doctest doctest.testmod()
290
0
"""simple docstring""" from collections.abc import Generator def lowercase_ ( ): """simple docstring""" A_ : Union[str, Any] = 0, 1 while True: A_ : Union[str, Any] = b, a + b yield b def lowercase_ ( _UpperCAmelCase = 1000 ): """simple docstring""" A_ : Union[str, Any] = 1 A_ : str = fibonacci_generator() while len(str(next(__lowerCAmelCase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
167
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase : Tuple =logging.get_logger(__name__) lowerCamelCase : Optional[Any] ={ '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class __a ( A__ ): _lowerCAmelCase : Optional[Any] = '''conditional_detr''' _lowerCAmelCase : List[Any] = ['''past_key_values'''] _lowerCAmelCase : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : str , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Tuple=3 , SCREAMING_SNAKE_CASE : Any=3_00 , SCREAMING_SNAKE_CASE : Tuple=6 , SCREAMING_SNAKE_CASE : int=20_48 , SCREAMING_SNAKE_CASE : Union[str, Any]=8 , SCREAMING_SNAKE_CASE : int=6 , SCREAMING_SNAKE_CASE : Dict=20_48 , SCREAMING_SNAKE_CASE : Optional[int]=8 , SCREAMING_SNAKE_CASE : Dict=0.0 , SCREAMING_SNAKE_CASE : List[Any]=0.0 , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : int="relu" , SCREAMING_SNAKE_CASE : Any=2_56 , SCREAMING_SNAKE_CASE : int=0.1 , SCREAMING_SNAKE_CASE : int=0.0 , SCREAMING_SNAKE_CASE : Optional[int]=0.0 , SCREAMING_SNAKE_CASE : List[str]=0.0_2 , SCREAMING_SNAKE_CASE : Optional[int]=1.0 , SCREAMING_SNAKE_CASE : List[str]=False , SCREAMING_SNAKE_CASE : int="sine" , SCREAMING_SNAKE_CASE : str="resnet50" , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : Tuple=2 , SCREAMING_SNAKE_CASE : Tuple=5 , SCREAMING_SNAKE_CASE : List[str]=2 , SCREAMING_SNAKE_CASE : List[str]=1 , SCREAMING_SNAKE_CASE : Optional[Any]=1 , SCREAMING_SNAKE_CASE : str=2 , SCREAMING_SNAKE_CASE : Any=5 , SCREAMING_SNAKE_CASE : int=2 , SCREAMING_SNAKE_CASE : List[Any]=0.2_5 , **SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCamelCase__ : Tuple = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Union[str, Any] = backbone_config.get("model_type" ) UpperCamelCase__ : Tuple = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ : Any = config_class.from_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = use_timm_backbone UpperCamelCase__ : List[Any] = backbone_config UpperCamelCase__ : Tuple = num_channels UpperCamelCase__ : List[Any] = num_queries UpperCamelCase__ : Dict = d_model UpperCamelCase__ : Any = encoder_ffn_dim UpperCamelCase__ : List[str] = encoder_layers UpperCamelCase__ : List[str] = encoder_attention_heads UpperCamelCase__ : Optional[int] = decoder_ffn_dim UpperCamelCase__ : str = decoder_layers UpperCamelCase__ : Optional[Any] = decoder_attention_heads UpperCamelCase__ : int = dropout UpperCamelCase__ : Optional[int] = attention_dropout UpperCamelCase__ : Any = activation_dropout UpperCamelCase__ : int = activation_function UpperCamelCase__ : int = init_std UpperCamelCase__ : List[Any] = init_xavier_std UpperCamelCase__ : List[str] = encoder_layerdrop UpperCamelCase__ : List[Any] = decoder_layerdrop UpperCamelCase__ : List[Any] = encoder_layers UpperCamelCase__ : Optional[Any] = auxiliary_loss UpperCamelCase__ : List[str] = position_embedding_type UpperCamelCase__ : Optional[Any] = backbone UpperCamelCase__ : Optional[int] = use_pretrained_backbone UpperCamelCase__ : List[Any] = dilation # Hungarian matcher UpperCamelCase__ : List[str] = class_cost UpperCamelCase__ : Union[str, Any] = bbox_cost UpperCamelCase__ : int = giou_cost # Loss coefficients UpperCamelCase__ : str = mask_loss_coefficient UpperCamelCase__ : List[Any] = dice_loss_coefficient UpperCamelCase__ : int = cls_loss_coefficient UpperCamelCase__ : Tuple = bbox_loss_coefficient UpperCamelCase__ : Any = giou_loss_coefficient UpperCamelCase__ : List[Any] = focal_alpha super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return self.encoder_attention_heads @property def __lowercase ( self : Tuple ): '''simple docstring''' return self.d_model def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : Any = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase__ : List[str] = self.backbone_config.to_dict() UpperCamelCase__ : int = self.__class__.model_type return output class __a ( A__ ): _lowerCAmelCase : Tuple = version.parse('''1.11''' ) @property def __lowercase ( self : Any ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def __lowercase ( self : Tuple ): '''simple docstring''' return 1e-5 @property def __lowercase ( self : List[str] ): '''simple docstring''' return 12
189
0
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = checkpoint __lowerCAmelCase = {} __lowerCAmelCase = vae_state_dict["encoder.conv_in.weight"] __lowerCAmelCase = vae_state_dict["encoder.conv_in.bias"] __lowerCAmelCase = vae_state_dict["encoder.conv_out.weight"] __lowerCAmelCase = vae_state_dict["encoder.conv_out.bias"] __lowerCAmelCase = vae_state_dict["encoder.norm_out.weight"] __lowerCAmelCase = vae_state_dict["encoder.norm_out.bias"] __lowerCAmelCase = vae_state_dict["decoder.conv_in.weight"] __lowerCAmelCase = vae_state_dict["decoder.conv_in.bias"] __lowerCAmelCase = vae_state_dict["decoder.conv_out.weight"] __lowerCAmelCase = vae_state_dict["decoder.conv_out.bias"] __lowerCAmelCase = vae_state_dict["decoder.norm_out.weight"] __lowerCAmelCase = vae_state_dict["decoder.norm_out.bias"] __lowerCAmelCase = vae_state_dict["quant_conv.weight"] __lowerCAmelCase = vae_state_dict["quant_conv.bias"] __lowerCAmelCase = vae_state_dict["post_quant_conv.weight"] __lowerCAmelCase = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only __lowerCAmelCase = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) __lowerCAmelCase = { layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(_snake_case ) } # Retrieves the keys for the decoder up blocks only __lowerCAmelCase = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) __lowerCAmelCase = { layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(_snake_case ) } for i in range(_snake_case ): __lowerCAmelCase = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: __lowerCAmelCase = vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.weight" ) __lowerCAmelCase = vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.bias" ) __lowerCAmelCase = renew_vae_resnet_paths(_snake_case ) __lowerCAmelCase = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} assign_to_checkpoint(_snake_case , _snake_case , _snake_case , additional_replacements=[meta_path] , config=_snake_case ) __lowerCAmelCase = [key for key in vae_state_dict if "encoder.mid.block" in key] __lowerCAmelCase = 2 for i in range(1 , num_mid_res_blocks + 1 ): __lowerCAmelCase = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] __lowerCAmelCase = renew_vae_resnet_paths(_snake_case ) __lowerCAmelCase = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(_snake_case , _snake_case , _snake_case , additional_replacements=[meta_path] , config=_snake_case ) __lowerCAmelCase = [key for key in vae_state_dict if "encoder.mid.attn" in key] __lowerCAmelCase = renew_vae_attention_paths(_snake_case ) __lowerCAmelCase = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(_snake_case , _snake_case , _snake_case , additional_replacements=[meta_path] , config=_snake_case ) conv_attn_to_linear(_snake_case ) for i in range(_snake_case ): __lowerCAmelCase = num_up_blocks - 1 - i __lowerCAmelCase = [ key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key ] if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: __lowerCAmelCase = vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.weight" ] __lowerCAmelCase = vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.bias" ] __lowerCAmelCase = renew_vae_resnet_paths(_snake_case ) __lowerCAmelCase = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} assign_to_checkpoint(_snake_case , _snake_case , _snake_case , additional_replacements=[meta_path] , config=_snake_case ) __lowerCAmelCase = [key for key in vae_state_dict if "decoder.mid.block" in key] __lowerCAmelCase = 2 for i in range(1 , num_mid_res_blocks + 1 ): __lowerCAmelCase = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] __lowerCAmelCase = renew_vae_resnet_paths(_snake_case ) __lowerCAmelCase = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(_snake_case , _snake_case , _snake_case , additional_replacements=[meta_path] , config=_snake_case ) __lowerCAmelCase = [key for key in vae_state_dict if "decoder.mid.attn" in key] __lowerCAmelCase = renew_vae_attention_paths(_snake_case ) __lowerCAmelCase = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(_snake_case , _snake_case , _snake_case , additional_replacements=[meta_path] , config=_snake_case ) conv_attn_to_linear(_snake_case ) return new_checkpoint def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , ): '''simple docstring''' __lowerCAmelCase = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) __lowerCAmelCase = io.BytesIO(r.content ) __lowerCAmelCase = OmegaConf.load(_snake_case ) __lowerCAmelCase = 512 __lowerCAmelCase = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open __lowerCAmelCase = {} with safe_open(_snake_case , framework="pt" , device="cpu" ) as f: for key in f.keys(): __lowerCAmelCase = f.get_tensor(_snake_case ) else: __lowerCAmelCase = torch.load(_snake_case , map_location=_snake_case )["state_dict"] # Convert the VAE model. __lowerCAmelCase = create_vae_diffusers_config(_snake_case , image_size=_snake_case ) __lowerCAmelCase = custom_convert_ldm_vae_checkpoint(_snake_case , _snake_case ) __lowerCAmelCase = AutoencoderKL(**_snake_case ) vae.load_state_dict(_snake_case ) vae.save_pretrained(_snake_case ) if __name__ == "__main__": A : Optional[int] = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") A : Dict = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
369
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = 2 while True: if is_prime(_UpperCamelCase ): yield num num += 1 def _lowerCamelCase ( _UpperCamelCase = 200_0000 ): '''simple docstring''' return sum(takewhile(lambda _UpperCamelCase : x < n , prime_generator() ) ) if __name__ == "__main__": print(f'''{solution() = }''')
259
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[int] ="ctrl" a : Dict =["past_key_values"] a : Any ={ "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=246_534 , snake_case__=256 , snake_case__=1_280 , snake_case__=8_192 , snake_case__=48 , snake_case__=16 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1e-6 , snake_case__=0.02 , snake_case__=True , **snake_case__ , ): """simple docstring""" lowerCAmelCase : str = vocab_size lowerCAmelCase : str = n_positions lowerCAmelCase : Dict = n_embd lowerCAmelCase : List[Any] = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Optional[Any] = dff lowerCAmelCase : List[str] = resid_pdrop lowerCAmelCase : List[str] = embd_pdrop lowerCAmelCase : Union[str, Any] = layer_norm_epsilon lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Union[str, Any] = use_cache super().__init__(**snake_case__ )
108
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings( _lowercase , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class _lowerCamelCase ( _lowercase ): def snake_case_ (self , __a ) -> np.ndarray: if self.framework == "tf": UpperCamelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCamelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ) else: raise ValueError("Unsupported framework" ) return masked_index def snake_case_ (self , __a ) -> np.ndarray: UpperCamelCase = self.get_masked_index(__a ) UpperCamelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def snake_case_ (self , __a ) -> Any: if isinstance(__a , __a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__a ) def snake_case_ (self , __a , __a=None , **__a ) -> Dict[str, GenericTensor]: if return_tensors is None: UpperCamelCase = self.framework UpperCamelCase = self.tokenizer(__a , return_tensors=__a ) self.ensure_exactly_one_mask_token(__a ) return model_inputs def snake_case_ (self , __a ) -> Dict: UpperCamelCase = self.model(**__a ) UpperCamelCase = model_inputs["input_ids"] return model_outputs def snake_case_ (self , __a , __a=5 , __a=None ) -> Dict: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCamelCase = target_ids.shape[0] UpperCamelCase = model_outputs["input_ids"][0] UpperCamelCase = model_outputs["logits"] if self.framework == "tf": UpperCamelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCamelCase = outputs.numpy() UpperCamelCase = outputs[0, masked_index, :] UpperCamelCase = stable_softmax(__a , axis=-1 ) if target_ids is not None: UpperCamelCase = tf.gather_nd(tf.squeeze(__a , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCamelCase = tf.expand_dims(__a , 0 ) UpperCamelCase = tf.math.top_k(__a , k=__a ) UpperCamelCase , UpperCamelCase = topk.values.numpy(), topk.indices.numpy() else: UpperCamelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCamelCase = outputs[0, masked_index, :] UpperCamelCase = logits.softmax(dim=-1 ) if target_ids is not None: UpperCamelCase = probs[..., target_ids] UpperCamelCase , UpperCamelCase = probs.topk(__a ) UpperCamelCase = [] UpperCamelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCamelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCamelCase = input_ids.numpy().copy() if target_ids is not None: UpperCamelCase = target_ids[p].tolist() UpperCamelCase = p # Filter padding out: UpperCamelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCamelCase = self.tokenizer.decode(__a , skip_special_tokens=__a ) UpperCamelCase = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(__a ) result.append(__a ) if single_mask: return result[0] return result def snake_case_ (self , __a , __a=None ) -> Any: if isinstance(__a , __a ): UpperCamelCase = [targets] try: UpperCamelCase = self.tokenizer.get_vocab() except Exception: UpperCamelCase = {} UpperCamelCase = [] for target in targets: UpperCamelCase = vocab.get(__a , __a ) if id_ is None: UpperCamelCase = self.tokenizer( __a , add_special_tokens=__a , return_attention_mask=__a , return_token_type_ids=__a , max_length=1 , truncation=__a , )["input_ids"] if len(__a ) == 0: logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " "We cannot replace it with anything meaningful, ignoring it" ) continue UpperCamelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) UpperCamelCase = list(set(__a ) ) if len(__a ) == 0: raise ValueError("At least one target must be provided when passed." ) UpperCamelCase = np.array(__a ) return target_ids def snake_case_ (self , __a=None , __a=None ) -> int: UpperCamelCase = {} if targets is not None: UpperCamelCase = self.get_target_ids(__a , __a ) UpperCamelCase = target_ids if top_k is not None: UpperCamelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__(self , __a , *__a , **__a ) -> Tuple: UpperCamelCase = super().__call__(__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs
153
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCAmelCase = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
107
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Optional[int] = 'distilbert' lowerCAmelCase : Optional[int] = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self : str ,_UpperCAmelCase : Optional[Any]=30522 ,_UpperCAmelCase : int=512 ,_UpperCAmelCase : int=False ,_UpperCAmelCase : str=6 ,_UpperCAmelCase : int=12 ,_UpperCAmelCase : Union[str, Any]=768 ,_UpperCAmelCase : Optional[Any]=4 * 768 ,_UpperCAmelCase : int=0.1 ,_UpperCAmelCase : Union[str, Any]=0.1 ,_UpperCAmelCase : Tuple="gelu" ,_UpperCAmelCase : Any=0.02 ,_UpperCAmelCase : List[Any]=0.1 ,_UpperCAmelCase : Dict=0.2 ,_UpperCAmelCase : Union[str, Any]=0 ,**_UpperCAmelCase : List[Any] ,): _a : Optional[Any] = vocab_size _a : Dict = max_position_embeddings _a : Optional[int] = sinusoidal_pos_embds _a : List[Any] = n_layers _a : Any = n_heads _a : int = dim _a : Optional[Any] = hidden_dim _a : str = dropout _a : Optional[Any] = attention_dropout _a : Any = activation _a : Tuple = initializer_range _a : Union[str, Any] = qa_dropout _a : List[Any] = seq_classif_dropout super().__init__(**_UpperCAmelCase ,pad_token_id=_UpperCAmelCase ) class __magic_name__ ( _UpperCamelCase ): @property def __lowercase ( self : Union[str, Any] ): if self.task == "multiple-choice": _a : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _a : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
107
1
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase__ ( _snake_case , _snake_case ): '''simple docstring''' @register_to_config def __init__( self , __snake_case , __snake_case = None , __snake_case = None ): super().__init__() _SCREAMING_SNAKE_CASE : str = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _SCREAMING_SNAKE_CASE : int = torch.zeros(__snake_case , __snake_case ) else: _SCREAMING_SNAKE_CASE : int = None _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.nn.Parameter(__snake_case ) class lowercase__ ( _snake_case ): '''simple docstring''' A_ : VQModel A_ : CLIPTextModel A_ : CLIPTokenizer A_ : TransformeraDModel A_ : LearnedClassifierFreeSamplingEmbeddings A_ : VQDiffusionScheduler def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): super().__init__() self.register_modules( vqvae=__snake_case , transformer=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , scheduler=__snake_case , learned_classifier_free_sampling_embeddings=__snake_case , ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Union[str, Any] = len(__snake_case ) if isinstance(__snake_case , __snake_case ) else 1 # get prompt text embeddings _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( __snake_case , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) _SCREAMING_SNAKE_CASE : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _SCREAMING_SNAKE_CASE : Optional[Any] = text_input_ids[:, : self.tokenizer.model_max_length] _SCREAMING_SNAKE_CASE : Dict = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _SCREAMING_SNAKE_CASE : List[str] = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__snake_case ) # duplicate text embeddings for each generation per prompt _SCREAMING_SNAKE_CASE : Tuple = prompt_embeds.repeat_interleave(__snake_case , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _SCREAMING_SNAKE_CASE : int = self.learned_classifier_free_sampling_embeddings.embeddings _SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt_embeds.unsqueeze(0 ).repeat(__snake_case , 1 , 1 ) else: _SCREAMING_SNAKE_CASE : Tuple = [""""""] * batch_size _SCREAMING_SNAKE_CASE : Union[str, Any] = text_input_ids.shape[-1] _SCREAMING_SNAKE_CASE : Dict = self.tokenizer( __snake_case , padding="""max_length""" , max_length=__snake_case , truncation=__snake_case , return_tensors="""pt""" , ) _SCREAMING_SNAKE_CASE : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _SCREAMING_SNAKE_CASE : Any = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__snake_case ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _SCREAMING_SNAKE_CASE : Dict = negative_prompt_embeds.shape[1] _SCREAMING_SNAKE_CASE : int = negative_prompt_embeds.repeat(1 , __snake_case , 1 ) _SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , __snake_case , __snake_case = 100 , __snake_case = 5.0 , __snake_case = 1.0 , __snake_case = 1 , __snake_case = None , __snake_case = None , __snake_case = "pil" , __snake_case = True , __snake_case = None , __snake_case = 1 , ): if isinstance(__snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : int = 1 elif isinstance(__snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : int = len(__snake_case ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(__snake_case )}""" ) _SCREAMING_SNAKE_CASE : Dict = batch_size * num_images_per_prompt _SCREAMING_SNAKE_CASE : Optional[Any] = guidance_scale > 1.0 _SCREAMING_SNAKE_CASE : Any = self._encode_prompt(__snake_case , __snake_case , __snake_case ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__snake_case , __snake_case ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__snake_case )}.""" ) # get the initial completely masked latents unless the user supplied it _SCREAMING_SNAKE_CASE : Tuple = (batch_size, self.transformer.num_latent_pixels) if latents is None: _SCREAMING_SNAKE_CASE : Any = self.transformer.num_vector_embeds - 1 _SCREAMING_SNAKE_CASE : Any = torch.full(__snake_case , __snake_case ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) _SCREAMING_SNAKE_CASE : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__snake_case , device=self.device ) _SCREAMING_SNAKE_CASE : Dict = self.scheduler.timesteps.to(self.device ) _SCREAMING_SNAKE_CASE : Union[str, Any] = latents for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the sample if we are doing classifier free guidance _SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _SCREAMING_SNAKE_CASE : List[Any] = self.transformer(__snake_case , encoder_hidden_states=__snake_case , timestep=__snake_case ).sample if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = model_output.chunk(2 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__snake_case , dim=1 , keepdim=__snake_case ) _SCREAMING_SNAKE_CASE : List[Any] = self.truncate(__snake_case , __snake_case ) # remove `log(0)`'s (`-inf`s) _SCREAMING_SNAKE_CASE : Any = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _SCREAMING_SNAKE_CASE : List[str] = self.scheduler.step(__snake_case , timestep=__snake_case , sample=__snake_case , generator=__snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__snake_case , __snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : Dict = self.vqvae.config.vq_embed_dim _SCREAMING_SNAKE_CASE : Dict = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.vqvae.quantize.get_codebook_entry(__snake_case , shape=__snake_case ) _SCREAMING_SNAKE_CASE : List[str] = self.vqvae.decode(__snake_case , force_not_quantize=__snake_case ).sample _SCREAMING_SNAKE_CASE : Any = (image / 2 + 0.5).clamp(0 , 1 ) _SCREAMING_SNAKE_CASE : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE : Optional[Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case ) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = torch.sort(__snake_case , 1 , descending=__snake_case ) _SCREAMING_SNAKE_CASE : str = torch.exp(__snake_case ) _SCREAMING_SNAKE_CASE : Any = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _SCREAMING_SNAKE_CASE : int = torch.full_like(keep_mask[:, 0:1, :] , __snake_case ) _SCREAMING_SNAKE_CASE : List[Any] = torch.cat((all_true, keep_mask) , dim=1 ) _SCREAMING_SNAKE_CASE : Tuple = keep_mask[:, :-1, :] _SCREAMING_SNAKE_CASE : str = keep_mask.gather(1 , indices.argsort(1 ) ) _SCREAMING_SNAKE_CASE : int = log_p_x_0.clone() _SCREAMING_SNAKE_CASE : Optional[Any] = -torch.inf # -inf = log(0) return rv
200
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = [] _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : str = [] for rt in rc.restypes: _SCREAMING_SNAKE_CASE : Optional[int] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) _SCREAMING_SNAKE_CASE : Optional[Any] = {name: i for i, name in enumerate(SCREAMING_SNAKE_CASE__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) _SCREAMING_SNAKE_CASE : Dict = torch.tensor( SCREAMING_SNAKE_CASE__ , dtype=torch.intaa , device=protein["""aatype"""].device , ) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( SCREAMING_SNAKE_CASE__ , dtype=torch.intaa , device=protein["""aatype"""].device , ) _SCREAMING_SNAKE_CASE : str = torch.tensor( SCREAMING_SNAKE_CASE__ , dtype=torch.floataa , device=protein["""aatype"""].device , ) _SCREAMING_SNAKE_CASE : int = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein _SCREAMING_SNAKE_CASE : List[str] = restype_atomaa_to_atomaa[protein_aatype] _SCREAMING_SNAKE_CASE : str = restype_atomaa_mask[protein_aatype] _SCREAMING_SNAKE_CASE : List[Any] = residx_atomaa_mask _SCREAMING_SNAKE_CASE : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back _SCREAMING_SNAKE_CASE : int = restype_atomaa_to_atomaa[protein_aatype] _SCREAMING_SNAKE_CASE : Dict = residx_atomaa_to_atomaa.long() # create the corresponding mask _SCREAMING_SNAKE_CASE : str = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): _SCREAMING_SNAKE_CASE : int = rc.restype_atoa[restype_letter] _SCREAMING_SNAKE_CASE : Dict = rc.residue_atoms[restype_name] for atom_name in atom_names: _SCREAMING_SNAKE_CASE : List[Any] = rc.atom_order[atom_name] _SCREAMING_SNAKE_CASE : Union[str, Any] = 1 _SCREAMING_SNAKE_CASE : int = restype_atomaa_mask[protein_aatype] _SCREAMING_SNAKE_CASE : int = residx_atomaa_mask return protein def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = tree_map(lambda SCREAMING_SNAKE_CASE__ : torch.tensor(SCREAMING_SNAKE_CASE__ , device=batch["""aatype"""].device ) , SCREAMING_SNAKE_CASE__ , np.ndarray ) _SCREAMING_SNAKE_CASE : Optional[Any] = tensor_tree_map(lambda SCREAMING_SNAKE_CASE__ : np.array(SCREAMING_SNAKE_CASE__ ) , make_atomaa_masks(SCREAMING_SNAKE_CASE__ ) ) return out
200
1
"""simple docstring""" from __future__ import annotations from typing import Any class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" pass class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase ): """simple docstring""" snake_case = data snake_case = None def __iter__( self ): """simple docstring""" snake_case = self snake_case = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCAmelCase ) yield node.data snake_case = node.next_node @property def snake_case ( self ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = Node(1) SCREAMING_SNAKE_CASE__ = Node(2) SCREAMING_SNAKE_CASE__ = Node(3) SCREAMING_SNAKE_CASE__ = Node(4) print(root_node.has_loop) # False SCREAMING_SNAKE_CASE__ = root_node.next_node print(root_node.has_loop) # True SCREAMING_SNAKE_CASE__ = Node(5) SCREAMING_SNAKE_CASE__ = Node(6) SCREAMING_SNAKE_CASE__ = Node(5) SCREAMING_SNAKE_CASE__ = Node(6) print(root_node.has_loop) # False SCREAMING_SNAKE_CASE__ = Node(1) print(root_node.has_loop) # False
149
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCAmelCase_ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : int = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = 5_02_57 , lowerCAmelCase = 10_24 , lowerCAmelCase = 7_68 , lowerCAmelCase = 12 , lowerCAmelCase = 12 , lowerCAmelCase = None , lowerCAmelCase = "gelu_new" , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , lowerCAmelCase = 1E-5 , lowerCAmelCase = 0.02 , lowerCAmelCase = True , lowerCAmelCase = True , lowerCAmelCase = False , lowerCAmelCase = False , ): """simple docstring""" super().__init__() snake_case = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" F""" `n_embd`: {n_embd} are not equal.""" ) snake_case = prefix_inner_dim snake_case = prefix_hidden_dim snake_case = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case = ( nn.Linear(self.prefix_hidden_dim , lowerCAmelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case = GPTaConfig( vocab_size=lowerCAmelCase , n_positions=lowerCAmelCase , n_embd=lowerCAmelCase , n_layer=lowerCAmelCase , n_head=lowerCAmelCase , n_inner=lowerCAmelCase , activation_function=lowerCAmelCase , resid_pdrop=lowerCAmelCase , embd_pdrop=lowerCAmelCase , attn_pdrop=lowerCAmelCase , layer_norm_epsilon=lowerCAmelCase , initializer_range=lowerCAmelCase , scale_attn_weights=lowerCAmelCase , use_cache=lowerCAmelCase , scale_attn_by_inverse_layer_idx=lowerCAmelCase , reorder_and_upcast_attn=lowerCAmelCase , ) snake_case = GPTaLMHeadModel(lowerCAmelCase ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , ): """simple docstring""" snake_case = self.transformer.transformer.wte(lowerCAmelCase ) snake_case = self.encode_prefix(lowerCAmelCase ) snake_case = self.decode_prefix(lowerCAmelCase ) snake_case = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: snake_case = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) snake_case = torch.cat((dummy_token, input_ids) , dim=1 ) snake_case = self.transformer(inputs_embeds=lowerCAmelCase , labels=lowerCAmelCase , attention_mask=lowerCAmelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" return torch.zeros(lowerCAmelCase , self.prefix_length , dtype=torch.intaa , device=lowerCAmelCase ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.encode_prefix(lowerCAmelCase ) @torch.no_grad() def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = torch.split(lowerCAmelCase , 1 , dim=0 ) snake_case = [] snake_case = [] for feature in features: snake_case = self.decode_prefix(feature.to(lowerCAmelCase ) ) # back to the clip feature # Only support beam search for now snake_case ,snake_case = self.generate_beam( input_embeds=lowerCAmelCase , device=lowerCAmelCase , eos_token_id=lowerCAmelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) snake_case = torch.stack(lowerCAmelCase ) snake_case = torch.stack(lowerCAmelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase = 5 , lowerCAmelCase = 67 , lowerCAmelCase = 1.0 , lowerCAmelCase = None , ): """simple docstring""" snake_case = eos_token_id snake_case = None snake_case = None snake_case = torch.ones(lowerCAmelCase , device=lowerCAmelCase , dtype=torch.int ) snake_case = torch.zeros(lowerCAmelCase , device=lowerCAmelCase , dtype=torch.bool ) if input_embeds is not None: snake_case = input_embeds else: snake_case = self.transformer.transformer.wte(lowerCAmelCase ) for i in range(lowerCAmelCase ): snake_case = self.transformer(inputs_embeds=lowerCAmelCase ) snake_case = outputs.logits snake_case = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) snake_case = logits.softmax(-1 ).log() if scores is None: snake_case ,snake_case = logits.topk(lowerCAmelCase , -1 ) snake_case = generated.expand(lowerCAmelCase , *generated.shape[1:] ) snake_case ,snake_case = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: snake_case = next_tokens else: snake_case = tokens.expand(lowerCAmelCase , *tokens.shape[1:] ) snake_case = torch.cat((tokens, next_tokens) , dim=1 ) else: snake_case = -float(np.inf ) snake_case = 0 snake_case = scores[:, None] + logits seq_lengths[~is_stopped] += 1 snake_case = scores_sum / seq_lengths[:, None] snake_case ,snake_case = scores_sum_average.view(-1 ).topk(lowerCAmelCase , -1 ) snake_case = next_tokens // scores_sum.shape[1] snake_case = seq_lengths[next_tokens_source] snake_case = next_tokens % scores_sum.shape[1] snake_case = next_tokens.unsqueeze(1 ) snake_case = tokens[next_tokens_source] snake_case = torch.cat((tokens, next_tokens) , dim=1 ) snake_case = generated[next_tokens_source] snake_case = scores_sum_average * seq_lengths snake_case = is_stopped[next_tokens_source] snake_case = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) snake_case = torch.cat((generated, next_token_embed) , dim=1 ) snake_case = is_stopped + next_tokens.eq(lowerCAmelCase ).squeeze() if is_stopped.all(): break snake_case = scores / seq_lengths snake_case = scores.argsort(descending=lowerCAmelCase ) # tokens tensors are already padded to max_seq_length snake_case = [tokens[i] for i in order] snake_case = torch.stack(lowerCAmelCase , dim=0 ) snake_case = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
149
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name SCREAMING_SNAKE_CASE : Optional[Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=8 ) -> Dict: _lowercase : Optional[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowercase : Any = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> Dict: """simple docstring""" super().__init__() self.register_modules( unet=lowerCamelCase, scheduler=lowerCamelCase, movq=lowerCamelCase, ) _lowercase : List[str] = 2 ** (len(self.movq.config.block_out_channels) - 1) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[Any]: """simple docstring""" if latents is None: _lowercase : Optional[Any] = randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''') _lowercase : int = latents.to(lowerCamelCase) _lowercase : int = latents * scheduler.init_noise_sigma return latents def UpperCamelCase ( self, lowerCamelCase=0) -> Optional[int]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`') _lowercase : Tuple = torch.device(F'''cuda:{gpu_id}''') _lowercase : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase=0) -> int: """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=', '0.17.0.dev0'): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.') _lowercase : Union[str, Any] = torch.device(F'''cuda:{gpu_id}''') if self.device.type != "cpu": self.to('cpu', silence_dtype_warnings=lowerCamelCase) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowercase : Optional[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowercase , _lowercase : List[str] = cpu_offload_with_hook(lowerCamelCase, lowerCamelCase, prev_module_hook=lowerCamelCase) # We'll offload the last model manually. _lowercase : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase ( self) -> Tuple: """simple docstring""" if not hasattr(self.unet, '_hf_hook'): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase, '_hf_hook') and hasattr(module._hf_hook, 'execution_device') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase) def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = 5_12, lowerCamelCase = 5_12, lowerCamelCase = 1_00, lowerCamelCase = 4.0, lowerCamelCase = 1, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = "pil", lowerCamelCase = True, ) -> List[Any]: """simple docstring""" _lowercase : int = self._execution_device _lowercase : Any = guidance_scale > 1.0 if isinstance(lowerCamelCase, lowerCamelCase): _lowercase : int = torch.cat(lowerCamelCase, dim=0) _lowercase : Optional[int] = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowerCamelCase, lowerCamelCase): _lowercase : Optional[int] = torch.cat(lowerCamelCase, dim=0) if do_classifier_free_guidance: _lowercase : str = image_embeds.repeat_interleave(lowerCamelCase, dim=0) _lowercase : int = negative_image_embeds.repeat_interleave(lowerCamelCase, dim=0) _lowercase : List[str] = torch.cat([negative_image_embeds, image_embeds], dim=0).to(dtype=self.unet.dtype, device=lowerCamelCase) self.scheduler.set_timesteps(lowerCamelCase, device=lowerCamelCase) _lowercase : Optional[Any] = self.scheduler.timesteps _lowercase : List[str] = self.unet.config.in_channels _lowercase , _lowercase : Union[str, Any] = downscale_height_and_width(lowerCamelCase, lowerCamelCase, self.movq_scale_factor) # create initial latent _lowercase : str = self.prepare_latents( (batch_size, num_channels_latents, height, width), image_embeds.dtype, lowerCamelCase, lowerCamelCase, lowerCamelCase, self.scheduler, ) for i, t in enumerate(self.progress_bar(lowerCamelCase)): # expand the latents if we are doing classifier free guidance _lowercase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents _lowercase : Tuple = {'image_embeds': image_embeds} _lowercase : Optional[Any] = self.unet( sample=lowerCamelCase, timestep=lowerCamelCase, encoder_hidden_states=lowerCamelCase, added_cond_kwargs=lowerCamelCase, return_dict=lowerCamelCase, )[0] if do_classifier_free_guidance: _lowercase , _lowercase : List[str] = noise_pred.split(latents.shape[1], dim=1) _lowercase , _lowercase : Tuple = noise_pred.chunk(2) _lowercase , _lowercase : Any = variance_pred.chunk(2) _lowercase : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowercase : Tuple = torch.cat([noise_pred, variance_pred_text], dim=1) if not ( hasattr(self.scheduler.config, 'variance_type') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowercase , _lowercase : int = noise_pred.split(latents.shape[1], dim=1) # compute the previous noisy sample x_t -> x_t-1 _lowercase : str = self.scheduler.step( lowerCamelCase, lowerCamelCase, lowerCamelCase, generator=lowerCamelCase, )[0] # post-processing _lowercase : str = self.movq.decode(lowerCamelCase, force_not_quantize=lowerCamelCase)['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''') if output_type in ["np", "pil"]: _lowercase : Dict = image * 0.5 + 0.5 _lowercase : Any = image.clamp(0, 1) _lowercase : List[str] = image.cpu().permute(0, 2, 3, 1).float().numpy() if output_type == "pil": _lowercase : Optional[Any] = self.numpy_to_pil(lowerCamelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase)
21
"""simple docstring""" class __snake_case : def __init__( self , lowercase , lowercase=None , lowercase=None) -> List[str]: '''simple docstring''' a__: Dict = data a__: List[Any] = previous a__: Any = next_node def __str__( self) -> str: '''simple docstring''' return f'{self.data}' def lowerCamelCase_ ( self) -> int: '''simple docstring''' return self.data def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' return self.next def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' return self.previous class __snake_case : def __init__( self , lowercase) -> Dict: '''simple docstring''' a__: List[Any] = head def __iter__( self) -> List[Any]: '''simple docstring''' return self def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' if not self.current: raise StopIteration else: a__: Dict = self.current.get_data() a__: Optional[Any] = self.current.get_next() return value class __snake_case : def __init__( self) -> Dict: '''simple docstring''' a__: List[Any] = None # First node in list a__: Optional[int] = None # Last node in list def __str__( self) -> Optional[Any]: '''simple docstring''' a__: Dict = self.head a__: Optional[Any] = [] while current is not None: nodes.append(current.get_data()) a__: str = current.get_next() return " ".join(str(lowercase) for node in nodes) def __contains__( self , lowercase) -> Optional[int]: '''simple docstring''' a__: Optional[int] = self.head while current: if current.get_data() == value: return True a__: Dict = current.get_next() return False def __iter__( self) -> int: '''simple docstring''' return LinkedListIterator(self.head) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' if self.head: return self.head.get_data() return None def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' if self.tail: return self.tail.get_data() return None def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' if self.head is None: a__: Optional[Any] = node a__: Optional[Any] = node else: self.insert_before_node(self.head , lowercase) def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' if self.head is None: self.set_head(lowercase) else: self.insert_after_node(self.tail , lowercase) def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' a__: Tuple = Node(lowercase) if self.head is None: self.set_head(lowercase) else: self.set_tail(lowercase) def lowerCamelCase_ ( self , lowercase , lowercase) -> None: '''simple docstring''' a__: Union[str, Any] = node a__: Optional[Any] = node.previous if node.get_previous() is None: a__: Tuple = node_to_insert else: a__: int = node_to_insert a__: Optional[int] = node_to_insert def lowerCamelCase_ ( self , lowercase , lowercase) -> None: '''simple docstring''' a__: Optional[int] = node a__: Tuple = node.next if node.get_next() is None: a__: Optional[int] = node_to_insert else: a__: Any = node_to_insert a__: str = node_to_insert def lowerCamelCase_ ( self , lowercase , lowercase) -> None: '''simple docstring''' a__: Any = 1 a__: Tuple = Node(lowercase) a__: Tuple = self.head while node: if current_position == position: self.insert_before_node(lowercase , lowercase) return current_position += 1 a__: List[Any] = node.next self.insert_after_node(self.tail , lowercase) def lowerCamelCase_ ( self , lowercase) -> Node: '''simple docstring''' a__: Tuple = self.head while node: if node.get_data() == item: return node a__: List[str] = node.get_next() raise Exception('Node not found') def lowerCamelCase_ ( self , lowercase) -> Any: '''simple docstring''' if (node := self.get_node(lowercase)) is not None: if node == self.head: a__: Any = self.head.get_next() if node == self.tail: a__: List[Any] = self.tail.get_previous() self.remove_node_pointers(lowercase) @staticmethod def lowerCamelCase_ ( lowercase) -> None: '''simple docstring''' if node.get_next(): a__: Any = node.previous if node.get_previous(): a__: List[str] = node.next a__: int = None a__: Union[str, Any] = None def lowerCamelCase_ ( self) -> str: '''simple docstring''' return self.head is None def __a ( ) ->None: pass if __name__ == "__main__": import doctest doctest.testmod()
290
0
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def lowerCamelCase (a_ :list , a_ :list , a_ :list , a_ :list , a_ :list) -> float: lowercase :Dict = np.array([[1, item, train_mtch[i]] for i, item in enumerate(a_)]) lowercase :Union[str, Any] = np.array(a_) lowercase :Optional[Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , a_)) , x.transpose()) , a_) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2]) def lowerCamelCase (a_ :list , a_ :list , a_ :list) -> float: lowercase :str = (1, 2, 1) lowercase :int = (1, 1, 0, 7) lowercase :List[str] = SARIMAX( a_ , exog=a_ , order=a_ , seasonal_order=a_) lowercase :Dict = model.fit(disp=a_ , maxiter=600 , method='''nm''') lowercase :int = model_fit.predict(1 , len(a_) , exog=[test_match]) return result[0] def lowerCamelCase (a_ :list , a_ :list , a_ :list) -> float: lowercase :int = SVR(kernel='''rbf''' , C=1 , gamma=0.1 , epsilon=0.1) regressor.fit(a_ , a_) lowercase :List[str] = regressor.predict(a_) return y_pred[0] def lowerCamelCase (a_ :list) -> float: train_user.sort() lowercase :List[str] = np.percentile(a_ , 25) lowercase :Optional[Any] = np.percentile(a_ , 75) lowercase :Optional[int] = qa - qa lowercase :List[str] = qa - (iqr * 0.1) return low_lim def lowerCamelCase (a_ :list , a_ :float) -> bool: lowercase :Any = 0 lowercase :str = 0 for i in list_vote: if i > actual_result: lowercase :int = not_safe + 1 else: if abs(abs(a_) - abs(a_)) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) UpperCAmelCase = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] UpperCAmelCase = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) UpperCAmelCase = Normalizer().fit_transform(data_input_df.values) # split data UpperCAmelCase = normalize_df[:, 2].tolist() UpperCAmelCase = normalize_df[:, 0].tolist() UpperCAmelCase = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) UpperCAmelCase = normalize_df[:, [1, 2]].tolist() UpperCAmelCase = x[: len(x) - 1] UpperCAmelCase = x[len(x) - 1 :] # for linear regression & sarimax UpperCAmelCase = total_date[: len(total_date) - 1] UpperCAmelCase = total_user[: len(total_user) - 1] UpperCAmelCase = total_match[: len(total_match) - 1] UpperCAmelCase = total_date[len(total_date) - 1 :] UpperCAmelCase = total_user[len(total_user) - 1 :] UpperCAmelCase = total_match[len(total_match) - 1 :] # voting system with forecasting UpperCAmelCase = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data UpperCAmelCase = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
358
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class __magic_name__ ( __UpperCAmelCase ): __A : Tuple = "swin2sr" __A : Dict = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[str] , snake_case__ : List[str]=6_4 , snake_case__ : Union[str, Any]=1 , snake_case__ : Tuple=3 , snake_case__ : int=1_8_0 , snake_case__ : Union[str, Any]=[6, 6, 6, 6, 6, 6] , snake_case__ : List[str]=[6, 6, 6, 6, 6, 6] , snake_case__ : Tuple=8 , snake_case__ : List[Any]=2.0 , snake_case__ : Any=True , snake_case__ : Dict=0.0 , snake_case__ : Dict=0.0 , snake_case__ : Dict=0.1 , snake_case__ : Dict="gelu" , snake_case__ : Optional[int]=False , snake_case__ : Any=0.02 , snake_case__ : Any=1e-5 , snake_case__ : Optional[int]=2 , snake_case__ : Optional[int]=1.0 , snake_case__ : Optional[Any]="1conv" , snake_case__ : List[str]="pixelshuffle" , **snake_case__ : Tuple , ): '''simple docstring''' super().__init__(**snake_case__ ) lowercase :Dict = image_size lowercase :List[str] = patch_size lowercase :Tuple = num_channels lowercase :int = embed_dim lowercase :Any = depths lowercase :Union[str, Any] = len(snake_case__ ) lowercase :List[str] = num_heads lowercase :int = window_size lowercase :Tuple = mlp_ratio lowercase :List[Any] = qkv_bias lowercase :Optional[int] = hidden_dropout_prob lowercase :Tuple = attention_probs_dropout_prob lowercase :Tuple = drop_path_rate lowercase :Optional[Any] = hidden_act lowercase :Union[str, Any] = use_absolute_embeddings lowercase :Dict = layer_norm_eps lowercase :Optional[Any] = initializer_range lowercase :Optional[Any] = upscale lowercase :Any = img_range lowercase :Optional[int] = resi_connection lowercase :Union[str, Any] = upsampler
172
0
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class _a : def __init__( self : Union[str, Any] , lowercase : int , lowercase : MutableSequence[float] ): '''simple docstring''' if len(lowercase ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) UpperCAmelCase = list(lowercase ) UpperCAmelCase = degree def __add__( self : List[Any] , lowercase : Polynomial ): '''simple docstring''' if self.degree > polynomial_a.degree: UpperCAmelCase = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowercase ) else: UpperCAmelCase = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowercase ) def __sub__( self : str , lowercase : Polynomial ): '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : Optional[int] ): '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : List[Any] , lowercase : Polynomial ): '''simple docstring''' UpperCAmelCase = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowercase ) def A ( self : Optional[int] , lowercase : int | float ): '''simple docstring''' UpperCAmelCase = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : str ): '''simple docstring''' UpperCAmelCase = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowercase ) return polynomial def __repr__( self : List[Any] ): '''simple docstring''' return self.__str__() def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = [0] * self.degree for i in range(self.degree ): UpperCAmelCase = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowercase ) def A ( self : str , lowercase : int | float = 0 ): '''simple docstring''' UpperCAmelCase = [0] * (self.degree + 2) UpperCAmelCase = constant for i in range(self.degree + 1 ): UpperCAmelCase = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowercase ) def __eq__( self : List[Any] , lowercase : object ): '''simple docstring''' if not isinstance(lowercase , lowercase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Tuple , lowercase : object ): '''simple docstring''' return not self.__eq__(lowercase )
34
import numpy as np __snake_case = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> None: UpperCamelCase :Dict = np.array(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> np.ndarray: UpperCamelCase , UpperCamelCase :Tuple = np.where(letter == self.SQUARE ) UpperCamelCase :List[Any] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase :int = self.SQUARE[indexa - 1, indexa - 1] return letter def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase :Any = message.lower() UpperCamelCase :int = message.replace(''' ''' , '''''' ) UpperCamelCase :Dict = message.replace('''j''' , '''i''' ) UpperCamelCase :str = np.empty((2, len(SCREAMING_SNAKE_CASE_ )) ) for letter_index in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase :Dict = self.letter_to_numbers(message[letter_index] ) UpperCamelCase :Union[str, Any] = numbers[0] UpperCamelCase :Dict = numbers[1] UpperCamelCase :Any = first_step.reshape(2 * len(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase :Union[str, Any] = '''''' for numbers_index in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase :Dict = int(second_step[numbers_index * 2] ) UpperCamelCase :List[str] = int(second_step[(numbers_index * 2) + 1] ) UpperCamelCase :Tuple = self.numbers_to_letter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = encoded_message + letter return encoded_message def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase :Any = message.lower() message.replace(''' ''' , '''''' ) UpperCamelCase :Optional[int] = np.empty(2 * len(SCREAMING_SNAKE_CASE_ ) ) for letter_index in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase :List[str] = self.letter_to_numbers(message[letter_index] ) UpperCamelCase :Dict = numbers[0] UpperCamelCase :List[str] = numbers[1] UpperCamelCase :int = first_step.reshape((2, len(SCREAMING_SNAKE_CASE_ )) ) UpperCamelCase :Any = '''''' for numbers_index in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase :Any = int(second_step[0, numbers_index] ) UpperCamelCase :List[Any] = int(second_step[1, numbers_index] ) UpperCamelCase :Tuple = self.numbers_to_letter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = decoded_message + letter return decoded_message
259
0
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _a = logging.get_logger(__name__) _a = {'vocab_file': 'vocab.txt'} _a = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } _a = { 'facebook/esm2_t6_8M_UR50D': 10_24, 'facebook/esm2_t12_35M_UR50D': 10_24, } def _A ( UpperCamelCase_ : Optional[Any]) -> List[Any]: '''simple docstring''' with open(UpperCamelCase_, "r") as f: __lowercase = f.read().splitlines() return [l.strip() for l in lines] class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES __UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : str = ["input_ids", "attention_mask"] def __init__( self : str, UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any]="<unk>", UpperCAmelCase__ : Optional[int]="<cls>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="<mask>", UpperCAmelCase__ : Union[str, Any]="<eos>", **UpperCAmelCase__ : Dict, ): super().__init__(**UpperCAmelCase__ ) __lowercase = load_vocab_file(UpperCAmelCase__ ) __lowercase = dict(enumerate(self.all_tokens ) ) __lowercase = {tok: ind for ind, tok in enumerate(self.all_tokens )} __lowercase = unk_token __lowercase = cls_token __lowercase = pad_token __lowercase = mask_token __lowercase = eos_token __lowercase = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _lowercase ( self : List[str], UpperCAmelCase__ : int ): return self._id_to_token.get(UpperCAmelCase__, self.unk_token ) def _lowercase ( self : List[str], UpperCAmelCase__ : str ): return self._token_to_id.get(UpperCAmelCase__, self._token_to_id.get(self.unk_token ) ) def _lowercase ( self : str, UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[str] ): return text.split() def _lowercase ( self : str, UpperCAmelCase__ : Optional[int]=False ): return len(self._id_to_token ) def _lowercase ( self : Any ): return {token: i for i, token in enumerate(self.all_tokens )} def _lowercase ( self : List[str], UpperCAmelCase__ : str ): return self._token_to_id.get(UpperCAmelCase__, self._token_to_id.get(self.unk_token ) ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int ): return self._id_to_token.get(UpperCAmelCase__, self.unk_token ) def _lowercase ( self : Dict, UpperCAmelCase__ : List[int], UpperCAmelCase__ : Optional[List[int]] = None ): __lowercase = [self.cls_token_id] __lowercase = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List, UpperCAmelCase__ : Optional[List] = None, UpperCAmelCase__ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] __lowercase = [1] + ([0] * len(UpperCAmelCase__ )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase__ ) + [1] return mask def _lowercase ( self : Tuple, UpperCAmelCase__ : Any, UpperCAmelCase__ : Tuple ): __lowercase = os.path.join(UpperCAmelCase__, (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(UpperCAmelCase__, "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def _lowercase ( self : Optional[Any] ): return self.get_vocab_size(with_added_tokens=UpperCAmelCase__ ) def _lowercase ( self : Any, UpperCAmelCase__ : Union[List[str], List[AddedToken]], UpperCAmelCase__ : bool = False ): return super()._add_tokens(UpperCAmelCase__, special_tokens=UpperCAmelCase__ )
367
"""simple docstring""" import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, **UpperCamelCase_ : Optional[int]) -> Tuple: '''simple docstring''' __lowercase = AutoConfig.from_pretrained(UpperCamelCase_, **UpperCamelCase_) __lowercase = AutoModelForSeqaSeqLM.from_config(UpperCamelCase_) model.save_pretrained(UpperCamelCase_) AutoTokenizer.from_pretrained(UpperCamelCase_).save_pretrained(UpperCamelCase_) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
144
0
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) __lowerCAmelCase : Optional[int] = parser.parse_args() __lowerCAmelCase : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __lowerCAmelCase : List[Any] = CLIPImageProcessor() __lowerCAmelCase : Tuple = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') __lowerCAmelCase : Union[str, Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
107
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __magic_name__ ( A : NDArray[floataa], A : NDArray[floataa], A : list[int], A : int, ): '''simple docstring''' a , a = coefficient_matrix.shape a , a = constant_matrix.shape if rowsa != colsa: a = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(A ) if colsa != 1: a = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(A ) if rowsa != rowsa: a = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(A ) if len(A ) != rowsa: a = ( "Number of initial values must be equal to number of rows in coefficient " F"""matrix but received {len(A )} and {rowsa}""" ) raise ValueError(A ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) a = np.concatenate( (coefficient_matrix, constant_matrix), axis=1 ) a , a = table.shape strictly_diagonally_dominant(A ) # Iterates the whole matrix for given number of times for _ in range(A ): a = [] for row in range(A ): a = 0 for col in range(A ): if col == row: a = table[row][col] elif col == cols - 1: a = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] a = (temp + val) / denom new_val.append(A ) a = new_val return [float(A ) for i in new_val] def __magic_name__ ( A : NDArray[floataa] ): '''simple docstring''' a , a = table.shape a = True for i in range(0, A ): a = 0 for j in range(0, cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
107
1
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCAmelCase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def lowerCamelCase__ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : tuple , UpperCamelCase__ : Path , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=False , ) -> Optional[int]: '''simple docstring''' output_path.parent.mkdir(parents=__A , exist_ok=__A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , ) else: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , ) @torch.no_grad() def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : bool = False ) -> Any: '''simple docstring''' _snake_case = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _snake_case = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: _snake_case = 'cpu' _snake_case = Path(__A ) # VAE DECODER _snake_case = AutoencoderKL.from_pretrained(model_path + '/vae' ) _snake_case = vae_decoder.config.latent_channels # forward only through the decoder part _snake_case = vae_decoder.decode onnx_export( __A , model_args=( torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=__A , ) del vae_decoder if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") UpperCAmelCase_ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
357
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UpperCamelCase_ : @property def lowerCAmelCase ( self ) -> int: return self.get_dummy_input() @property def lowerCAmelCase ( self ) -> Optional[Any]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def lowerCAmelCase ( self , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , ) -> List[str]: _snake_case = 4 _snake_case = 32 _snake_case = (32, 32) _snake_case = torch.manual_seed(0 ) _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = (batch_size, num_channels) + sizes _snake_case = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) _snake_case = {'hidden_states': hidden_states} if include_temb: _snake_case = 128 _snake_case = randn_tensor((batch_size, temb_channels) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) if include_res_hidden_states_tuple: _snake_case = torch.manual_seed(1 ) _snake_case = (randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ),) if include_encoder_hidden_states: _snake_case = floats_tensor((batch_size, 32, 32) ).to(lowerCAmelCase_ ) if include_skip_sample: _snake_case = randn_tensor(((batch_size, 3) + sizes) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) return dummy_input def lowerCAmelCase ( self ) -> Tuple: _snake_case = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": _snake_case = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) _snake_case = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) unet_block.to(lowerCAmelCase_ ) unet_block.eval() with torch.no_grad(): _snake_case = unet_block(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] self.assertEqual(output.shape , self.output_shape ) _snake_case = output[0, -1, -3:, -3:] _snake_case = torch.tensor(lowerCAmelCase_ ).to(lowerCAmelCase_ ) assert torch_all_close(output_slice.flatten() , lowerCAmelCase_ , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase ( self ) -> Tuple: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() _snake_case = model(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = randn_tensor(output.shape , device=lowerCAmelCase_ ) _snake_case = torch.nn.functional.mse_loss(lowerCAmelCase_ , lowerCAmelCase_ ) loss.backward()
295
0
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class _a ( UpperCamelCase__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = MvpTokenizer UpperCamelCase__ = MvpTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = filter_roberta_detectors def UpperCAmelCase_ ( self: Any ): '''simple docstring''' super().setUp() UpperCamelCase__: Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCamelCase__: Dict = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) UpperCamelCase__: Any = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCamelCase__: List[str] = {"unk_token": "<unk>"} UpperCamelCase__: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__lowerCamelCase ) ) def UpperCAmelCase_ ( self: List[Any] , **__lowerCamelCase: Union[str, Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def UpperCAmelCase_ ( self: Dict , **__lowerCamelCase: str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def UpperCAmelCase_ ( self: Dict , __lowerCamelCase: int ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' return MvpTokenizer.from_pretrained("RUCAIBox/mvp" ) @cached_property def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' return MvpTokenizerFast.from_pretrained("RUCAIBox/mvp" ) @require_torch def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: Tuple = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCamelCase__: List[Any] = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__: Tuple = tokenizer(__lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCamelCase__: Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Test that special tokens are reset @require_torch def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__: int = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) # check if input_ids are returned and no labels self.assertIn("input_ids" , __lowerCamelCase ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertNotIn("labels" , __lowerCamelCase ) self.assertNotIn("decoder_attention_mask" , __lowerCamelCase ) @require_torch def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: int = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__: Any = tokenizer(text_target=__lowerCamelCase , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def UpperCAmelCase_ ( self: Any ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__: List[str] = tokenizer( ["I am a small frog" * 1024, "I am a small frog"] , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Any = ["A long paragraph for summarization."] UpperCamelCase__: Optional[Any] = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__: int = tokenizer(__lowerCamelCase , text_target=__lowerCamelCase , return_tensors="pt" ) UpperCamelCase__: Dict = inputs["input_ids"] UpperCamelCase__: List[str] = inputs["labels"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' pass def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCamelCase__: int = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase__: Tuple = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase__: Union[str, Any] = "A, <mask> AllenNLP sentence." UpperCamelCase__: int = tokenizer_r.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) UpperCamelCase__: str = tokenizer_p.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCamelCase__: str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCamelCase__: Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __lowerCamelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( __lowerCamelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
149
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = (DDIMParallelScheduler,) UpperCamelCase__ = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def UpperCAmelCase_ ( self: int , **__lowerCamelCase: Dict ): '''simple docstring''' UpperCamelCase__: Any = { "num_train_timesteps": 1000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCamelCase ) return config def UpperCAmelCase_ ( self: int , **__lowerCamelCase: Optional[int] ): '''simple docstring''' UpperCamelCase__: str = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config(**__lowerCamelCase ) UpperCamelCase__: List[str] = scheduler_class(**__lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__: int = 10, 0.0 UpperCamelCase__: List[Any] = self.dummy_model() UpperCamelCase__: Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for t in scheduler.timesteps: UpperCamelCase__: Optional[Any] = model(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase__: Tuple = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample return sample def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCamelCase ) UpperCamelCase__: Tuple = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase__: str = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase , beta_end=__lowerCamelCase ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def UpperCAmelCase_ ( self: Any ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCamelCase ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCamelCase ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=__lowerCamelCase , num_inference_steps=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCamelCase , eta=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: Any = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config() UpperCamelCase__: str = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: List[Any] = self.scheduler_classes[0] UpperCamelCase__: Union[str, Any] = self.get_scheduler_config() UpperCamelCase__: Any = scheduler_class(**__lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = 10, 0.0 scheduler.set_timesteps(__lowerCamelCase ) UpperCamelCase__: Tuple = self.dummy_model() UpperCamelCase__: Union[str, Any] = self.dummy_sample_deter UpperCamelCase__: Dict = self.dummy_sample_deter + 0.1 UpperCamelCase__: Dict = self.dummy_sample_deter - 0.1 UpperCamelCase__: int = samplea.shape[0] UpperCamelCase__: List[str] = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase__: Union[str, Any] = torch.arange(__lowerCamelCase )[0:3, None].repeat(1 , __lowerCamelCase ) UpperCamelCase__: str = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase__: Optional[int] = scheduler.batch_step_no_noise(__lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __lowerCamelCase ) UpperCamelCase__: Dict = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Tuple = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: str = self.full_loop() UpperCamelCase__: List[str] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Any = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: Optional[int] = self.full_loop(prediction_type="v_prediction" ) UpperCamelCase__: List[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Optional[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' UpperCamelCase__: Any = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 ) UpperCamelCase__: Optional[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Optional[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Tuple = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 ) UpperCamelCase__: Optional[int] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: List[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
149
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCamelCase__: def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=13 ,__UpperCAmelCase=7 ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=99 ,__UpperCAmelCase=[1, 1, 2] ,__UpperCAmelCase=1 ,__UpperCAmelCase=32 ,__UpperCAmelCase=4 ,__UpperCAmelCase=8 ,__UpperCAmelCase=37 ,__UpperCAmelCase="gelu_new" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=5_12 ,__UpperCAmelCase=3 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=3 ,__UpperCAmelCase=4 ,__UpperCAmelCase=None ,__UpperCAmelCase=False ,) -> List[str]: A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = block_sizes A__ = num_decoder_layers A__ = d_model A__ = n_head A__ = d_head A__ = d_inner A__ = hidden_act A__ = hidden_dropout A__ = attention_dropout A__ = activation_dropout A__ = max_position_embeddings A__ = type_vocab_size A__ = 2 A__ = num_labels A__ = num_choices A__ = scope A__ = initializer_std # Used in the tests to check the size of the first attention layer A__ = n_head # Used in the tests to check the size of the first hidden state A__ = self.d_model # Used in the tests to check the number of output hidden states/attentions A__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: A__ = self.num_hidden_layers + 2 def snake_case__ ( self ) -> Optional[Any]: A__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A__ = ids_tensor([self.batch_size] ,self.num_choices ) A__ = FunnelConfig( vocab_size=self.vocab_size ,block_sizes=self.block_sizes ,num_decoder_layers=self.num_decoder_layers ,d_model=self.d_model ,n_head=self.n_head ,d_head=self.d_head ,d_inner=self.d_inner ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,activation_dropout=self.activation_dropout ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_std=self.initializer_std ,) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,) -> List[str]: A__ = TFFunnelModel(config=__UpperCAmelCase ) A__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A__ = model(__UpperCAmelCase ) A__ = [input_ids, input_mask] A__ = model(__UpperCAmelCase ) A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) A__ = False A__ = TFFunnelModel(config=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) A__ = False A__ = TFFunnelModel(config=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,) -> Optional[Any]: A__ = TFFunnelBaseModel(config=__UpperCAmelCase ) A__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A__ = model(__UpperCAmelCase ) A__ = [input_ids, input_mask] A__ = model(__UpperCAmelCase ) A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) A__ = False A__ = TFFunnelBaseModel(config=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 3, self.d_model) ) A__ = False A__ = TFFunnelBaseModel(config=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,) -> Any: A__ = TFFunnelForPreTraining(config=__UpperCAmelCase ) A__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,) -> Union[str, Any]: A__ = TFFunnelForMaskedLM(config=__UpperCAmelCase ) A__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,) -> Union[str, Any]: A__ = self.num_labels A__ = TFFunnelForSequenceClassification(config=__UpperCAmelCase ) A__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,) -> List[Any]: A__ = self.num_choices A__ = TFFunnelForMultipleChoice(config=__UpperCAmelCase ) A__ = tf.tile(tf.expand_dims(__UpperCAmelCase ,1 ) ,(1, self.num_choices, 1) ) A__ = tf.tile(tf.expand_dims(__UpperCAmelCase ,1 ) ,(1, self.num_choices, 1) ) A__ = tf.tile(tf.expand_dims(__UpperCAmelCase ,1 ) ,(1, self.num_choices, 1) ) A__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,) -> int: A__ = self.num_labels A__ = TFFunnelForTokenClassification(config=__UpperCAmelCase ) A__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,) -> Optional[int]: A__ = TFFunnelForQuestionAnswering(config=__UpperCAmelCase ) A__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def snake_case__ ( self ) -> Optional[Any]: A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCamelCase__( __A , __A , unittest.TestCase ): lowerCAmelCase__ : Optional[int] = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase__ : Optional[Any] = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Union[str, Any] = False def snake_case__ ( self ) -> List[str]: A__ = TFFunnelModelTester(self ) A__ = ConfigTester(self ,config_class=__UpperCAmelCase ) def snake_case__ ( self ) -> str: self.config_tester.run_common_tests() def snake_case__ ( self ) -> Union[str, Any]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def snake_case__ ( self ) -> List[Any]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase ) def snake_case__ ( self ) -> List[Any]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def snake_case__ ( self ) -> Union[str, Any]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) def snake_case__ ( self ) -> Dict: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) @require_tf class UpperCamelCase__( __A , unittest.TestCase ): lowerCAmelCase__ : Any = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) lowerCAmelCase__ : Any = False lowerCAmelCase__ : Optional[int] = False def snake_case__ ( self ) -> Optional[int]: A__ = TFFunnelModelTester(self ,base=__UpperCAmelCase ) A__ = ConfigTester(self ,config_class=__UpperCAmelCase ) def snake_case__ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def snake_case__ ( self ) -> Union[str, Any]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__UpperCAmelCase ) def snake_case__ ( self ) -> str: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def snake_case__ ( self ) -> str: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
154
"""simple docstring""" import os def UpperCAmelCase ( ): """simple docstring""" with open(os.path.dirname(UpperCamelCase__ ) + '/grid.txt' ) as f: A__ = [] # noqa: E741 for _ in range(20 ): l.append([int(UpperCamelCase__ ) for x in f.readline().split()] ) A__ = 0 # right for i in range(20 ): for j in range(17 ): A__ = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: A__ = temp # down for i in range(17 ): for j in range(20 ): A__ = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: A__ = temp # diagonal 1 for i in range(17 ): for j in range(17 ): A__ = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: A__ = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): A__ = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: A__ = temp return maximum if __name__ == "__main__": print(solution())
154
1
def lowercase_ ( ): """simple docstring""" return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(UpperCAmelCase_ , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'{solution() = }')
184
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase ( lowercase ): UpperCAmelCase : Any = """Wav2Vec2FeatureExtractor""" UpperCAmelCase : List[str] = """AutoTokenizer""" def __init__(self : int , _A : List[str] , _A : str) -> str: super().__init__(_A , _A) __snake_case : Tuple = self.feature_extractor __snake_case : str = False @classmethod def _lowercase (cls : Union[str, Any] , _A : Optional[Any] , **_A : str) -> List[Any]: try: return super().from_pretrained(_A , **_A) except OSError: warnings.warn( f"Loading a tokenizer inside {cls.__name__} from a config that does not" ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' , _A , ) __snake_case : List[str] = WavaVecaFeatureExtractor.from_pretrained(_A , **_A) __snake_case : Any = WavaVecaCTCTokenizer.from_pretrained(_A , **_A) return cls(feature_extractor=_A , tokenizer=_A) def __call__(self : int , *_A : List[Any] , **_A : str) -> str: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.') __snake_case : int = kwargs.pop('raw_speech') else: __snake_case : Optional[Any] = kwargs.pop('audio' , _A) __snake_case : Tuple = kwargs.pop('sampling_rate' , _A) __snake_case : Any = kwargs.pop('text' , _A) if len(_A) > 0: __snake_case : Any = args[0] __snake_case : Dict = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.') if audio is not None: __snake_case : str = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A) if text is not None: __snake_case : List[str] = self.tokenizer(_A , **_A) if text is None: return inputs elif audio is None: return encodings else: __snake_case : List[str] = encodings['input_ids'] return inputs def _lowercase (self : str , *_A : Optional[Any] , **_A : int) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A) __snake_case : Optional[int] = kwargs.pop('input_features' , _A) __snake_case : List[Any] = kwargs.pop('labels' , _A) if len(_A) > 0: __snake_case : Tuple = args[0] __snake_case : Union[str, Any] = args[1:] if input_features is not None: __snake_case : Optional[Any] = self.feature_extractor.pad(_A , *_A , **_A) if labels is not None: __snake_case : Tuple = self.tokenizer.pad(_A , **_A) if labels is None: return input_features elif input_features is None: return labels else: __snake_case : str = labels['input_ids'] return input_features def _lowercase (self : Union[str, Any] , *_A : Any , **_A : List[Any]) -> List[Any]: return self.tokenizer.batch_decode(*_A , **_A) def _lowercase (self : Union[str, Any] , *_A : Dict , **_A : Union[str, Any]) -> Any: return self.tokenizer.decode(*_A , **_A) @contextmanager def _lowercase (self : List[str]) -> int: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.') __snake_case : Dict = True __snake_case : Union[str, Any] = self.tokenizer yield __snake_case : Optional[Any] = self.feature_extractor __snake_case : int = False
172
0
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __a :str = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = RobertaPreLayerNormConfig.from_pretrained( __UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) ) A_ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue A_ = tensor_value A_ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) # convert tokenizer A_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a :Any = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
329
from maths.prime_factors import prime_factors def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = f'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCamelCase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
329
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=30 , snake_case=400 , snake_case=True , snake_case=None , snake_case=True , snake_case=[0.5, 0.5, 0.5] , snake_case=[0.5, 0.5, 0.5] , snake_case=True , snake_case=1 / 255 , snake_case=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_normalize lowercase = image_mean lowercase = image_std lowercase = do_rescale lowercase = rescale_factor lowercase = do_pad def SCREAMING_SNAKE_CASE__ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case=False ): if not batched: lowercase = image_inputs[0] if isinstance(snake_case__ , Image.Image ): lowercase = image.size else: lowercase = image.shape[1], image.shape[2] if w < h: lowercase = int(self.size['shortest_edge'] * h / w ) lowercase = self.size["shortest_edge"] elif w > h: lowercase = self.size["shortest_edge"] lowercase = int(self.size['shortest_edge'] * w / h ) else: lowercase = self.size["shortest_edge"] lowercase = self.size["shortest_edge"] else: lowercase = [] for image in image_inputs: lowercase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase = max(snake_case__ , key=lambda snake_case : item[0] )[0] lowercase = max(snake_case__ , key=lambda snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A_ ( snake_case__ , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : List[Any] = DetaImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ): lowercase = DetaImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , 'image_mean' ) ) self.assertTrue(hasattr(snake_case__ , 'image_std' ) ) self.assertTrue(hasattr(snake_case__ , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case__ , 'do_resize' ) ) self.assertTrue(hasattr(snake_case__ , 'do_rescale' ) ) self.assertTrue(hasattr(snake_case__ , 'do_pad' ) ) self.assertTrue(hasattr(snake_case__ , 'size' ) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowercase = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) lowercase = image_processing(snake_case__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowercase = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase = image_processing(snake_case__ , return_tensors='pt' ).pixel_values lowercase = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowercase = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase = image_processing(snake_case__ , return_tensors='pt' ).pixel_values lowercase = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE__ ( self ): # prepare image and target lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: lowercase = json.loads(f.read() ) lowercase = {"image_id": 3_9769, "annotations": target} # encode them lowercase = DetaImageProcessor() lowercase = image_processing(images=snake_case__ , annotations=snake_case__ , return_tensors='pt' ) # verify pixel values lowercase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case__ ) lowercase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case__ , atol=1E-4 ) ) # verify area lowercase = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case__ ) ) # verify boxes lowercase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case__ ) lowercase = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case__ , atol=1E-3 ) ) # verify image_id lowercase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case__ ) ) # verify is_crowd lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case__ ) ) # verify class_labels lowercase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case__ ) ) # verify orig_size lowercase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case__ ) ) # verify size lowercase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case__ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): # prepare image, target and masks_path lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: lowercase = json.loads(f.read() ) lowercase = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} lowercase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowercase = DetaImageProcessor(format='coco_panoptic' ) lowercase = image_processing(images=snake_case__ , annotations=snake_case__ , masks_path=snake_case__ , return_tensors='pt' ) # verify pixel values lowercase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case__ ) lowercase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case__ , atol=1E-4 ) ) # verify area lowercase = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case__ ) ) # verify boxes lowercase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case__ ) lowercase = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case__ , atol=1E-3 ) ) # verify image_id lowercase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case__ ) ) # verify is_crowd lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case__ ) ) # verify class_labels lowercase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case__ ) ) # verify masks lowercase = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , snake_case__ ) # verify orig_size lowercase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case__ ) ) # verify size lowercase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case__ ) )
195
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Dict = logging.get_logger(__name__) A__ : Union[str, Any] = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class lowercase__ ( snake_case__ ): _UpperCAmelCase :List[str] = "canine" def __init__( self : Optional[Any] , snake_case__ : Union[str, Any]=768 , snake_case__ : Tuple=12 , snake_case__ : Optional[Any]=12 , snake_case__ : Union[str, Any]=3072 , snake_case__ : Optional[Any]="gelu" , snake_case__ : Tuple=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : int=1_6384 , snake_case__ : str=16 , snake_case__ : Tuple=0.02 , snake_case__ : Dict=1E-12 , snake_case__ : Any=0 , snake_case__ : Optional[int]=0xe_000 , snake_case__ : List[str]=0xe_001 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : List[Any]=8 , snake_case__ : List[str]=1_6384 , snake_case__ : Union[str, Any]=128 , **snake_case__ : Tuple , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCamelCase_ : Tuple =max_position_embeddings lowerCamelCase_ : Optional[int] =hidden_size lowerCamelCase_ : Tuple =num_hidden_layers lowerCamelCase_ : Dict =num_attention_heads lowerCamelCase_ : str =intermediate_size lowerCamelCase_ : Dict =hidden_act lowerCamelCase_ : List[Any] =hidden_dropout_prob lowerCamelCase_ : Union[str, Any] =attention_probs_dropout_prob lowerCamelCase_ : Dict =initializer_range lowerCamelCase_ : Tuple =type_vocab_size lowerCamelCase_ : Optional[Any] =layer_norm_eps # Character config: lowerCamelCase_ : List[str] =downsampling_rate lowerCamelCase_ : List[Any] =upsampling_kernel_size lowerCamelCase_ : Any =num_hash_functions lowerCamelCase_ : Optional[int] =num_hash_buckets lowerCamelCase_ : Union[str, Any] =local_transformer_stride
144
0
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : List[str] =None lowerCamelCase : Union[str, Any] =BloomTokenizerFast lowerCamelCase : List[str] =BloomTokenizerFast lowerCamelCase : List[str] =True lowerCamelCase : Union[str, Any] =False lowerCamelCase : Union[str, Any] ="tokenizer_file" lowerCamelCase : Union[str, Any] ={"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" super().setUp() __lowerCamelCase = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : int , **a : Tuple ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **a ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] __lowerCamelCase = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] __lowerCamelCase = tokenizer.batch_encode_plus(a )['''input_ids'''] self.assertListEqual(a , a ) __lowerCamelCase = tokenizer.batch_decode(a ) self.assertListEqual(a , a ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : Optional[int]=6 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(a , **a ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __lowerCamelCase = '''This is a simple input''' __lowerCamelCase = ['''This is a simple input 1''', '''This is a simple input 2'''] __lowerCamelCase = ('''This is a simple input''', '''This is a pair''') __lowerCamelCase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(a , max_length=a ) tokenizer_r.encode_plus(a , max_length=a ) tokenizer_r.batch_encode_plus(a , max_length=a ) tokenizer_r.encode(a , max_length=a ) tokenizer_r.batch_encode_plus(a , max_length=a ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) __lowerCamelCase = None # Hotfixing padding = None self.assertRaises(a , tokenizer_r.encode , a , max_length=a , padding='''max_length''' ) # Simple input self.assertRaises(a , tokenizer_r.encode_plus , a , max_length=a , padding='''max_length''' ) # Simple input self.assertRaises( a , tokenizer_r.batch_encode_plus , a , max_length=a , padding='''max_length''' , ) # Pair input self.assertRaises(a , tokenizer_r.encode , a , max_length=a , padding='''max_length''' ) # Pair input self.assertRaises(a , tokenizer_r.encode_plus , a , max_length=a , padding='''max_length''' ) # Pair input self.assertRaises( a , tokenizer_r.batch_encode_plus , a , max_length=a , padding='''max_length''' , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=a ) __lowerCamelCase = next(iter(a ) )['''premise'''] # pick up one data __lowerCamelCase = list(sample_data.values() ) __lowerCamelCase = list(map(tokenizer.encode , a ) ) __lowerCamelCase = [tokenizer.decode(a , clean_up_tokenization_spaces=a ) for x in output_tokens] self.assertListEqual(a , a ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
237
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : Optional[Any] =LongformerTokenizer lowerCamelCase : Optional[Any] =True lowerCamelCase : List[str] =LongformerTokenizerFast lowerCamelCase : Union[str, Any] =True def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __lowerCamelCase = dict(zip(a , range(len(a ) ) ) ) __lowerCamelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCamelCase = {'''unk_token''': '''<unk>'''} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(a ) ) def SCREAMING_SNAKE_CASE__ ( self : int , **a : int ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a ) def SCREAMING_SNAKE_CASE__ ( self : str , **a : Dict ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **a ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : int ): """simple docstring""" __lowerCamelCase = '''lower newer''' __lowerCamelCase = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCamelCase = tokenizer.tokenize(a ) # , add_prefix_space=True) self.assertListEqual(a , a ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=a ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=a ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __lowerCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=a ) __lowerCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=a ) __lowerCamelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=a , add_prefix_space=a ) __lowerCamelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=a , add_prefix_space=a ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = '''Encode this sequence.''' __lowerCamelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __lowerCamelCase = tokenizer.encode(a , add_special_tokens=a , add_prefix_space=a ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(a , a ) __lowerCamelCase = tokenizer.encode(a , add_special_tokens=a , add_prefix_space=a ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(a , a ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __lowerCamelCase = tokenizer.encode(a , add_special_tokens=a ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(a , a ) # Testing spaces after special tokens __lowerCamelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(a , lstrip=a , rstrip=a )} ) # mask token has a left space __lowerCamelCase = tokenizer.convert_tokens_to_ids(a ) __lowerCamelCase = '''Encode <mask> sequence''' __lowerCamelCase = '''Encode <mask>sequence''' __lowerCamelCase = tokenizer.encode(a ) __lowerCamelCase = encoded.index(a ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(a , a ) __lowerCamelCase = tokenizer.encode(a ) __lowerCamelCase = encoded.index(a ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(a , a ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(a , **a ) __lowerCamelCase = self.tokenizer_class.from_pretrained(a , **a ) __lowerCamelCase = '''A, <mask> AllenNLP sentence.''' __lowerCamelCase = tokenizer_r.encode_plus(a , add_special_tokens=a , return_token_type_ids=a ) __lowerCamelCase = tokenizer_p.encode_plus(a , add_special_tokens=a , return_token_type_ids=a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __lowerCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __lowerCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( a , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( a , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowerCamelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , a ) self.assertEqual(post_processor_state['''add_prefix_space'''] , a ) self.assertEqual(post_processor_state['''trim_offsets'''] , a ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCamelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __lowerCamelCase = f"""{text_of_1_token} {text_of_1_token}""" __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ) + 1, len(a ) + 1 + len(a )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ) + 1, len(a ) + 1 + len(a )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ), len(a ) + 1 + len(a )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ), len(a ) + 1 + len(a )) , ) __lowerCamelCase = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ) + 1, 1 + len(a ) + 1 + len(a )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ), 1 + len(a ) + 1 + len(a )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ), 1 + len(a ) + 1 + len(a )) , )
237
1
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Callable , __UpperCAmelCase : Optional[Features] = None , __UpperCAmelCase : str = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[dict] = None , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : Dict , ) ->List[Any]: """simple docstring""" super().__init__( features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , ) a = Generator( cache_dir=__UpperCAmelCase , features=__UpperCAmelCase , generator=__UpperCAmelCase , gen_kwargs=__UpperCAmelCase , **__UpperCAmelCase , ) def __lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" if self.streaming: a = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: a = None a = None a = None a = None self.builder.download_and_prepare( download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , ) a = self.builder.as_dataset( split='''train''' , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
0
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class A ( unittest.TestCase ): def _A (self ): __lowercase= logging.get_logger() # the current default level is logging.WARNING __lowercase= logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(lowerCAmelCase ) def _A (self ): __lowercase= logging.get_verbosity() __lowercase= logging.get_logger('transformers.models.bart.tokenization_bart' ) __lowercase= 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(lowerCAmelCase ) as cl: logger.warning(lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(lowerCAmelCase ) as cl: logger.warning(lowerCAmelCase ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(lowerCAmelCase ) as cl: logger.warning(lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(lowerCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def _A (self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var __lowercase= logging.get_logger('transformers.models.bart.tokenization_bart' ) __lowercase= os.getenv('TRANSFORMERS_VERBOSITY' , lowerCAmelCase ) __lowercase= logging.log_levels[env_level_str] __lowercase= logging.get_verbosity() self.assertEqual( lowerCAmelCase , lowerCAmelCase , f'TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}' , ) # restore to the original level __lowercase= '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def _A (self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() __lowercase= logging.logging.getLogger() with CaptureLogger(lowerCAmelCase ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def _A (self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() __lowercase= logging.get_logger('transformers.models.bart.tokenization_bart' ) __lowercase= 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(lowerCAmelCase ) as cl: logger.warning_advice(lowerCAmelCase ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(lowerCAmelCase ) as cl: logger.warning_advice(lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) def _lowerCamelCase( ) -> Optional[int]: '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
295
0
from __future__ import annotations from random import random class _lowercase : """simple docstring""" def __init__(self , lowerCamelCase_ = None ): """simple docstring""" a = value a = random() a = None a = None def __repr__(self ): """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return F'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {F'''{self.value}: {self.prior:.5}''': (self.left, self.right)} , indent=1 ) def __str__(self ): """simple docstring""" a = str(self.value ) + " " a = str(self.left or "" ) a = str(self.right or "" ) return value + left + right def a( A : Node | None , A : int ) -> tuple[Node | None, Node | None]: """simple docstring""" if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: a , a = split(root.left , A ) return left, root else: a , a = split(root.right , A ) return root, right def a( A : Node | None , A : Node | None ) -> Node | None: """simple docstring""" if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: a = merge(left.right , A ) return left else: a = merge(A , right.left ) return right def a( A : Node | None , A : int ) -> Node | None: """simple docstring""" a = Node(A ) a , a = split(A , A ) return merge(merge(A , A ) , A ) def a( A : Node | None , A : int ) -> Node | None: """simple docstring""" a , a = split(A , value - 1 ) a , a = split(A , A ) return merge(A , A ) def a( A : Node | None ) -> None: """simple docstring""" if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def a( A : Node | None , A : str ) -> Node | None: """simple docstring""" for arg in args.split(): if arg[0] == "+": a = insert(A , int(arg[1:] ) ) elif arg[0] == "-": a = erase(A , int(arg[1:] ) ) else: print("Unknown command" ) return root def a( ) -> None: """simple docstring""" a = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) a = input() while args != "q": a = interact_treap(A , A ) print(A ) a = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
71
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _lowercase: List[Any] = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def a( A : List[str] ) -> Union[str, Any]: """simple docstring""" a = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(A , A ) _lowercase: Optional[int] = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def a( A : str ) -> Union[str, Any]: """simple docstring""" a = list(s_dict.keys() ) for key in keys: a = key for k, v in WHISPER_MAPPING.items(): if k in key: a = new_key.replace(A , A ) print(f'''{key} -> {new_key}''' ) a = s_dict.pop(A ) return s_dict def a( A : Union[str, Any] ) -> Tuple: """simple docstring""" a , a = emb.weight.shape a = nn.Linear(A , A , bias=A ) a = emb.weight.data return lin_layer def a( A : str , A : str ) -> bytes: """simple docstring""" os.makedirs(A , exist_ok=A ) a = os.path.basename(A ) a = url.split("/" )[-2] a = os.path.join(A , A ) if os.path.exists(A ) and not os.path.isfile(A ): raise RuntimeError(f'''{download_target} exists and is not a regular file''' ) if os.path.isfile(A ): a = open(A , "rb" ).read() if hashlib.shaaaa(A ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(A ) as source, open(A , "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ) , ncols=80 , unit="iB" , unit_scale=A , unit_divisor=1024 ) as loop: while True: a = source.read(8192 ) if not buffer: break output.write(A ) loop.update(len(A ) ) a = open(A , "rb" ).read() if hashlib.shaaaa(A ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def a( A : List[str] , A : Union[str, Any] ) -> str: """simple docstring""" if ".pt" not in checkpoint_path: a = _download(_MODELS[checkpoint_path] ) else: a = torch.load(A , map_location="cpu" ) a = original_checkpoint["dims"] a = original_checkpoint["model_state_dict"] a = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(A ) rename_keys(A ) a = True a = state_dict["decoder.layers.0.fc1.weight"].shape[0] a = WhisperConfig( vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=A , decoder_ffn_dim=A , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , ) a = WhisperForConditionalGeneration(A ) a , a = model.model.load_state_dict(A , strict=A ) if len(A ) > 0 and not set(A ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," f''' but all the following weights are missing {missing}''' ) if tie_embeds: a = make_linear_from_emb(model.model.decoder.embed_tokens ) else: a = proj_out_weights model.save_pretrained(A ) if __name__ == "__main__": _lowercase: Dict = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _lowercase: List[str] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
71
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:str = StableUnCLIPPipeline _UpperCamelCase:str = TEXT_TO_IMAGE_PARAMS _UpperCamelCase:Tuple = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCamelCase:Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase:str = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _UpperCamelCase:List[str] = False def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =32 lowerCamelCase_ =embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCamelCase_ =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) lowerCamelCase_ =CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_SCREAMING_SNAKE_CASE , projection_dim=_SCREAMING_SNAKE_CASE , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase_ =PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_SCREAMING_SNAKE_CASE , num_layers=1 , ) torch.manual_seed(0 ) lowerCamelCase_ =DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=_SCREAMING_SNAKE_CASE , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) lowerCamelCase_ =StableUnCLIPImageNormalizer(embedding_dim=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) lowerCamelCase_ =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) lowerCamelCase_ =CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_SCREAMING_SNAKE_CASE , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase_ =UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_SCREAMING_SNAKE_CASE , layers_per_block=1 , upcast_attention=_SCREAMING_SNAKE_CASE , use_linear_projection=_SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) lowerCamelCase_ =DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type="""v_prediction""" , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , ) torch.manual_seed(0 ) lowerCamelCase_ =AutoencoderKL() lowerCamelCase_ ={ # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 )-> Optional[Any]: if str(_SCREAMING_SNAKE_CASE ).startswith("""mps""" ): lowerCamelCase_ =torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: lowerCamelCase_ =torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ ={ """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _snake_case ( self )-> Tuple: lowerCamelCase_ =torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Dict: lowerCamelCase_ =torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def _snake_case ( self )-> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self )-> int: lowerCamelCase_ =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) lowerCamelCase_ =StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase_ =torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCamelCase_ =pipe("""anime turle""" , generator=_SCREAMING_SNAKE_CASE , output_type="""np""" ) lowerCamelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase_ =StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) lowerCamelCase_ =pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase_ =pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) lowerCamelCase_ =torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
154
from __future__ import annotations import math def __UpperCamelCase ( _A : int , _A : int , _A : bool , _A : list[int] , _A : float ) ->int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(_A ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , _A , _A , _A ) , minimax(depth + 1 , node_index * 2 + 1 , _A , _A , _A ) , ) return min( minimax(depth + 1 , node_index * 2 , _A , _A , _A ) , minimax(depth + 1 , node_index * 2 + 1 , _A , _A , _A ) , ) def __UpperCamelCase ( ) ->None: """simple docstring""" lowerCamelCase_ =[90, 23, 6, 33, 21, 65, 123, 34423] lowerCamelCase_ =math.log(len(_A ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , _A , _A , _A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
154
1
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers a_ = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
163
"""simple docstring""" def a__ ( __lowercase=2_8123 ) -> List[Any]: _A = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i _A = set() _A = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(__lowercase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
163
1
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ :str = logging.get_logger(__name__) def lowerCAmelCase__ ( a__: str , a__: str ) -> Dict: '''simple docstring''' _UpperCAmelCase = RobertaPreLayerNormConfig.from_pretrained( a__ , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict _UpperCAmelCase = torch.load(hf_hub_download(repo_id=a__ , filename='pytorch_model.bin' ) ) _UpperCAmelCase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): _UpperCAmelCase = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue _UpperCAmelCase = tensor_value _UpperCAmelCase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=a__ , config=a__ , state_dict=a__ ) model.save_pretrained(a__ ) # convert tokenizer _UpperCAmelCase = AutoTokenizer.from_pretrained(a__ ) tokenizer.save_pretrained(a__ ) if __name__ == "__main__": lowerCAmelCase__ :int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ :Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
329
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def lowerCAmelCase__ ( a__: Any , a__: Tuple , a__: Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = hf_hub_url(repo_id=a__ , path=a__ , revision=a__ ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(a__ )}'''
329
1
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCAmelCase : Tuple = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def a__ ( snake_case__ , snake_case__=None ) -> Optional[Any]: require_version(deps[pkg] , A_ )
358
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = 1 @register_to_config def __init__( self , _a=2_000 , _a=0.1 , _a=20 , _a=1e-3 ): """simple docstring""" lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = torch.linspace(1 , self.config.sampling_eps , _a , device=_a ) def _lowerCAmelCase ( self , _a , _a , _a , _a=None ): """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score lowerCamelCase = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) lowerCamelCase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) lowerCamelCase = std.flatten() while len(std.shape ) < len(score.shape ): lowerCamelCase = std.unsqueeze(-1 ) lowerCamelCase = -score / std # compute lowerCamelCase = -1.0 / len(self.timesteps ) lowerCamelCase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) lowerCamelCase = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): lowerCamelCase = beta_t.unsqueeze(-1 ) lowerCamelCase = -0.5 * beta_t * x lowerCamelCase = torch.sqrt(_a ) lowerCamelCase = drift - diffusion**2 * score lowerCamelCase = x + drift * dt # add noise lowerCamelCase = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype ) lowerCamelCase = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
168
0
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer __lowerCAmelCase : Tuple =logging.get_logger(__name__) __lowerCAmelCase : Any ={"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase : Optional[int] ={ "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } __lowerCAmelCase : List[str] ={ "Salesforce/codegen-350M-mono": 2048, } class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = VOCAB_FILES_NAMES __lowercase = PRETRAINED_VOCAB_FILES_MAP __lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase = ["""input_ids""", """attention_mask"""] __lowercase = CodeGenTokenizer def __init__( self :int , lowercase_ :List[Any]=None , lowercase_ :Optional[int]=None , lowercase_ :Optional[Any]=None , lowercase_ :Optional[int]="<|endoftext|>" , lowercase_ :Optional[Any]="<|endoftext|>" , lowercase_ :int="<|endoftext|>" , lowercase_ :Optional[Any]=False , **lowercase_ :List[Any] , )-> Optional[Any]: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) if kwargs.pop("add_bos_token" , lowercase_ ): A__ = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" F"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" F"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) A__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowercase_ ) != add_prefix_space: A__ = getattr(lowercase_ , pre_tok_state.pop("type" ) ) A__ = add_prefix_space A__ = pre_tok_class(**lowercase_ ) A__ = add_prefix_space def UpperCAmelCase_ ( self :Union[str, Any] , *lowercase_ :List[Any] , **lowercase_ :Optional[Any] )-> BatchEncoding: A__ = kwargs.get("is_split_into_words" , lowercase_ ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :List[str] , *lowercase_ :Dict , **lowercase_ :str )-> BatchEncoding: A__ = kwargs.get("is_split_into_words" , lowercase_ ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :int , lowercase_ :str , lowercase_ :Optional[str] = None )-> Tuple[str]: A__ = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase_ ( self :List[str] , lowercase_ :Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , lowercase_ :bool = False , lowercase_ :bool = None , lowercase_ :Optional[List[str]] = None , **lowercase_ :List[Any] , )-> str: A__ = super().decode( token_ids=lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ , **lowercase_ , ) if truncate_before_pattern is not None and len(lowercase_ ) > 0: A__ = self.truncate(lowercase_ , lowercase_ ) return decoded_text def UpperCAmelCase_ ( self :Tuple , lowercase_ :str , lowercase_ :str )-> Union[str, Any]: def find_re(lowercase_ :Optional[Any] , lowercase_ :List[str] , lowercase_ :Optional[int] ): A__ = pattern.search(lowercase_ , lowercase_ ) return m.start() if m else -1 A__ = [re.compile(lowercase_ , re.MULTILINE ) for pattern in truncate_before_pattern] A__ = list(re.finditer("^print" , lowercase_ , re.MULTILINE ) ) if len(lowercase_ ) > 1: A__ = completion[: prints[1].start()] A__ = list(re.finditer("^def" , lowercase_ , re.MULTILINE ) ) if len(lowercase_ ) > 1: A__ = completion[: defs[1].start()] A__ = 0 A__ = [ pos for pos in [find_re(lowercase_ , lowercase_ , lowercase_ ) for terminal in terminals] if pos != -1 ] if len(lowercase_ ) > 0: return completion[: min(lowercase_ )] else: return completion
237
'''simple docstring''' import warnings warnings.warn( "memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: " "`from accelerate import find_executable_batch_size` to avoid this warning.", FutureWarning, )
237
1
from math import factorial, pi def __magic_name__ ( __a : List[Any] , __a : str = 30 ): '''simple docstring''' if not isinstance(_lowerCAmelCase , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) UpperCamelCase__ = float(_lowerCAmelCase ) UpperCamelCase__ = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_lowerCAmelCase ) ) def __magic_name__ ( __a : Optional[Any] , __a : Optional[int] = 30 ): '''simple docstring''' if not isinstance(_lowerCAmelCase , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) UpperCamelCase__ = float(_lowerCAmelCase ) UpperCamelCase__ = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
354
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase_ = logging.get_logger(__name__) def __magic_name__ ( __a : Optional[int] ): '''simple docstring''' UpperCamelCase__ = R"""\w+[.]\d+""" UpperCamelCase__ = re.findall(__a , __a ) for pat in pats: UpperCamelCase__ = key.replace(__a , """_""".join(pat.split(""".""" ) ) ) return key def __magic_name__ ( __a : str , __a : Dict , __a : int ): '''simple docstring''' UpperCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __magic_name__ ( __a : List[Any] , __a : List[Any] , __a : Optional[int]=42 ): '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCamelCase__ = flax_model.init_weights(PRNGKey(__a ) ) UpperCamelCase__ = flatten_dict(__a ) UpperCamelCase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = rename_key(__a ) UpperCamelCase__ = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(__a ) return unflatten_dict(__a )
178
0