code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
271
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class a ( __lowerCamelCase ): __lowerCAmelCase : str = """distilbert""" __lowerCAmelCase : str = { """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self :Dict ,__lowercase :Tuple=3_0_5_2_2 ,__lowercase :Optional[Any]=5_1_2 ,__lowercase :List[str]=False ,__lowercase :List[str]=6 ,__lowercase :Optional[Any]=1_2 ,__lowercase :Tuple=7_6_8 ,__lowercase :int=4 * 7_6_8 ,__lowercase :List[Any]=0.1 ,__lowercase :List[str]=0.1 ,__lowercase :Union[str, Any]="gelu" ,__lowercase :List[str]=0.02 ,__lowercase :Optional[int]=0.1 ,__lowercase :Dict=0.2 ,__lowercase :Union[str, Any]=0 ,**__lowercase :Optional[Any] ,): snake_case__ : List[str] = vocab_size snake_case__ : Tuple = max_position_embeddings snake_case__ : Optional[int] = sinusoidal_pos_embds snake_case__ : str = n_layers snake_case__ : List[Any] = n_heads snake_case__ : Tuple = dim snake_case__ : str = hidden_dim snake_case__ : int = dropout snake_case__ : Dict = attention_dropout snake_case__ : Tuple = activation snake_case__ : int = initializer_range snake_case__ : Optional[Any] = qa_dropout snake_case__ : Union[str, Any] = seq_classif_dropout super().__init__(**__lowercase ,pad_token_id=__lowercase ) class a ( __lowerCamelCase ): @property def __lowerCamelCase ( self :Union[str, Any] ): if self.task == "multiple-choice": snake_case__ : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case__ : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
230
0
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[str] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : Tuple = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : str = prophet __lowercase : List[str] = prophet_old else: __lowercase : Tuple = prophet.prophetnet __lowercase : Union[str, Any] = prophet_old.model __lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowercase : Optional[int] = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : str = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Any = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Dict = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : int = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : Tuple = model[int(lowerCAmelCase_ )] __lowercase : int = old_model[int(lowerCAmelCase_ )] else: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : int = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __lowercase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase : Optional[Any] = model(__a )["""last_hidden_state"""] __lowercase : Any = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __lowercase : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
1
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowerCamelCase__ = TypeVar("""T""") class SCREAMING_SNAKE_CASE ( Generic[T] ): def __init__( self : List[str] , __lowercase : bool = True ): '''simple docstring''' __a = {} # dictionary of lists __a = directed def UpperCamelCase_ ( self : Dict , __lowercase : T , __lowercase : T ): '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowercase ) self.adj_list[destination_vertex].append(__lowercase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowercase ) __a = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(__lowercase ) __a = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: __a = [destination_vertex] __a = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowercase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowercase ) __a = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: __a = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: __a = [destination_vertex] __a = [] return self def __repr__( self : List[str] ): '''simple docstring''' return pformat(self.adj_list )
302
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] =(IPNDMScheduler,) __lowerCamelCase : int =(('num_inference_steps', 50),) def UpperCamelCase_ ( self : str , **__lowercase : Dict ): '''simple docstring''' __a = {"""num_train_timesteps""": 1000} config.update(**__lowercase ) return config def UpperCamelCase_ ( self : Any , __lowercase : Tuple=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : str ): '''simple docstring''' pass def UpperCamelCase_ ( self : str , __lowercase : int=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals (must be after setting timesteps) __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residual (must be after setting timesteps) __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : List[str] , **__lowercase : Dict ): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) __a = 10 __a = self.dummy_model() __a = self.dummy_sample_deter scheduler.set_timesteps(__lowercase ) for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample return sample def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) __a = self.dummy_sample __a = 0.1 * sample if num_inference_steps is not None and hasattr(__lowercase , """set_timesteps""" ): scheduler.set_timesteps(__lowercase ) elif num_inference_steps is not None and not hasattr(__lowercase , """set_timesteps""" ): __a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __a = dummy_past_residuals[:] __a = scheduler.timesteps[5] __a = scheduler.timesteps[6] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.full_loop() __a = torch.mean(torch.abs(__lowercase ) ) assert abs(result_mean.item() - 2540529 ) < 10
302
1
from __future__ import annotations from typing import Any def __UpperCamelCase ( _A : list ) ->int: """simple docstring""" if not postfix_notation: return 0 lowerCamelCase_ ={"""+""", """-""", """*""", """/"""} lowerCamelCase_ =[] for token in postfix_notation: if token in operations: lowerCamelCase_ , lowerCamelCase_ =stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_A ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
357
from math import pi, sqrt def __UpperCamelCase ( _A : float ) ->float: """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 1_7_1.5: raise OverflowError("""math range error""" ) elif num - int(_A ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_A ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __UpperCamelCase ( ) ->None: """simple docstring""" assert gamma(0.5 ) == sqrt(_A ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __A : List[Any] = 1.0 while num: __A : str = float(input('Gamma of: ')) print(F"""gamma({num}) = {gamma(num)}""") print('\nEnter 0 to exit...')
49
0
from typing import Any import numpy as np def lowerCAmelCase_ ( snake_case_ ): return np.array_equal(snake_case_,matrix.conjugate().T ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = v.conjugate().T _A : Any = v_star.dot(snake_case_ ) assert isinstance(snake_case_,np.ndarray ) return (v_star_dot.dot(snake_case_ )) / (v_star.dot(snake_case_ )) def lowerCAmelCase_ ( ): _A : str = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) _A : str = np.array([[1], [2], [3]] ) assert is_hermitian(snake_case_ ), f'''{a} is not hermitian.''' print(rayleigh_quotient(snake_case_,snake_case_ ) ) _A : List[str] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(snake_case_ ), f'''{a} is not hermitian.''' assert rayleigh_quotient(snake_case_,snake_case_ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
26
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _a = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def a__ ( self , _a , _a , _a ) -> int: _A : str = TextaTextGenerationPipeline(model=_a , tokenizer=_a ) return generator, ["Something to write", "Something else"] def a__ ( self , _a , _a ) -> Dict: _A : Any = generator("""Something there""" ) self.assertEqual(_a , [{"""generated_text""": ANY(_a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) _A : List[Any] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) _A : Optional[int] = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) with self.assertRaises(_a ): generator(4 ) @require_torch def a__ ( self ) -> List[str]: _A : Any = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility _A : Dict = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] ) _A : Any = 3 _A : Any = generator( """Something there""" , num_return_sequences=_a , num_beams=_a , ) _A : Optional[int] = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(_a , _a ) _A : Dict = generator("""This is a test""" , do_sample=_a , num_return_sequences=2 , return_tensors=_a ) self.assertEqual( _a , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) _A : Dict = generator.model.config.eos_token_id _A : List[str] = """<pad>""" _A : Dict = generator( ["""This is a test""", """This is a second test"""] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , ) self.assertEqual( _a , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def a__ ( self ) -> int: _A : Optional[Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility _A : str = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] )
26
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'vocab_file': 'vocab.json'} UpperCamelCase = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } UpperCamelCase = {'mgp-str': 27} class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict="[GO]" , SCREAMING_SNAKE_CASE__ : List[Any]="[GO]" , SCREAMING_SNAKE_CASE__ : str="[s]" , SCREAMING_SNAKE_CASE__ : int="[GO]" , **SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: super().__init__( unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as vocab_handle: lowerCAmelCase__ = json.load(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = {v: k for k, v in self.vocab.items()} @property def a ( self : List[str] ) -> List[Any]: return len(self.vocab ) def a ( self : str ) -> List[str]: return dict(self.vocab , **self.added_tokens_encoder ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: lowerCAmelCase__ = [] for s in text: char_tokens.extend(SCREAMING_SNAKE_CASE__ ) return char_tokens def a ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: return self.vocab.get(SCREAMING_SNAKE_CASE__ , self.vocab.get(self.unk_token ) ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> int: return self.decoder.get(SCREAMING_SNAKE_CASE__ ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("Vocabulary path ({}) should be a directory".format(SCREAMING_SNAKE_CASE__ ) ) return lowerCAmelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + "\n" ) return (vocab_file,)
221
from statistics import mean, stdev def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int = 3 ): """simple docstring""" lowerCAmelCase__ = min(lowerCAmelCase_ ) lowerCAmelCase__ = max(lowerCAmelCase_ ) # normalize data return [round((x - x_min) / (x_max - x_min) , lowerCAmelCase_ ) for x in data] def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int = 3 ): """simple docstring""" lowerCAmelCase__ = mean(lowerCAmelCase_ ) lowerCAmelCase__ = stdev(lowerCAmelCase_ ) # standardize data return [round((x - mu) / (sigma) , lowerCAmelCase_ ) for x in data]
221
1
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [0] * len(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowerCAmelCase_ ) ): if indegree[i] == 0: queue.append(lowerCAmelCase_ ) while queue: __SCREAMING_SNAKE_CASE = queue.pop(0 ) cnt += 1 topo.append(lowerCAmelCase_ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(lowerCAmelCase_ ) if cnt != len(lowerCAmelCase_ ): print("Cycle exists" ) else: print(lowerCAmelCase_ ) # Adjacency List of Graph a__ : Any = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
54
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = StableDiffusionInpaintPipeline __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case = frozenset([] ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) A__ : Optional[Any] =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase_ , ) A__ : Dict =PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) torch.manual_seed(0 ) A__ : int =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) A__ : str =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) A__ : Optional[int] =CLIPTextModel(lowerCAmelCase_ ) A__ : Dict =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ : str ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any]=0 ) -> List[str]: '''simple docstring''' # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched A__ : List[str] =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) A__ : List[str] =image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : List[str] =Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) A__ : int =Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(lowerCAmelCase_ ).startswith("""mps""" ): A__ : str =torch.manual_seed(lowerCAmelCase_ ) else: A__ : Tuple =torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) A__ : Optional[Any] ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : str ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : Tuple =self.get_dummy_components() A__ : str =StableDiffusionInpaintPipeline(**lowerCAmelCase_ ) A__ : Any =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Optional[Any] =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : Dict =sd_pipe(**lowerCAmelCase_ ).images A__ : Union[str, Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ : Optional[Any] =np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Union[str, Any] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) A__ : Optional[Any] ="""stabilityai/stable-diffusion-2-inpainting""" A__ : int =StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Dict ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : str =torch.manual_seed(0 ) A__ : Dict =pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type="""np""" , ) A__ : Tuple =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9e-3 def lowercase__ ( self : str ) -> int: '''simple docstring''' A__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : List[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : List[Any] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) A__ : int ="""stabilityai/stable-diffusion-2-inpainting""" A__ : List[Any] =StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCAmelCase_ , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Union[str, Any] ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Union[str, Any] =torch.manual_seed(0 ) A__ : Dict =pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type="""np""" , ) A__ : str =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ : Union[str, Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : List[str] ="""stabilityai/stable-diffusion-2-inpainting""" A__ : Any =PNDMScheduler.from_pretrained(lowerCAmelCase_ , subfolder="""scheduler""" ) A__ : Optional[int] =StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ : Dict ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Any =torch.manual_seed(0 ) A__ : Tuple =pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=2 , output_type="""np""" , ) A__ : Dict =torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
134
0
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __UpperCAmelCase ="https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def __lowerCAmelCase ( UpperCamelCase__ = "mumbai" ) -> Generator[tuple[str, str], None, None]: __lowerCamelCase = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __lowerCamelCase = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __lowerCamelCase = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
362
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class a__ : def __init__( self : List[Any] , a : Tuple , a : int , a : int ): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) __lowerCamelCase = img __lowerCamelCase = img.shape[1] __lowerCamelCase = img.shape[0] __lowerCamelCase = dst_width __lowerCamelCase = dst_height __lowerCamelCase = self.src_w / self.dst_w __lowerCamelCase = self.src_h / self.dst_h __lowerCamelCase = __lowerCamelCase = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): __lowerCamelCase = self.img[self.get_y(a )][self.get_x(a )] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : int ): """simple docstring""" return int(self.ratio_x * x ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : int ): """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": __UpperCAmelCase , __UpperCAmelCase =8_0_0, 6_0_0 __UpperCAmelCase =imread("image_data/lena.jpg", 1) __UpperCAmelCase =NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
237
0
from __future__ import annotations import math def __lowerCamelCase ( snake_case__ ) -> list[int]: """simple docstring""" if num <= 0: _SCREAMING_SNAKE_CASE = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(snake_case__ ) _SCREAMING_SNAKE_CASE = [True] * (num + 1) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = int(math.sqrt(snake_case__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(snake_case__ ) # Set multiples of start be False for i in range(start * start ,num + 1 ,snake_case__ ): if sieve[i] is True: _SCREAMING_SNAKE_CASE = False start += 1 for j in range(end + 1 ,num + 1 ): if sieve[j] is True: prime.append(snake_case__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
306
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase_ = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
0
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
25
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __snake_case :Dict = '''bart''' __snake_case :Tuple = True @st.cache(allow_output_mutation=_UpperCAmelCase ) def __snake_case ( ): if LOAD_DENSE_INDEX: __a = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __a = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __a = qar_model.eval() else: __a , __a = (None, None) if MODEL_TYPE == "bart": __a = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __a = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __a = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __a = sas_model.eval() else: __a , __a = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_UpperCAmelCase ) def __snake_case ( ): if LOAD_DENSE_INDEX: __a = faiss.StandardGpuResources() __a = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __a = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __a = faiss.IndexFlatIP(128 ) __a = faiss.index_cpu_to_gpu(_UpperCAmelCase , 1 , _UpperCAmelCase ) wikiaab_gpu_index_flat.add(_UpperCAmelCase ) # TODO fix for larger GPU else: __a , __a = (None, None) __a = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_UpperCAmelCase ) def __snake_case ( ): __a = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __a = elia['''train_eli5'''] __a = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_UpperCAmelCase ) return (elia_train, eli5_train_q_index) __snake_case ,__snake_case ,__snake_case :List[str] = load_indexes() __snake_case ,__snake_case ,__snake_case ,__snake_case :Dict = load_models() __snake_case ,__snake_case :Tuple = load_train_data() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase=10 ): __a = embed_questions_for_retrieval([question] , _UpperCAmelCase , _UpperCAmelCase ) __a , __a = eli5_train_q_index.search(_UpperCAmelCase , _UpperCAmelCase ) __a = [elia_train[int(_UpperCAmelCase )] for i in I[0]] return nn_examples def __snake_case ( _UpperCAmelCase , _UpperCAmelCase="wiki40b" , _UpperCAmelCase="dense" , _UpperCAmelCase=10 ): if source == "none": __a , __a = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __a , __a = query_qa_dense_index( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: __a , __a = query_es_index( _UpperCAmelCase , _UpperCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=_UpperCAmelCase , ) __a = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __a = '''question: {} context: {}'''.format(_UpperCAmelCase , _UpperCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _UpperCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _UpperCAmelCase : None), } ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase=256 , _UpperCAmelCase=False , _UpperCAmelCase=2 , _UpperCAmelCase=0.95 , _UpperCAmelCase=0.8 ): with torch.no_grad(): __a = qa_sas_generate( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , num_answers=1 , num_beams=_UpperCAmelCase , min_len=_UpperCAmelCase , max_len=_UpperCAmelCase , do_sample=_UpperCAmelCase , temp=_UpperCAmelCase , top_p=_UpperCAmelCase , top_k=_UpperCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar __snake_case :Dict = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' __snake_case :int = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __snake_case :int = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) __snake_case :Union[str, Any] = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] __snake_case :int = st.sidebar.checkbox('''Demo options''') if demo_options: __snake_case :str = st.sidebar.selectbox( '''''', action_list, index=3, ) __snake_case :Tuple = action_list.index(action_st) __snake_case :Optional[int] = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) __snake_case :Dict = show_type == '''Show full text of passages''' else: __snake_case :Dict = 3 __snake_case :str = True __snake_case :Optional[Any] = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: __snake_case :List[str] = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) __snake_case :Dict = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) __snake_case :Optional[int] = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: __snake_case :Optional[int] = '''wiki40b''' __snake_case :Dict = '''dense''' __snake_case :Dict = '''beam''' __snake_case :int = 2 __snake_case :str = 64 __snake_case :Tuple = 256 __snake_case :int = None __snake_case :List[Any] = None __snake_case :int = st.sidebar.checkbox('''Generation options''') if generate_options: __snake_case :Tuple = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) __snake_case :Tuple = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) __snake_case :Dict = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __snake_case :Dict = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __snake_case :List[str] = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __snake_case :Tuple = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) __snake_case :Any = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) __snake_case :Any = None # start main text __snake_case :Dict = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] __snake_case :int = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": __snake_case :Optional[int] = st.text_input('''Enter your question here:''', '''''') else: __snake_case :Optional[int] = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": __snake_case ,__snake_case :int = make_support(question, source=wiki_source, method='''dense''', n_results=10) __snake_case ,__snake_case :Optional[int] = make_support(question, source=wiki_source, method='''sparse''', n_results=10) __snake_case :Optional[Any] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __snake_case :Union[str, Any] = support_list[:10] __snake_case :Optional[int] = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: __snake_case ,__snake_case :Tuple = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __snake_case ,__snake_case :Optional[int] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): __snake_case :Dict = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) __snake_case :int = res[1].strip() if sec_titles == "": __snake_case :List[Any] = '''[{}]({})'''.format(res[0], wiki_url) else: __snake_case :Optional[int] = sec_titles.split(''' & ''') __snake_case :str = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: __snake_case :str = find_nearest_training(question) __snake_case :str = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) __snake_case :Optional[Any] = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) __snake_case :Tuple = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
49
0
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __a ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) _UpperCAmelCase = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(_SCREAMING_SNAKE_CASE ) from datasets import load_dataset _UpperCAmelCase = load_dataset('nielsr/rvlcdip-demo' ) _UpperCAmelCase = dataset['train'][0]['image'].convert('RGB' ) _UpperCAmelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.logits _UpperCAmelCase = torch.Size((1, 16) ) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor( [-0.4158, -0.4092, -0.4347] , device=_SCREAMING_SNAKE_CASE , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
360
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __a : _a : Dict = BlenderbotConfig _a : Dict = {} _a : Union[str, Any] = 'gelu' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=20 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = bos_token_id def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCAmelCase = prepare_blenderbot_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return config, inputs_dict def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = TFBlenderbotModel(config=_SCREAMING_SNAKE_CASE ).get_decoder() _UpperCAmelCase = inputs_dict['input_ids'] _UpperCAmelCase = input_ids[:1, :] _UpperCAmelCase = inputs_dict['attention_mask'][:1, :] _UpperCAmelCase = inputs_dict['head_mask'] _UpperCAmelCase = 1 # first forward pass _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] _UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1e-3 ) def lowerCAmelCase__ ( a__: Dict , a__: Dict , a__: Any , a__: Any=None , a__: List[Any]=None , a__: Union[str, Any]=None , a__: Tuple=None , a__: Union[str, Any]=None , ) -> Any: '''simple docstring''' if attention_mask is None: _UpperCAmelCase = tf.cast(tf.math.not_equal(a__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : List[Any] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () _a : List[str] = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () _a : List[str] = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) _a : Dict = True _a : int = False _a : Union[str, Any] = False def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = TFBlenderbotModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_SCREAMING_SNAKE_CASE ) @require_tokenizers @require_tf class __a ( unittest.TestCase ): _a : int = ['My friends are cool but they eat too many carbs.'] _a : List[Any] = 'facebook/blenderbot-400M-distill' @cached_property def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.tokenizer(self.src_text , return_tensors='tf' ) _UpperCAmelCase = self.model.generate( model_inputs.input_ids , ) _UpperCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_SCREAMING_SNAKE_CASE )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
185
0
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger __lowerCamelCase = get_logger(__name__) __lowerCamelCase = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class UpperCamelCase__: @add_start_docstrings(__UpperCAmelCase ) def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> jnp.ndarray: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class UpperCamelCase__: @add_start_docstrings(__UpperCAmelCase ) def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> jnp.ndarray: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class UpperCamelCase__( __A ): @add_start_docstrings(__UpperCAmelCase ) def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> jnp.ndarray: for processor in self: A__ = inspect.signature(processor.__call__ ).parameters if len(__UpperCAmelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) A__ = processor(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) else: A__ = processor(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) return scores class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ) -> Tuple: if not isinstance(__UpperCAmelCase ,__UpperCAmelCase ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) A__ = temperature def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> jnp.ndarray: A__ = scores / self.temperature return scores class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase = -float('Inf' ) ,__UpperCAmelCase = 1 ) -> List[Any]: if not isinstance(__UpperCAmelCase ,__UpperCAmelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(__UpperCAmelCase ,__UpperCAmelCase ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) A__ = top_p A__ = filter_value A__ = min_tokens_to_keep def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> jnp.ndarray: A__ , A__ = lax.top_k(__UpperCAmelCase ,scores.shape[-1] ) A__ = jnp.full_like(__UpperCAmelCase ,self.filter_value ) A__ = jax.nn.softmax(__UpperCAmelCase ,axis=-1 ).cumsum(axis=-1 ) A__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well A__ = jnp.roll(__UpperCAmelCase ,1 ) score_mask |= score_mask.at[:, 0].set(__UpperCAmelCase ) # min tokens to keep A__ = score_mask.at[:, : self.min_tokens_to_keep].set(__UpperCAmelCase ) A__ = jnp.where(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) A__ = jax.lax.sort_key_val(__UpperCAmelCase ,__UpperCAmelCase )[-1] return next_scores class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase = -float('Inf' ) ,__UpperCAmelCase = 1 ) -> str: if not isinstance(__UpperCAmelCase ,__UpperCAmelCase ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) A__ = max(__UpperCAmelCase ,__UpperCAmelCase ) A__ = filter_value def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> jnp.ndarray: A__ , A__ = scores.shape A__ = jnp.full(batch_size * vocab_size ,self.filter_value ) A__ = min(self.top_k ,scores.shape[-1] ) # Safety check A__ , A__ = lax.top_k(__UpperCAmelCase ,__UpperCAmelCase ) A__ = jnp.broadcast_to((jnp.arange(__UpperCAmelCase ) * vocab_size)[:, None] ,(batch_size, topk) ).flatten() A__ = topk_scores.flatten() A__ = topk_indices.flatten() + shift A__ = next_scores_flat.at[topk_indices_flat].set(__UpperCAmelCase ) A__ = next_scores_flat.reshape(__UpperCAmelCase ,__UpperCAmelCase ) return next_scores class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ) -> Optional[int]: A__ = bos_token_id def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> jnp.ndarray: A__ = jnp.full(scores.shape ,-float('inf' ) ) A__ = 1 - jnp.bool_(cur_len - 1 ) A__ = jnp.where(__UpperCAmelCase ,new_scores.at[:, self.bos_token_id].set(0 ) ,__UpperCAmelCase ) return scores class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: A__ = max_length A__ = eos_token_id def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> jnp.ndarray: A__ = jnp.full(scores.shape ,-float('inf' ) ) A__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) A__ = jnp.where(__UpperCAmelCase ,new_scores.at[:, self.eos_token_id].set(0 ) ,__UpperCAmelCase ) return scores class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> int: if not isinstance(__UpperCAmelCase ,__UpperCAmelCase ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(__UpperCAmelCase ,__UpperCAmelCase ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) A__ = min_length A__ = eos_token_id def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied A__ = 1 - jnp.clip(cur_len - self.min_length ,0 ,1 ) A__ = jnp.where(__UpperCAmelCase ,scores.at[:, self.eos_token_id].set(-float('inf' ) ) ,__UpperCAmelCase ) return scores class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]: A__ = list(__UpperCAmelCase ) A__ = begin_index def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: A__ = 1 - jnp.bool_(cur_len - self.begin_index ) A__ = jnp.where(__UpperCAmelCase ,scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) ,__UpperCAmelCase ) return scores class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ) -> Any: A__ = list(__UpperCAmelCase ) def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> jnp.ndarray: A__ = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ) -> Optional[int]: A__ = dict(__UpperCAmelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. A__ = jnp.ones((max(force_token_map.keys() ) + 1) ,dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: A__ = force_token_array.at[index].set(__UpperCAmelCase ) A__ = jnp.intaa(__UpperCAmelCase ) def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> jnp.ndarray: def _force_token(__UpperCAmelCase ): A__ = scores.shape[0] A__ = self.force_token_array[generation_idx] A__ = jnp.ones_like(__UpperCAmelCase ,dtype=scores.dtype ) * -float('inf' ) A__ = jnp.zeros((batch_size, 1) ,dtype=scores.dtype ) A__ = lax.dynamic_update_slice(__UpperCAmelCase ,__UpperCAmelCase ,(0, current_token) ) return new_scores A__ = lax.cond( cur_len >= self.force_token_array.shape[0] ,lambda: scores ,lambda: lax.cond( self.force_token_array[cur_len] >= 0 ,lambda: _force_token(__UpperCAmelCase ) ,lambda: scores ,) ,) return scores class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[Any]: A__ = generate_config.eos_token_id A__ = generate_config.no_timestamps_token_id A__ = generate_config.no_timestamps_token_id + 1 A__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__UpperCAmelCase ,'max_initial_timestamp_index' ): A__ = generate_config.max_initial_timestamp_index else: A__ = model_config.vocab_size if self.max_initial_timestamp_index is None: A__ = model_config.vocab_size def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: # suppress <|notimestamps|> which is handled by without_timestamps A__ = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(__UpperCAmelCase ,__UpperCAmelCase ): A__ = jnp.where((cur_len - self.begin_index) >= 1 ,__UpperCAmelCase ,__UpperCAmelCase ) A__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin ,True and last_was_timestamp ,__UpperCAmelCase ,) A__ = jnp.where((cur_len - self.begin_index) < 2 ,__UpperCAmelCase ,__UpperCAmelCase ) A__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin ,__UpperCAmelCase ,__UpperCAmelCase ,) return jnp.where( __UpperCAmelCase ,jnp.where( penultimate_was_timestamp > 0 ,scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) ,scores_k.at[: self.eos_token_id].set(-float('inf' ) ) ,) ,__UpperCAmelCase ,) A__ = jax.vmap(__UpperCAmelCase )(__UpperCAmelCase ,__UpperCAmelCase ) A__ = jnp.where(cur_len == self.begin_index ,__UpperCAmelCase ,__UpperCAmelCase ) A__ = jnp.where( self.max_initial_timestamp_index is not None ,True and apply_max_initial_timestamp ,__UpperCAmelCase ,) A__ = self.timestamp_begin + self.max_initial_timestamp_index A__ = jnp.where( __UpperCAmelCase ,scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) ,__UpperCAmelCase ,) # if sum of probability over timestamps is above any other token, sample timestamp A__ = jax.nn.log_softmax(__UpperCAmelCase ,axis=-1 ) def handle_cumulative_probs(__UpperCAmelCase ,__UpperCAmelCase ): A__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] ,axis=-1 ) A__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob ,scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) ,__UpperCAmelCase ,) A__ = jax.vmap(__UpperCAmelCase )(__UpperCAmelCase ,__UpperCAmelCase ) return scores
221
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCamelCase__( __A ): lowerCAmelCase__ : List[Any] = 'time_series_transformer' lowerCAmelCase__ : Dict = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = "student_t" ,__UpperCAmelCase = "nll" ,__UpperCAmelCase = 1 ,__UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7] ,__UpperCAmelCase = "mean" ,__UpperCAmelCase = 0 ,__UpperCAmelCase = 0 ,__UpperCAmelCase = 0 ,__UpperCAmelCase = 0 ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = 32 ,__UpperCAmelCase = 32 ,__UpperCAmelCase = 2 ,__UpperCAmelCase = 2 ,__UpperCAmelCase = 2 ,__UpperCAmelCase = 2 ,__UpperCAmelCase = True ,__UpperCAmelCase = "gelu" ,__UpperCAmelCase = 64 ,__UpperCAmelCase = 0.1 ,__UpperCAmelCase = 0.1 ,__UpperCAmelCase = 0.1 ,__UpperCAmelCase = 0.1 ,__UpperCAmelCase = 0.1 ,__UpperCAmelCase = 1_00 ,__UpperCAmelCase = 0.0_2 ,__UpperCAmelCase=True ,**__UpperCAmelCase ,) -> List[str]: # time series specific configuration A__ = prediction_length A__ = context_length or prediction_length A__ = distribution_output A__ = loss A__ = input_size A__ = num_time_features A__ = lags_sequence A__ = scaling A__ = num_dynamic_real_features A__ = num_static_real_features A__ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__UpperCAmelCase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) A__ = cardinality else: A__ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__UpperCAmelCase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) A__ = embedding_dimension else: A__ = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality] A__ = num_parallel_samples # Transformer architecture configuration A__ = input_size * len(__UpperCAmelCase ) + self._number_of_features A__ = d_model A__ = encoder_attention_heads A__ = decoder_attention_heads A__ = encoder_ffn_dim A__ = decoder_ffn_dim A__ = encoder_layers A__ = decoder_layers A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = activation_function A__ = init_std A__ = use_cache super().__init__(is_encoder_decoder=__UpperCAmelCase ,**__UpperCAmelCase ) @property def snake_case__ ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
221
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = '''distilbert''' _lowerCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self ,lowerCamelCase_=3_0_5_2_2 ,lowerCamelCase_=5_1_2 ,lowerCamelCase_=False ,lowerCamelCase_=6 ,lowerCamelCase_=1_2 ,lowerCamelCase_=7_6_8 ,lowerCamelCase_=4 * 7_6_8 ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.1 ,lowerCamelCase_="gelu" ,lowerCamelCase_=0.02 ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.2 ,lowerCamelCase_=0 ,**lowerCamelCase_ ,) -> Dict: A = vocab_size A = max_position_embeddings A = sinusoidal_pos_embds A = n_layers A = n_heads A = dim A = hidden_dim A = dropout A = attention_dropout A = activation A = initializer_range A = qa_dropout A = seq_classif_dropout super().__init__(**lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
353
"""simple docstring""" def _A ( _a : str , _a : str ): """simple docstring""" A = len(_a ) + 1 A = len(_a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. A = [[0 for i in range(_a )] for j in range(_a )] # since string of zero length match pattern of zero length A = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _a ): A = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _a ): A = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _a ): for j in range(1 , _a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": A = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: A = 1 elif pattern[j - 2] in (input_string[i - 1], "."): A = dp[i - 1][j] else: A = 0 else: A = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") UpperCAmelCase ="aab" UpperCAmelCase ="c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"""{input_string} matches the given pattern {pattern}""") else: print(f"""{input_string} does not match with the given pattern {pattern}""")
77
0
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: lowerCAmelCase = None try: import msvcrt except ImportError: lowerCAmelCase = None try: import fcntl except ImportError: lowerCAmelCase = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCAmelCase = OSError # Data # ------------------------------------------------ lowerCAmelCase = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] lowerCAmelCase = "3.0.12" lowerCAmelCase = None def lowerCAmelCase_ ( ) ->Union[str, Any]: global _logger lowerCamelCase__ : Tuple =_logger or logging.getLogger(__name__ ) return _logger class A_ ( UpperCamelCase__ ): """simple docstring""" def __init__( self :List[str] , lowerCamelCase_ :Any ): """simple docstring""" lowerCamelCase__ : str =lock_file return None def __str__( self :List[str] ): """simple docstring""" lowerCamelCase__ : Dict =f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class A_ : """simple docstring""" def __init__( self :str , lowerCamelCase_ :str ): """simple docstring""" lowerCamelCase__ : str =lock return None def __enter__( self :Dict ): """simple docstring""" return self.lock def __exit__( self :int , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :Any ): """simple docstring""" self.lock.release() return None class A_ : """simple docstring""" def __init__( self :List[str] , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int]=-1 , lowerCamelCase_ :Optional[int]=None ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long lowerCamelCase__ : int =self.hash_filename_if_too_long(lowercase_ , lowercase_ ) # The path to the lock file. lowerCamelCase__ : Union[str, Any] =lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowerCamelCase__ : Dict =None # The default timeout value. lowerCamelCase__ : List[Any] =timeout # We use this lock primarily for the lock counter. lowerCamelCase__ : int =threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowerCamelCase__ : List[str] =0 return None @property def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" return self._lock_file @property def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" return self._timeout @timeout.setter def UpperCAmelCase__ ( self :List[Any] , lowerCamelCase_ :str ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =float(lowercase_ ) return None def UpperCAmelCase__ ( self :Dict ): """simple docstring""" raise NotImplementedError() def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" raise NotImplementedError() @property def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" return self._lock_file_fd is not None def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :Tuple=0.05 ): """simple docstring""" if timeout is None: lowerCamelCase__ : int =self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowerCamelCase__ : Any =id(self ) lowerCamelCase__ : Tuple =self._lock_file lowerCamelCase__ : Optional[int] =time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(lowercase_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowerCamelCase__ : Dict =max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def UpperCAmelCase__ ( self :Tuple , lowerCamelCase_ :Optional[int]=False ): """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowerCamelCase__ : List[str] =id(self ) lowerCamelCase__ : List[Any] =self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() lowerCamelCase__ : Union[str, Any] =0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self :int ): """simple docstring""" self.acquire() return self def __exit__( self :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :str , lowerCamelCase_ :Any ): """simple docstring""" self.release() return None def __del__( self :str ): """simple docstring""" self.release(force=lowercase_ ) return None def UpperCAmelCase__ ( self :str , lowerCamelCase_ :str , lowerCamelCase_ :int ): """simple docstring""" lowerCamelCase__ : Dict =os.path.basename(lowercase_ ) if len(lowercase_ ) > max_length and max_length > 0: lowerCamelCase__ : List[Any] =os.path.dirname(lowercase_ ) lowerCamelCase__ : Dict =str(hash(lowercase_ ) ) lowerCamelCase__ : Any =filename[: max_length - len(lowercase_ ) - 8] + '...' + hashed_filename + '.lock' return os.path.join(lowercase_ , lowercase_ ) else: return path class A_ ( UpperCamelCase__ ): """simple docstring""" def __init__( self :Dict , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[Any]=-1 , lowerCamelCase_ :Dict=None ): """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(lowercase_ , timeout=lowercase_ , max_filename_length=lowercase_ ) lowerCamelCase__ : Any ='\\\\?\\' + relative_to_absolute_path(self.lock_file ) def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowerCamelCase__ : int =os.open(self._lock_file , lowercase_ ) except OSError: pass else: try: msvcrt.locking(lowercase_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowercase_ ) else: lowerCamelCase__ : List[Any] =fd return None def UpperCAmelCase__ ( self :int ): """simple docstring""" lowerCamelCase__ : str =self._lock_file_fd lowerCamelCase__ : Union[str, Any] =None msvcrt.locking(lowercase_ , msvcrt.LK_UNLCK , 1 ) os.close(lowercase_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class A_ ( UpperCamelCase__ ): """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str]=-1 , lowerCamelCase_ :List[Any]=None ): """simple docstring""" lowerCamelCase__ : Optional[Any] =os.statvfs(os.path.dirname(lowercase_ ) ).f_namemax super().__init__(lowercase_ , timeout=lowercase_ , max_filename_length=lowercase_ ) def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" lowerCamelCase__ : Dict =os.O_RDWR | os.O_CREAT | os.O_TRUNC lowerCamelCase__ : int =os.open(self._lock_file , lowercase_ ) try: fcntl.flock(lowercase_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowercase_ ) else: lowerCamelCase__ : List[Any] =fd return None def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" lowerCamelCase__ : Tuple =self._lock_file_fd lowerCamelCase__ : int =None fcntl.flock(lowercase_ , fcntl.LOCK_UN ) os.close(lowercase_ ) return None class A_ ( UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : List[str] =os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowerCamelCase__ : Optional[Any] =os.open(self._lock_file , lowercase_ ) except OSError: pass else: lowerCamelCase__ : Any =fd return None def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" os.close(self._lock_file_fd ) lowerCamelCase__ : Dict =None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCAmelCase = None if msvcrt: lowerCAmelCase = WindowsFileLock elif fcntl: lowerCAmelCase = UnixFileLock else: lowerCAmelCase = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
126
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( UpperCamelCase__ , unittest.TestCase ): __lowercase = KandinskyVaaPipeline __lowercase = [ """image_embeds""", """negative_image_embeds""", ] __lowercase = ["""image_embeds""", """negative_image_embeds"""] __lowercase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowercase = False @property def UpperCAmelCase_ ( self :Optional[Any] )-> str: return 32 @property def UpperCAmelCase_ ( self :int )-> List[Any]: return 32 @property def UpperCAmelCase_ ( self :Optional[Any] )-> Dict: return self.time_input_dim @property def UpperCAmelCase_ ( self :Any )-> Union[str, Any]: return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self :Any )-> List[Any]: return 1_00 @property def UpperCAmelCase_ ( self :Union[str, Any] )-> Union[str, Any]: torch.manual_seed(0 ) A__ = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } A__ = UNetaDConditionModel(**lowercase_ ) return model @property def UpperCAmelCase_ ( self :Any )-> Optional[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase_ ( self :Dict )-> Union[str, Any]: torch.manual_seed(0 ) A__ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase_ ( self :Dict )-> Optional[Any]: A__ = self.dummy_unet A__ = self.dummy_movq A__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="linear" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowercase_ , ) A__ = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def UpperCAmelCase_ ( self :Dict , lowercase_ :int , lowercase_ :Union[str, Any]=0 )-> Dict: A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase_ ) if str(lowercase_ ).startswith("mps" ): A__ = torch.manual_seed(lowercase_ ) else: A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) A__ = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def UpperCAmelCase_ ( self :Optional[Any] )-> str: A__ = "cpu" A__ = self.get_dummy_components() A__ = self.pipeline_class(**lowercase_ ) A__ = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) A__ = pipe(**self.get_dummy_inputs(lowercase_ ) ) A__ = output.images A__ = pipe( **self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Dict )-> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self :Any )-> List[Any]: A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) A__ = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowercase_ ) A__ = KandinskyVaaPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) A__ = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) A__ = "red cat, 4k photo" A__ = torch.Generator(device="cuda" ).manual_seed(0 ) A__, A__ = pipe_prior( lowercase_ , generator=lowercase_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() A__ = torch.Generator(device="cuda" ).manual_seed(0 ) A__ = pipeline( image_embeds=lowercase_ , negative_image_embeds=lowercase_ , generator=lowercase_ , num_inference_steps=1_00 , output_type="np" , ) A__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ )
237
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class __magic_name__ ( __lowercase ): '''simple docstring''' @staticmethod @abstractmethod def _lowerCAmelCase ( _a ): """simple docstring""" raise NotImplementedError() @abstractmethod def _lowerCAmelCase ( self ): """simple docstring""" raise NotImplementedError()
350
"""simple docstring""" import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def a__ ( snake_case__ ) -> Tuple: if hor == 1_28: lowerCamelCase = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase = (32, 1_28, 2_56) lowerCamelCase = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: lowerCamelCase = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase = (32, 64, 1_28, 2_56) lowerCamelCase = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") lowerCamelCase = torch.load(F'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' ) lowerCamelCase = model.state_dict() lowerCamelCase = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_55_36, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } lowerCamelCase = UNetaDModel(**snake_case__ ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) lowerCamelCase = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase = state_dict.pop(snake_case__ ) hf_value_function.load_state_dict(snake_case__ ) torch.save(hf_value_function.state_dict() , F'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' ) with open(F'hub/hopper-medium-v2/unet/hor{hor}/config.json' , """w""" ) as f: json.dump(snake_case__ , snake_case__ ) def a__ ( ) -> Optional[int]: lowerCamelCase = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 1_28, 2_56), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_55_36, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } lowerCamelCase = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) lowerCamelCase = model lowerCamelCase = UNetaDModel(**snake_case__ ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) lowerCamelCase = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase = state_dict.pop(snake_case__ ) hf_value_function.load_state_dict(snake_case__ ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(snake_case__ , snake_case__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
168
0
'''simple docstring''' def _UpperCamelCase ( __A , __A ) -> Dict: '''simple docstring''' UpperCamelCase__ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCamelCase ( __A , __A , __A ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = 0 while b > 0: if b & 1: UpperCamelCase__ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
80
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } lowerCamelCase__ = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } lowerCamelCase__ = """▁""" class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] =VOCAB_FILES_NAMES __lowerCamelCase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Any =AlbertTokenizer def __init__( self : Tuple , __lowercase : Union[str, Any]=None , __lowercase : Optional[int]=None , __lowercase : int=True , __lowercase : Dict=True , __lowercase : str=False , __lowercase : str="[CLS]" , __lowercase : List[Any]="[SEP]" , __lowercase : Any="<unk>" , __lowercase : List[Any]="[SEP]" , __lowercase : List[Any]="<pad>" , __lowercase : Optional[Any]="[CLS]" , __lowercase : List[str]="[MASK]" , **__lowercase : str , ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a = ( AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase , normalized=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token ) super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , **__lowercase , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = False if not self.vocab_file else True def UpperCamelCase_ ( self : Dict , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : str , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Tuple , __lowercase : str , __lowercase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __a = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
302
0
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __UpperCAmelCase: """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=4 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.1 , snake_case__=True , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): '''simple docstring''' lowercase__ : Union[str, Any]= parent lowercase__ : List[str]= batch_size lowercase__ : List[str]= seq_length lowercase__ : int= is_training lowercase__ : Tuple= use_input_mask lowercase__ : Dict= use_token_type_ids lowercase__ : str= use_labels lowercase__ : Any= vocab_size lowercase__ : int= hidden_size lowercase__ : Optional[Any]= num_hidden_layers lowercase__ : Dict= num_attention_heads lowercase__ : Union[str, Any]= intermediate_multiple_size lowercase__ : Optional[Any]= hidden_act lowercase__ : Any= hidden_dropout lowercase__ : Union[str, Any]= attention_dropout lowercase__ : List[Any]= weight_tying lowercase__ : Any= max_position_embeddings lowercase__ : Optional[Any]= type_vocab_size lowercase__ : Dict= type_sequence_label_size lowercase__ : int= initializer_range lowercase__ : Optional[Any]= num_labels lowercase__ : int= num_choices lowercase__ : Optional[int]= scope def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : Optional[Any]= None if self.use_input_mask: lowercase__ : List[Any]= random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Optional[int]= None if self.use_labels: lowercase__ : Any= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : List[str]= self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self ): '''simple docstring''' return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__, lowercase__, lowercase__, lowercase__ : Optional[int]= self.prepare_config_and_inputs() lowercase__ : Tuple= True return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Optional[Any]= GPTNeoXJapaneseModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase__ : List[str]= model(_lowercase , attention_mask=_lowercase ) lowercase__ : Optional[int]= model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Optional[int]= True lowercase__ : Optional[Any]= GPTNeoXJapaneseModel(_lowercase ) model.to(_lowercase ) model.eval() lowercase__ : int= model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Optional[Any]= GPTNeoXJapaneseForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase__ : List[Any]= model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : str= True lowercase__ : int= GPTNeoXJapaneseForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() # first forward pass lowercase__ : Any= model(_lowercase , attention_mask=_lowercase , use_cache=_lowercase ) lowercase__ : Union[str, Any]= outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase__ : List[Any]= ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase__ : Tuple= ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase__ : Any= torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ : List[str]= torch.cat([input_mask, next_mask] , dim=-1 ) lowercase__ : Dict= model(_lowercase , attention_mask=_lowercase , output_hidden_states=_lowercase ) lowercase__ : Dict= output_from_no_past["hidden_states"][0] lowercase__ : List[Any]= model( _lowercase , attention_mask=_lowercase , past_key_values=_lowercase , output_hidden_states=_lowercase , )["hidden_states"][0] # select random slice lowercase__ : Union[str, Any]= ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ : int= output_from_no_past[:, -3:, random_slice_idx].detach() lowercase__ : str= output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1e-3 ) ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : int= self.prepare_config_and_inputs() lowercase__, lowercase__, lowercase__, lowercase__ : str= config_and_inputs lowercase__ : List[str]= {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () __lowerCamelCase = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () __lowerCamelCase = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Any= GPTNeoXJapaneseModelTester(self ) lowercase__ : Union[str, Any]= ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def UpperCAmelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__, lowercase__, lowercase__, lowercase__ : str= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__, lowercase__, lowercase__, lowercase__ : Tuple= self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self ): '''simple docstring''' # This regression test was failing with PyTorch < 1.3 lowercase__, lowercase__, lowercase__, lowercase__ : List[Any]= self.model_tester.prepare_config_and_inputs_for_decoder() lowercase__ : Any= None self.model_tester.create_and_check_model_as_decoder(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__, lowercase__, lowercase__, lowercase__ : Optional[int]= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Any= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowercase ) @slow def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[str]= "abeja/gpt-neox-japanese-2.7b" lowercase__ : List[str]= ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] lowercase__ : Tuple= [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] lowercase__ : List[Any]= GPTNeoXJapaneseTokenizer.from_pretrained(_lowercase ) lowercase__ : Optional[int]= GPTNeoXJapaneseForCausalLM.from_pretrained(_lowercase ) lowercase__ : str= [] for prompt in prompts: lowercase__ : Dict= tokenizer(_lowercase , return_tensors="pt" ).input_ids lowercase__ : Dict= model.generate(_lowercase , max_length=50 ) lowercase__ : Optional[Any]= tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) predicted_outputs += generated_string self.assertListEqual(_lowercase , _lowercase )
366
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger a : Any = get_logger(__name__) a : Any = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class __UpperCAmelCase: """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __UpperCAmelCase: """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' for processor in self: lowercase__ : Optional[Any]= inspect.signature(processor.__call__ ).parameters if len(snake_case__ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' F'''{processor.__class__} are passed to the logits processor.''' ) lowercase__ : Union[str, Any]= processor(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ) else: lowercase__ : Dict= processor(snake_case__ , snake_case__ , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' ) lowercase__ : Any= temperature def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : int= scores / self.temperature return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = -float("Inf" ) , snake_case__ = 1 ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(snake_case__ , snake_case__ ) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) lowercase__ : int= top_p lowercase__ : Optional[int]= filter_value lowercase__ : Tuple= min_tokens_to_keep def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__, lowercase__ : Dict= lax.top_k(snake_case__ , scores.shape[-1] ) lowercase__ : Optional[int]= jnp.full_like(snake_case__ , self.filter_value ) lowercase__ : Union[str, Any]= jax.nn.softmax(snake_case__ , axis=-1 ).cumsum(axis=-1 ) lowercase__ : str= cumulative_probs < self.top_p # include the token that is higher than top_p as well lowercase__ : str= jnp.roll(snake_case__ , 1 ) score_mask |= score_mask.at[:, 0].set(snake_case__ ) # min tokens to keep lowercase__ : Optional[int]= score_mask.at[:, : self.min_tokens_to_keep].set(snake_case__ ) lowercase__ : str= jnp.where(snake_case__ , snake_case__ , snake_case__ ) lowercase__ : str= jax.lax.sort_key_val(snake_case__ , snake_case__ )[-1] return next_scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = -float("Inf" ) , snake_case__ = 1 ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) lowercase__ : List[Any]= max(snake_case__ , snake_case__ ) lowercase__ : Dict= filter_value def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__, lowercase__ : Optional[Any]= scores.shape lowercase__ : int= jnp.full(batch_size * vocab_size , self.filter_value ) lowercase__ : Dict= min(self.top_k , scores.shape[-1] ) # Safety check lowercase__, lowercase__ : List[Any]= lax.top_k(snake_case__ , snake_case__ ) lowercase__ : Optional[int]= jnp.broadcast_to((jnp.arange(snake_case__ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() lowercase__ : str= topk_scores.flatten() lowercase__ : Any= topk_indices.flatten() + shift lowercase__ : Optional[Any]= next_scores_flat.at[topk_indices_flat].set(snake_case__ ) lowercase__ : str= next_scores_flat.reshape(snake_case__ , snake_case__ ) return next_scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' lowercase__ : Any= bos_token_id def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Any= jnp.full(scores.shape , -float("inf" ) ) lowercase__ : int= 1 - jnp.bool_(cur_len - 1 ) lowercase__ : int= jnp.where(snake_case__ , new_scores.at[:, self.bos_token_id].set(0 ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Tuple= max_length lowercase__ : str= eos_token_id def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : List[Any]= jnp.full(scores.shape , -float("inf" ) ) lowercase__ : Any= 1 - jnp.bool_(cur_len - self.max_length + 1 ) lowercase__ : Optional[int]= jnp.where(snake_case__ , new_scores.at[:, self.eos_token_id].set(0 ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(snake_case__ , snake_case__ ) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) lowercase__ : List[str]= min_length lowercase__ : Dict= eos_token_id def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' # create boolean flag to decide if min length penalty should be applied lowercase__ : Tuple= 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) lowercase__ : Dict= jnp.where(snake_case__ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Optional[Any]= list(snake_case__ ) lowercase__ : List[Any]= begin_index def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : str= 1 - jnp.bool_(cur_len - self.begin_index ) lowercase__ : str= jnp.where(snake_case__ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' lowercase__ : List[Any]= list(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Any= scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' lowercase__ : int= dict(snake_case__ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. lowercase__ : List[Any]= jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: lowercase__ : List[Any]= force_token_array.at[index].set(snake_case__ ) lowercase__ : int= jnp.intaa(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' def _force_token(snake_case__ ): lowercase__ : Dict= scores.shape[0] lowercase__ : Any= self.force_token_array[generation_idx] lowercase__ : List[Any]= jnp.ones_like(snake_case__ , dtype=scores.dtype ) * -float("inf" ) lowercase__ : List[Any]= jnp.zeros((batch_size, 1) , dtype=scores.dtype ) lowercase__ : List[str]= lax.dynamic_update_slice(snake_case__ , snake_case__ , (0, current_token) ) return new_scores lowercase__ : Dict= lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(snake_case__ ) , lambda: scores , ) , ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : str= generate_config.eos_token_id lowercase__ : Optional[int]= generate_config.no_timestamps_token_id lowercase__ : Dict= generate_config.no_timestamps_token_id + 1 lowercase__ : List[Any]= decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(snake_case__ , "max_initial_timestamp_index" ): lowercase__ : int= generate_config.max_initial_timestamp_index else: lowercase__ : Dict= model_config.vocab_size if self.max_initial_timestamp_index is None: lowercase__ : str= model_config.vocab_size def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' # suppress <|notimestamps|> which is handled by without_timestamps lowercase__ : int= scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(snake_case__ , snake_case__ ): lowercase__ : Union[str, Any]= jnp.where((cur_len - self.begin_index) >= 1 , snake_case__ , snake_case__ ) lowercase__ : Tuple= jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , snake_case__ , ) lowercase__ : int= jnp.where((cur_len - self.begin_index) < 2 , snake_case__ , snake_case__ ) lowercase__ : Optional[int]= jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , snake_case__ , snake_case__ , ) return jnp.where( snake_case__ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , snake_case__ , ) lowercase__ : List[str]= jax.vmap(snake_case__ )(snake_case__ , snake_case__ ) lowercase__ : str= jnp.where(cur_len == self.begin_index , snake_case__ , snake_case__ ) lowercase__ : List[Any]= jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , snake_case__ , ) lowercase__ : Any= self.timestamp_begin + self.max_initial_timestamp_index lowercase__ : str= jnp.where( snake_case__ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , snake_case__ , ) # if sum of probability over timestamps is above any other token, sample timestamp lowercase__ : str= jax.nn.log_softmax(snake_case__ , axis=-1 ) def handle_cumulative_probs(snake_case__ , snake_case__ ): lowercase__ : Dict= jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) lowercase__ : Union[str, Any]= jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , snake_case__ , ) lowercase__ : Optional[int]= jax.vmap(snake_case__ )(snake_case__ , snake_case__ ) return scores
150
0
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib a_ = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } a_ = logging.WARNING def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : str = os.getenv("DATASETS_VERBOSITY" , UpperCAmelCase_) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option DATASETS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys()) }") return _default_log_level def lowerCamelCase__ ( ): return __name__.split(".")[0] def lowerCamelCase__ ( ): return logging.getLogger(_get_library_name()) def lowerCamelCase__ ( ): # Apply our default configuration to the library root logger. SCREAMING_SNAKE_CASE : List[Any] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level()) def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Any = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET) def lowerCamelCase__ ( _a = None): if name is None: SCREAMING_SNAKE_CASE : Union[str, Any] = _get_library_name() return logging.getLogger(UpperCAmelCase_) def lowerCamelCase__ ( ): return _get_library_root_logger().getEffectiveLevel() def lowerCamelCase__ ( _a): _get_library_root_logger().setLevel(UpperCAmelCase_) def lowerCamelCase__ ( ): return set_verbosity(UpperCAmelCase_) def lowerCamelCase__ ( ): return set_verbosity(UpperCAmelCase_) def lowerCamelCase__ ( ): return set_verbosity(UpperCAmelCase_) def lowerCamelCase__ ( ): return set_verbosity(UpperCAmelCase_) def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : List[str] = False def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : List[Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _UpperCamelCase : '''simple docstring''' def __init__( self : List[Any] , *a : List[str] , **a : Any ) -> Any: # pylint: disable=unused-argument """simple docstring""" SCREAMING_SNAKE_CASE : str = args[0] if args else None def __iter__( self : Any ) -> str: """simple docstring""" return iter(self._iterator ) def __getattr__( self : Optional[Any] , a : Any ) -> Dict: """simple docstring""" def empty_fn(*a : Optional[Any] , **a : Optional[Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : int ) -> List[Any]: """simple docstring""" return self def __exit__( self : Optional[int] , a : List[Any] , a : Any , a : Union[str, Any] ) -> List[str]: """simple docstring""" return a_ = True class _UpperCamelCase : '''simple docstring''' def __call__( self : str , *a : int , a : str=False , **a : int ) -> str: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) else: return EmptyTqdm(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def __UpperCamelCase ( self : int , *a : int , **a : List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() a_ = _tqdm_cls() def lowerCamelCase__ ( ): global _tqdm_active return bool(_tqdm_active) def lowerCamelCase__ ( ): global _tqdm_active SCREAMING_SNAKE_CASE : Optional[int] = True def lowerCamelCase__ ( ): global _tqdm_active SCREAMING_SNAKE_CASE : Tuple = False
76
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: return f'gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy' def lowercase_ ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase_ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=(4, 4, 64, 64) , SCREAMING_SNAKE_CASE_=False ) -> str: __lowerCamelCase : List[str] = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase : Tuple = jnp.array(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) , dtype=SCREAMING_SNAKE_CASE_ ) return image def lowercase_ ( self , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="CompVis/stable-diffusion-v1-4" ) -> Dict: __lowerCamelCase : Union[str, Any] = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase : Optional[Any] = 'bf16' if fpaa else None __lowerCamelCase , __lowerCamelCase : str = FlaxUNetaDConditionModel.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='unet' , dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ ) return model, params def lowercase_ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=(4, 77, 7_68) , SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]: __lowerCamelCase : Any = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase : Optional[Any] = jnp.array(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) , dtype=SCREAMING_SNAKE_CASE_ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [17, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 10_00, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase , __lowerCamelCase : Tuple = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self.get_latents(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self.get_encoder_hidden_states(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = model.apply( {'params': params} , SCREAMING_SNAKE_CASE_ , jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa ) , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , ).sample assert sample.shape == latents.shape __lowerCamelCase : Any = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCamelCase : Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [17, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 10_00, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase : List[str] = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self.get_latents(SCREAMING_SNAKE_CASE_ , shape=(4, 4, 96, 96) , fpaa=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = self.get_encoder_hidden_states(SCREAMING_SNAKE_CASE_ , shape=(4, 77, 10_24) , fpaa=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = model.apply( {'params': params} , SCREAMING_SNAKE_CASE_ , jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa ) , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , ).sample assert sample.shape == latents.shape __lowerCamelCase : Optional[int] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCamelCase : Tuple = jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-2 )
185
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class __a (SCREAMING_SNAKE_CASE_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Dict = """switch_transformers""" _SCREAMING_SNAKE_CASE :int = ["""past_key_values"""] _SCREAMING_SNAKE_CASE :List[Any] = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , _a=32_128 , _a=768 , _a=64 , _a=2_048 , _a=64 , _a=12 , _a=3 , _a=12 , _a=3 , _a=12 , _a=8 , _a=False , _a=0.01 , _a="float32" , _a=False , _a=32 , _a=128 , _a=0.1 , _a=1E-6 , _a=0.001 , _a=0.001 , _a=1.0 , _a="relu" , _a=True , _a=False , _a=True , _a=0 , _a=1 , **_a , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = vocab_size SCREAMING_SNAKE_CASE__ : List[str] = d_model SCREAMING_SNAKE_CASE__ : List[Any] = d_kv SCREAMING_SNAKE_CASE__ : str = d_ff SCREAMING_SNAKE_CASE__ : str = num_sparse_encoder_layers SCREAMING_SNAKE_CASE__ : Any = num_layers SCREAMING_SNAKE_CASE__ : List[str] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry SCREAMING_SNAKE_CASE__ : Any = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: SCREAMING_SNAKE_CASE__ : List[str] = self.num_layers // self.num_sparse_encoder_layers else: SCREAMING_SNAKE_CASE__ : List[Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.num_decoder_layers # HACK: this will create 0 sparse layers SCREAMING_SNAKE_CASE__ : Tuple = num_heads SCREAMING_SNAKE_CASE__ : int = num_experts SCREAMING_SNAKE_CASE__ : Tuple = expert_capacity SCREAMING_SNAKE_CASE__ : List[str] = router_bias SCREAMING_SNAKE_CASE__ : Tuple = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = router_dtype SCREAMING_SNAKE_CASE__ : Dict = router_ignore_padding_tokens SCREAMING_SNAKE_CASE__ : Dict = relative_attention_num_buckets SCREAMING_SNAKE_CASE__ : Union[str, Any] = relative_attention_max_distance SCREAMING_SNAKE_CASE__ : Dict = dropout_rate SCREAMING_SNAKE_CASE__ : int = layer_norm_epsilon SCREAMING_SNAKE_CASE__ : str = initializer_factor SCREAMING_SNAKE_CASE__ : Optional[int] = feed_forward_proj SCREAMING_SNAKE_CASE__ : List[str] = use_cache SCREAMING_SNAKE_CASE__ : List[str] = add_router_probs SCREAMING_SNAKE_CASE__ : Optional[int] = router_z_loss_coef SCREAMING_SNAKE_CASE__ : Optional[int] = router_aux_loss_coef SCREAMING_SNAKE_CASE__ : List[Any] = self.feed_forward_proj.split("""-""" ) SCREAMING_SNAKE_CASE__ : str = act_info[-1] SCREAMING_SNAKE_CASE__ : Optional[Any] = act_info[0] == 'gated' if len(__a ) > 1 and act_info[0] != "gated" or len(__a ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """\'gated-gelu\' or \'relu\'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": SCREAMING_SNAKE_CASE__ : int = 'gelu_new' super().__init__( pad_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , **__a , )
350
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> bool: if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
56
0
from __future__ import annotations from scipy.special import comb # type: ignore class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) - 1 def A__ ( self , SCREAMING_SNAKE_CASE_ )-> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __UpperCamelCase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , SCREAMING_SNAKE_CASE_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(SCREAMING_SNAKE_CASE_ ) , 5 ) == 1 return output_values def A__ ( self , SCREAMING_SNAKE_CASE_ )-> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __UpperCamelCase = self.basis_function(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = 0.0 __UpperCamelCase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def A__ ( self , SCREAMING_SNAKE_CASE_ = 0.0_1 )-> str: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore __UpperCamelCase = [] # x coordinates of points to plot __UpperCamelCase = [] # y coordinates of points to plot __UpperCamelCase = 0.0 while t <= 1: __UpperCamelCase = self.bezier_curve_function(SCREAMING_SNAKE_CASE_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __UpperCamelCase = [i[0] for i in self.list_of_points] __UpperCamelCase = [i[1] for i in self.list_of_points] plt.plot( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
328
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase_ : def __init__( self , a , a , a , a , a , a=0.2 , a=0.2 ) -> Dict: lowercase__ : Any = bp_numa lowercase__ : Optional[int] = bp_numa lowercase__ : Tuple = bp_numa lowercase__ : Optional[Any] = conva_get[:2] lowercase__ : Optional[int] = conva_get[2] lowercase__ : Optional[Any] = size_pa lowercase__ : Union[str, Any] = rate_w lowercase__ : Union[str, Any] = rate_t lowercase__ : List[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase__ : Optional[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__ : Any = -2 * np.random.rand(self.conva[1] ) + 1 lowercase__ : int = -2 * np.random.rand(self.num_bpa ) + 1 lowercase__ : int = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCAmelCase ( self , a ) -> Union[str, Any]: # save model dict with pickle lowercase__ : Optional[Any] = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(a , 'wb' ) as f: pickle.dump(a , a ) print(f"""Model saved: {save_path}""" ) @classmethod def _UpperCAmelCase ( cls , a ) -> Any: # read saved model with open(a , 'rb' ) as f: lowercase__ : Optional[int] = pickle.load(a ) # noqa: S301 lowercase__ : Optional[int] = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowercase__ : List[Any] = model_dic.get('size_pooling1' ) lowercase__ : Tuple = model_dic.get('num_bp1' ) lowercase__ : int = model_dic.get('num_bp2' ) lowercase__ : int = model_dic.get('num_bp3' ) lowercase__ : Union[str, Any] = model_dic.get('rate_weight' ) lowercase__ : Tuple = model_dic.get('rate_thre' ) # create model instance lowercase__ : Tuple = CNN(a , a , a , a , a , a , a ) # modify model parameter lowercase__ : str = model_dic.get('w_conv1' ) lowercase__ : Optional[int] = model_dic.get('wkj' ) lowercase__ : Tuple = model_dic.get('vji' ) lowercase__ : str = model_dic.get('thre_conv1' ) lowercase__ : Union[str, Any] = model_dic.get('thre_bp2' ) lowercase__ : List[str] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCAmelCase ( self , a ) -> str: return 1 / (1 + np.exp(-1 * x )) def _UpperCAmelCase ( self , a ) -> Any: return round(a , 3 ) def _UpperCAmelCase ( self , a , a , a , a , a ) -> List[str]: # convolution process lowercase__ : int = convs[0] lowercase__ : Optional[Any] = convs[1] lowercase__ : int = np.shape(a )[0] # get the data slice of original image data, data_focus lowercase__ : Optional[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , a ): for j_focus in range(0 , size_data - size_conv + 1 , a ): lowercase__ : Optional[int] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(a ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase__ : Union[str, Any] = [] lowercase__ : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(a ): lowercase__ : Any = [] for i_focus in range(len(a ) ): lowercase__ : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(a ) ) lowercase__ : Optional[Any] = np.asmatrix(a ).reshape( a , a ) data_featuremap.append(a ) # expanding the data slice to One dimenssion lowercase__ : str = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(a ) ) lowercase__ : int = np.asarray(a ) return focus_list, data_featuremap def _UpperCAmelCase ( self , a , a , a="average_pool" ) -> str: # pooling process lowercase__ : List[str] = len(featuremaps[0] ) lowercase__ : List[str] = int(size_map / size_pooling ) lowercase__ : str = [] for i_map in range(len(a ) ): lowercase__ : List[str] = featuremaps[i_map] lowercase__ : Optional[int] = [] for i_focus in range(0 , a , a ): for j_focus in range(0 , a , a ): lowercase__ : List[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(a ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(a ) ) lowercase__ : List[Any] = np.asmatrix(a ).reshape(a , a ) featuremap_pooled.append(a ) return featuremap_pooled def _UpperCAmelCase ( self , a ) -> List[str]: # expanding three dimension data to one dimension list lowercase__ : Any = [] for i in range(len(a ) ): lowercase__ : Optional[int] = np.shape(data[i] ) lowercase__ : int = data[i].reshape(1 , shapes[0] * shapes[1] ) lowercase__ : str = data_listed.getA().tolist()[0] data_expanded.extend(a ) lowercase__ : int = np.asarray(a ) return data_expanded def _UpperCAmelCase ( self , a ) -> Dict: # expanding matrix to one dimension list lowercase__ : Dict = np.asarray(a ) lowercase__ : Union[str, Any] = np.shape(a ) lowercase__ : Optional[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _UpperCAmelCase ( self , a , a , a , a , a ) -> List[Any]: lowercase__ : Dict = [] lowercase__ : int = 0 for i_map in range(a ): lowercase__ : str = np.ones((size_map, size_map) ) for i in range(0 , a , a ): for j in range(0 , a , a ): lowercase__ : Optional[Any] = pd_pool[ i_pool ] lowercase__ : Union[str, Any] = i_pool + 1 lowercase__ : List[Any] = np.multiply( a , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(a ) return pd_all def _UpperCAmelCase ( self , a , a , a , a , a , a=bool ) -> str: # model traning print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(a )) ) print((' - - Shape: Teach_Data ', np.shape(a )) ) lowercase__ : int = 0 lowercase__ : List[Any] = [] lowercase__ : Union[str, Any] = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: lowercase__ : List[Any] = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(a ) ): # print('------------Learning Image: %d--------------'%p) lowercase__ : Optional[int] = np.asmatrix(datas_train[p] ) lowercase__ : int = np.asarray(datas_teach[p] ) lowercase__ , lowercase__ : Union[str, Any] = self.convolute( a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__ : Optional[Any] = self.pooling(a , self.size_poolinga ) lowercase__ : Tuple = np.shape(a ) lowercase__ : List[str] = self._expand(a ) lowercase__ : Optional[int] = data_bp_input lowercase__ : Optional[Any] = np.dot(a , self.vji.T ) - self.thre_bpa lowercase__ : str = self.sig(a ) lowercase__ : Tuple = np.dot(a , self.wkj.T ) - self.thre_bpa lowercase__ : Any = self.sig(a ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase__ : int = np.multiply( (data_teach - bp_outa) , np.multiply(a , (1 - bp_outa) ) ) lowercase__ : Any = np.multiply( np.dot(a , self.wkj ) , np.multiply(a , (1 - bp_outa) ) ) lowercase__ : Optional[int] = np.dot(a , self.vji ) lowercase__ : Union[str, Any] = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase__ : Any = pd_conva_pooled.T.getA().tolist() lowercase__ : List[str] = self._calculate_gradient_from_pool( a , a , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase__ : Optional[int] = self._expand_mat(pd_conva_all[k_conv] ) lowercase__ : Tuple = self.rate_weight * np.dot(a , a ) lowercase__ : Union[str, Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase__ : Any = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase__ : Tuple = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase__ : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase__ : Tuple = self.thre_bpa - pd_k_all * self.rate_thre lowercase__ : Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase__ : Dict = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase__ : str = rp + 1 lowercase__ : List[str] = error_count / patterns all_mse.append(a ) def draw_error(): lowercase__ : Any = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(a , '+-' ) plt.plot(a , 'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(a , alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _UpperCAmelCase ( self , a ) -> List[Any]: # model predict lowercase__ : Optional[int] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(a )) ) for p in range(len(a ) ): lowercase__ : List[str] = np.asmatrix(datas_test[p] ) lowercase__ , lowercase__ : Tuple = self.convolute( a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__ : Any = self.pooling(a , self.size_poolinga ) lowercase__ : Union[str, Any] = self._expand(a ) lowercase__ : Optional[Any] = data_bp_input lowercase__ : str = bp_outa * self.vji.T - self.thre_bpa lowercase__ : Optional[Any] = self.sig(a ) lowercase__ : Dict = bp_outa * self.wkj.T - self.thre_bpa lowercase__ : List[str] = self.sig(a ) produce_out.extend(bp_outa.getA().tolist() ) lowercase__ : Optional[int] = [list(map(self.do_round , a ) ) for each in produce_out] return np.asarray(a ) def _UpperCAmelCase ( self , a ) -> List[str]: # return the data of image after convoluting process so we can check it out lowercase__ : Any = np.asmatrix(a ) lowercase__ , lowercase__ : str = self.convolute( a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__ : Tuple = self.pooling(a , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
77
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __a = logging.get_logger(__name__) @add_end_docstrings( _UpperCamelCase , R'''\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ''' , ) class __a( _UpperCamelCase ): """simple docstring""" def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Any: if self.framework == "tf": UpperCAmelCase_ : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCAmelCase_ : Any = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=_UpperCAmelCase ) else: raise ValueError('''Unsupported framework''' ) return masked_index def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Optional[int]: UpperCAmelCase_ : int = self.get_masked_index(_UpperCAmelCase ) UpperCAmelCase_ : List[str] = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' ,self.model.base_model_prefix ,f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' ,) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Any: if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_UpperCAmelCase ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ,**_SCREAMING_SNAKE_CASE ) -> Any: if return_tensors is None: UpperCAmelCase_ : Union[str, Any] = self.framework UpperCAmelCase_ : Any = self.tokenizer(_UpperCAmelCase ,return_tensors=_UpperCAmelCase ) self.ensure_exactly_one_mask_token(_UpperCAmelCase ) return model_inputs def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = self.model(**_UpperCAmelCase ) UpperCAmelCase_ : Tuple = model_inputs['input_ids'] return model_outputs def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=5 ,_SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCAmelCase_ : List[str] = target_ids.shape[0] UpperCAmelCase_ : Dict = model_outputs['input_ids'][0] UpperCAmelCase_ : Optional[int] = model_outputs['logits'] if self.framework == "tf": UpperCAmelCase_ : int = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCAmelCase_ : List[str] = outputs.numpy() UpperCAmelCase_ : List[Any] = outputs[0, masked_index, :] UpperCAmelCase_ : Optional[Any] = stable_softmax(_UpperCAmelCase ,axis=-1 ) if target_ids is not None: UpperCAmelCase_ : Optional[int] = tf.gather_nd(tf.squeeze(_UpperCAmelCase ,0 ) ,target_ids.reshape(-1 ,1 ) ) UpperCAmelCase_ : str = tf.expand_dims(_UpperCAmelCase ,0 ) UpperCAmelCase_ : List[str] = tf.math.top_k(_UpperCAmelCase ,k=_UpperCAmelCase ) UpperCAmelCase_ : List[str] = topk.values.numpy(), topk.indices.numpy() else: UpperCAmelCase_ : Union[str, Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=_UpperCAmelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCAmelCase_ : List[str] = outputs[0, masked_index, :] UpperCAmelCase_ : int = logits.softmax(dim=-1 ) if target_ids is not None: UpperCAmelCase_ : List[str] = probs[..., target_ids] UpperCAmelCase_ : Union[str, Any] = probs.topk(_UpperCAmelCase ) UpperCAmelCase_ : str = [] UpperCAmelCase_ : Union[str, Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): UpperCAmelCase_ : Tuple = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place UpperCAmelCase_ : Optional[int] = input_ids.numpy().copy() if target_ids is not None: UpperCAmelCase_ : Dict = target_ids[p].tolist() UpperCAmelCase_ : Optional[Any] = p # Filter padding out: UpperCAmelCase_ : int = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCAmelCase_ : int = self.tokenizer.decode(_UpperCAmelCase ,skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ : Union[str, Any] = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) if single_mask: return result[0] return result def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ) -> Optional[int]: if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): UpperCAmelCase_ : Dict = [targets] try: UpperCAmelCase_ : str = self.tokenizer.get_vocab() except Exception: UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : Optional[int] = [] for target in targets: UpperCAmelCase_ : Tuple = vocab.get(_UpperCAmelCase ,_UpperCAmelCase ) if id_ is None: UpperCAmelCase_ : List[Any] = self.tokenizer( _UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ,return_attention_mask=_UpperCAmelCase ,return_token_type_ids=_UpperCAmelCase ,max_length=1 ,truncation=_UpperCAmelCase ,)['input_ids'] if len(_UpperCAmelCase ) == 0: logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' '''We cannot replace it with anything meaningful, ignoring it''' ) continue UpperCAmelCase_ : int = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) UpperCAmelCase_ : Tuple = list(set(_UpperCAmelCase ) ) if len(_UpperCAmelCase ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) UpperCAmelCase_ : Optional[int] = np.array(_UpperCAmelCase ) return target_ids def a__ ( self ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ) -> str: UpperCAmelCase_ : Dict = {} if targets is not None: UpperCAmelCase_ : Dict = self.get_target_ids(_UpperCAmelCase ,_UpperCAmelCase ) UpperCAmelCase_ : Optional[int] = target_ids if top_k is not None: UpperCAmelCase_ : Optional[Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' ,self.model.base_model_prefix ,'''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self ,_SCREAMING_SNAKE_CASE ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : List[str] = super().__call__(_UpperCAmelCase ,**_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and len(_UpperCAmelCase ) == 1: return outputs[0] return outputs
369
from collections import defaultdict def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = first_str.lower().strip() UpperCAmelCase_ : Any = second_str.lower().strip() # Remove whitespace UpperCAmelCase_ : Any = first_str.replace(''' ''' , '''''' ) UpperCAmelCase_ : int = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(_lowercase ) != len(_lowercase ): return False # Default values for count should be 0 UpperCAmelCase_ : defaultdict[str, int] = defaultdict(_lowercase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_lowercase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __a = input('Enter the first string ').strip() __a = input('Enter the second string ').strip() __a = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
235
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowerCamelCase : Dict = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') __lowerCamelCase : Dict = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __lowerCamelCase : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _snake_case ( lowerCAmelCase : str ): """simple docstring""" with open(lowerCAmelCase , "rb" ) as f: SCREAMING_SNAKE_CASE_ : Union[str, Any] = Image.open(lowerCAmelCase ) return im.convert("RGB" ) @dataclass class a__ : A = field( default=A__ , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) A = field( default=A__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) A = field(default=A__ , metadata={'help': 'A folder containing the training data.'} ) A = field(default=A__ , metadata={'help': 'A folder containing the validation data.'} ) A = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) A = field( default=A__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) A = field( default=A__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class a__ : A = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) A = field( default=A__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(A__ )} , ) A = field( default=A__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A = field( default=A__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) A = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) A = field(default=A__ , metadata={'help': 'Name or path of preprocessor config.'} ) A = field( default=A__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) A = field( default=A__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _snake_case ( lowerCAmelCase : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = torch.stack([example["pixel_values"] for example in examples] ) SCREAMING_SNAKE_CASE_ : str = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , lowerCAmelCase , lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ : Any = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase ) transformers.utils.logging.set_verbosity(lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE_ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE_ : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: SCREAMING_SNAKE_CASE_ : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: SCREAMING_SNAKE_CASE_ : str = {} if data_args.train_dir is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: SCREAMING_SNAKE_CASE_ : int = os.path.join(data_args.validation_dir , "**" ) SCREAMING_SNAKE_CASE_ : Dict = load_dataset( "imagefolder" , data_files=lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE_ : Optional[Any] = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCAmelCase ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE_ : str = dataset["train"].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE_ : str = split["train"] SCREAMING_SNAKE_CASE_ : List[Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. SCREAMING_SNAKE_CASE_ : Any = dataset["train"].features["labels"].names SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = {}, {} for i, label in enumerate(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = str(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = label # Load the accuracy metric from the datasets package SCREAMING_SNAKE_CASE_ : Tuple = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase : Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) SCREAMING_SNAKE_CASE_ : str = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase ) , labelaid=lowerCAmelCase , idalabel=lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE_ : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) SCREAMING_SNAKE_CASE_ : List[str] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: SCREAMING_SNAKE_CASE_ : Tuple = image_processor.size["shortest_edge"] else: SCREAMING_SNAKE_CASE_ : List[str] = (image_processor.size["height"], image_processor.size["width"]) SCREAMING_SNAKE_CASE_ : List[str] = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) SCREAMING_SNAKE_CASE_ : Dict = Compose( [ RandomResizedCrop(lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = Compose( [ Resize(lowerCAmelCase ), CenterCrop(lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ : str = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ : int = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE_ : List[str] = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE_ : List[Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowerCAmelCase ) # Initalize our trainer SCREAMING_SNAKE_CASE_ : Dict = Trainer( model=lowerCAmelCase , args=lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=lowerCAmelCase , tokenizer=lowerCAmelCase , data_collator=lowerCAmelCase , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE_ : List[Any] = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE_ : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE_ : List[Any] = last_checkpoint SCREAMING_SNAKE_CASE_ : Any = trainer.train(resume_from_checkpoint=lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE_ : int = trainer.evaluate() trainer.log_metrics("eval" , lowerCAmelCase ) trainer.save_metrics("eval" , lowerCAmelCase ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE_ : Optional[int] = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase ) else: trainer.create_model_card(**lowerCAmelCase ) if __name__ == "__main__": main()
18
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) a_ : str = _symbol_database.Default() a_ : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( B"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) a_ : List[Any] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: a_ : List[str] = None a_ : Tuple = B"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" a_ : Optional[int] = 4_5 a_ : Union[str, Any] = 1_5_8_1 a_ : List[Any] = 1_5_1_7 a_ : str = 1_5_7_0 a_ : List[Any] = 1_5_8_4 a_ : str = 1_7_9_3 a_ : List[str] = 1_7_9_5 a_ : Any = 1_9_1_6 a_ : List[str] = 1_8_6_4 a_ : Optional[Any] = 1_9_0_5 a_ : int = 1_9_1_9 a_ : int = 2_4_2_9 a_ : Dict = 2_2_0_8 a_ : Any = 2_4_1_8 a_ : Union[str, Any] = 2_3_2_3 a_ : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
168
0
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : List[str] =16 lowerCAmelCase : Optional[Any] =32 def UpperCAmelCase_ ( __lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any] = 16 ): lowercase_ :List[str] = AutoTokenizer.from_pretrained("bert-base-cased" ) lowercase_ :Tuple = load_dataset("glue" ,"mrpc" ) def tokenize_function(__lowerCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) lowercase_ :List[str] = tokenizer(examples["sentence1"] ,examples["sentence2"] ,truncation=__lowerCamelCase ,max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase_ :Any = datasets.map( __lowerCamelCase ,batched=__lowerCamelCase ,remove_columns=["idx", "sentence1", "sentence2"] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase_ :Union[str, Any] = tokenized_datasets.rename_column("label" ,"labels" ) def collate_fn(__lowerCamelCase : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase_ :List[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase_ :int = 16 elif accelerator.mixed_precision != "no": lowercase_ :List[Any] = 8 else: lowercase_ :Optional[int] = None return tokenizer.pad( __lowerCamelCase ,padding="longest" ,max_length=__lowerCamelCase ,pad_to_multiple_of=__lowerCamelCase ,return_tensors="pt" ,) # Instantiate dataloaders. lowercase_ :Optional[Any] = DataLoader( tokenized_datasets["train"] ,shuffle=__lowerCamelCase ,collate_fn=__lowerCamelCase ,batch_size=__lowerCamelCase ) lowercase_ :List[str] = DataLoader( tokenized_datasets["validation"] ,shuffle=__lowerCamelCase ,collate_fn=__lowerCamelCase ,batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase : Tuple =mocked_dataloaders # noqa: F811 def UpperCAmelCase_ ( __lowerCamelCase : Optional[Any] ,__lowerCamelCase : Dict ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" ,__lowerCamelCase ) == "1": lowercase_ :List[str] = 2 # Initialize accelerator lowercase_ :Any = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase_ :Tuple = config["lr"] lowercase_ :Dict = int(config["num_epochs"] ) lowercase_ :Any = int(config["seed"] ) lowercase_ :List[str] = int(config["batch_size"] ) lowercase_ :str = evaluate.load("glue" ,"mrpc" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase : Any ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase_ :int = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" ,return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase_ :str = model.to(accelerator.device ) # Instantiate optimizer lowercase_ :Union[str, Any] = AdamW(params=model.parameters() ,lr=__lowerCamelCase ) lowercase_ , lowercase_ :Union[str, Any] = get_dataloaders(__lowerCamelCase ,__lowerCamelCase ) # Instantiate scheduler lowercase_ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase ,num_warmup_steps=1_00 ,num_training_steps=(len(__lowerCamelCase ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ :Union[str, Any] = accelerator.prepare( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase_ :str = model(**__lowerCamelCase ) lowercase_ :Tuple = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase_ :Any = model(**__lowerCamelCase ) lowercase_ :str = outputs.logits.argmax(dim=-1 ) lowercase_ , lowercase_ :Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__lowerCamelCase ,references=__lowerCamelCase ,) lowercase_ :List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' ,__lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCAmelCase_ ( ): lowercase_ :Optional[int] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" ,type=__lowerCamelCase ,default=__lowerCamelCase ,choices=["no", "fp16", "bf16", "fp8"] ,help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ,) parser.add_argument("--cpu" ,action="store_true" ,help="If passed, will train on the CPU." ) lowercase_ :Tuple = parser.parse_args() lowercase_ :Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(__lowerCamelCase ,__lowerCamelCase ) if __name__ == "__main__": main()
358
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a_ ( _lowerCAmelCase ): __A = (UniPCMultistepScheduler,) __A = (("num_inference_steps", 25),) def lowercase__ ( self : Tuple , **lowercase : Optional[Any] ): """simple docstring""" lowercase_ :Any = { "num_train_timesteps": 1_000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**lowercase ) return config def lowercase__ ( self : Optional[Any] , lowercase : str=0 , **lowercase : Union[str, Any] ): """simple docstring""" lowercase_ :Tuple = dict(self.forward_default_kwargs ) lowercase_ :Tuple = kwargs.pop("num_inference_steps" , lowercase ) lowercase_ :Union[str, Any] = self.dummy_sample lowercase_ :Union[str, Any] = 0.1 * sample lowercase_ :Any = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase_ :Tuple = self.get_scheduler_config(**lowercase ) lowercase_ :Tuple = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals lowercase_ :str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) lowercase_ :str = scheduler_class.from_pretrained(lowercase ) new_scheduler.set_timesteps(lowercase ) # copy over dummy past residuals lowercase_ :List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase_ , lowercase_ :Tuple = sample, sample for t in range(lowercase , time_step + scheduler.config.solver_order + 1 ): lowercase_ :Optional[int] = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample lowercase_ :Union[str, Any] = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self : str , lowercase : Any=0 , **lowercase : str ): """simple docstring""" lowercase_ :Tuple = dict(self.forward_default_kwargs ) lowercase_ :Dict = kwargs.pop("num_inference_steps" , lowercase ) lowercase_ :str = self.dummy_sample lowercase_ :Optional[int] = 0.1 * sample lowercase_ :Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase_ :Any = self.get_scheduler_config() lowercase_ :Tuple = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals (must be after setting timesteps) lowercase_ :str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) lowercase_ :int = scheduler_class.from_pretrained(lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase ) # copy over dummy past residual (must be after setting timesteps) lowercase_ :Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase_ :Dict = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample lowercase_ :str = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self : List[str] , lowercase : Optional[int]=None , **lowercase : int ): """simple docstring""" if scheduler is None: lowercase_ :int = self.scheduler_classes[0] lowercase_ :Optional[Any] = self.get_scheduler_config(**lowercase ) lowercase_ :Optional[Any] = scheduler_class(**lowercase ) lowercase_ :str = self.scheduler_classes[0] lowercase_ :Optional[int] = self.get_scheduler_config(**lowercase ) lowercase_ :List[Any] = scheduler_class(**lowercase ) lowercase_ :str = 10 lowercase_ :List[str] = self.dummy_model() lowercase_ :Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.timesteps ): lowercase_ :int = model(lowercase , lowercase ) lowercase_ :Dict = scheduler.step(lowercase , lowercase , lowercase ).prev_sample return sample def lowercase__ ( self : int ): """simple docstring""" lowercase_ :str = dict(self.forward_default_kwargs ) lowercase_ :Union[str, Any] = kwargs.pop("num_inference_steps" , lowercase ) for scheduler_class in self.scheduler_classes: lowercase_ :Optional[Any] = self.get_scheduler_config() lowercase_ :Optional[int] = scheduler_class(**lowercase ) lowercase_ :Union[str, Any] = self.dummy_sample lowercase_ :str = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase , "set_timesteps" ): scheduler.set_timesteps(lowercase ) elif num_inference_steps is not None and not hasattr(lowercase , "set_timesteps" ): lowercase_ :str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase_ :Dict = [residual + 0.2, residual + 0.15, residual + 0.10] lowercase_ :Any = dummy_past_residuals[: scheduler.config.solver_order] lowercase_ :Optional[int] = scheduler.timesteps[5] lowercase_ :List[Any] = scheduler.timesteps[6] lowercase_ :Optional[Any] = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample lowercase_ :List[str] = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :List[Any] = UniPCMultistepScheduler(**self.get_scheduler_config() ) lowercase_ :Dict = self.full_loop(scheduler=lowercase ) lowercase_ :List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 lowercase_ :List[str] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowercase_ :Tuple = DEISMultistepScheduler.from_config(scheduler.config ) lowercase_ :Optional[int] = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowercase_ :Tuple = UniPCMultistepScheduler.from_config(scheduler.config ) lowercase_ :Tuple = self.full_loop(scheduler=lowercase ) lowercase_ :Tuple = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 def lowercase__ ( self : Tuple ): """simple docstring""" for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=lowercase ) def lowercase__ ( self : int ): """simple docstring""" self.check_over_configs(thresholding=lowercase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase , prediction_type=lowercase , sample_max_value=lowercase , solver_order=lowercase , solver_type=lowercase , ) def lowercase__ ( self : List[str] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase ) def lowercase__ ( self : Optional[int] ): """simple docstring""" for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , ) lowercase_ :Tuple = self.full_loop( solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , ) assert not torch.isnan(lowercase ).any(), "Samples have nan numbers" def lowercase__ ( self : List[Any] ): """simple docstring""" self.check_over_configs(lower_order_final=lowercase ) self.check_over_configs(lower_order_final=lowercase ) def lowercase__ ( self : Tuple ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=lowercase , time_step=0 ) def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :List[str] = self.full_loop() lowercase_ :List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :Dict = self.full_loop(prediction_type="v_prediction" ) lowercase_ :Any = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.10_14 ) < 1e-3 def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :Union[str, Any] = self.scheduler_classes[0] lowercase_ :str = self.get_scheduler_config(thresholding=lowercase , dynamic_thresholding_ratio=0 ) lowercase_ :Tuple = scheduler_class(**lowercase ) lowercase_ :Optional[int] = 10 lowercase_ :Optional[int] = self.dummy_model() lowercase_ :Any = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.timesteps ): lowercase_ :Tuple = model(lowercase , lowercase ) lowercase_ :Any = scheduler.step(lowercase , lowercase , lowercase ).prev_sample assert sample.dtype == torch.floataa def lowercase__ ( self : List[Any] , **lowercase : Union[str, Any] ): """simple docstring""" for scheduler_class in self.scheduler_classes: lowercase_ :Optional[int] = self.get_scheduler_config(**lowercase ) lowercase_ :Dict = scheduler_class(**lowercase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
147
0
"""simple docstring""" import baseaa def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return baseaa.aaadecode(_UpperCamelCase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
57
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase__ ( _UpperCamelCase : Any="ro" , _UpperCamelCase : Optional[Any]="en" , _UpperCamelCase : Any="wmt16" , _UpperCamelCase : Tuple=None ) -> None: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) snake_case = f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) snake_case = datasets.load_dataset(_UpperCamelCase , _UpperCamelCase ) if save_dir is None: snake_case = f"""{dataset}-{pair}""" snake_case = Path(_UpperCamelCase ) save_dir.mkdir(exist_ok=_UpperCamelCase ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets snake_case = 'val' if split == 'validation' else split snake_case = save_dir.joinpath(f"""{fn}.source""" ) snake_case = save_dir.joinpath(f"""{fn}.target""" ) snake_case = src_path.open('w+' ) snake_case = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): snake_case = x['translation'] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
150
0
from __future__ import annotations import pandas as pd def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : list[int] , __UpperCamelCase : int ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [0] * no_of_processes SCREAMING_SNAKE_CASE__ = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = burst_time[i] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 9_99_99_99_99 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False # Process until all processes are completed while complete != no_of_processes: for j in range(__UpperCamelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: SCREAMING_SNAKE_CASE__ = remaining_time[j] SCREAMING_SNAKE_CASE__ = j SCREAMING_SNAKE_CASE__ = True if not check: increment_time += 1 continue remaining_time[short] -= 1 SCREAMING_SNAKE_CASE__ = remaining_time[short] if minm == 0: SCREAMING_SNAKE_CASE__ = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 SCREAMING_SNAKE_CASE__ = False # Find finish time of current process SCREAMING_SNAKE_CASE__ = increment_time + 1 # Calculate waiting time SCREAMING_SNAKE_CASE__ = finish_time - arrival_time[short] SCREAMING_SNAKE_CASE__ = finar - burst_time[short] if waiting_time[short] < 0: SCREAMING_SNAKE_CASE__ = 0 # Increment time increment_time += 1 return waiting_time def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : int , __UpperCamelCase : list[int] ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [0] * no_of_processes for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = burst_time[i] + waiting_time[i] return turn_around_time def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : list[int] , __UpperCamelCase : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = total_waiting_time + waiting_time[i] SCREAMING_SNAKE_CASE__ = total_turn_around_time + turn_around_time[i] print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print("""Average turn around time =""" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') __lowerCamelCase : int = int(input()) __lowerCamelCase : Optional[Any] = [0] * no_of_processes __lowerCamelCase : List[Any] = [0] * no_of_processes __lowerCamelCase : Tuple = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) __lowerCamelCase , __lowerCamelCase : Optional[Any] = map(int, input().split()) __lowerCamelCase : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCamelCase : int = burst_time __lowerCamelCase : str = no_of_processes __lowerCamelCase : List[str] = waiting_time __lowerCamelCase : List[Any] = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) __lowerCamelCase : Optional[int] = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
204
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = ["input_features", "attention_mask"] def __init__( self : int , _lowercase : Dict=80 , _lowercase : Union[str, Any]=1_60_00 , _lowercase : str=0.0 , _lowercase : int=10 , _lowercase : str=25 , _lowercase : Union[str, Any]="hamming_window" , _lowercase : Dict=3_27_68.0 , _lowercase : Optional[int]=0.97 , _lowercase : Optional[int]=1.0 , _lowercase : int=True , _lowercase : Union[str, Any]=True , _lowercase : Optional[int]=False , **_lowercase : Union[str, Any] , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ = feature_size SCREAMING_SNAKE_CASE__ = sampling_rate SCREAMING_SNAKE_CASE__ = padding_value SCREAMING_SNAKE_CASE__ = hop_length SCREAMING_SNAKE_CASE__ = win_length SCREAMING_SNAKE_CASE__ = frame_signal_scale SCREAMING_SNAKE_CASE__ = preemphasis_coeff SCREAMING_SNAKE_CASE__ = mel_floor SCREAMING_SNAKE_CASE__ = normalize_means SCREAMING_SNAKE_CASE__ = normalize_vars SCREAMING_SNAKE_CASE__ = win_function SCREAMING_SNAKE_CASE__ = return_attention_mask SCREAMING_SNAKE_CASE__ = win_length * sampling_rate // 10_00 SCREAMING_SNAKE_CASE__ = hop_length * sampling_rate // 10_00 SCREAMING_SNAKE_CASE__ = optimal_fft_length(self.sample_size ) SCREAMING_SNAKE_CASE__ = (self.n_fft // 2) + 1 def __a ( self : str , _lowercase : np.array ): """simple docstring""" if self.win_function == "hamming_window": SCREAMING_SNAKE_CASE__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=_lowercase ) else: SCREAMING_SNAKE_CASE__ = window_function(window_length=self.sample_size , name=self.win_function ) SCREAMING_SNAKE_CASE__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) SCREAMING_SNAKE_CASE__ = spectrogram( one_waveform * self.frame_signal_scale , window=_lowercase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_lowercase , preemphasis=self.preemphasis_coeff , mel_filters=_lowercase , mel_floor=self.mel_floor , log_mel="""log""" , ) return msfc_features.T def __a ( self : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[int] , _lowercase : int ): """simple docstring""" if self.normalize_means: SCREAMING_SNAKE_CASE__ = x[:input_length].mean(axis=0 ) SCREAMING_SNAKE_CASE__ = np.subtract(_lowercase , _lowercase ) if self.normalize_vars: SCREAMING_SNAKE_CASE__ = x[:input_length].std(axis=0 ) SCREAMING_SNAKE_CASE__ = np.divide(_lowercase , _lowercase ) if input_length < x.shape[0]: SCREAMING_SNAKE_CASE__ = padding_value # make sure array is in float32 SCREAMING_SNAKE_CASE__ = x.astype(np.floataa ) return x def __a ( self : int , _lowercase : List[np.ndarray] , _lowercase : Optional[np.ndarray] = None ): """simple docstring""" SCREAMING_SNAKE_CASE__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_lowercase , _lowercase , self.padding_value ) for x, n in zip(_lowercase , _lowercase )] def __call__( self : Dict , _lowercase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _lowercase : Union[bool, str, PaddingStrategy] = False , _lowercase : Optional[int] = None , _lowercase : bool = False , _lowercase : Optional[int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[int] = None , **_lowercase : List[str] , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) SCREAMING_SNAKE_CASE__ = isinstance(_lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) SCREAMING_SNAKE_CASE__ = is_batched_numpy or ( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE__ = [np.asarray(_lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowercase , np.ndarray ): SCREAMING_SNAKE_CASE__ = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE__ = [raw_speech] # extract fbank features SCREAMING_SNAKE_CASE__ = [self._extract_mfsc_features(_lowercase ) for one_waveform in raw_speech] # convert into correct format for padding SCREAMING_SNAKE_CASE__ = BatchFeature({"""input_features""": features} ) SCREAMING_SNAKE_CASE__ = self.pad( _lowercase , padding=_lowercase , max_length=_lowercase , truncation=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) # make sure list is in array format SCREAMING_SNAKE_CASE__ = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , _lowercase ): SCREAMING_SNAKE_CASE__ = [np.asarray(_lowercase , dtype=np.floataa ) for feature in input_features] SCREAMING_SNAKE_CASE__ = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: SCREAMING_SNAKE_CASE__ = [np.asarray(_lowercase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: SCREAMING_SNAKE_CASE__ = ( np.array(_lowercase , dtype=np.intaa ) if self._get_padding_strategies(_lowercase , max_length=_lowercase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) SCREAMING_SNAKE_CASE__ = self.normalize( padded_inputs["""input_features"""] , attention_mask=_lowercase ) if return_tensors is not None: SCREAMING_SNAKE_CASE__ = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
204
1
'''simple docstring''' def __magic_name__ ( ) -> Tuple: '''simple docstring''' snake_case_ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] snake_case_ = 6 snake_case_ = 1 snake_case_ = 1901 snake_case_ = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 snake_case_ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 snake_case_ = day - 29 else: if day > days_per_month[month - 1]: month += 1 snake_case_ = day - days_per_month[month - 2] if month > 12: year += 1 snake_case_ = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
56
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a : int = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' config.addinivalue_line( '''markers''', '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''', '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''', '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''', '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''', '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''', '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main snake_case_ = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__UpperCAmelCase, id=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if exitstatus == 5: snake_case_ = 0 # Doctest custom flag to ignore output. a : Union[str, Any] = doctest.register_optionflag('IGNORE_RESULT') a : Optional[int] = doctest.OutputChecker class a ( _lowerCamelCase ): def A_ ( self : List[Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Optional[int] ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowercase_ , lowercase_ , lowercase_ ) a : List[Any] = CustomOutputChecker a : Optional[int] = HfDoctestModule a : Tuple = HfDocTestParser
56
1
import argparse from collections import defaultdict import yaml _SCREAMING_SNAKE_CASE : Optional[int] = '''docs/source/en/_toctree.yml''' def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = defaultdict(_A ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(_A ) SCREAMING_SNAKE_CASE__ = new_doc_list SCREAMING_SNAKE_CASE__ = [key for key, value in counts.items() if value > 1] SCREAMING_SNAKE_CASE__ = [] for duplicate_key in duplicates: SCREAMING_SNAKE_CASE__ = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(_A ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) SCREAMING_SNAKE_CASE__ = sorted(_A , key=lambda _A : s["title"].lower() ) # "overview" gets special treatment and is always first if len(_A ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(_A ) # Sort return overview_doc def UpperCAmelCase_ ( _A=False ): '''simple docstring''' with open(_A , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE__ = yaml.safe_load(f.read() ) # Get to the API doc SCREAMING_SNAKE_CASE__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 SCREAMING_SNAKE_CASE__ = content[api_idx]['''sections'''] # Then to the model doc SCREAMING_SNAKE_CASE__ = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 SCREAMING_SNAKE_CASE__ = api_doc[scheduler_idx]['''sections'''] SCREAMING_SNAKE_CASE__ = clean_doc_toc(_A ) SCREAMING_SNAKE_CASE__ = False if new_scheduler_doc != scheduler_doc: SCREAMING_SNAKE_CASE__ = True if overwrite: SCREAMING_SNAKE_CASE__ = new_scheduler_doc if diff: if overwrite: SCREAMING_SNAKE_CASE__ = api_doc with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(_A , allow_unicode=_A ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def UpperCAmelCase_ ( _A=False ): '''simple docstring''' with open(_A , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE__ = yaml.safe_load(f.read() ) # Get to the API doc SCREAMING_SNAKE_CASE__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 SCREAMING_SNAKE_CASE__ = content[api_idx]['''sections'''] # Then to the model doc SCREAMING_SNAKE_CASE__ = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = api_doc[pipeline_idx]['''sections'''] SCREAMING_SNAKE_CASE__ = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: SCREAMING_SNAKE_CASE__ = pipeline_doc['''section'''] SCREAMING_SNAKE_CASE__ = clean_doc_toc(_A ) if overwrite: SCREAMING_SNAKE_CASE__ = new_sub_pipeline_doc new_pipeline_docs.append(_A ) # sort overall pipeline doc SCREAMING_SNAKE_CASE__ = clean_doc_toc(_A ) if new_pipeline_docs != pipeline_docs: SCREAMING_SNAKE_CASE__ = True if overwrite: SCREAMING_SNAKE_CASE__ = new_pipeline_docs if diff: if overwrite: SCREAMING_SNAKE_CASE__ = api_doc with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(_A , allow_unicode=_A ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
218
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _SCREAMING_SNAKE_CASE : str = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _SCREAMING_SNAKE_CASE : Dict = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _SCREAMING_SNAKE_CASE : int = { '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _SCREAMING_SNAKE_CASE : int = { '''num_train_timesteps''': 40, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } _SCREAMING_SNAKE_CASE : str = { '''num_train_timesteps''': 201, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } _SCREAMING_SNAKE_CASE : Tuple = { '''num_train_timesteps''': 151, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } def UpperCAmelCase_ ( _A ): '''simple docstring''' if isinstance(_A , _A ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def UpperCAmelCase_ ( _A , _A , _A , _A , _A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.skip_connection.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def UpperCAmelCase_ ( _A , _A , _A , _A , _A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.norm.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.norm.bias'''] SCREAMING_SNAKE_CASE__ = weight_q.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = bias_q.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = weight_k.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = bias_k.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = weight_v.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = bias_v.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.load(_A , map_location='''cpu''' ) SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = checkpoint['''time_embed.0.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint['''time_embed.0.bias'''] SCREAMING_SNAKE_CASE__ = checkpoint['''time_embed.2.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: SCREAMING_SNAKE_CASE__ = checkpoint['''label_emb.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint['''input_blocks.0.0.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint['''input_blocks.0.0.bias'''] SCREAMING_SNAKE_CASE__ = unet_config['''down_block_types'''] SCREAMING_SNAKE_CASE__ = unet_config['''layers_per_block'''] SCREAMING_SNAKE_CASE__ = unet_config['''attention_head_dim'''] SCREAMING_SNAKE_CASE__ = unet_config['''block_out_channels'''] SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = channels_list[0] for i, layer_type in enumerate(_A ): SCREAMING_SNAKE_CASE__ = channels_list[i] SCREAMING_SNAKE_CASE__ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_A ): SCREAMING_SNAKE_CASE__ = F'''down_blocks.{i}.resnets.{j}''' SCREAMING_SNAKE_CASE__ = F'''input_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE__ = True if j == 0 and downsample_block_has_skip else False SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A , has_skip=_A ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_A ): SCREAMING_SNAKE_CASE__ = F'''down_blocks.{i}.resnets.{j}''' SCREAMING_SNAKE_CASE__ = F'''input_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE__ = True if j == 0 and downsample_block_has_skip else False SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A , has_skip=_A ) SCREAMING_SNAKE_CASE__ = F'''down_blocks.{i}.attentions.{j}''' SCREAMING_SNAKE_CASE__ = F'''input_blocks.{current_layer}.1''' SCREAMING_SNAKE_CASE__ = convert_attention( _A , _A , _A , _A , _A ) current_layer += 1 if i != len(_A ) - 1: SCREAMING_SNAKE_CASE__ = F'''down_blocks.{i}.downsamplers.0''' SCREAMING_SNAKE_CASE__ = F'''input_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A ) current_layer += 1 SCREAMING_SNAKE_CASE__ = current_channels # hardcoded the mid-block for now SCREAMING_SNAKE_CASE__ = '''mid_block.resnets.0''' SCREAMING_SNAKE_CASE__ = '''middle_block.0''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A ) SCREAMING_SNAKE_CASE__ = '''mid_block.attentions.0''' SCREAMING_SNAKE_CASE__ = '''middle_block.1''' SCREAMING_SNAKE_CASE__ = convert_attention(_A , _A , _A , _A , _A ) SCREAMING_SNAKE_CASE__ = '''mid_block.resnets.1''' SCREAMING_SNAKE_CASE__ = '''middle_block.2''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = unet_config['''up_block_types'''] for i, layer_type in enumerate(_A ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): SCREAMING_SNAKE_CASE__ = F'''up_blocks.{i}.resnets.{j}''' SCREAMING_SNAKE_CASE__ = F'''output_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A , has_skip=_A ) current_layer += 1 if i != len(_A ) - 1: SCREAMING_SNAKE_CASE__ = F'''up_blocks.{i}.upsamplers.0''' SCREAMING_SNAKE_CASE__ = F'''output_blocks.{current_layer-1}.1''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): SCREAMING_SNAKE_CASE__ = F'''up_blocks.{i}.resnets.{j}''' SCREAMING_SNAKE_CASE__ = F'''output_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A , has_skip=_A ) SCREAMING_SNAKE_CASE__ = F'''up_blocks.{i}.attentions.{j}''' SCREAMING_SNAKE_CASE__ = F'''output_blocks.{current_layer}.1''' SCREAMING_SNAKE_CASE__ = convert_attention( _A , _A , _A , _A , _A ) current_layer += 1 if i != len(_A ) - 1: SCREAMING_SNAKE_CASE__ = F'''up_blocks.{i}.upsamplers.0''' SCREAMING_SNAKE_CASE__ = F'''output_blocks.{current_layer-1}.2''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A ) SCREAMING_SNAKE_CASE__ = checkpoint['''out.0.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint['''out.0.bias'''] SCREAMING_SNAKE_CASE__ = checkpoint['''out.2.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() _SCREAMING_SNAKE_CASE : List[str] = strabool(args.class_cond) _SCREAMING_SNAKE_CASE : int = os.path.basename(args.unet_path) print(F"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: _SCREAMING_SNAKE_CASE : Optional[Any] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _SCREAMING_SNAKE_CASE : int = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _SCREAMING_SNAKE_CASE : Union[str, Any] = TEST_UNET_CONFIG else: raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: _SCREAMING_SNAKE_CASE : Union[str, Any] = None _SCREAMING_SNAKE_CASE : int = con_pt_to_diffuser(args.unet_path, unet_config) _SCREAMING_SNAKE_CASE : Optional[int] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _SCREAMING_SNAKE_CASE : Optional[Any] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _SCREAMING_SNAKE_CASE : Any = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _SCREAMING_SNAKE_CASE : int = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.") _SCREAMING_SNAKE_CASE : int = CMStochasticIterativeScheduler(**scheduler_config) _SCREAMING_SNAKE_CASE : str = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
218
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase__ :List[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") lowercase__ :Dict = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowercase__ :List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' with open(lowerCAmelCase__ , '''rb''' ) as f: lowercase = Image.open(lowerCAmelCase__ ) return im.convert('''RGB''' ) @dataclass class lowercase : lowercase_ : Optional[str] =field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': '''Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).''' } , ) lowercase_ : Optional[str] =field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowercase_ : Optional[str] =field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''A folder containing the training data.'''} ) lowercase_ : Optional[str] =field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''A folder containing the validation data.'''} ) lowercase_ : Optional[float] =field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) lowercase_ : Optional[int] =field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowercase_ : Optional[int] =field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def A__ ( self): if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''') @dataclass class lowercase : lowercase_ : str =field( default='''google/vit-base-patch16-224-in21k''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) lowercase_ : Optional[str] =field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(SCREAMING_SNAKE_CASE__ )} , ) lowercase_ : Optional[str] =field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowercase_ : Optional[str] =field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) lowercase_ : str =field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowercase_ : str =field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) lowercase_ : bool =field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) lowercase_ : bool =field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = torch.stack([example['''pixel_values'''] for example in examples] ) lowercase = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def UpperCamelCase ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''' , lowerCAmelCase__ , lowerCAmelCase__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , ) else: lowercase = {} if data_args.train_dir is not None: lowercase = os.path.join(data_args.train_dir , '''**''' ) if data_args.validation_dir is not None: lowercase = os.path.join(data_args.validation_dir , '''**''' ) lowercase = load_dataset( '''imagefolder''' , data_files=lowerCAmelCase__ , cache_dir=model_args.cache_dir , task='''image-classification''' , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase = dataset['''train'''].train_test_split(data_args.train_val_split ) lowercase = split['''train'''] lowercase = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase = dataset['''train'''].features['''labels'''].names lowercase , lowercase = {}, {} for i, label in enumerate(lowerCAmelCase__ ): lowercase = str(lowerCAmelCase__ ) lowercase = label # Load the accuracy metric from the datasets package lowercase = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase__ ) , labelaid=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) lowercase = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: lowercase = image_processor.size['''shortest_edge'''] else: lowercase = (image_processor.size['''height'''], image_processor.size['''width''']) lowercase = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) lowercase = Compose( [ RandomResizedCrop(lowerCAmelCase__ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) lowercase = Compose( [ Resize(lowerCAmelCase__ ), CenterCrop(lowerCAmelCase__ ), ToTensor(), normalize, ] ) def train_transforms(lowerCAmelCase__ ): lowercase = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(lowerCAmelCase__ ): lowercase = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowercase = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowerCAmelCase__ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowercase = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowerCAmelCase__ ) # Initalize our trainer lowercase = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase = trainer.evaluate() trainer.log_metrics('''eval''' , lowerCAmelCase__ ) trainer.save_metrics('''eval''' , lowerCAmelCase__ ) # Write model card and (optionally) push to hub lowercase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) if __name__ == "__main__": main()
101
from math import ceil def __UpperCAmelCase ( __a : int = 1_001 ) -> int: """simple docstring""" _a : List[Any] = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): _a : Optional[Any] = 2 * i + 1 _a : Optional[int] = 2 * i _a : str = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
235
0
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase : int = logging.getLogger() lowerCamelCase : Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : List[str] , A_ : Optional[Any] ) -> int: """simple docstring""" os.makedirs(A_ , exist_ok=A_ ) lowerCamelCase_ = {'source': 'What is love ?', 'target': 'life'} lowerCamelCase_ = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCamelCase_ = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(A_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(A_ ) def a__ ( self : Optional[Any] , A_ : int , A_ : str = "pytorch" ) -> Any: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = os.path.join(A_ , 'output' ) lowerCamelCase_ = os.path.join(A_ , 'data' ) self._create_dummy_data(data_dir=A_ ) lowerCamelCase_ = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) lowerCamelCase_ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(A_ , env=self.get_env() ) lowerCamelCase_ = os.path.join(A_ , 'metrics.json' ) with open(A_ ) as f: lowerCamelCase_ = json.load(A_ ) return result @require_torch_gpu def a__ ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def a__ ( self : Tuple ) -> int: """simple docstring""" lowerCamelCase_ = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def a__ ( self : Dict ) -> Dict: """simple docstring""" lowerCamelCase_ = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
354
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowerCamelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase : List[Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowerCamelCase : Optional[Any] = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowerCamelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase : Union[str, Any] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowerCamelCase : Tuple = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , lowercase ) return [m.group(0 ) for m in matches] def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowerCamelCase_ = { config.replace('Config' , '' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. lowerCamelCase_ = collections.defaultdict(lowercase ) lowerCamelCase_ = collections.defaultdict(lowercase ) lowerCamelCase_ = collections.defaultdict(lowercase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(lowercase ): lowerCamelCase_ = None if _re_tf_models.match(lowercase ) is not None: lowerCamelCase_ = tf_models lowerCamelCase_ = _re_tf_models.match(lowercase ).groups()[0] elif _re_flax_models.match(lowercase ) is not None: lowerCamelCase_ = flax_models lowerCamelCase_ = _re_flax_models.match(lowercase ).groups()[0] elif _re_pt_models.match(lowercase ) is not None: lowerCamelCase_ = pt_models lowerCamelCase_ = _re_pt_models.match(lowercase ).groups()[0] if lookup_dict is not None: while len(lowercase ) > 0: if attr_name in model_prefix_to_model_type: lowerCamelCase_ = True break # Try again after removing the last word in the name lowerCamelCase_ = ''.join(camel_case_split(lowercase )[:-1] ) lowerCamelCase_ = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) lowerCamelCase_ = list(lowercase ) all_models.sort() lowerCamelCase_ = {'model_type': all_models} lowerCamelCase_ = [pt_models[t] for t in all_models] lowerCamelCase_ = [tf_models[t] for t in all_models] lowerCamelCase_ = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure lowerCamelCase_ = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: lowerCamelCase_ = 'AutoProcessor' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: lowerCamelCase_ = 'AutoTokenizer' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: lowerCamelCase_ = 'AutoFeatureExtractor' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. lowerCamelCase_ = 'AutoTokenizer' lowerCamelCase_ = [processors[t] for t in all_models] return pd.DataFrame(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: lowerCamelCase_ = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] lowerCamelCase_ = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(lowercase , lowercase , lowercase ): # The type of pipeline may not exist in this framework if not hasattr(lowercase , lowercase ): continue # First extract all model_names lowerCamelCase_ = [] for name in getattr(lowercase , lowercase ).values(): if isinstance(lowercase , lowercase ): model_names.append(lowercase ) else: model_names.extend(list(lowercase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = get_frameworks_table() lowerCamelCase_ = Dataset.from_pandas(lowercase ) lowerCamelCase_ = hf_hub_download( 'huggingface/transformers-metadata' , 'pipeline_tags.json' , repo_type='dataset' , token=lowercase ) lowerCamelCase_ = Dataset.from_json(lowercase ) lowerCamelCase_ = { tags_dataset[i]['model_class']: (tags_dataset[i]['pipeline_tag'], tags_dataset[i]['auto_class']) for i in range(len(lowercase ) ) } lowerCamelCase_ = update_pipeline_and_auto_class_table(lowercase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. lowerCamelCase_ = sorted(table.keys() ) lowerCamelCase_ = pd.DataFrame( { 'model_class': model_classes, 'pipeline_tag': [table[m][0] for m in model_classes], 'auto_class': [table[m][1] for m in model_classes], } ) lowerCamelCase_ = Dataset.from_pandas(lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(lowercase , 'frameworks.json' ) ) tags_dataset.to_json(os.path.join(lowercase , 'pipeline_tags.json' ) ) if commit_sha is not None: lowerCamelCase_ = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: lowerCamelCase_ = 'Update' upload_folder( repo_id='huggingface/transformers-metadata' , folder_path=lowercase , repo_type='dataset' , token=lowercase , commit_message=lowercase , ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} lowerCamelCase_ = transformers_module.pipelines.SUPPORTED_TASKS lowerCamelCase_ = [] for key in pipeline_tasks: if key not in in_table: lowerCamelCase_ = pipeline_tasks[key]['pt'] if isinstance(lowercase , (list, tuple) ): lowerCamelCase_ = model[0] lowerCamelCase_ = model.__name__ if model not in in_table.values(): missing.append(lowercase ) if len(lowercase ) > 0: lowerCamelCase_ = ', '.join(lowercase ) raise ValueError( 'The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") lowerCamelCase : Optional[int] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
208
0
'''simple docstring''' import numpy as np def lowerCamelCase (_SCREAMING_SNAKE_CASE : np.array ): return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
27
import random def lowerCAmelCase_ (lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: Optional[Any] = num - 1 UpperCAmelCase_: Optional[int] = 0 while s % 2 == 0: UpperCAmelCase_: Union[str, Any] = s // 2 t += 1 for _ in range(5 ): UpperCAmelCase_: str = random.randrange(2 , num - 1 ) UpperCAmelCase_: Optional[Any] = pow(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if v != 1: UpperCAmelCase_: Dict = 0 while v != (num - 1): if i == t - 1: return False else: UpperCAmelCase_: Optional[int] = i + 1 UpperCAmelCase_: int = (v**2) % num return True def lowerCAmelCase_ (lowerCAmelCase__: int ): """simple docstring""" if num < 2: return False UpperCAmelCase_: Optional[int] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(lowerCAmelCase__ ) def lowerCAmelCase_ (lowerCAmelCase__: int = 1_0_2_4 ): """simple docstring""" while True: UpperCAmelCase_: List[Any] = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(lowerCAmelCase__ ): return num if __name__ == "__main__": a : Optional[int] = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
147
0
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. snake_case__ : Any = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def _a ( lowerCamelCase: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCamelCase ) def _a ( lowerCamelCase: str ) -> Tuple: '''simple docstring''' from diffusers.utils.testing_utils import pytest_terminal_summary_main __A = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(lowerCamelCase , id=lowerCamelCase )
361
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Dict = {'vocab_file': 'vocab.txt'} snake_case__ : Dict = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } snake_case__ : Optional[int] = { 'openbmb/cpm-ant-10b': 1024, } def _a ( lowerCamelCase: List[Any] ) -> Union[str, Any]: '''simple docstring''' __A = collections.OrderedDict() with open(lowerCamelCase , '''r''' , encoding='''utf-8''' ) as reader: __A = reader.readlines() for index, token in enumerate(lowerCamelCase ): __A = token.rstrip('''\n''' ) __A = index return vocab class A_ ( _lowerCamelCase ): def __init__(self :Any , _UpperCamelCase :Dict , _UpperCamelCase :Optional[int]="<unk>" , _UpperCamelCase :List[str]=200 )-> List[str]: __A = vocab __A = unk_token __A = max_input_chars_per_word def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :List[Any] )-> str: __A = list(_UpperCamelCase ) if len(_UpperCamelCase ) > self.max_input_chars_per_word: return [self.unk_token] __A = 0 __A = [] while start < len(_UpperCamelCase ): __A = len(_UpperCamelCase ) __A = None while start < end: __A = ''''''.join(chars[start:end] ) if substr in self.vocab: __A = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_UpperCamelCase ) __A = end return sub_tokens class A_ ( _lowerCamelCase ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ = False def __init__(self :str , _UpperCamelCase :Union[str, Any] , _UpperCamelCase :Any="<d>" , _UpperCamelCase :List[str]="</d>" , _UpperCamelCase :Dict="<s>" , _UpperCamelCase :Optional[Any]="</s>" , _UpperCamelCase :Optional[int]="<pad>" , _UpperCamelCase :List[str]="<unk>" , _UpperCamelCase :str="</n>" , _UpperCamelCase :Optional[int]="</_>" , _UpperCamelCase :Optional[Any]="left" , **_UpperCamelCase :Any , )-> Union[str, Any]: requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_UpperCamelCase , eod_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , unk_token=_UpperCamelCase , line_token=_UpperCamelCase , space_token=_UpperCamelCase , padding_side=_UpperCamelCase , **_UpperCamelCase , ) __A = bod_token __A = eod_token __A = load_vocab(_UpperCamelCase ) __A = self.encoder[space_token] __A = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __A = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _UpperCamelCase : x[1] ) ) __A = {v: k for k, v in self.encoder.items()} __A = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _lowerCAmelCase (self :Union[str, Any] )-> Dict: return self.encoder[self.bod_token] @property def _lowerCAmelCase (self :Optional[int] )-> Dict: return self.encoder[self.eod_token] @property def _lowerCAmelCase (self :Any )-> List[Any]: return self.encoder["\n"] @property def _lowerCAmelCase (self :List[str] )-> int: return len(self.encoder ) def _lowerCAmelCase (self :List[str] )-> List[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase (self :List[str] , _UpperCamelCase :Dict )-> Union[str, Any]: __A = [] for x in jieba.cut(_UpperCamelCase , cut_all=_UpperCamelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_UpperCamelCase ) ) return output_tokens def _lowerCAmelCase (self :str , _UpperCamelCase :int , **_UpperCamelCase :List[str] )-> Tuple: __A = [i for i in token_ids if i >= 0] __A = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_UpperCamelCase , **_UpperCamelCase ) def _lowerCAmelCase (self :Tuple , _UpperCamelCase :Optional[int] )-> List[str]: return token in self.encoder def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :List[str] )-> str: return "".join(_UpperCamelCase ) def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :List[Any] )-> List[Any]: return self.encoder.get(_UpperCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase (self :Any , _UpperCamelCase :Tuple )-> int: return self.decoder.get(_UpperCamelCase , self.unk_token ) def _lowerCAmelCase (self :List[str] , _UpperCamelCase :str , _UpperCamelCase :Optional[str] = None )-> Tuple[str]: if os.path.isdir(_UpperCamelCase ): __A = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: __A = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory __A = 0 if " " in self.encoder: __A = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: __A = self.encoder['''\n'''] del self.encoder["\n"] __A = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _UpperCamelCase : x[1] ) ) with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) __A = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :List[int] , _UpperCamelCase :List[int] = None )-> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _lowerCAmelCase (self :List[Any] , _UpperCamelCase :List[int] , _UpperCamelCase :Optional[List[int]] = None , _UpperCamelCase :bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) return [1] + ([0] * len(_UpperCamelCase ))
250
0
def _SCREAMING_SNAKE_CASE ( lowercase : int = 3 , lowercase : int = 7 , lowercase : int = 1_00_00_00 ): '''simple docstring''' lowerCamelCase_ = 0 lowerCamelCase_ = 1 for current_denominator in range(1 , limit + 1 ): lowerCamelCase_ = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: lowerCamelCase_ = current_numerator lowerCamelCase_ = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
204
from collections.abc import Callable import numpy as np def _SCREAMING_SNAKE_CASE ( lowercase : Callable , lowercase : float , lowercase : float , lowercase : float , lowercase : float ): '''simple docstring''' lowerCamelCase_ = int(np.ceil((x_end - xa) / step_size ) ) lowerCamelCase_ = np.zeros((n + 1,) ) lowerCamelCase_ = ya lowerCamelCase_ = xa for k in range(lowercase ): lowerCamelCase_ = y[k] + step_size * ode_func(lowercase , y[k] ) lowerCamelCase_ = y[k] + ( (step_size / 2) * (ode_func(lowercase , y[k] ) + ode_func(x + step_size , lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
204
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
356
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCAmelCase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def _snake_case ( _SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str ) -> Dict: """simple docstring""" return max(metric_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for gt in ground_truths ) def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , """r""" ).readlines()] lowerCAmelCase = [] if args.gold_data_mode == "qa": lowerCAmelCase = pd.read_csv(_SCREAMING_SNAKE_CASE , sep="""\t""" , header=_SCREAMING_SNAKE_CASE ) for answer_list in data[1]: lowerCAmelCase = ast.literal_eval(_SCREAMING_SNAKE_CASE ) answers.append(_SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , """r""" ).readlines()] lowerCAmelCase = [[reference] for reference in references] lowerCAmelCase = lowerCAmelCase = lowerCAmelCase = 0 for prediction, ground_truths in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): total += 1 em += metric_max_over_ground_truths(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) fa += metric_max_over_ground_truths(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = 100.0 * em / total lowerCAmelCase = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def _snake_case ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = args.k lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , """r""" ).readlines()] lowerCAmelCase = [line.strip() for line in open(_SCREAMING_SNAKE_CASE , """r""" ).readlines()] lowerCAmelCase = lowerCAmelCase = 0 for hypo, reference in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase = set(hypo.split("""\t""" )[:k] ) lowerCAmelCase = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k lowerCAmelCase = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" def strip_title(_SCREAMING_SNAKE_CASE : Union[str, Any] ): if title.startswith("""\"""" ): lowerCAmelCase = title[1:] if title.endswith("""\"""" ): lowerCAmelCase = title[:-1] return title lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _SCREAMING_SNAKE_CASE , return_tensors="""pt""" , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , )["""input_ids"""].to(args.device ) lowerCAmelCase = rag_model.rag.question_encoder(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = question_enc_outputs[0] lowerCAmelCase = rag_model.retriever( _SCREAMING_SNAKE_CASE , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) lowerCAmelCase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) lowerCAmelCase = [] for docs in all_docs: lowerCAmelCase = [strip_title(_SCREAMING_SNAKE_CASE ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(_SCREAMING_SNAKE_CASE ) ) return provenance_strings def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str ) -> Tuple: """simple docstring""" with torch.no_grad(): lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _SCREAMING_SNAKE_CASE , return_tensors="""pt""" , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = inputs_dict.input_ids.to(args.device ) lowerCAmelCase = inputs_dict.attention_mask.to(args.device ) lowerCAmelCase = rag_model.generate( # rag_model overwrites generate _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_SCREAMING_SNAKE_CASE , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) lowerCAmelCase = rag_model.retriever.generator_tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) if args.print_predictions: for q, a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info("""Q: {} - A: {}""".format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) return answers def _snake_case ( ) -> Dict: """simple docstring""" lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=_SCREAMING_SNAKE_CASE , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=_SCREAMING_SNAKE_CASE , choices=["""exact""", """compressed""", """legacy"""] , type=_SCREAMING_SNAKE_CASE , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=_SCREAMING_SNAKE_CASE , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=_SCREAMING_SNAKE_CASE , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=_SCREAMING_SNAKE_CASE , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=_SCREAMING_SNAKE_CASE , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=_SCREAMING_SNAKE_CASE , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=_SCREAMING_SNAKE_CASE , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=_SCREAMING_SNAKE_CASE , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=_SCREAMING_SNAKE_CASE , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=_SCREAMING_SNAKE_CASE , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = {} if args.model_type is None: lowerCAmelCase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): lowerCAmelCase = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration lowerCAmelCase = args.n_docs if args.index_name is not None: lowerCAmelCase = args.index_name if args.index_path is not None: lowerCAmelCase = args.index_path else: lowerCAmelCase = BartForConditionalGeneration lowerCAmelCase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = get_scores if args.eval_mode == """e2e""" else get_precision_at_k lowerCAmelCase = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(_SCREAMING_SNAKE_CASE , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(_SCREAMING_SNAKE_CASE ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): lowerCAmelCase = RagRetriever.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , retriever=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) model.retriever.init_retrieval() else: lowerCAmelCase = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: lowerCAmelCase = [] for line in tqdm(_SCREAMING_SNAKE_CASE ): questions.append(line.strip() ) if len(_SCREAMING_SNAKE_CASE ) == args.eval_batch_size: lowerCAmelCase = evaluate_batch_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) preds_file.write("""\n""".join(_SCREAMING_SNAKE_CASE ) + """\n""" ) preds_file.flush() lowerCAmelCase = [] if len(_SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase = evaluate_batch_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) preds_file.write("""\n""".join(_SCREAMING_SNAKE_CASE ) ) preds_file.flush() score_fn(_SCREAMING_SNAKE_CASE , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": UpperCAmelCase = get_args() main(args)
187
0
import qiskit def UpperCamelCase_( _snake_case : int = 2 ): """simple docstring""" __a =qubits # Using Aer's simulator __a =qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register __a =qiskit.QuantumCircuit(_snake_case , _snake_case ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , _snake_case ): # Adding CX (CNOT) gate circuit.cx(i - 1 , _snake_case ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(_snake_case ) ) , list(range(_snake_case ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator __a =qiskit.execute(_snake_case , _snake_case , shots=1000 ) return job.result().get_counts(_snake_case ) if __name__ == "__main__": print(f'''Total count for various states are: {quantum_entanglement(3)}''')
218
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor _lowerCAmelCase : str = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
218
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Optional[int] = 'mgp-str' def __init__( self: List[str] , UpperCamelCase_: str=[32, 1_28] , UpperCamelCase_: Any=4 , UpperCamelCase_: Optional[Any]=3 , UpperCamelCase_: int=27 , UpperCamelCase_: Optional[int]=38 , UpperCamelCase_: List[Any]=5_02_57 , UpperCamelCase_: List[Any]=3_05_22 , UpperCamelCase_: Dict=7_68 , UpperCamelCase_: Dict=12 , UpperCamelCase_: Any=12 , UpperCamelCase_: List[str]=4.0 , UpperCamelCase_: str=True , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[Any]=1E-5 , UpperCamelCase_: Optional[Any]=0.0 , UpperCamelCase_: Optional[Any]=0.0 , UpperCamelCase_: int=0.0 , UpperCamelCase_: Union[str, Any]=False , UpperCamelCase_: Dict=0.02 , **UpperCamelCase_: List[Any] , ): super().__init__(**lowerCamelCase_ ) __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = max_token_length __lowerCamelCase = num_character_labels __lowerCamelCase = num_bpe_labels __lowerCamelCase = num_wordpiece_labels __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = mlp_ratio __lowerCamelCase = distilled __lowerCamelCase = layer_norm_eps __lowerCamelCase = drop_rate __lowerCamelCase = qkv_bias __lowerCamelCase = attn_drop_rate __lowerCamelCase = drop_path_rate __lowerCamelCase = output_aa_attentions __lowerCamelCase = initializer_range
360
from __future__ import annotations UpperCAmelCase_ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCamelCase__: def __init__( self: Tuple , UpperCamelCase_: dict[str, list[str]] , UpperCamelCase_: str ): __lowerCamelCase = graph # mapping node to its parent in resulting breadth first tree __lowerCamelCase = {} __lowerCamelCase = source_vertex def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = {self.source_vertex} __lowerCamelCase = None __lowerCamelCase = [self.source_vertex] # first in first out queue while queue: __lowerCamelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCamelCase_ ) __lowerCamelCase = vertex queue.append(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str ): if target_vertex == self.source_vertex: return self.source_vertex __lowerCamelCase = self.parent.get(UpperCamelCase_ ) if target_vertex_parent is None: __lowerCamelCase = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(UpperCamelCase_ ) return self.shortest_path(UpperCamelCase_ ) + F'->{target_vertex}' if __name__ == "__main__": UpperCAmelCase_ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
29
0
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=sys.maxsize ): """simple docstring""" lowerCAmelCase : List[str] = 'bilinear' lowerCAmelCase : Any = max_size lowerCAmelCase : List[str] = short_edge_length def __call__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = [] for img in imgs: lowerCAmelCase : Dict = img.shape[:2] # later: provide list and randomly choose index for resize lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowerCAmelCase : List[str] = size * 1.0 / min(_a , _a ) if h < w: lowerCAmelCase : List[Any] = size, scale * w else: lowerCAmelCase : Any = scale * h, size if max(_a , _a ) > self.max_size: lowerCAmelCase : Dict = self.max_size * 1.0 / max(_a , _a ) lowerCAmelCase : Tuple = newh * scale lowerCAmelCase : Optional[int] = neww * scale lowerCAmelCase : str = int(neww + 0.5 ) lowerCAmelCase : Optional[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: lowerCAmelCase : int = Image.fromarray(_a ) lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowerCAmelCase : Optional[Any] = np.asarray(_a ) else: lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowerCAmelCase : Tuple = nn.functional.interpolate( _a , (newh, neww) , mode=self.interp_method , align_corners=_a ).squeeze(0 ) img_augs.append(_a ) return img_augs class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowerCAmelCase : Dict = cfg.INPUT.FORMAT lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY lowerCAmelCase : Optional[int] = cfg.PAD_VALUE lowerCAmelCase : List[str] = cfg.INPUT.MAX_SIZE_TEST lowerCAmelCase : Dict = cfg.MODEL.DEVICE lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : List[str] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : Optional[int] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = tuple(max(_a ) for s in zip(*[img.shape for img in images] ) ) lowerCAmelCase : Union[str, Any] = [im.shape[-2:] for im in images] lowerCAmelCase : List[Any] = [ nn.functional.pad( _a , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_a , _a ) ] return torch.stack(_a ), torch.tensor(_a ) def __call__( self , snake_case__ , snake_case__=False ): """simple docstring""" with torch.no_grad(): if not isinstance(_a , _a ): lowerCAmelCase : Tuple = [images] if single_image: assert len(_a ) == 1 for i in range(len(_a ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_a , images.pop(_a ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _a , torch.as_tensor(img_tensorize(images.pop(_a ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowerCAmelCase : str = torch.tensor([im.shape[:2] for im in images] ) lowerCAmelCase : Dict = self.aug(_a ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowerCAmelCase : Dict = [self.normalizer(_a ) for x in images] # now pad them to do the following operations lowerCAmelCase : List[Any] = self.pad(_a ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowerCAmelCase : Dict = torch.true_divide(_a , _a ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' assert torch.isfinite(_lowerCAmelCase ).all(), "Box tensor contains infinite or NaN!" lowerCAmelCase : List[str] = box_size tensor[:, 0].clamp_(min=0 , max=_lowerCAmelCase ) tensor[:, 1].clamp_(min=0 , max=_lowerCAmelCase ) tensor[:, 2].clamp_(min=0 , max=_lowerCAmelCase ) tensor[:, 3].clamp_(min=0 , max=_lowerCAmelCase )
108
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def a_ ( _lowerCAmelCase ) -> Tuple: __lowerCamelCase : Optional[int] = DPTConfig() if "large" in checkpoint_url: __lowerCamelCase : List[Any] = 1024 __lowerCamelCase : Union[str, Any] = 4096 __lowerCamelCase : Any = 24 __lowerCamelCase : List[str] = 16 __lowerCamelCase : int = [5, 11, 17, 23] __lowerCamelCase : List[Any] = [256, 512, 1024, 1024] __lowerCamelCase : Tuple = (1, 384, 384) if "ade" in checkpoint_url: __lowerCamelCase : Tuple = True __lowerCamelCase : Union[str, Any] = 150 __lowerCamelCase : Any = 'huggingface/label-files' __lowerCamelCase : Dict = 'ade20k-id2label.json' __lowerCamelCase : Tuple = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase ,_lowerCAmelCase ,repo_type='dataset' ) ) ,'r' ) ) __lowerCamelCase : List[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} __lowerCamelCase : List[Any] = idalabel __lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} __lowerCamelCase : Optional[int] = [1, 150, 480, 480] return config, expected_shape def a_ ( _lowerCAmelCase ) -> Tuple: __lowerCamelCase : Optional[int] = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(_lowerCAmelCase ,_lowerCAmelCase ) def a_ ( _lowerCAmelCase ) -> Dict: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __lowerCamelCase : str = name.replace('pretrained.model' ,'dpt.encoder' ) if "pretrained.model" in name: __lowerCamelCase : Union[str, Any] = name.replace('pretrained.model' ,'dpt.embeddings' ) if "patch_embed" in name: __lowerCamelCase : int = name.replace('patch_embed' ,'patch_embeddings' ) if "pos_embed" in name: __lowerCamelCase : Optional[Any] = name.replace('pos_embed' ,'position_embeddings' ) if "attn.proj" in name: __lowerCamelCase : Union[str, Any] = name.replace('attn.proj' ,'attention.output.dense' ) if "proj" in name and "project" not in name: __lowerCamelCase : List[str] = name.replace('proj' ,'projection' ) if "blocks" in name: __lowerCamelCase : Optional[int] = name.replace('blocks' ,'layer' ) if "mlp.fc1" in name: __lowerCamelCase : Dict = name.replace('mlp.fc1' ,'intermediate.dense' ) if "mlp.fc2" in name: __lowerCamelCase : int = name.replace('mlp.fc2' ,'output.dense' ) if "norm1" in name: __lowerCamelCase : Optional[int] = name.replace('norm1' ,'layernorm_before' ) if "norm2" in name: __lowerCamelCase : str = name.replace('norm2' ,'layernorm_after' ) if "scratch.output_conv" in name: __lowerCamelCase : int = name.replace('scratch.output_conv' ,'head' ) if "scratch" in name: __lowerCamelCase : Any = name.replace('scratch' ,'neck' ) if "layer1_rn" in name: __lowerCamelCase : List[str] = name.replace('layer1_rn' ,'convs.0' ) if "layer2_rn" in name: __lowerCamelCase : str = name.replace('layer2_rn' ,'convs.1' ) if "layer3_rn" in name: __lowerCamelCase : List[Any] = name.replace('layer3_rn' ,'convs.2' ) if "layer4_rn" in name: __lowerCamelCase : Optional[Any] = name.replace('layer4_rn' ,'convs.3' ) if "refinenet" in name: __lowerCamelCase : Any = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __lowerCamelCase : Tuple = name.replace(F'refinenet{layer_idx}' ,F'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: __lowerCamelCase : Any = name.replace('out_conv' ,'projection' ) if "resConfUnit1" in name: __lowerCamelCase : Optional[Any] = name.replace('resConfUnit1' ,'residual_layer1' ) if "resConfUnit2" in name: __lowerCamelCase : List[str] = name.replace('resConfUnit2' ,'residual_layer2' ) if "conv1" in name: __lowerCamelCase : Any = name.replace('conv1' ,'convolution1' ) if "conv2" in name: __lowerCamelCase : Optional[Any] = name.replace('conv2' ,'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __lowerCamelCase : str = name.replace('pretrained.act_postprocess1.0.project.0' ,'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: __lowerCamelCase : List[Any] = name.replace('pretrained.act_postprocess2.0.project.0' ,'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: __lowerCamelCase : Tuple = name.replace('pretrained.act_postprocess3.0.project.0' ,'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: __lowerCamelCase : List[Any] = name.replace('pretrained.act_postprocess4.0.project.0' ,'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: __lowerCamelCase : Optional[int] = name.replace('pretrained.act_postprocess1.3' ,'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: __lowerCamelCase : Dict = name.replace('pretrained.act_postprocess1.4' ,'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: __lowerCamelCase : Dict = name.replace('pretrained.act_postprocess2.3' ,'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: __lowerCamelCase : Any = name.replace('pretrained.act_postprocess2.4' ,'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: __lowerCamelCase : Tuple = name.replace('pretrained.act_postprocess3.3' ,'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: __lowerCamelCase : List[Any] = name.replace('pretrained.act_postprocess4.3' ,'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: __lowerCamelCase : Optional[int] = name.replace('pretrained.act_postprocess4.4' ,'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: __lowerCamelCase : Union[str, Any] = name.replace('pretrained' ,'dpt' ) if "bn" in name: __lowerCamelCase : Union[str, Any] = name.replace('bn' ,'batch_norm' ) if "head" in name: __lowerCamelCase : Dict = name.replace('head' ,'head.head' ) if "encoder.norm" in name: __lowerCamelCase : str = name.replace('encoder.norm' ,'layernorm' ) if "auxlayer" in name: __lowerCamelCase : int = name.replace('auxlayer' ,'auxiliary_head.head' ) return name def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Optional[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCamelCase : Union[str, Any] = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' ) __lowerCamelCase : Optional[Any] = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase : Union[str, Any] = in_proj_weight[: config.hidden_size, :] __lowerCamelCase : List[Any] = in_proj_bias[: config.hidden_size] __lowerCamelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCamelCase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] __lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def a_ ( ) -> Optional[int]: __lowerCamelCase : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase : Dict = Image.open(requests.get(_lowerCAmelCase ,stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> List[Any]: __lowerCamelCase ,__lowerCamelCase : List[Any] = get_dpt_config(_lowerCAmelCase ) # load original state_dict from URL __lowerCamelCase : str = torch.hub.load_state_dict_from_url(_lowerCAmelCase ,map_location='cpu' ) # remove certain keys remove_ignore_keys_(_lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): __lowerCamelCase : int = state_dict.pop(_lowerCAmelCase ) __lowerCamelCase : List[str] = val # read in qkv matrices read_in_q_k_v(_lowerCAmelCase ,_lowerCAmelCase ) # load HuggingFace model __lowerCamelCase : Tuple = DPTForSemanticSegmentation(_lowerCAmelCase ) if 'ade' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Check outputs on an image __lowerCamelCase : Dict = 480 if 'ade' in checkpoint_url else 384 __lowerCamelCase : Dict = DPTImageProcessor(size=_lowerCAmelCase ) __lowerCamelCase : Optional[int] = prepare_img() __lowerCamelCase : Optional[int] = image_processor(_lowerCAmelCase ,return_tensors='pt' ) # forward pass __lowerCamelCase : List[Any] = model(**_lowerCAmelCase ).logits if 'ade' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth # Assert logits __lowerCamelCase : Optional[int] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: __lowerCamelCase : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(_lowerCAmelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] ,_lowerCAmelCase ,atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] ,_lowerCAmelCase ) ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print('Pushing model to hub...' ) model.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase ,_lowerCAmelCase ) ,organization='nielsr' ,commit_message='Add model' ,use_temp_dir=_lowerCAmelCase ,) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase ,_lowerCAmelCase ) ,organization='nielsr' ,commit_message='Add image processor' ,use_temp_dir=_lowerCAmelCase ,) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) _UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
208
0
from __future__ import annotations from collections import namedtuple def lowerCamelCase__ ( a , a , a ) -> Tuple: _A: Optional[int] = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
353
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ : str = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
'''simple docstring''' import requests from bsa import BeautifulSoup def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : dict ): """simple docstring""" lowercase_ : Union[str, Any] = BeautifulSoup(requests.get(__SCREAMING_SNAKE_CASE , params=__SCREAMING_SNAKE_CASE ).content , '''html.parser''' ) lowercase_ : List[Any] = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) lowercase_ : List[str] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _lowercase : Optional[int] = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 3_0, "pages": "3979-3990", "year": 2_0_1_8, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
93
'''simple docstring''' from __future__ import annotations def _A ( snake_case ) -> float: _lowercase : Optional[Any] = 0.00 _lowercase : Dict = 0 for resistor in resistors: if resistor <= 0: _lowercase : Union[str, Any] = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(snake_case ) first_sum += 1 / float(snake_case ) index += 1 return 1 / first_sum def _A ( snake_case ) -> float: _lowercase : Dict = 0.00 _lowercase : List[str] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _lowercase : Dict = F'''Resistor at index {index} has a negative value!''' raise ValueError(snake_case ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
250
0
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _snake_case = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex _snake_case = 10 _snake_case = 256 def _UpperCamelCase ( snake_case__ ) -> Optional[MinHash]: if len(snake_case__ ) < MIN_NUM_TOKENS: return None __UpperCAmelCase : List[str] = MinHash(num_perm=snake_case__ ) for token in set(snake_case__ ): min_hash.update(token.encode() ) return min_hash def _UpperCamelCase ( snake_case__ ) -> Set[str]: return {t for t in NON_ALPHA.split(snake_case__ ) if len(t.strip() ) > 0} class _snake_case : def __init__( self: List[Any] , *, __lowerCamelCase: float = 0.85 , ) -> Any: __UpperCAmelCase : Union[str, Any] = duplication_jaccard_threshold __UpperCAmelCase : Dict = NUM_PERM __UpperCAmelCase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __UpperCAmelCase : Tuple = defaultdict(__lowerCamelCase ) def _lowerCamelCase ( self: int , __lowerCamelCase: Tuple , __lowerCamelCase: MinHash ) -> None: __UpperCAmelCase : Any = self._index.query(__lowerCamelCase ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__lowerCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__lowerCamelCase ) def _lowerCamelCase ( self: int ) -> List[List[Dict]]: __UpperCAmelCase : str = [] for base, duplicates in self._duplicate_clusters.items(): __UpperCAmelCase : int = [base] + list(__lowerCamelCase ) # reformat the cluster to be a list of dict __UpperCAmelCase : Union[str, Any] = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(__lowerCamelCase ) return duplicate_clusters def _lowerCamelCase ( self: str , __lowerCamelCase: int ) -> None: __UpperCAmelCase : List[Any] = self.get_duplicate_clusters() with open(__lowerCamelCase , "w" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase , __UpperCAmelCase : Tuple = element __UpperCAmelCase : Union[str, Any] = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _UpperCamelCase ( snake_case__ ) -> Optional[int]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash, ThreadedIterator(snake_case__, max_queue_size=1_0000 ), chunksize=100, ): if data is not None: yield data def _UpperCamelCase ( snake_case__, snake_case__ ) -> Tuple: __UpperCAmelCase : Any = DuplicationIndex(duplication_jaccard_threshold=snake_case__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(snake_case__ ) ), max_queue_size=100 ) ): di.add(snake_case__, snake_case__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _UpperCamelCase ( snake_case__, snake_case__ ) -> float: __UpperCAmelCase : List[Any] = get_tokens(snake_case__ ) __UpperCAmelCase : List[Any] = get_tokens(snake_case__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _snake_case = None def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[str]: __UpperCAmelCase : Tuple = [] for elementa in cluster: __UpperCAmelCase : List[Any] = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: __UpperCAmelCase : Union[str, Any] = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(snake_case__, snake_case__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __UpperCAmelCase : Any = 1 extremes.append(snake_case__ ) return extremes def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: global _shared_dataset __UpperCAmelCase : Any = dataset __UpperCAmelCase : str = [] __UpperCAmelCase : Dict = partial(_find_cluster_extremes_shared, jaccard_threshold=snake_case__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( snake_case__, snake_case__, ), total=len(snake_case__ ), ): extremes_list.append(snake_case__ ) return extremes_list def _UpperCamelCase ( snake_case__, snake_case__ = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: __UpperCAmelCase : Any = make_duplicate_clusters(snake_case__, snake_case__ ) __UpperCAmelCase : Any = {x["base_index"] for cluster in duplicate_clusters for x in cluster} __UpperCAmelCase : List[str] = {} __UpperCAmelCase : int = find_extremes(snake_case__, snake_case__, snake_case__ ) for extremes in extremes_clusters: for element in extremes: __UpperCAmelCase : Union[str, Any] = element __UpperCAmelCase : Tuple = duplicate_indices - set(extreme_dict.keys() ) __UpperCAmelCase : List[Any] = dataset.filter(lambda snake_case__, snake_case__ : idx not in remove_indices, with_indices=snake_case__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __UpperCAmelCase : Union[str, Any] = element["base_index"] in extreme_dict if element["is_extreme"]: __UpperCAmelCase : Union[str, Any] = extreme_dict[element["base_index"]]["copies"] print(f'''Original dataset size: {len(snake_case__ )}''' ) print(f'''Number of duplicate clusters: {len(snake_case__ )}''' ) print(f'''Files in duplicate cluster: {len(snake_case__ )}''' ) print(f'''Unique files in duplicate cluster: {len(snake_case__ )}''' ) print(f'''Filtered dataset size: {len(snake_case__ )}''' ) return ds_filter, duplicate_clusters
342
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
1
import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> str: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: return vector * sigmoid(1.7_0_2 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
189
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowercase__ : Dict = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **__lowercase : Union[str, Any] ): """simple docstring""" super().__init__(**__lowercase ) requires_backends(self , "vision" ) requires_backends(self , "torch" ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__lowercase ) def snake_case__ ( self : Optional[int] , **__lowercase : Optional[Any] ): """simple docstring""" snake_case_ = {} snake_case_ = {} snake_case_ = {} # preprocess args if "points_per_batch" in kwargs: snake_case_ = kwargs["points_per_batch"] if "points_per_crop" in kwargs: snake_case_ = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: snake_case_ = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: snake_case_ = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: snake_case_ = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: snake_case_ = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: snake_case_ = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: snake_case_ = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: snake_case_ = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: snake_case_ = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: snake_case_ = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: snake_case_ = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Optional[int] , __lowercase : List[str] , *__lowercase : Optional[Any] , __lowercase : Dict=None , __lowercase : List[str]=None , **__lowercase : Optional[Any] ): """simple docstring""" return super().__call__(__lowercase , *__lowercase , num_workers=__lowercase , batch_size=__lowercase , **__lowercase ) def snake_case__ ( self : str , __lowercase : int , __lowercase : List[str]=64 , __lowercase : int = 0 , __lowercase : float = 5_12 / 15_00 , __lowercase : Optional[int] = 32 , __lowercase : Optional[int] = 1 , ): """simple docstring""" snake_case_ = load_image(__lowercase ) snake_case_ = self.image_processor.size["longest_edge"] snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.image_processor.generate_crop_boxes( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) snake_case_ = self.image_processor(images=__lowercase , return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": snake_case_ = self.get_inference_context() with inference_context(): snake_case_ = self._ensure_tensor_on_device(__lowercase , device=self.device ) snake_case_ = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) snake_case_ = image_embeddings snake_case_ = grid_points.shape[1] snake_case_ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 , __lowercase , __lowercase ): snake_case_ = grid_points[:, i : i + points_per_batch, :, :] snake_case_ = input_labels[:, i : i + points_per_batch] snake_case_ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def snake_case__ ( self : Tuple , __lowercase : Union[str, Any] , __lowercase : Union[str, Any]=0.88 , __lowercase : Union[str, Any]=0.95 , __lowercase : int=0 , __lowercase : int=1 , ): """simple docstring""" snake_case_ = model_inputs.pop("input_boxes" ) snake_case_ = model_inputs.pop("is_last" ) snake_case_ = model_inputs.pop("original_sizes" ).tolist() snake_case_ = model_inputs.pop("reshaped_input_sizes" ).tolist() snake_case_ = self.model(**__lowercase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks snake_case_ = model_outputs["pred_masks"] snake_case_ = self.image_processor.post_process_masks( __lowercase , __lowercase , __lowercase , __lowercase , binarize=__lowercase ) snake_case_ = model_outputs["iou_scores"] snake_case_ , snake_case_ , snake_case_ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __lowercase , __lowercase , __lowercase , __lowercase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def snake_case__ ( self : str , __lowercase : Any , __lowercase : Optional[int]=False , __lowercase : int=False , __lowercase : List[str]=0.7 , ): """simple docstring""" snake_case_ = [] snake_case_ = [] snake_case_ = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) snake_case_ = torch.cat(__lowercase ) snake_case_ = torch.cat(__lowercase ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.image_processor.post_process_for_mask_generation( __lowercase , __lowercase , __lowercase , __lowercase ) snake_case_ = defaultdict(__lowercase ) for output in model_outputs: for k, v in output.items(): extra[k].append(__lowercase ) snake_case_ = {} if output_rle_mask: snake_case_ = rle_mask if output_bboxes_mask: snake_case_ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
187
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''input_features'''] def __init__( self , _a=80 , _a=16000 , _a=160 , _a=30 , _a=400 , _a=0.0 , _a=False , **_a , ) -> List[str]: super().__init__( feature_size=_a , sampling_rate=_a , padding_value=_a , return_attention_mask=_a , **_a , ) lowerCAmelCase_ = n_fft lowerCAmelCase_ = hop_length lowerCAmelCase_ = chunk_length lowerCAmelCase_ = chunk_length * sampling_rate lowerCAmelCase_ = self.n_samples // hop_length lowerCAmelCase_ = sampling_rate lowerCAmelCase_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_a , min_frequency=0.0 , max_frequency=8_0_0_0.0 , sampling_rate=_a , norm="slaney" , mel_scale="slaney" , ) def __a ( self , _a ) -> np.ndarray: lowerCAmelCase_ = spectrogram( _a , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) lowerCAmelCase_ = log_spec[:, :-1] lowerCAmelCase_ = np.maximum(_a , log_spec.max() - 8.0 ) lowerCAmelCase_ = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _a , _a , _a = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: lowerCAmelCase_ = np.array(_a , np.intaa ) lowerCAmelCase_ = [] for vector, length in zip(_a , attention_mask.sum(-1 ) ): lowerCAmelCase_ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowerCAmelCase_ = padding_value normed_input_values.append(_a ) else: lowerCAmelCase_ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self , _a , _a = True , _a = None , _a = None , _a = None , _a = "max_length" , _a = None , _a = None , _a = None , **_a , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ = isinstance(_a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) lowerCAmelCase_ = is_batched_numpy or ( isinstance(_a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_a , np.ndarray ): lowerCAmelCase_ = np.asarray(_a , dtype=np.floataa ) elif isinstance(_a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ = [np.asarray([raw_speech] ).T] lowerCAmelCase_ = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding lowerCAmelCase_ = self.pad( _a , padding=_a , max_length=max_length if max_length else self.n_samples , truncation=_a , pad_to_multiple_of=_a , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCAmelCase_ = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) lowerCAmelCase_ = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format lowerCAmelCase_ = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) lowerCAmelCase_ = [self._np_extract_fbank_features(_a ) for waveform in input_features[0]] if isinstance(input_features[0] , _a ): lowerCAmelCase_ = [np.asarray(_a , dtype=np.floataa ) for feature in input_features] else: lowerCAmelCase_ = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCAmelCase_ = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: lowerCAmelCase_ = padded_inputs.convert_to_tensors(_a ) return padded_inputs def __a ( self ) -> Dict[str, Any]: lowerCAmelCase_ = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
22
def A(): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A(__a: list[list[int]] ): assert all(row == sorted(__a , reverse=__a ) for row in grid ) assert all(list(__a ) == sorted(__a , reverse=__a ) for col in zip(*__a ) ) def A(__a: list[int] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(__a ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase_ = (left + right) // 2 lowerCAmelCase_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase_ = mid + 1 else: lowerCAmelCase_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__a ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(grid[0] ) for i in range(len(__a ) ): lowerCAmelCase_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__a ) * len(grid[0] )) - total def A(__a: list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 for row in grid: for i, number in enumerate(__a ): if number < 0: total += len(__a ) - i break return total def A(): from timeit import timeit print("Running benchmarks" ) lowerCAmelCase_ = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase_ = timeit(F"{func}(grid=grid)" , setup=__a , number=500 ) print(F"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
22
1
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder a_ = datasets.utils.logging.get_logger(__name__) class _UpperCamelCase ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' lowerCamelCase__ =None lowerCamelCase__ =None class _UpperCamelCase ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' lowerCamelCase__ =datasets.Audio() lowerCamelCase__ ='audio' lowerCamelCase__ =AudioFolderConfig lowerCamelCase__ =42 # definition at the bottom of the script lowerCamelCase__ =AudioClassification(audio_column='audio' , label_column='label' ) a_ = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] a_ = AUDIO_EXTENSIONS
76
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'vocab.txt'} __UpperCAmelCase = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __UpperCAmelCase = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __UpperCAmelCase = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Optional[int] = VOCAB_FILES_NAMES _snake_case : int = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_INIT_CONFIGURATION _snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Any = ConvBertTokenizer def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase="[UNK]" , _UpperCamelCase="[SEP]" , _UpperCamelCase="[PAD]" , _UpperCamelCase="[CLS]" , _UpperCamelCase="[MASK]" , _UpperCamelCase=True , _UpperCamelCase=None , **_UpperCamelCase , ) -> Dict: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) UpperCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCamelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ : Any = getattr(_UpperCamelCase , normalizer_state.pop('type' ) ) UpperCAmelCase_ : str = do_lower_case UpperCAmelCase_ : List[Any] = strip_accents UpperCAmelCase_ : str = tokenize_chinese_chars UpperCAmelCase_ : Tuple = normalizer_class(**_UpperCamelCase ) UpperCAmelCase_ : Any = do_lower_case def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=None ) -> List[str]: UpperCAmelCase_ : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: UpperCAmelCase_ : Union[str, Any] = [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: UpperCAmelCase_ : Any = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
29
0
from math import pow, sqrt def __lowerCAmelCase ( *SCREAMING_SNAKE_CASE_ ): lowercase__ = len(SCREAMING_SNAKE_CASE_ ) > 0 and all(value > 0.0 for value in values ) return result def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError("Input Error: Molar mass values must greater than 0." ) ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) )
371
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class _snake_case ( lowercase__): UpperCamelCase__ : str ="""dpr""" def __init__( self : int, __lowercase : List[str]=3_0522, __lowercase : Any=768, __lowercase : Union[str, Any]=12, __lowercase : Optional[int]=12, __lowercase : List[Any]=3072, __lowercase : List[str]="gelu", __lowercase : Union[str, Any]=0.1, __lowercase : str=0.1, __lowercase : List[str]=512, __lowercase : Optional[int]=2, __lowercase : Dict=0.02, __lowercase : Any=1e-1_2, __lowercase : List[Any]=0, __lowercase : str="absolute", __lowercase : int = 0, **__lowercase : str, ): super().__init__(pad_token_id=__lowercase, **__lowercase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = projection_dim lowercase__ = position_embedding_type
224
0
"""simple docstring""" import argparse import os import re import packaging.version __lowercase = """examples/""" __lowercase = { """examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } __lowercase = { """init""": """src/diffusers/__init__.py""", """setup""": """setup.py""", } __lowercase = """README.md""" def lowercase ( A_ , A_ , A_ )-> Dict: '''simple docstring''' with open(A_ , "r" , encoding="utf-8" , newline="\n" ) as f: a : str = f.read() a , a : Union[str, Any] = REPLACE_PATTERNS[pattern] a : Optional[Any] = replace.replace("VERSION" , A_ ) a : Tuple = re_pattern.sub(A_ , A_ ) with open(A_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(A_ ) def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' for folder, directories, fnames in os.walk(A_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(A_ , A_ ) , A_ , pattern="examples" ) def lowercase ( A_ , A_=False )-> List[Any]: '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A_ , A_ , A_ ) if not patch: update_version_in_examples(A_ ) def lowercase ( )-> Tuple: '''simple docstring''' a : str = "🤗 Transformers currently provides the following architectures" a : List[str] = "1. Want to contribute a new model?" with open(A_ , "r" , encoding="utf-8" , newline="\n" ) as f: a : Optional[int] = f.readlines() # Find the start of the list. a : int = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 a : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): a : Optional[Any] = lines[index].replace( "https://huggingface.co/docs/diffusers/main/model_doc" , "https://huggingface.co/docs/diffusers/model_doc" , ) index += 1 with open(A_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(A_ ) def lowercase ( )-> int: '''simple docstring''' with open(REPLACE_FILES["init"] , "r" ) as f: a : Any = f.read() a : str = REPLACE_PATTERNS["init"][0].search(A_ ).groups()[0] return packaging.version.parse(A_ ) def lowercase ( A_=False )-> Optional[Any]: '''simple docstring''' a : int = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: a : Dict = default_version.base_version elif patch: a : Any = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: a : int = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. a : List[Any] = input(F'''Which version are you releasing? [{default_version}]''' ) if len(A_ ) == 0: a : Dict = default_version print(F'''Updating version to {version}.''' ) global_version_update(A_ , patch=A_ ) def lowercase ( )-> Union[str, Any]: '''simple docstring''' a : Dict = get_version() a : Union[str, Any] = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' a : Optional[int] = current_version.base_version # Check with the user we got that right. a : Any = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(A_ ) == 0: a : List[Any] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(A_ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") __lowercase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
40
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
301
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : str = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = XGLMTokenizer __magic_name__ = XGLMTokenizerFast __magic_name__ = True __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[str] = XGLMTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = '<pad>' _lowerCAmelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(len(snake_case__ ) , 1008 ) def a ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = XGLMTokenizer(snake_case__ , keep_accents=snake_case__ ) _lowerCAmelCase : Union[str, Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def a ( self ): '''simple docstring''' return XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) def a ( self ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(snake_case__ , f.name ) _lowerCAmelCase : int = XGLMTokenizer(f.name , keep_accents=snake_case__ ) _lowerCAmelCase : Any = pickle.dumps(snake_case__ ) pickle.loads(snake_case__ ) def a ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Any = self.get_rust_tokenizer() _lowerCAmelCase : Tuple = 'I was born in 92000, and this is falsé.' _lowerCAmelCase : List[Any] = tokenizer.tokenize(snake_case__ ) _lowerCAmelCase : Dict = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) _lowerCAmelCase : Union[str, Any] = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) _lowerCAmelCase : Union[str, Any] = rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) _lowerCAmelCase : List[str] = self.get_rust_tokenizer() _lowerCAmelCase : int = tokenizer.encode(snake_case__ ) _lowerCAmelCase : List[Any] = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'Hello World!' _lowerCAmelCase : Optional[Any] = [2, 3_1227, 4447, 35] self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off _lowerCAmelCase : int = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = { 'input_ids': [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='facebook/xglm-564M' , padding=snake_case__ , )
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mobilenet_v2" def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.02 , snake_case__=0.001 , snake_case__=255 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : List[Any] = depth_multiplier _lowerCAmelCase : List[Any] = depth_divisible_by _lowerCAmelCase : Optional[Any] = min_depth _lowerCAmelCase : str = expand_ratio _lowerCAmelCase : str = output_stride _lowerCAmelCase : Any = first_layer_is_expansion _lowerCAmelCase : int = finegrained_output _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[str] = tf_padding _lowerCAmelCase : Optional[int] = classifier_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : str = semantic_loss_ignore_index class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = version.parse("1.11" ) @property def a ( self ): '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' return 1E-4
25
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase_ : List[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Union[str, Any] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __a ='bit' __a =['preactivation', 'bottleneck'] __a =['SAME', 'VALID'] def __init__( self : Optional[int] , __a : Union[str, Any]=3 , __a : Tuple=64 , __a : Union[str, Any]=[2_56, 5_12, 10_24, 20_48] , __a : str=[3, 4, 6, 3] , __a : str="preactivation" , __a : Dict="relu" , __a : Any=None , __a : Optional[Any]=32 , __a : Dict=0.0 , __a : List[Any]=False , __a : Any=32 , __a : int=1 , __a : Any=None , __a : str=None , **__a : Optional[Any] , ): super().__init__(**lowerCamelCase_ ) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _a = global_padding.upper() else: raise ValueError(f'Padding strategy {global_padding} not supported' ) _a = num_channels _a = embedding_size _a = hidden_sizes _a = depths _a = layer_type _a = hidden_act _a = global_padding _a = num_groups _a = drop_path_rate _a = embedding_dynamic_padding _a = output_stride _a = width_factor _a = ["stem"] + [f'stage{idx}' for idx in range(1 , len(lowerCamelCase_ ) + 1 )] _a , _a = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names )
63
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=lowerCamelCase_ , ) assert hasattr(self , """env""" ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = { """enabled""": True, """processes_per_host""": 8, } UpperCamelCase = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } UpperCamelCase = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} UpperCamelCase = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=lowerCamelCase_ , instance_type=self.instance_type , debugger_hook_config=lowerCamelCase_ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=lowerCamelCase_ , py_version="""py36""" , ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[Any] ): """simple docstring""" TrainingJobAnalytics(lowerCamelCase_ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = self.create_estimator(lowerCamelCase_ ) # run training estimator.fit() # result dataframe UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , lowerCamelCase_ )
343
0
"""simple docstring""" from __future__ import annotations class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str): """simple docstring""" lowercase_ , lowercase_ = text, pattern lowercase_ , lowercase_ = len(lowerCAmelCase_), len(lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1): if char == self.pattern[i]: return i return -1 def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : int): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = [] for i in range(self.textLen - self.patLen + 1): lowercase_ = self.mismatch_in_text(lowerCAmelCase_) if mismatch_index == -1: positions.append(lowerCAmelCase_) else: lowercase_ = self.match_in_pattern(self.text[mismatch_index]) lowercase_ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions UpperCAmelCase : List[Any] = "ABAABA" UpperCAmelCase : str = "AB" UpperCAmelCase : Dict = BoyerMooreSearch(text, pattern) UpperCAmelCase : List[Any] = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
313
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "perceiver" def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=2_5_6 , lowerCAmelCase_ : Dict=1_2_8_0 , lowerCAmelCase_ : List[Any]=7_6_8 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[Any]=2_6 , lowerCAmelCase_ : Optional[Any]=8 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]="kv" , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[Any]=1E-12 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=2_6_2 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Any=5_6 , lowerCAmelCase_ : int=[3_6_8, 4_9_6] , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Dict=1_9_2_0 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Tuple=[1, 1_6, 2_2_4, 2_2_4] , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = num_latents lowercase_ = d_latents lowercase_ = d_model lowercase_ = num_blocks lowercase_ = num_self_attends_per_block lowercase_ = num_self_attention_heads lowercase_ = num_cross_attention_heads lowercase_ = qk_channels lowercase_ = v_channels lowercase_ = cross_attention_shape_for_attention lowercase_ = self_attention_widening_factor lowercase_ = cross_attention_widening_factor lowercase_ = hidden_act lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_query_residual # masked language modeling attributes lowercase_ = vocab_size lowercase_ = max_position_embeddings # image classification attributes lowercase_ = image_size # flow attributes lowercase_ = train_size # multimodal autoencoding attributes lowercase_ = num_frames lowercase_ = audio_samples_per_frame lowercase_ = samples_per_patch lowercase_ = output_shape class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): @property def _UpperCAmelCase ( self : str): """simple docstring""" if self.task == "multiple-choice": lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ]) @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return 1E-4 def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 4_0 , lowerCAmelCase_ : int = 4_0 , ): """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ = preprocessor.num_special_tokens_to_add(lowerCAmelCase_) lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_) # Generate dummy inputs according to compute batch and sequence lowercase_ = [""" """.join(["""a"""]) * seq_length] * batch_size lowercase_ = dict(preprocessor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""input_ids""") return inputs elif isinstance(lowerCAmelCase_ , lowerCAmelCase_) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension(lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch) lowercase_ = self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = dict(preprocessor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""pixel_values""") return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""")
313
1
'''simple docstring''' from collections.abc import Callable def UpperCAmelCase_ ( __lowercase : Callable[[float], float] , __lowercase : float , __lowercase : float ) -> float: '''simple docstring''' _UpperCAmelCase = a _UpperCAmelCase = b if function(__lowercase ) == 0: # one of the a or b is a root for the function return a elif function(__lowercase ) == 0: return b elif ( function(__lowercase ) * function(__lowercase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: _UpperCAmelCase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__lowercase ) == 0: return mid elif function(__lowercase ) * function(__lowercase ) < 0: _UpperCAmelCase = mid else: _UpperCAmelCase = mid _UpperCAmelCase = start + (end - start) / 2.0 return mid def UpperCAmelCase_ ( __lowercase : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
22
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int ) -> int: '''simple docstring''' if not isinstance(__lowercase , __lowercase ) or number < 0: raise ValueError("Input must be a non-negative integer" ) _UpperCAmelCase = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
22
1
class A: '''simple docstring''' def __init__( self : List[Any] , A_ : List[str] ) -> None: """simple docstring""" lowerCamelCase_ = size lowerCamelCase_ = [0] * size lowerCamelCase_ = [0] * size @staticmethod def a__ ( A_ : Any ) -> int: """simple docstring""" return index | (index + 1) @staticmethod def a__ ( A_ : Tuple ) -> int: """simple docstring""" return (index & (index + 1)) - 1 def a__ ( self : int , A_ : int , A_ : Optional[Any] ) -> None: """simple docstring""" lowerCamelCase_ = value while index < self.size: lowerCamelCase_ = self.get_prev(SCREAMING_SNAKE_CASE_ ) + 1 if current_left_border == index: lowerCamelCase_ = value else: lowerCamelCase_ = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.get_next(SCREAMING_SNAKE_CASE_ ) def a__ ( self : int , A_ : Dict , A_ : Optional[int] ) -> int: """simple docstring""" right -= 1 # Because of right is exclusive lowerCamelCase_ = 0 while left <= right: lowerCamelCase_ = self.get_prev(SCREAMING_SNAKE_CASE_ ) if left <= current_left: lowerCamelCase_ = max(SCREAMING_SNAKE_CASE_ , self.tree[right] ) lowerCamelCase_ = current_left else: lowerCamelCase_ = max(SCREAMING_SNAKE_CASE_ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
365
from ..utils import DummyObject, requires_backends class A( metaclass=UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self : Any , *A_ : Any , **A_ : Tuple ) -> List[Any]: """simple docstring""" requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def a__ ( cls : Tuple , *A_ : Dict , **A_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def a__ ( cls : int , *A_ : Dict , **A_ : List[str] ) -> Tuple: """simple docstring""" requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
208
0
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def A_ ( a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = checkpoint SCREAMING_SNAKE_CASE_ : List[Any] = {} SCREAMING_SNAKE_CASE_ : int = vae_state_dict['encoder.conv_in.weight'] SCREAMING_SNAKE_CASE_ : Optional[int] = vae_state_dict['encoder.conv_in.bias'] SCREAMING_SNAKE_CASE_ : str = vae_state_dict['encoder.conv_out.weight'] SCREAMING_SNAKE_CASE_ : int = vae_state_dict['encoder.conv_out.bias'] SCREAMING_SNAKE_CASE_ : Tuple = vae_state_dict['encoder.norm_out.weight'] SCREAMING_SNAKE_CASE_ : str = vae_state_dict['encoder.norm_out.bias'] SCREAMING_SNAKE_CASE_ : Any = vae_state_dict['decoder.conv_in.weight'] SCREAMING_SNAKE_CASE_ : Optional[int] = vae_state_dict['decoder.conv_in.bias'] SCREAMING_SNAKE_CASE_ : str = vae_state_dict['decoder.conv_out.weight'] SCREAMING_SNAKE_CASE_ : List[Any] = vae_state_dict['decoder.conv_out.bias'] SCREAMING_SNAKE_CASE_ : str = vae_state_dict['decoder.norm_out.weight'] SCREAMING_SNAKE_CASE_ : str = vae_state_dict['decoder.norm_out.bias'] SCREAMING_SNAKE_CASE_ : int = vae_state_dict['quant_conv.weight'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = vae_state_dict['quant_conv.bias'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = vae_state_dict['post_quant_conv.weight'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = vae_state_dict['post_quant_conv.bias'] # Retrieves the keys for the encoder down blocks only SCREAMING_SNAKE_CASE_ : Union[str, Any] = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) SCREAMING_SNAKE_CASE_ : Any = { layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(lowerCAmelCase__ ) } # Retrieves the keys for the decoder up blocks only SCREAMING_SNAKE_CASE_ : Union[str, Any] = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) SCREAMING_SNAKE_CASE_ : List[Any] = { layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(lowerCAmelCase__ ) } for i in range(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: SCREAMING_SNAKE_CASE_ : Any = vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.weight" ) SCREAMING_SNAKE_CASE_ : List[str] = vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.bias" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = renew_vae_resnet_paths(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = {'old': f"down.{i}.block", 'new': f"down_blocks.{i}.resnets"} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = [key for key in vae_state_dict if 'encoder.mid.block' in key] SCREAMING_SNAKE_CASE_ : Any = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] SCREAMING_SNAKE_CASE_ : str = renew_vae_resnet_paths(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = {'old': f"mid.block_{i}", 'new': f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = [key for key in vae_state_dict if 'encoder.mid.attn' in key] SCREAMING_SNAKE_CASE_ : Any = renew_vae_attention_paths(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) conv_attn_to_linear(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : int = num_up_blocks - 1 - i SCREAMING_SNAKE_CASE_ : Optional[Any] = [ key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key ] if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: SCREAMING_SNAKE_CASE_ : int = vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.weight" ] SCREAMING_SNAKE_CASE_ : List[Any] = vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.bias" ] SCREAMING_SNAKE_CASE_ : Optional[Any] = renew_vae_resnet_paths(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = {'old': f"up.{block_id}.block", 'new': f"up_blocks.{i}.resnets"} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = [key for key in vae_state_dict if 'decoder.mid.block' in key] SCREAMING_SNAKE_CASE_ : Optional[int] = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE_ : int = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] SCREAMING_SNAKE_CASE_ : int = renew_vae_resnet_paths(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = {'old': f"mid.block_{i}", 'new': f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = [key for key in vae_state_dict if 'decoder.mid.attn' in key] SCREAMING_SNAKE_CASE_ : Tuple = renew_vae_attention_paths(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) conv_attn_to_linear(lowerCAmelCase__ ) return new_checkpoint def A_ ( a , a , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = io.BytesIO(r.content ) SCREAMING_SNAKE_CASE_ : str = OmegaConf.load(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = 5_1_2 SCREAMING_SNAKE_CASE_ : int = 'cuda' if torch.cuda.is_available() else 'cpu' if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open SCREAMING_SNAKE_CASE_ : int = {} with safe_open(lowerCAmelCase__ , framework='pt' , device='cpu' ) as f: for key in f.keys(): SCREAMING_SNAKE_CASE_ : Optional[Any] = f.get_tensor(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE_ : str = torch.load(lowerCAmelCase__ , map_location=lowerCAmelCase__ )['state_dict'] # Convert the VAE model. SCREAMING_SNAKE_CASE_ : List[str] = create_vae_diffusers_config(lowerCAmelCase__ , image_size=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = custom_convert_ldm_vae_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoencoderKL(**lowerCAmelCase__ ) vae.load_state_dict(lowerCAmelCase__ ) vae.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') lowerCAmelCase : int = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
253
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowercase__ : List[str] = logging.getLogger() def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> Dict: """simple docstring""" lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : Union[str, Any] = os.path.join(lowerCAmelCase__ , 'all_results.json' ) if os.path.exists(lowerCAmelCase__ ): with open(lowerCAmelCase__ , 'r' ) as f: lowerCAmelCase_ : Any = json.load(lowerCAmelCase__ ) else: raise ValueError(f"can't find {path}" ) return results lowercase__ : Optional[int] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : Any ): import xla_spawn lowerCAmelCase_ : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Optional[Any] = F"\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(SCREAMING_SNAKE_CASE_ , 'argv' , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : Optional[Any] = time() xla_spawn.main() lowerCAmelCase_ : Any = time() lowerCAmelCase_ : Dict = get_results(SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_0_0 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): import xla_spawn lowerCAmelCase_ : Dict = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(SCREAMING_SNAKE_CASE_ , 'argv' , SCREAMING_SNAKE_CASE_ ): xla_spawn.main()
224
0
"""simple docstring""" from typing import Any def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, ) -> Tuple: """simple docstring""" _validation( __a, __a, __a, __a, __a, ) # Creates data structures and fill initial step _UpperCamelCase = {} _UpperCamelCase = {} for state in states_space: _UpperCamelCase = observations_space[0] _UpperCamelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) _UpperCamelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1, len(__a ) ): _UpperCamelCase = observations_space[o] _UpperCamelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _UpperCamelCase = '' _UpperCamelCase = -1 for k_state in states_space: _UpperCamelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _UpperCamelCase = probability _UpperCamelCase = k_state # Update probabilities and pointers dicts _UpperCamelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _UpperCamelCase = arg_max # The final observation _UpperCamelCase = observations_space[len(__a ) - 1] # argmax for given final observation _UpperCamelCase = '' _UpperCamelCase = -1 for k_state in states_space: _UpperCamelCase = probabilities[(k_state, final_observation)] if probability > max_probability: _UpperCamelCase = probability _UpperCamelCase = k_state _UpperCamelCase = arg_max # Process pointers backwards _UpperCamelCase = last_state _UpperCamelCase = [] for o in range(len(__a ) - 1, -1, -1 ): result.append(__a ) _UpperCamelCase = pointers[previous, observations_space[o]] result.reverse() return result def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, ) -> str: """simple docstring""" _validate_not_empty( __a, __a, __a, __a, __a, ) _validate_lists(__a, __a ) _validate_dicts( __a, __a, __a ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, ) -> str: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Union[str, Any]: """simple docstring""" _validate_list(__a, '''observations_space''' ) _validate_list(__a, '''states_space''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" if not isinstance(_object, __a ): _UpperCamelCase = F'''{var_name} must be a list''' raise ValueError(__a ) else: for x in _object: if not isinstance(__a, __a ): _UpperCamelCase = F'''{var_name} must be a list of strings''' raise ValueError(__a ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, ) -> Tuple: """simple docstring""" _validate_dict(__a, '''initial_probabilities''', __a ) _validate_nested_dict(__a, '''transition_probabilities''' ) _validate_nested_dict(__a, '''emission_probabilities''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _validate_dict(_object, __a, __a ) for x in _object.values(): _validate_dict(__a, __a, __a, __a ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case = False ) -> int: """simple docstring""" if not isinstance(_object, __a ): _UpperCamelCase = F'''{var_name} must be a dict''' raise ValueError(__a ) if not all(isinstance(__a, __a ) for x in _object ): _UpperCamelCase = F'''{var_name} all keys must be strings''' raise ValueError(__a ) if not all(isinstance(__a, __a ) for x in _object.values() ): _UpperCamelCase = 'nested dictionary ' if nested else '' _UpperCamelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
355
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=16 , __a=36 , __a=6 , __a=6 , __a=6 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> List[str]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = embedding_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_hidden_groups _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = AlbertModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = AlbertForPreTraining(config=__a) model.to(__a) model.eval() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , sentence_order_label=__a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = AlbertForMaskedLM(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = AlbertForQuestionAnswering(config=__a) model.to(__a) model.eval() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = AlbertForSequenceClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = AlbertForTokenClassification(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = self.num_choices _UpperCamelCase = AlbertForMultipleChoice(config=__a) model.to(__a) model.eval() _UpperCamelCase = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowercase__ = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True def UpperCAmelCase ( self , __a , __a , __a=False) -> Tuple: '''simple docstring''' _UpperCamelCase = super()._prepare_for_class(__a , __a , return_labels=__a) if return_labels: if model_class in get_values(__a): _UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__a) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a) return inputs_dict def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = AlbertModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCamelCase = type self.model_tester.create_and_check_model(*__a) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = AlbertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_torch class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = AlbertModel.from_pretrained('''albert-base-v2''') _UpperCamelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]]) _UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): _UpperCamelCase = model(__a , attention_mask=__a)[0] _UpperCamelCase = torch.Size((1, 11, 7_68)) self.assertEqual(output.shape , __a) _UpperCamelCase = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __a , atol=1e-4))
100
0
from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=a__): SCREAMING_SNAKE_CASE__ = ['''torch''', '''torchsde'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(self , ['''torch''', '''torchsde'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''torchsde'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> str: requires_backends(cls , ['''torch''', '''torchsde'''] )
5
"""simple docstring""" import math import unittest def lowercase_ ( _snake_case ): assert isinstance(_snake_case ,_snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(_snake_case ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Dict: """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
25
0
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : Dict ): """simple docstring""" _snake_case : Dict = OmegaConf.load(snake_case__ ) _snake_case : Optional[Any] = torch.load(snake_case__ , map_location="""cpu""" )["""model"""] _snake_case : Optional[Any] = list(state_dict.keys() ) # extract state_dict for VQVAE _snake_case : Tuple = {} _snake_case : Optional[Any] = """first_stage_model.""" for key in keys: if key.startswith(snake_case__ ): _snake_case : Optional[int] = state_dict[key] # extract state_dict for UNetLDM _snake_case : Union[str, Any] = {} _snake_case : Dict = """model.diffusion_model.""" for key in keys: if key.startswith(snake_case__ ): _snake_case : Any = state_dict[key] _snake_case : str = config.model.params.first_stage_config.params _snake_case : Any = config.model.params.unet_config.params _snake_case : Optional[Any] = VQModel(**snake_case__ ).eval() vqvae.load_state_dict(snake_case__ ) _snake_case : Tuple = UNetLDMModel(**snake_case__ ).eval() unet.load_state_dict(snake_case__ ) _snake_case : List[str] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , ) _snake_case : Any = LDMPipeline(snake_case__ , snake_case__ , snake_case__ ) pipeline.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) A_ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
132
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" _snake_case : Union[str, Any] = [] _snake_case : Dict = set({"""(""", """[""", """{"""} ) _snake_case : Union[str, Any] = set({""")""", """]""", """}"""} ) _snake_case : Tuple = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(snake_case__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(snake_case__ ) == 0 or (len(snake_case__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(snake_case__ ) == 0 def UpperCAmelCase__ (): """simple docstring""" _snake_case : Any = input("""Enter sequence of brackets: """ ) if is_balanced(snake_case__ ): print(snake_case__ , """is balanced""" ) else: print(snake_case__ , """is not balanced""" ) if __name__ == "__main__": main()
132
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=a__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=a__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=a__ ) return parser.parse_args() def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = parse_args() # Import training_script as a module. SCREAMING_SNAKE_CASE : str = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) SCREAMING_SNAKE_CASE : Any = script_fpath.stem SCREAMING_SNAKE_CASE : List[Any] = importlib.import_module(a__ ) # Patch sys.argv SCREAMING_SNAKE_CASE : List[Any] = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
313
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : int = logging.get_logger(__name__) a__ : Optional[Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'deformable_detr' __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=3 , _lowerCamelCase=300 , _lowerCamelCase=1024 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="sine" , _lowerCamelCase="resnet50" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=300 , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2_5 , _lowerCamelCase=False , **_lowerCamelCase , ) ->Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) SCREAMING_SNAKE_CASE : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = backbone_config.get('''model_type''' ) SCREAMING_SNAKE_CASE : Optional[Any] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : int = config_class.from_dict(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = use_timm_backbone SCREAMING_SNAKE_CASE : Optional[int] = backbone_config SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = num_queries SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : str = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = decoder_ffn_dim SCREAMING_SNAKE_CASE : int = decoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[str] = init_xavier_std SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = backbone SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = dilation # deformable attributes SCREAMING_SNAKE_CASE : str = num_feature_levels SCREAMING_SNAKE_CASE : Optional[Any] = encoder_n_points SCREAMING_SNAKE_CASE : Any = decoder_n_points SCREAMING_SNAKE_CASE : str = two_stage SCREAMING_SNAKE_CASE : List[str] = two_stage_num_proposals SCREAMING_SNAKE_CASE : Dict = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher SCREAMING_SNAKE_CASE : int = class_cost SCREAMING_SNAKE_CASE : Union[str, Any] = bbox_cost SCREAMING_SNAKE_CASE : Optional[int] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE : Union[str, Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : str = bbox_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = giou_loss_coefficient SCREAMING_SNAKE_CASE : Optional[int] = eos_coefficient SCREAMING_SNAKE_CASE : Tuple = focal_alpha SCREAMING_SNAKE_CASE : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->int: return self.encoder_attention_heads @property def __lowerCAmelCase ( self ) ->int: return self.d_model def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
313
1
'''simple docstring''' import qiskit def UpperCAmelCase ( a_ , a_ ) -> qiskit.result.counts.Counts: """simple docstring""" A_ : Union[str, Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register A_ : Optional[int] = qiskit.QuantumCircuit(a_ , a_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator A_ : Optional[Any] = qiskit.execute(a_ , a_ , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a_ ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = single_qubit_measure(2, 2) print(f'Total count for various states are: {counts}')
164
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> str: super().__init__() A_ : Any = module A_ : Any = nn.Sequential( nn.Linear(module.in_features , _lowerCamelCase , bias=_lowerCamelCase ) , nn.Linear(_lowerCamelCase , module.out_features , bias=_lowerCamelCase ) , ) A_ : Union[str, Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_lowerCamelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def UpperCAmelCase_ ( self , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> List[Any]: return self.module(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) + self.adapter(_lowerCamelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" lowerCamelCase = '''bigscience/bloom-1b7''' # Constant values lowerCamelCase = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowerCamelCase = '''Hello my name is''' lowerCamelCase = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) lowerCamelCase = 10 def UpperCAmelCase_ ( self ) -> List[str]: # Models and tokenizer A_ : List[str] = AutoTokenizer.from_pretrained(self.model_name ) class _lowerCAmelCase ( __A ): """simple docstring""" def UpperCAmelCase_ ( self ) -> Optional[Any]: super().setUp() # Models and tokenizer A_ : List[str] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) A_ : List[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_lowerCamelCase , device_map="""auto""" ) def UpperCAmelCase_ ( self ) -> Optional[int]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ) -> List[Any]: A_ : str = self.model_abit.config self.assertTrue(hasattr(_lowerCamelCase , """quantization_config""" ) ) A_ : Union[str, Any] = config.to_dict() A_ : Optional[int] = config.to_diff_dict() A_ : Tuple = config.to_json_string() def UpperCAmelCase_ ( self ) -> str: from bitsandbytes.nn import Paramsabit A_ : List[Any] = self.model_fpaa.get_memory_footprint() A_ : Tuple = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A_ : Union[str, Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def UpperCAmelCase_ ( self ) -> List[str]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_lowerCamelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : List[str] = self.tokenizer(self.input_text , return_tensors="""pt""" ) A_ : int = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_lowerCamelCase ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase_ ( self ) -> Any: A_ : Dict = BitsAndBytesConfig() A_ : Tuple = True A_ : Any = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_lowerCamelCase , device_map="""auto""" ) A_ : Optional[int] = self.tokenizer(self.input_text , return_tensors="""pt""" ) A_ : Optional[Any] = model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_lowerCamelCase ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase_ ( self ) -> List[Any]: with self.assertRaises(_lowerCamelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Union[str, Any] = BitsAndBytesConfig() with self.assertRaises(_lowerCamelCase ): A_ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_lowerCamelCase , load_in_abit=_lowerCamelCase , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def UpperCAmelCase_ ( self ) -> str: with self.assertRaises(_lowerCamelCase ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(_lowerCamelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_lowerCamelCase ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(_lowerCamelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_lowerCamelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A_ : Optional[int] = self.tokenizer(self.input_text , return_tensors="""pt""" ) A_ : Tuple = self.model_fpaa.to(torch.floataa ) A_ : int = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A_ : Any = self.model_fpaa.to("""cpu""" ) # Check this does not throw an error A_ : str = self.model_fpaa.half() # Check this does not throw an error A_ : Any = self.model_fpaa.float() def UpperCAmelCase_ ( self ) -> Dict: A_ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=_lowerCamelCase , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase_ ( cls ) -> Optional[int]: A_ : Optional[int] = """t5-small""" A_ : List[str] = """google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense A_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name ) A_ : Optional[Any] = """Translate in German: Hello, my dog is cute""" def UpperCAmelCase_ ( self ) -> Optional[Any]: gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ) -> Union[str, Any]: from transformers import TaForConditionalGeneration A_ : Optional[int] = TaForConditionalGeneration._keep_in_fpaa_modules A_ : Any = None # test with `t5-small` A_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_lowerCamelCase , device_map="""auto""" ) A_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A_ : Optional[int] = model.generate(**_lowerCamelCase ) # test with `flan-t5-small` A_ : Tuple = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_lowerCamelCase , device_map="""auto""" ) A_ : Dict = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A_ : str = model.generate(**_lowerCamelCase ) A_ : Optional[int] = modules def UpperCAmelCase_ ( self ) -> List[Any]: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A_ : str = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_lowerCamelCase , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A_ : Any = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A_ : List[Any] = model.generate(**_lowerCamelCase ) # test with `flan-t5-small` A_ : Union[str, Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_lowerCamelCase , device_map="""auto""" ) A_ : int = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A_ : Optional[int] = model.generate(**_lowerCamelCase ) class _lowerCAmelCase ( __A ): """simple docstring""" def UpperCAmelCase_ ( self ) -> int: super().setUp() # model_name A_ : Dict = """bigscience/bloom-560m""" A_ : Union[str, Any] = """t5-small""" # Different types of model A_ : Optional[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=_lowerCamelCase , device_map="""auto""" ) # Sequence classification model A_ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_lowerCamelCase , device_map="""auto""" ) # CausalLM model A_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_lowerCamelCase , device_map="""auto""" ) # Seq2seq model A_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_lowerCamelCase , device_map="""auto""" ) def UpperCAmelCase_ ( self ) -> Optional[Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ) -> List[Any]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowerCAmelCase ( __A ): """simple docstring""" def UpperCAmelCase_ ( self ) -> str: super().setUp() def UpperCAmelCase_ ( self ) -> Any: del self.pipe gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : List[str] = pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A_ : int = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowerCAmelCase ( __A ): """simple docstring""" def UpperCAmelCase_ ( self ) -> str: super().setUp() def UpperCAmelCase_ ( self ) -> str: A_ : List[str] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_lowerCamelCase , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A_ : str = self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch A_ : int = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_lowerCamelCase ) , self.EXPECTED_OUTPUTS ) class _lowerCAmelCase ( __A ): """simple docstring""" def UpperCAmelCase_ ( self ) -> Tuple: A_ : Union[str, Any] = """facebook/opt-350m""" super().setUp() def UpperCAmelCase_ ( self ) -> Optional[Any]: if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters A_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_lowerCamelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A_ : Optional[Any] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A_ : Any = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_lowerCamelCase ) ): A_ : int = LoRALayer(module.q_proj , rank=16 ) A_ : Optional[int] = LoRALayer(module.k_proj , rank=16 ) A_ : Union[str, Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A_ : Dict = self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A_ : Dict = model.forward(**_lowerCamelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_lowerCamelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''gpt2-xl''' lowerCamelCase = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
164
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : Optional[int] = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : int = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] lowerCAmelCase__ : List[Any] = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys lowerCAmelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _UpperCamelCase = logging.get_logger(__name__) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=False ) -> Tuple: try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise if not is_sharded: __lowerCamelCase : str = os.path.abspath(_lowerCAmelCase ) logger.info(F'Loading PyTorch weights from {pt_path}' ) __lowerCamelCase : Optional[Any] = torch.load(_lowerCAmelCase ,map_location='cpu' ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) __lowerCamelCase : Tuple = convert_pytorch_state_dict_to_flax(_lowerCAmelCase ,_lowerCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files __lowerCamelCase : Union[str, Any] = convert_pytorch_sharded_state_dict_to_flax(_lowerCAmelCase ,_lowerCAmelCase ) return flax_state_dict def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(_lowerCAmelCase ) -> bool: return len(set(_lowerCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm __lowerCamelCase : List[str] = pt_tuple_key[:-1] + ('scale',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean __lowerCamelCase : int = pt_tuple_key[:-1] + ('mean',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var __lowerCamelCase : List[str] = pt_tuple_key[:-1] + ('var',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding __lowerCamelCase : Tuple = pt_tuple_key[:-1] + ('embedding',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer __lowerCamelCase : List[str] = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): __lowerCamelCase : List[Any] = pt_tensor.transpose(2 ,3 ,1 ,0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __lowerCamelCase : Optional[Any] = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): __lowerCamelCase : Dict = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __lowerCamelCase : Tuple = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __lowerCamelCase : int = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 __lowerCamelCase : Optional[int] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): __lowerCamelCase : Union[str, Any] = pt_tuple_key[-2] + '_g' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): __lowerCamelCase : Tuple = pt_tuple_key[-2] + '_v' if name is not None: __lowerCamelCase : Any = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Optional[int]: # convert pytorch tensor to numpy __lowerCamelCase : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} __lowerCamelCase : str = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: __lowerCamelCase : List[Any] = flax_model.params['params'] else: __lowerCamelCase : List[str] = flax_model.params __lowerCamelCase : Tuple = flatten_dict(_lowerCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __lowerCamelCase : Optional[int] = flatten_dict(flax_model.params['batch_stats'] ) random_flax_state_dict.update(_lowerCAmelCase ) __lowerCamelCase : str = {} __lowerCamelCase : Union[str, Any] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) __lowerCamelCase : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __lowerCamelCase : Any = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary __lowerCamelCase : Any = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __lowerCamelCase : Optional[Any] = pt_tuple_key[1:] # Correctly rename weight parameters __lowerCamelCase ,__lowerCamelCase : Dict = rename_key_and_reshape_tensor( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # add model prefix if necessary __lowerCamelCase : Dict = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __lowerCamelCase : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: __lowerCamelCase : List[Any] = jnp.asarray(_lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCAmelCase ,_lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown __lowerCamelCase : List[Any] = jnp.asarray(_lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown __lowerCamelCase : str = jnp.asarray(_lowerCAmelCase ) return unflatten_dict(_lowerCAmelCase ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Any: import torch # Load the index __lowerCamelCase : Optional[int] = {} for shard_file in shard_filenames: # load using msgpack utils __lowerCamelCase : Dict = torch.load(_lowerCAmelCase ) __lowerCamelCase : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} __lowerCamelCase : Optional[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __lowerCamelCase : str = flax_model.params['params'] __lowerCamelCase : Tuple = flatten_dict(_lowerCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) ) else: __lowerCamelCase : Dict = flax_model.params __lowerCamelCase : Optional[int] = flatten_dict(_lowerCAmelCase ) __lowerCamelCase : List[Any] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) __lowerCamelCase : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __lowerCamelCase : Optional[Any] = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary __lowerCamelCase : List[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __lowerCamelCase : Optional[int] = pt_tuple_key[1:] # Correctly rename weight parameters __lowerCamelCase ,__lowerCamelCase : Any = rename_key_and_reshape_tensor( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # add model prefix if necessary __lowerCamelCase : Tuple = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __lowerCamelCase : Optional[Any] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: __lowerCamelCase : int = jnp.asarray(_lowerCAmelCase ) continue if "var" in flax_key[-1]: __lowerCamelCase : Tuple = jnp.asarray(_lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCAmelCase ,_lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown __lowerCamelCase : Optional[int] = jnp.asarray(_lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown __lowerCamelCase : Tuple = jnp.asarray(_lowerCAmelCase ) return unflatten_dict(_lowerCAmelCase ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = os.path.abspath(_lowerCAmelCase ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class __lowerCamelCase : str = getattr(_lowerCAmelCase ,'Flax' + model.__class__.__name__ ) # load flax weight dict with open(_lowerCAmelCase ,'rb' ) as state_f: try: __lowerCamelCase : Tuple = from_bytes(_lowerCAmelCase ,state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_lowerCAmelCase ,_lowerCAmelCase ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Optional[Any]: try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights __lowerCamelCase : Any = flatten_dict(jax.tree_util.tree_map(lambda _lowerCAmelCase : x.dtype == jnp.bfloataa ,_lowerCAmelCase ) ).values() if any(_lowerCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) __lowerCamelCase : Dict = jax.tree_util.tree_map( lambda _lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params ,_lowerCAmelCase ) __lowerCamelCase : Any = flatten_dict(_lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = pt_model.state_dict() __lowerCamelCase : Union[str, Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()} ) __lowerCamelCase : Tuple = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys __lowerCamelCase : Any = [] __lowerCamelCase : Union[str, Any] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __lowerCamelCase : List[str] = flax_key_tuple[0] == pt_model.base_model_prefix __lowerCamelCase : Dict = '.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: __lowerCamelCase : List[Any] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: __lowerCamelCase : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_lowerCAmelCase ) not in pt_model_dict: # conv layer __lowerCamelCase : Tuple = flax_key_tuple[:-1] + ('weight',) __lowerCamelCase : Tuple = jnp.transpose(_lowerCAmelCase ,(3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ) not in pt_model_dict: # linear layer __lowerCamelCase : Dict = flax_key_tuple[:-1] + ('weight',) __lowerCamelCase : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __lowerCamelCase : Optional[Any] = flax_key_tuple[:-1] + ('weight',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: __lowerCamelCase : str = flax_key_tuple[:-1] + ('running_mean',) elif "var" in flax_key_tuple[-1]: __lowerCamelCase : int = flax_key_tuple[:-1] + ('running_var',) if "batch_stats" in flax_state: __lowerCamelCase : Tuple = '.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: __lowerCamelCase : Optional[int] = '.'.join(_lowerCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. __lowerCamelCase : Tuple = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: __lowerCamelCase : str = key.split('.' ) __lowerCamelCase : Tuple = None if key_components[-3::2] == ["parametrizations", "original0"]: __lowerCamelCase : Any = key_components[-2] + '_g' elif key_components[-3::2] == ["parametrizations", "original1"]: __lowerCamelCase : Tuple = key_components[-2] + '_v' if name is not None: __lowerCamelCase : Optional[int] = key_components[:-3] + [name] __lowerCamelCase : Union[str, Any] = '.'.join(_lowerCAmelCase ) __lowerCamelCase : Optional[int] = key if flax_key in special_pt_names: __lowerCamelCase : int = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict __lowerCamelCase : Tuple = np.asarray(_lowerCAmelCase ) if not isinstance(_lowerCAmelCase ,np.ndarray ) else flax_tensor __lowerCamelCase : List[str] = torch.from_numpy(_lowerCAmelCase ) # remove from missing keys missing_keys.remove(_lowerCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_lowerCAmelCase ) pt_model.load_state_dict(_lowerCAmelCase ) # re-transform missing_keys to list __lowerCamelCase : int = list(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_lowerCAmelCase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ' use it for predictions and inference.' ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' 'If your task is similar to the task the model of the checkpoint was trained on, ' F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
208
0
import os def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = "input.txt" ): with open(os.path.join(os.path.dirname(UpperCamelCase__ ) , UpperCamelCase__ ) ) as input_file: lowercase__ = [ [int(UpperCamelCase__ ) for element in line.split("," )] for line in input_file.readlines() ] lowercase__ = len(UpperCamelCase__ ) lowercase__ = len(matrix[0] ) lowercase__ = [[-1 for _ in range(UpperCamelCase__ )] for _ in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ ): lowercase__ = matrix[i][0] for j in range(1 , UpperCamelCase__ ): for i in range(UpperCamelCase__ ): lowercase__ = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , UpperCamelCase__ ): lowercase__ = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase__ = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'{solution() = }')
367
from __future__ import annotations def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return len(set(SCREAMING_SNAKE_CASE_ ) ) == len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
224
0
'''simple docstring''' from math import factorial def lowerCAmelCase_ ( snake_case__ = 20 ): '''simple docstring''' A : Optional[Any] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... A : List[str] = n // 2 return int(factorial(snake_case__ ) / (factorial(snake_case__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: lowercase : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
3
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ = 10**9 ): __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
100
0
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') __UpperCamelCase = int(input('''Enter number: ''').strip()) print(f'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
38
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
38
1
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging a :Optional[int] = logging.get_logger(__name__) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: SCREAMING_SNAKE_CASE__ : Any = os.path.abspath(__lowerCAmelCase ) logger.info(F'''Loading PyTorch weights from {pt_path}''' ) SCREAMING_SNAKE_CASE__ : str = torch.load(__lowerCAmelCase , map_location="""cpu""" ) logger.info(F'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' ) SCREAMING_SNAKE_CASE__ : Dict = convert_pytorch_state_dict_to_flax(__lowerCAmelCase , __lowerCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files SCREAMING_SNAKE_CASE__ : str = convert_pytorch_sharded_state_dict_to_flax(__lowerCAmelCase , __lowerCAmelCase ) return flax_state_dict def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(__lowerCAmelCase ) -> bool: return len(set(__lowerCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm SCREAMING_SNAKE_CASE__ : Dict = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean SCREAMING_SNAKE_CASE__ : Any = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var SCREAMING_SNAKE_CASE__ : Optional[Any] = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding SCREAMING_SNAKE_CASE__ : Tuple = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer SCREAMING_SNAKE_CASE__ : Union[str, Any] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : int = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer SCREAMING_SNAKE_CASE__ : Union[str, Any] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight SCREAMING_SNAKE_CASE__ : List[str] = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias SCREAMING_SNAKE_CASE__ : Any = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 SCREAMING_SNAKE_CASE__ : Optional[int] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): SCREAMING_SNAKE_CASE__ : Tuple = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): SCREAMING_SNAKE_CASE__ : int = pt_tuple_key[-2] + """_v""" if name is not None: SCREAMING_SNAKE_CASE__ : Any = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: # convert pytorch tensor to numpy SCREAMING_SNAKE_CASE__ : List[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} SCREAMING_SNAKE_CASE__ : Any = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: SCREAMING_SNAKE_CASE__ : Optional[int] = flax_model.params["""params"""] else: SCREAMING_SNAKE_CASE__ : List[Any] = flax_model.params SCREAMING_SNAKE_CASE__ : Union[str, Any] = flatten_dict(__lowerCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: SCREAMING_SNAKE_CASE__ : Tuple = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = {} SCREAMING_SNAKE_CASE__ : Dict = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): SCREAMING_SNAKE_CASE__ : Optional[int] = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary SCREAMING_SNAKE_CASE__ : List[str] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: SCREAMING_SNAKE_CASE__ : List[str] = pt_tuple_key[1:] # Correctly rename weight parameters SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = rename_key_and_reshape_tensor( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # add model prefix if necessary SCREAMING_SNAKE_CASE__ : str = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: SCREAMING_SNAKE_CASE__ : List[str] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: SCREAMING_SNAKE_CASE__ : Optional[Any] = jnp.asarray(__lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown SCREAMING_SNAKE_CASE__ : str = jnp.asarray(__lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown SCREAMING_SNAKE_CASE__ : Optional[Any] = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: import torch # Load the index SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} for shard_file in shard_filenames: # load using msgpack utils SCREAMING_SNAKE_CASE__ : str = torch.load(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = {k: v.numpy() for k, v in pt_state_dict.items()} SCREAMING_SNAKE_CASE__ : str = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: SCREAMING_SNAKE_CASE__ : Tuple = flax_model.params["""params"""] SCREAMING_SNAKE_CASE__ : List[str] = flatten_dict(__lowerCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: SCREAMING_SNAKE_CASE__ : Any = flax_model.params SCREAMING_SNAKE_CASE__ : Dict = flatten_dict(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) SCREAMING_SNAKE_CASE__ : Optional[int] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): SCREAMING_SNAKE_CASE__ : str = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary SCREAMING_SNAKE_CASE__ : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: SCREAMING_SNAKE_CASE__ : str = pt_tuple_key[1:] # Correctly rename weight parameters SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = rename_key_and_reshape_tensor( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # add model prefix if necessary SCREAMING_SNAKE_CASE__ : Tuple = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: SCREAMING_SNAKE_CASE__ : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: SCREAMING_SNAKE_CASE__ : str = jnp.asarray(__lowerCAmelCase ) continue if "var" in flax_key[-1]: SCREAMING_SNAKE_CASE__ : List[str] = jnp.asarray(__lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown SCREAMING_SNAKE_CASE__ : str = jnp.asarray(__lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown SCREAMING_SNAKE_CASE__ : Any = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : List[Any] = os.path.abspath(__lowerCAmelCase ) logger.info(F'''Loading Flax weights from {flax_checkpoint_path}''' ) # import correct flax class SCREAMING_SNAKE_CASE__ : int = getattr(__lowerCAmelCase , """Flax""" + model.__class__.__name__ ) # load flax weight dict with open(__lowerCAmelCase , """rb""" ) as state_f: try: SCREAMING_SNAKE_CASE__ : int = from_bytes(__lowerCAmelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(__lowerCAmelCase , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights SCREAMING_SNAKE_CASE__ : Optional[int] = flatten_dict(jax.tree_util.tree_map(lambda __lowerCAmelCase : x.dtype == jnp.bfloataa , __lowerCAmelCase ) ).values() if any(__lowerCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) SCREAMING_SNAKE_CASE__ : str = jax.tree_util.tree_map( lambda __lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = flatten_dict(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = pt_model.state_dict() SCREAMING_SNAKE_CASE__ : str = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) SCREAMING_SNAKE_CASE__ : List[Any] = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): SCREAMING_SNAKE_CASE__ : int = flax_key_tuple[0] == pt_model.base_model_prefix SCREAMING_SNAKE_CASE__ : Any = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: SCREAMING_SNAKE_CASE__ : Union[str, Any] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: SCREAMING_SNAKE_CASE__ : List[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCAmelCase ) not in pt_model_dict: # conv layer SCREAMING_SNAKE_CASE__ : List[Any] = flax_key_tuple[:-1] + ("""weight""",) SCREAMING_SNAKE_CASE__ : Tuple = jnp.transpose(__lowerCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCAmelCase ) not in pt_model_dict: # linear layer SCREAMING_SNAKE_CASE__ : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) SCREAMING_SNAKE_CASE__ : Tuple = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: SCREAMING_SNAKE_CASE__ : Tuple = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: SCREAMING_SNAKE_CASE__ : int = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: SCREAMING_SNAKE_CASE__ : List[str] = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: SCREAMING_SNAKE_CASE__ : str = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: SCREAMING_SNAKE_CASE__ : Dict = """.""".join(__lowerCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. SCREAMING_SNAKE_CASE__ : Optional[Any] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: SCREAMING_SNAKE_CASE__ : List[str] = key.split(""".""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: SCREAMING_SNAKE_CASE__ : Tuple = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: SCREAMING_SNAKE_CASE__ : List[Any] = key_components[-2] + """_v""" if name is not None: SCREAMING_SNAKE_CASE__ : List[str] = key_components[:-3] + [name] SCREAMING_SNAKE_CASE__ : str = """.""".join(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = key if flax_key in special_pt_names: SCREAMING_SNAKE_CASE__ : Dict = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict SCREAMING_SNAKE_CASE__ : Dict = np.asarray(__lowerCAmelCase ) if not isinstance(__lowerCAmelCase , np.ndarray ) else flax_tensor SCREAMING_SNAKE_CASE__ : Tuple = torch.from_numpy(__lowerCAmelCase ) # remove from missing keys missing_keys.remove(__lowerCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCAmelCase ) pt_model.load_state_dict(__lowerCAmelCase ) # re-transform missing_keys to list SCREAMING_SNAKE_CASE__ : Optional[int] = list(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(F'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' ) if len(__lowerCAmelCase ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' """ use it for predictions and inference.""" ) else: logger.warning( F'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n''' """If your task is similar to the task the model of the checkpoint was trained on, """ F'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' ) return pt_model
132
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 SCREAMING_SNAKE_CASE__ : Optional[int] = test_metrics @require_cpu def _a ( self ) -> List[Any]: """simple docstring""" debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _a ( self ) -> List[str]: """simple docstring""" debug_launcher(self.test_metrics.main ) @require_single_gpu def _a ( self ) -> int: """simple docstring""" self.test_metrics.main() @require_multi_gpu def _a ( self ) -> Optional[Any]: """simple docstring""" print(f'''Found {torch.cuda.device_count()} devices.''' ) SCREAMING_SNAKE_CASE__ : List[Any] = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() )
132
1
def lowerCAmelCase_ ( __lowerCamelCase ): if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) __snake_case : List[str] = sum(__lowerCamelCase ) / len(__lowerCamelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
358
import numpy class a : """simple docstring""" def __init__( self : str , lowerCamelCase : numpy.ndarray , lowerCamelCase : numpy.ndarray ) -> None: __snake_case : Any = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __snake_case : int = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __snake_case : Optional[int] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __snake_case : int = numpy.random.rand(3 , 1 ) # Real output values provided. __snake_case : Optional[Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __snake_case : Optional[int] = numpy.zeros(output_array.shape ) def __snake_case ( self : List[Any] ) -> numpy.ndarray: __snake_case : List[str] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __snake_case : str = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __snake_case : str = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __snake_case ( self : Union[str, Any] ) -> None: __snake_case : Optional[int] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __snake_case : Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __snake_case : Optional[Any] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __snake_case ( self : List[str] , lowerCamelCase : numpy.ndarray , lowerCamelCase : int , lowerCamelCase : bool ) -> None: for iteration in range(1 , iterations + 1 ): __snake_case : Any = self.feedforward() self.back_propagation() if give_loss: __snake_case : str = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'Iteration {iteration} Loss: {loss}' ) def __snake_case ( self : Optional[Any] , lowerCamelCase : numpy.ndarray ) -> int: __snake_case : Any = input_arr __snake_case : List[str] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __snake_case : List[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __snake_case : Any = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowerCAmelCase_ ( __lowerCamelCase ): return 1 / (1 + numpy.exp(-value )) def lowerCAmelCase_ ( __lowerCamelCase ): return (value) * (1 - (value)) def lowerCAmelCase_ ( ): __snake_case : Dict = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __snake_case : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __snake_case : int = TwoHiddenLayerNeuralNetwork( input_array=__lowerCamelCase , output_array=__lowerCamelCase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=__lowerCamelCase , iterations=1_0 , give_loss=__lowerCamelCase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
134
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __A = datasets.utils.logging.get_logger(__name__) __A = ["names", "prefix"] __A = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] __A = ["encoding_errors", "on_bad_lines"] __A = ["date_format"] @dataclass class A ( datasets.BuilderConfig ): lowerCamelCase : str = "," lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[Union[int, List[int], str]] = "infer" lowerCamelCase : Optional[List[str]] = None lowerCamelCase : Optional[List[str]] = None lowerCamelCase : Optional[Union[int, str, List[int], List[str]]] = None lowerCamelCase : Optional[Union[List[int], List[str]]] = None lowerCamelCase : Optional[str] = None lowerCamelCase : bool = True lowerCamelCase : Optional[Literal["c", "python", "pyarrow"]] = None lowerCamelCase : Dict[Union[int, str], Callable[[Any], Any]] = None lowerCamelCase : Optional[list] = None lowerCamelCase : Optional[list] = None lowerCamelCase : bool = False lowerCamelCase : Optional[Union[int, List[int]]] = None lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[Union[str, List[str]]] = None lowerCamelCase : bool = True lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = True lowerCamelCase : Optional[str] = None lowerCamelCase : str = "." lowerCamelCase : Optional[str] = None lowerCamelCase : str = '"' lowerCamelCase : int = 0 lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[str] = None lowerCamelCase : bool = True lowerCamelCase : bool = True lowerCamelCase : int = 0 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : Optional[str] = None lowerCamelCase : int = 10000 lowerCamelCase : Optional[datasets.Features] = None lowerCamelCase : Optional[str] = "strict" lowerCamelCase : Literal["error", "warn", "skip"] = "error" lowerCamelCase : Optional[str] = None def A__ ( self ) -> str: '''simple docstring''' if self.delimiter is not None: lowercase__ = self.delimiter if self.column_names is not None: lowercase__ = self.column_names @property def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCamelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A ( datasets.ArrowBasedBuilder ): lowerCamelCase : Tuple = CsvConfig def A__ ( self ) -> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowercase__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase__ , (str, list, tuple) ): lowercase__ = data_files if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowercase__ = [files] lowercase__ = [dl_manager.iter_files(lowerCamelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] lowercase__ = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowercase__ = [files] lowercase__ = [dl_manager.iter_files(lowerCamelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCamelCase__ , gen_kwargs={"""files""": files} ) ) return splits def A__ ( self , lowerCamelCase__ ) -> pa.Table: '''simple docstring''' if self.config.features is not None: lowercase__ = self.config.features.arrow_schema if all(not require_storage_cast(lowerCamelCase__ ) for feature in self.config.features.values() ): # cheaper cast lowercase__ = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCamelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example lowercase__ = table_cast(lowerCamelCase__ , lowerCamelCase__ ) return pa_table def A__ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__ = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str lowercase__ = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCamelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase__ ) ): lowercase__ = pd.read_csv(lowerCamelCase__ , iterator=lowerCamelCase__ , dtype=lowerCamelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCamelCase__ ): lowercase__ = pa.Table.from_pandas(lowerCamelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCamelCase__ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCamelCase__ )}: {e}''' ) raise
164
'''simple docstring''' def _A ( lowercase__ ): lowercase__ = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase__ = True for i in range(0 , len(lowercase__ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase__ , lowercase__ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase__ = False for i in range(1 , len(lowercase__ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase__ , lowercase__ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase__ = False return input_list if __name__ == "__main__": print("Enter list to be sorted") __A = [int(x) for x in input().split()] # inputing elements of the list in one line __A = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
164
1
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) UpperCAmelCase_ = logging.getLogger() def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase__ : Dict = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCamelCase__ : str = parser.parse_args() return args.f def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> Optional[Any]: UpperCamelCase__ : str = {} UpperCamelCase__ : int = os.path.join(lowerCAmelCase__ , '''all_results.json''' ) if os.path.exists(lowerCAmelCase__ ): with open(lowerCAmelCase__ , '''r''' ) as f: UpperCamelCase__ : Optional[int] = json.load(lowerCAmelCase__ ) else: raise ValueError(f"can\'t find {path}" ) return results def lowerCAmelCase_ ( ) -> int: UpperCamelCase__ : int = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() UpperCAmelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase__ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @classmethod def UpperCamelCase__ ( cls ) -> List[Any]: """simple docstring""" # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU UpperCamelCase__ : List[str] = tempfile.mkdtemp() UpperCamelCase__ : Tuple = os.path.join(cls.tmpdir, '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) UpperCamelCase__ : int = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def UpperCamelCase__ ( cls ) -> List[str]: """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Tuple = self.get_auto_remove_tmp_dir() UpperCamelCase__ : int = f"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) UpperCamelCase__ : List[str] = get_results(__magic_name__ ) self.assertGreaterEqual(result['''eval_accuracy'''], 0.75 ) self.assertTrue(os.path.exists(os.path.join(__magic_name__, '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__magic_name__, '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : int = self.get_auto_remove_tmp_dir() UpperCamelCase__ : Optional[Any] = f"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) UpperCamelCase__ : Tuple = get_results(__magic_name__ ) self.assertLess(result['''perplexity'''], 100 ) self.assertTrue(os.path.exists(os.path.join(__magic_name__, '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__magic_name__, '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : List[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase__ : List[str] = f"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) UpperCamelCase__ : Dict = get_results(__magic_name__ ) self.assertLess(result['''perplexity'''], 42 ) self.assertTrue(os.path.exists(os.path.join(__magic_name__, '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__magic_name__, '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu UpperCamelCase__ : int = 7 if get_gpu_count() > 1 else 2 UpperCamelCase__ : Dict = self.get_auto_remove_tmp_dir() UpperCamelCase__ : Optional[Any] = f"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) UpperCamelCase__ : Tuple = get_results(__magic_name__ ) self.assertGreaterEqual(result['''eval_accuracy'''], 0.75 ) self.assertLess(result['''train_loss'''], 0.5 ) self.assertTrue(os.path.exists(os.path.join(__magic_name__, '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__magic_name__, '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Tuple = self.get_auto_remove_tmp_dir() UpperCamelCase__ : Tuple = f"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) UpperCamelCase__ : List[Any] = get_results(__magic_name__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''], 28 ) self.assertGreaterEqual(result['''eval_exact'''], 28 ) self.assertTrue(os.path.exists(os.path.join(__magic_name__, '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__magic_name__, '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : List[str] = self.get_auto_remove_tmp_dir() UpperCamelCase__ : Optional[int] = f"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) UpperCamelCase__ : str = get_results(__magic_name__ ) self.assertGreaterEqual(result['''eval_accuracy'''], 0.8 ) self.assertTrue(os.path.exists(os.path.join(__magic_name__, '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : Tuple = self.get_auto_remove_tmp_dir() UpperCamelCase__ : Dict = f"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) UpperCamelCase__ : int = get_results(__magic_name__ ) self.assertGreaterEqual(result['''eval_rouge1'''], 10 ) self.assertGreaterEqual(result['''eval_rouge2'''], 2 ) self.assertGreaterEqual(result['''eval_rougeL'''], 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''], 7 ) self.assertTrue(os.path.exists(os.path.join(__magic_name__, '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__magic_name__, '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Dict = self.get_auto_remove_tmp_dir() UpperCamelCase__ : List[Any] = f"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) UpperCamelCase__ : Any = get_results(__magic_name__ ) self.assertGreaterEqual(result['''eval_bleu'''], 30 ) self.assertTrue(os.path.exists(os.path.join(__magic_name__, '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__magic_name__, '''translation_no_trainer''' ) ) ) @slow def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : int = logging.StreamHandler(sys.stdout ) logger.addHandler(__magic_name__ ) UpperCamelCase__ : Optional[int] = self.get_auto_remove_tmp_dir() UpperCamelCase__ : Optional[int] = f"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs ) UpperCamelCase__ : List[str] = get_results(__magic_name__ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''], 0.10 ) @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : str = self.get_auto_remove_tmp_dir() UpperCamelCase__ : List[str] = f"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) UpperCamelCase__ : Tuple = get_results(__magic_name__ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''], 0.6 ) self.assertTrue(os.path.exists(os.path.join(__magic_name__, '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__magic_name__, '''image_classification_no_trainer''' ) ) )
366
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient UpperCAmelCase_ = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN']) def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> Optional[Any]: UpperCamelCase__ : Any = test_results.split(''' ''' ) UpperCamelCase__ : Dict = 0 UpperCamelCase__ : int = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCamelCase__ : List[Any] = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__UpperCAmelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def lowerCAmelCase_ ( __UpperCAmelCase: List[str] ) -> Tuple: UpperCamelCase__ : List[Any] = {} UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : int = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , __UpperCAmelCase ): UpperCamelCase__ : Any = True UpperCamelCase__ : Optional[Any] = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): UpperCamelCase__ : List[Any] = line UpperCamelCase__ : List[Any] = False return failures class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__, __magic_name__ ) -> List[str]: """simple docstring""" UpperCamelCase__ : Dict = title UpperCamelCase__ : Tuple = doc_test_results['''time_spent'''].split(''',''' )[0] UpperCamelCase__ : Optional[Any] = doc_test_results['''success'''] UpperCamelCase__ : str = doc_test_results['''failures'''] UpperCamelCase__ : str = self.n_success + self.n_failures # Failures and success of the modeling tests UpperCamelCase__ : List[Any] = doc_test_results @property def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : List[Any] = [self._time_spent] UpperCamelCase__ : str = 0 for time in time_spent: UpperCamelCase__ : List[Any] = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__magic_name__ ) == 1: UpperCamelCase__ : List[Any] = [0, 0, time_parts[0]] UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : int = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : List[str] = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(__magic_name__ )}h{int(__magic_name__ )}m{int(__magic_name__ )}s" @property def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : List[Any] = 40 UpperCamelCase__ : Tuple = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(__magic_name__, __magic_name__ )} UpperCamelCase__ : List[str] = '''''' for category, failures in category_failures.items(): if len(__magic_name__ ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__magic_name__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : str = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__magic_name__ ) @staticmethod def UpperCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(__magic_name__ )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''], text='''There was an issue running the tests.''', blocks=__magic_name__, ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) UpperCamelCase__ : List[str] = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' UpperCamelCase__ : Optional[Any] = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''], blocks=self.payload, text=__magic_name__, ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = '''''' for key, value in failures.items(): UpperCamelCase__ : List[Any] = value[:200] + ''' [Truncated]''' if len(__magic_name__ ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" UpperCamelCase__ : Union[str, Any] = job_name UpperCamelCase__ : Any = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: UpperCamelCase__ : Union[str, Any] = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) UpperCamelCase__ : Optional[int] = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) UpperCamelCase__ : Optional[int] = sorted(self.doc_test_results.items(), key=lambda __magic_name__ : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): UpperCamelCase__ : Any = f"*Num failures* :{len(job_result['failed'] )} \n" UpperCamelCase__ : Optional[Any] = job_result['''failures'''] UpperCamelCase__ : Optional[Any] = self.get_reply_blocks(__magic_name__, __magic_name__, __magic_name__, text=__magic_name__ ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''], text=f"Results for {job}", blocks=__magic_name__, thread_ts=self.thread_ts['''ts'''], ) time.sleep(1 ) def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase__ : Any = os.environ['''GITHUB_RUN_ID'''] UpperCamelCase__ : Tuple = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" UpperCamelCase__ : Optional[int] = requests.get(__UpperCAmelCase ).json() UpperCamelCase__ : List[Any] = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) UpperCamelCase__ : List[Any] = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(__UpperCAmelCase ): UpperCamelCase__ : Any = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , __UpperCAmelCase ) return {} def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> List[Any]: UpperCamelCase__ : Optional[int] = {} if os.path.exists(__UpperCAmelCase ): UpperCamelCase__ : Dict = os.listdir(__UpperCAmelCase ) for file in files: try: with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , encoding='''utf-8''' ) as f: UpperCamelCase__ : int = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(__UpperCAmelCase , __UpperCAmelCase )}." ) from e return _artifact def lowerCAmelCase_ ( ) -> str: class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__ ) -> Tuple: """simple docstring""" UpperCamelCase__ : Any = name UpperCamelCase__ : int = [] def __str__( self ) -> Tuple: """simple docstring""" return self.name def UpperCamelCase__ ( self, __magic_name__ ) -> Union[str, Any]: """simple docstring""" self.paths.append({'''name''': self.name, '''path''': path} ) UpperCamelCase__ : Dict[str, Artifact] = {} UpperCamelCase__ : Union[str, Any] = filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCamelCase__ : Optional[int] = directory if artifact_name not in _available_artifacts: UpperCamelCase__ : Union[str, Any] = Artifact(__UpperCAmelCase ) _available_artifacts[artifact_name].add_path(__UpperCAmelCase ) return _available_artifacts if __name__ == "__main__": UpperCAmelCase_ = get_job_links() UpperCAmelCase_ = retrieve_available_artifacts() UpperCAmelCase_ = collections.OrderedDict( [ ('*.py', 'API Examples'), ('*.md', 'MD Examples'), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' UpperCAmelCase_ = { v: { 'failed': [], 'failures': {}, } for v in docs.values() } # Link to the GitHub Action job UpperCAmelCase_ = github_actions_job_links.get('run_doctests') UpperCAmelCase_ = available_artifacts['doc_tests_gpu_test_reports'].paths[0] UpperCAmelCase_ = retrieve_artifact(artifact_path['name']) if "stats" in artifact: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = handle_test_results(artifact['stats']) UpperCAmelCase_ = failed UpperCAmelCase_ = success UpperCAmelCase_ = time_spent[1:-1] + ', ' UpperCAmelCase_ = extract_first_line_failure(artifact['failures_short']) for line in artifact["summary_short"].split('\n'): if re.search('FAILED', line): UpperCAmelCase_ = line.replace('FAILED ', '') UpperCAmelCase_ = line.split()[0].replace('\n', '') if "::" in line: UpperCAmelCase_ , UpperCAmelCase_ = line.split('::') else: UpperCAmelCase_ , UpperCAmelCase_ = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): UpperCAmelCase_ = docs[file_regex] doc_test_results[category]["failed"].append(test) UpperCAmelCase_ = all_failures[test] if test in all_failures else 'N/A' UpperCAmelCase_ = failure break UpperCAmelCase_ = Message('🤗 Results of the doc tests.', doc_test_results) message.post() message.post_reply()
247
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _a : def __init__( self : Dict , lowercase : Optional[Any] , lowercase : Tuple=13 , lowercase : Optional[Any]=7 , lowercase : Any=True , lowercase : Union[str, Any]=True , lowercase : Optional[Any]=True , lowercase : str=True , lowercase : Optional[Any]=99 , lowercase : Dict=32 , lowercase : Tuple=2 , lowercase : Optional[int]=4 , lowercase : Optional[Any]=37 , lowercase : Optional[int]="gelu" , lowercase : Tuple=0.1 , lowercase : Union[str, Any]=0.1 , lowercase : List[Any]=512 , lowercase : Any=16 , lowercase : Optional[Any]=2 , lowercase : List[str]=0.02 , lowercase : Dict=3 , lowercase : List[Any]=4 , lowercase : str=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = 13 UpperCAmelCase = 7 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = 99 UpperCAmelCase = 32 UpperCAmelCase = 2 UpperCAmelCase = 4 UpperCAmelCase = 37 UpperCAmelCase = '''gelu''' UpperCAmelCase = 0.1 UpperCAmelCase = 0.1 UpperCAmelCase = 512 UpperCAmelCase = 16 UpperCAmelCase = 2 UpperCAmelCase = 0.02 UpperCAmelCase = 3 UpperCAmelCase = 4 UpperCAmelCase = None def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] , lowercase : int , lowercase : Optional[Any] , lowercase : List[str] , lowercase : str , lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase = TFRoFormerModel(config=lowercase ) UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase = [input_ids, input_mask] UpperCAmelCase = model(lowercase ) UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : str , lowercase : Any , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : int , lowercase : List[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' UpperCAmelCase = True UpperCAmelCase = TFRoFormerForCausalLM(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A ( self : List[Any] , lowercase : Optional[int] , lowercase : List[str] , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Any , lowercase : str , lowercase : List[Any] ): '''simple docstring''' UpperCAmelCase = TFRoFormerForMaskedLM(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[Any] , lowercase : Dict , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : Any , lowercase : Tuple , lowercase : int ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = TFRoFormerForSequenceClassification(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self.num_choices UpperCAmelCase = TFRoFormerForMultipleChoice(config=lowercase ) UpperCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : str , lowercase : List[str] , lowercase : Dict , lowercase : Dict , lowercase : Optional[int] , lowercase : Any , lowercase : Optional[int] , lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = TFRoFormerForTokenClassification(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Dict , lowercase : int , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = TFRoFormerForQuestionAnswering(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _a ( __a , __a , unittest.TestCase ): __a : Any = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __a : Tuple = ( { """feature-extraction""": TFRoFormerModel, """fill-mask""": TFRoFormerForMaskedLM, """question-answering""": TFRoFormerForQuestionAnswering, """text-classification""": TFRoFormerForSequenceClassification, """text-generation""": TFRoFormerForCausalLM, """token-classification""": TFRoFormerForTokenClassification, """zero-shot""": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __a : List[Any] = False __a : Dict = False def A ( self : Union[str, Any] , lowercase : Any , lowercase : Tuple , lowercase : Tuple , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = TFRoFormerModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(lowercase ) @require_tf class _a ( unittest.TestCase ): @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase = model(lowercase )[0] # TODO Replace vocab size UpperCAmelCase = 50_000 UpperCAmelCase = [1, 6, vocab_size] self.assertEqual(output.shape , lowercase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. UpperCAmelCase = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 ) @require_tf class _a ( unittest.TestCase ): __a : List[Any] = 1e-4 def A ( self : str ): '''simple docstring''' UpperCAmelCase = tf.constant([[4, 10]] ) UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) UpperCAmelCase = emba(input_ids.shape ) UpperCAmelCase = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(lowercase , lowercase , atol=self.tolerance ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) UpperCAmelCase = emba.weight[:3, :5] tf.debugging.assert_near(lowercase , lowercase , atol=self.tolerance ) @require_tf class _a ( unittest.TestCase ): __a : Dict = 1e-4 def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCAmelCase = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) UpperCAmelCase = embed_positions([2, 16, 768] )[None, None, :, :] UpperCAmelCase , UpperCAmelCase = TFRoFormerSelfAttention.apply_rotary_position_embeddings( lowercase , lowercase , lowercase ) UpperCAmelCase = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) UpperCAmelCase = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , lowercase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , lowercase , atol=self.tolerance )
34
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : int = 100 ) -> int: """simple docstring""" lowerCAmelCase_ : Any = (n * (n + 1) // 2) ** 2 lowerCAmelCase_ : Optional[int] = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
224
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ = { """configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""], """feature_extraction_whisper""": ["""WhisperFeatureExtractor"""], """processing_whisper""": ["""WhisperProcessor"""], """tokenization_whisper""": ["""WhisperTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""WhisperTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """WhisperForConditionalGeneration""", """WhisperModel""", """WhisperPreTrainedModel""", """WhisperForAudioClassification""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWhisperForConditionalGeneration""", """TFWhisperModel""", """TFWhisperPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """FlaxWhisperForConditionalGeneration""", """FlaxWhisperModel""", """FlaxWhisperPreTrainedModel""", """FlaxWhisperForAudioClassification""", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase_ : Dict = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } UpperCAmelCase_ : Any = { '''allenai/led-base-16384''': 1_63_84, } class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : int = VOCAB_FILES_NAMES snake_case__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : int = LEDTokenizer snake_case__ : str = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , __lowerCamelCase : Dict=None , __lowerCamelCase : Any=None , __lowerCamelCase : int=None , __lowerCamelCase : Any="replace" , __lowerCamelCase : Union[str, Any]="<s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : Tuple="</s>" , __lowerCamelCase : List[Any]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : Any="<pad>" , __lowerCamelCase : Tuple="<mask>" , __lowerCamelCase : List[str]=False , __lowerCamelCase : List[Any]=True , **__lowerCamelCase : str , ): super().__init__( __lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase , **__lowerCamelCase , ) UpperCamelCase :Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __lowerCamelCase ) != add_prefix_space: UpperCamelCase :Union[str, Any] = getattr(__lowerCamelCase , pre_tok_state.pop("""type""" ) ) UpperCamelCase :Optional[Any] = add_prefix_space UpperCamelCase :Tuple = pre_tok_class(**__lowerCamelCase ) UpperCamelCase :Optional[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCamelCase :str = """post_processor""" UpperCamelCase :List[str] = getattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase ) if tokenizer_component_instance: UpperCamelCase :Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase :int = tuple(state["""sep"""] ) if "cls" in state: UpperCamelCase :Optional[int] = tuple(state["""cls"""] ) UpperCamelCase :Optional[Any] = False if state.get("""add_prefix_space""" , __lowerCamelCase ) != add_prefix_space: UpperCamelCase :Optional[Any] = add_prefix_space UpperCamelCase :Union[str, Any] = True if state.get("""trim_offsets""" , __lowerCamelCase ) != trim_offsets: UpperCamelCase :Tuple = trim_offsets UpperCamelCase :Tuple = True if changes_to_apply: UpperCamelCase :Tuple = getattr(__lowerCamelCase , state.pop("""type""" ) ) UpperCamelCase :int = component_class(**__lowerCamelCase ) setattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _A ( self : Dict ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def _A ( self : Dict , __lowerCamelCase : List[str] ): UpperCamelCase :Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else value UpperCamelCase :List[Any] = value def _A ( self : Union[str, Any] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[int] ): UpperCamelCase :Optional[int] = kwargs.get("""is_split_into_words""" , __lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def _A ( self : Tuple , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : str ): UpperCamelCase :Tuple = kwargs.get("""is_split_into_words""" , __lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def _A ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): UpperCamelCase :List[str] = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def _A ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=None ): UpperCamelCase :List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _A ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): UpperCamelCase :Dict = [self.sep_token_id] UpperCamelCase :List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _A ( self : Tuple , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ): UpperCamelCase :List[Any] = super()._pad( encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: UpperCamelCase :List[Any] = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCamelCase :str = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCamelCase :Union[str, Any] = len(encoded_inputs["""global_attention_mask"""] ) != len(__lowerCamelCase ) if needs_to_be_padded: UpperCamelCase :Optional[int] = len(__lowerCamelCase ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCamelCase :Optional[Any] = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCamelCase :Union[str, Any] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
38
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_a ) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case__ : ClassVar[Features] = Features({"""audio""": Audio()} ) snake_case__ : ClassVar[Features] = Features({"""transcription""": Value("""string""" )} ) snake_case__ : str = "audio" snake_case__ : str = "transcription" def _A ( self : List[str] , __lowerCamelCase : Dict ): if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , __lowerCamelCase ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) UpperCamelCase :int = copy.deepcopy(self ) UpperCamelCase :Any = self.input_schema.copy() UpperCamelCase :List[str] = features[self.audio_column] UpperCamelCase :List[Any] = input_schema return task_template @property def _A ( self : Optional[int] ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
38
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = MODEL_FOR_CAUSAL_LM_MAPPING lowercase__ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""") # Using `do_sample=False` to force deterministic output lowercase_ = text_generator("""This is a test""" , do_sample=lowerCAmelCase_) self.assertEqual( lowerCAmelCase_ , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) lowercase_ = text_generator(["""This is a test""", """This is a second test"""]) self.assertEqual( lowerCAmelCase_ , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) lowercase_ = text_generator("""This is a test""" , do_sample=lowerCAmelCase_ , num_return_sequences=2 , return_tensors=lowerCAmelCase_) self.assertEqual( lowerCAmelCase_ , [ {"""generated_token_ids""": ANY(lowerCAmelCase_)}, {"""generated_token_ids""": ANY(lowerCAmelCase_)}, ] , ) lowercase_ = text_generator.model.config.eos_token_id lowercase_ = """<pad>""" lowercase_ = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=lowerCAmelCase_ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase_ , ) self.assertEqual( lowerCAmelCase_ , [ [ {"""generated_token_ids""": ANY(lowerCAmelCase_)}, {"""generated_token_ids""": ANY(lowerCAmelCase_)}, ], [ {"""generated_token_ids""": ANY(lowerCAmelCase_)}, {"""generated_token_ids""": ANY(lowerCAmelCase_)}, ], ] , ) @require_tf def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""") # Using `do_sample=False` to force deterministic output lowercase_ = text_generator("""This is a test""" , do_sample=lowerCAmelCase_) self.assertEqual( lowerCAmelCase_ , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) lowercase_ = text_generator(["""This is a test""", """This is a second test"""] , do_sample=lowerCAmelCase_) self.assertEqual( lowerCAmelCase_ , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = TextGenerationPipeline(model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_) return text_generator, ["This is a test", "Another test"] def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = """Hello I believe in""" lowercase_ = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""") lowercase_ = text_generator(lowerCAmelCase_) self.assertEqual( lowerCAmelCase_ , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) lowercase_ = text_generator(lowerCAmelCase_ , stop_sequence=""" fe""") self.assertEqual(lowerCAmelCase_ , [{"""generated_text""": """Hello I believe in fe"""}]) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = text_generator.model lowercase_ = text_generator.tokenizer lowercase_ = text_generator("""This is a test""") self.assertEqual(lowerCAmelCase_ , [{"""generated_text""": ANY(lowerCAmelCase_)}]) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""")) lowercase_ = text_generator("""This is a test""" , return_full_text=lowerCAmelCase_) self.assertEqual(lowerCAmelCase_ , [{"""generated_text""": ANY(lowerCAmelCase_)}]) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""]) lowercase_ = pipeline(task="""text-generation""" , model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , return_full_text=lowerCAmelCase_) lowercase_ = text_generator("""This is a test""") self.assertEqual(lowerCAmelCase_ , [{"""generated_text""": ANY(lowerCAmelCase_)}]) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""]) lowercase_ = text_generator("""This is a test""" , return_full_text=lowerCAmelCase_) self.assertEqual(lowerCAmelCase_ , [{"""generated_text""": ANY(lowerCAmelCase_)}]) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""")) lowercase_ = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=lowerCAmelCase_) self.assertEqual( lowerCAmelCase_ , [ [{"""generated_text""": ANY(lowerCAmelCase_)}, {"""generated_text""": ANY(lowerCAmelCase_)}], [{"""generated_text""": ANY(lowerCAmelCase_)}, {"""generated_text""": ANY(lowerCAmelCase_)}], ] , ) if text_generator.tokenizer.pad_token is not None: lowercase_ = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase_) self.assertEqual( lowerCAmelCase_ , [ [{"""generated_text""": ANY(lowerCAmelCase_)}, {"""generated_text""": ANY(lowerCAmelCase_)}], [{"""generated_text""": ANY(lowerCAmelCase_)}, {"""generated_text""": ANY(lowerCAmelCase_)}], ] , ) with self.assertRaises(lowerCAmelCase_): lowercase_ = text_generator("""test""" , return_full_text=lowerCAmelCase_ , return_text=lowerCAmelCase_) with self.assertRaises(lowerCAmelCase_): lowercase_ = text_generator("""test""" , return_full_text=lowerCAmelCase_ , return_tensors=lowerCAmelCase_) with self.assertRaises(lowerCAmelCase_): lowercase_ = text_generator("""test""" , return_text=lowerCAmelCase_ , return_tensors=lowerCAmelCase_) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowercase_ = text_generator("""""") self.assertEqual(lowerCAmelCase_ , [{"""generated_text""": ANY(lowerCAmelCase_)}]) else: with self.assertRaises((ValueError, AssertionError)): lowercase_ = text_generator("""""") if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowercase_ = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 1_0_0_0_0 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)): text_generator("""This is a test""" * 5_0_0 , max_new_tokens=2_0) lowercase_ = text_generator("""This is a test""" * 5_0_0 , handle_long_generation="""hole""" , max_new_tokens=2_0) # Hole strategy cannot work with self.assertRaises(lowerCAmelCase_): text_generator( """This is a test""" * 5_0_0 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 1_0 , ) @require_torch @require_accelerate @require_torch_gpu def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" import torch # Classic `model_kwargs` lowercase_ = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0)) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa) lowercase_ = pipe("""This is a test""") self.assertEqual( lowerCAmelCase_ , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowercase_ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa) self.assertEqual(pipe.model.device , torch.device(0)) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa) lowercase_ = pipe("""This is a test""") self.assertEqual( lowerCAmelCase_ , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowercase_ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""") self.assertEqual(pipe.model.device , torch.device(0)) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa) lowercase_ = pipe("""This is a test""") self.assertEqual( lowerCAmelCase_ , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def _UpperCAmelCase ( self : Any): """simple docstring""" import torch lowercase_ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa) pipe("""This is a test""") @require_torch @require_accelerate @require_torch_gpu def _UpperCAmelCase ( self : str): """simple docstring""" import torch lowercase_ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa) pipe("""This is a test""" , do_sample=lowerCAmelCase_ , top_p=0.5) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = """Hello world""" lowercase_ = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""") if text_generator.model.framework == "tf": lowercase_ = logging.get_logger("""transformers.generation.tf_utils""") else: lowercase_ = logging.get_logger("""transformers.generation.utils""") lowercase_ = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(lowerCAmelCase_) as cl: lowercase_ = text_generator(lowerCAmelCase_ , max_length=1_0 , max_new_tokens=1) self.assertIn(lowerCAmelCase_ , cl.out) # The user only sets one -> no warning with CaptureLogger(lowerCAmelCase_) as cl: lowercase_ = text_generator(lowerCAmelCase_ , max_new_tokens=1) self.assertNotIn(lowerCAmelCase_ , cl.out) with CaptureLogger(lowerCAmelCase_) as cl: lowercase_ = text_generator(lowerCAmelCase_ , max_length=1_0) self.assertNotIn(lowerCAmelCase_ , cl.out)
358
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Tuple = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowercase_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowercase_ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Dict=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : List[Any]=0.02 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id lowercase_ = initializer_range def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowercase_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2) lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase_ , ) lowercase_ = prepare_blenderbot_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = 99 def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) lowercase_ = input_ids.shape[0] lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ , lowercase_ = self._get_config_and_data() lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_) lowercase_ = lm_model(input_ids=lowerCAmelCase_) lowercase_ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_) lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa) lowercase_ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa) lowercase_ = lm_model(input_ids=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_) lowercase_ = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa) lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2) lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum() lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(lowerCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase , __UpperCAmelCase ): lowercase__ = True lowercase__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = FlaxBlenderbotModelTester(self) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : str): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowercase_ = np.ones((1, 1)) * model.config.eos_token_id lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""") @slow def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 1_5, """max_length""": 2_5} lowercase_ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} lowercase_ = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowerCAmelCase_) lowercase_ = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""") lowercase_ = ["""Sam"""] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""jax""") lowercase_ = model.generate(**lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = """Sam is a great name. It means \"sun\" in Gaelic.""" lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , **lowerCAmelCase_) assert generated_txt[0].strip() == tgt_text
313
0
from __future__ import annotations __lowerCAmelCase : Dict =[] def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): for i in range(len(__snake_case ) ): if board[row][i] == 1: return False for i in range(len(__snake_case ) ): if board[i][column] == 1: return False for i, j in zip(range(__snake_case , -1 , -1 ) , range(__snake_case , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__snake_case , -1 , -1 ) , range(__snake_case , len(__snake_case ) ) ): if board[i][j] == 1: return False return True def _UpperCamelCase ( lowercase__ , lowercase__ ): if row >= len(__snake_case ): solution.append(__snake_case ) printboard(__snake_case ) print() return True for i in range(len(__snake_case ) ): if is_safe(__snake_case , __snake_case , __snake_case ): __SCREAMING_SNAKE_CASE : str = 1 solve(__snake_case , row + 1 ) __SCREAMING_SNAKE_CASE : List[Any] = 0 return False def _UpperCamelCase ( lowercase__ ): for i in range(len(__snake_case ) ): for j in range(len(__snake_case ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) __lowerCAmelCase : List[Any] =8 __lowerCAmelCase : Optional[int] =[[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
9
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : Optional[Any] = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } __snake_case : Tuple = { 'junnyu/roformer_chinese_small': 1536, 'junnyu/roformer_chinese_base': 1536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } __snake_case : Optional[Any] = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = RoFormerTokenizer def __init__( self : str , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Any="[UNK]" , lowerCAmelCase_ : List[Any]="[SEP]" , lowerCAmelCase_ : Union[str, Any]="[PAD]" , lowerCAmelCase_ : Optional[Any]="[CLS]" , lowerCAmelCase_ : Dict="[MASK]" , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : Tuple , ) -> List[str]: '''simple docstring''' super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : Union[str, Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , lowerCAmelCase_ ) != do_lower_case or pre_tok_state.get("""strip_accents""" , lowerCAmelCase_ ) != strip_accents ): A__ : int =getattr(lowerCAmelCase_ , pre_tok_state.pop("""type""" ) ) A__ : Union[str, Any] =do_lower_case A__ : Tuple =strip_accents A__ : int =pre_tok_class(**lowerCAmelCase_ ) A__ : List[Any] =do_lower_case def __getstate__( self : Optional[int] ) -> str: '''simple docstring''' A__ : Any =self.__dict__.copy() A__ : List[str] =BertPreTokenizer() return state def __setstate__( self : int , lowerCAmelCase_ : str ) -> str: '''simple docstring''' A__ : str =d A__ : Optional[Any] =self.__dict__["""_tokenizer"""].get_vocab() A__ : Any =PreTokenizer.custom(JiebaPreTokenizer(lowerCAmelCase_ ) ) def lowercase__ ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str]=None ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : int =[self.sep_token_id] A__ : List[str] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' A__ : List[Any] =self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ ) def lowercase__ ( self : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Tuple=False , **lowerCAmelCase_ : Tuple , ) -> List[Any]: '''simple docstring''' A__ : List[Any] =BertPreTokenizer() return super().save_pretrained(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ )
134
0
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : Tuple = 'vision-encoder-decoder' lowercase__ : Optional[int] = True def __init__( self , **lowerCamelCase__ ): super().__init__(**lowerCamelCase__ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"""A configuraton of type {self.model_type} cannot be instantiated because """ F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) _lowerCamelCase = kwargs.pop('''encoder''' ) _lowerCamelCase = encoder_config.pop('''model_type''' ) _lowerCamelCase = kwargs.pop('''decoder''' ) _lowerCamelCase = decoder_config.pop('''model_type''' ) _lowerCamelCase = AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) _lowerCamelCase = AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) _lowerCamelCase = True @classmethod def snake_case__ ( cls , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ): logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) _lowerCamelCase = True _lowerCamelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = copy.deepcopy(self.__dict__ ) _lowerCamelCase = self.encoder.to_dict() _lowerCamelCase = self.decoder.to_dict() _lowerCamelCase = self.__class__.model_type return output class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : int = version.parse('1.11' ) @property def snake_case__ ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case__ ( self ): return 1e-4 @property def snake_case__ ( self ): return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} ) class lowerCamelCase_( A__ ): '''simple docstring''' @property def snake_case__ ( self ): _lowerCamelCase = OrderedDict() _lowerCamelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} _lowerCamelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} _lowerCamelCase = {0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , ): import torch _lowerCamelCase = OrderedDict() _lowerCamelCase = super().generate_dummy_inputs( lowerCamelCase__ , batch_size=lowerCamelCase__ , seq_length=lowerCamelCase__ , is_pair=lowerCamelCase__ , framework=lowerCamelCase__ ) _lowerCamelCase , _lowerCamelCase = dummy_input['''input_ids'''].shape _lowerCamelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _lowerCamelCase = dummy_input.pop('''input_ids''' ) _lowerCamelCase = dummy_input.pop('''attention_mask''' ) _lowerCamelCase = torch.zeros(lowerCamelCase__ ) return common_inputs class lowerCamelCase_( A__ ): '''simple docstring''' @property def snake_case__ ( self ): pass def snake_case__ ( self , lowerCamelCase__ ): return VisionEncoderDecoderEncoderOnnxConfig(lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = "default" ): _lowerCamelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowerCamelCase__ , lowerCamelCase__ )
73
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=3 , lowerCamelCase__=3_2 , lowerCamelCase__=3 , lowerCamelCase__=1_0 , lowerCamelCase__=[1_0, 2_0, 3_0, 4_0] , lowerCamelCase__=[1, 1, 2, 1] , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="relu" , lowerCamelCase__=3 , lowerCamelCase__=None , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = image_size _lowerCamelCase = num_channels _lowerCamelCase = embeddings_size _lowerCamelCase = hidden_sizes _lowerCamelCase = depths _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = hidden_act _lowerCamelCase = num_labels _lowerCamelCase = scope _lowerCamelCase = len(lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = self.get_config() return config, pixel_values def snake_case__ ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = FlaxRegNetModel(config=lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = FlaxRegNetForImageClassification(config=lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class lowerCamelCase_( A__, unittest.TestCase ): '''simple docstring''' lowercase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowercase__ : List[Any] = False lowercase__ : Tuple = False lowercase__ : Union[str, Any] = False def snake_case__ ( self ): _lowerCamelCase = FlaxRegNetModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def snake_case__ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self ): return def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def snake_case__ ( self ): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def snake_case__ ( self ): pass def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(lowerCamelCase__ ) _lowerCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def snake_case__ ( self ): def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = model_class(lowerCamelCase__ ) _lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) _lowerCamelCase = model_class(lowerCamelCase__ ) @jax.jit def model_jitted(lowerCamelCase__ , **lowerCamelCase__ ): return model(pixel_values=lowerCamelCase__ , **lowerCamelCase__ ) with self.subTest('''JIT Enabled''' ): _lowerCamelCase = model_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _lowerCamelCase = model_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_( ) -> Optional[Any]: _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self ): return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def snake_case__ ( self ): _lowerCamelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='''np''' ) _lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits _lowerCamelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) _lowerCamelCase = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
73
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : Optional[int] = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : int = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] lowerCAmelCase__ : List[Any] = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys lowerCAmelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
"""simple docstring""" import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): SCREAMING_SNAKE_CASE = True from torch.cuda.amp import autocast SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowercase__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowercase__ = field( default=A_, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, ) lowercase__ = field( default=A_, metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) lowercase__ = field( default=A_, metadata={'''help''': '''Whether to log verbose messages or not.'''}, ) lowercase__ = field( default=2.0, metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) lowercase__ = field( default=0.5, metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) lowercase__ = field( default=0.99_99_95, metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) A__ = logging.WARNING if model_args.verbose_logging: A__ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): A__ = logging.INFO logger.setLevel(lowercase_ ) @dataclass class UpperCAmelCase_ : lowercase__ = field( default=A_, metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) lowercase__ = field( default=A_, metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowercase__ = field( default='''train''', metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' }, ) lowercase__ = field( default='''validation''', metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) }, ) lowercase__ = field( default='''file''', metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''}, ) lowercase__ = field( default=A_, metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowercase__ = field( default=1, metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' }, ) lowercase__ = field( default=A_, metadata={'''help''': '''The number of processes to use for the preprocessing.'''}, ) lowercase__ = field( default=20.0, metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class UpperCAmelCase_ : lowercase__ = 42 lowercase__ = 42 lowercase__ = "longest" lowercase__ = None lowercase__ = None def __call__( self : Tuple , snake_case_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: '''simple docstring''' A__ = self.feature_extractor.pad( snake_case_ , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) A__ = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) A__ = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula A__ = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) A__ = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to A__ = 1 A__ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices A__ = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=snake_case_ , min_masks=2 , ) return batch class UpperCAmelCase_ ( A_ ): def __init__( self : Any , *snake_case_ : Dict , snake_case_ : Optional[int]=1 , snake_case_ : str=0 , snake_case_ : str=1.0 , **snake_case_ : List[str] ) -> List[str]: '''simple docstring''' super().__init__(*snake_case_ , **snake_case_ ) A__ = 0 A__ = max_gumbel_temp A__ = min_gumbel_temp A__ = gumbel_temp_decay def __magic_name__ ( self : Tuple , snake_case_ : nn.Module , snake_case_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: '''simple docstring''' model.train() A__ = self._prepare_inputs(snake_case_ ) if self.use_amp: with autocast(): A__ = self.compute_loss(snake_case_ , snake_case_ ) else: A__ = self.compute_loss(snake_case_ , snake_case_ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": A__ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": A__ = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: A__ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(snake_case_ ).backward() elif self.use_apex: with amp.scale_loss(snake_case_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(snake_case_ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def _SCREAMING_SNAKE_CASE ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A__, A__, A__ = parser.parse_args_into_dataclasses() configure_logger(lowercase_ , lowercase_ ) # Downloading and loading a dataset from the hub. A__ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" A__ = DatasetDict() A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" A__ = DatasetDict() A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported A__ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=lowercase_ ) def prepare_dataset(lowercase_ ): # check that all files have the correct sampling rate A__, A__ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays A__ = datasets.map( lowercase_ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long A__ = vectorized_datasets.filter( lambda lowercase_ : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(lowercase_ ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` A__ = vectorized_datasets.map( lowercase_ , batched=lowercase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 A__ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) A__ = WavaVecaForPreTraining(lowercase_ ) A__ = DataCollatorForWavaVecaPretraining(model=lowercase_ , feature_extractor=lowercase_ ) A__ = WavaVecaPreTrainer( model=lowercase_ , data_collator=lowercase_ , args=lowercase_ , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=lowercase_ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
247
0
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowercase__ ( unittest.TestCase ): '''simple docstring''' a : Dict = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING a : List[Any] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Tuple = AudioClassificationPipeline(model=__magic_name__, feature_extractor=__magic_name__ ) # test with a raw waveform UpperCamelCase__ : List[str] = np.zeros((34000,) ) UpperCamelCase__ : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def UpperCamelCase__ ( self, __magic_name__, __magic_name__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = examples UpperCamelCase__ : int = audio_classifier(__magic_name__ ) # by default a model is initialized with num_labels=2 self.assertEqual( __magic_name__, [ {'''score''': ANY(__magic_name__ ), '''label''': ANY(__magic_name__ )}, {'''score''': ANY(__magic_name__ ), '''label''': ANY(__magic_name__ )}, ], ) UpperCamelCase__ : Tuple = audio_classifier(__magic_name__, top_k=1 ) self.assertEqual( __magic_name__, [ {'''score''': ANY(__magic_name__ ), '''label''': ANY(__magic_name__ )}, ], ) self.run_torchaudio(__magic_name__ ) @require_torchaudio def UpperCamelCase__ ( self, __magic_name__ ) -> str: """simple docstring""" import datasets # test with a local file UpperCamelCase__ : List[Any] = datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''', '''clean''', split='''validation''' ) UpperCamelCase__ : Tuple = dataset[0]['''audio''']['''array'''] UpperCamelCase__ : Any = audio_classifier(__magic_name__ ) self.assertEqual( __magic_name__, [ {'''score''': ANY(__magic_name__ ), '''label''': ANY(__magic_name__ )}, {'''score''': ANY(__magic_name__ ), '''label''': ANY(__magic_name__ )}, ], ) @require_torch def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : List[Any] = '''anton-l/wav2vec2-random-tiny-classifier''' UpperCamelCase__ : List[str] = pipeline('''audio-classification''', model=__magic_name__ ) UpperCamelCase__ : Union[str, Any] = np.ones((8000,) ) UpperCamelCase__ : Optional[int] = audio_classifier(__magic_name__, top_k=4 ) UpperCamelCase__ : Any = [ {'''score''': 0.0842, '''label''': '''no'''}, {'''score''': 0.0838, '''label''': '''up'''}, {'''score''': 0.0837, '''label''': '''go'''}, {'''score''': 0.0834, '''label''': '''right'''}, ] UpperCamelCase__ : Optional[Any] = [ {'''score''': 0.0845, '''label''': '''stop'''}, {'''score''': 0.0844, '''label''': '''on'''}, {'''score''': 0.0841, '''label''': '''right'''}, {'''score''': 0.0834, '''label''': '''left'''}, ] self.assertIn(nested_simplify(__magic_name__, decimals=4 ), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) UpperCamelCase__ : List[str] = {'''array''': np.ones((8000,) ), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate} UpperCamelCase__ : Optional[int] = audio_classifier(__magic_name__, top_k=4 ) self.assertIn(nested_simplify(__magic_name__, decimals=4 ), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" import datasets UpperCamelCase__ : Optional[Any] = '''superb/wav2vec2-base-superb-ks''' UpperCamelCase__ : str = pipeline('''audio-classification''', model=__magic_name__ ) UpperCamelCase__ : Any = datasets.load_dataset('''anton-l/superb_dummy''', '''ks''', split='''test''' ) UpperCamelCase__ : str = np.array(dataset[3]['''speech'''], dtype=np.floataa ) UpperCamelCase__ : List[str] = audio_classifier(__magic_name__, top_k=4 ) self.assertEqual( nested_simplify(__magic_name__, decimals=3 ), [ {'''score''': 0.981, '''label''': '''go'''}, {'''score''': 0.007, '''label''': '''up'''}, {'''score''': 0.006, '''label''': '''_unknown_'''}, {'''score''': 0.001, '''label''': '''down'''}, ], ) @require_tf @unittest.skip('''Audio classification is not implemented for TF''' ) def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" pass
247
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available UpperCAmelCase_ = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
247
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : List[Any] = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
360
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort A_ : Union[str, Any] = logging.get_logger(__name__) A_ : str = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class _a : '''simple docstring''' def __init__( self , A__=None , **A__ ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) A__ : Dict = model A__ : Any = kwargs.get("""model_save_dir""" , A__ ) A__ : Optional[int] = kwargs.get("""latest_model_name""" , A__ ) def __call__( self , **A__ ): A__ : int = {k: np.array(A__ ) for k, v in kwargs.items()} return self.model.run(A__ , A__ ) @staticmethod def __A ( A__ , A__=None , A__=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) A__ : List[Any] = """CPUExecutionProvider""" return ort.InferenceSession(A__ , providers=[provider] , sess_options=A__ ) def __A ( self , A__ , A__ = None , **A__ ): A__ : List[Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME A__ : List[Any] = self.model_save_dir.joinpath(self.latest_model_name ) A__ : Optional[int] = Path(A__ ).joinpath(A__ ) try: shutil.copyfile(A__ , A__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) A__ : str = self.model_save_dir.joinpath(A__ ) if src_path.exists(): A__ : List[str] = Path(A__ ).joinpath(A__ ) try: shutil.copyfile(A__ , A__ ) except shutil.SameFileError: pass def __A ( self , A__ , **A__ , ): if os.path.isfile(A__ ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(A__ , exist_ok=A__ ) # saving model weights/files self._save_pretrained(A__ , **A__ ) @classmethod def __A ( cls , A__ , A__ = None , A__ = None , A__ = False , A__ = None , A__ = None , A__ = None , A__ = None , **A__ , ): A__ : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(A__ ): A__ : Dict = OnnxRuntimeModel.load_model( os.path.join(A__ , A__ ) , provider=A__ , sess_options=A__ ) A__ : Optional[Any] = Path(A__ ) # load model from hub else: # download model A__ : Union[str, Any] = hf_hub_download( repo_id=A__ , filename=A__ , use_auth_token=A__ , revision=A__ , cache_dir=A__ , force_download=A__ , ) A__ : List[str] = Path(A__ ).parent A__ : str = Path(A__ ).name A__ : Optional[int] = OnnxRuntimeModel.load_model(A__ , provider=A__ , sess_options=A__ ) return cls(model=A__ , **A__ ) @classmethod def __A ( cls , A__ , A__ = True , A__ = None , A__ = None , **A__ , ): A__ : Optional[Any] = None if len(str(A__ ).split("""@""" ) ) == 2: A__ , A__ : Union[str, Any] = model_id.split("""@""" ) return cls._from_pretrained( model_id=A__ , revision=A__ , cache_dir=A__ , force_download=A__ , use_auth_token=A__ , **A__ , )
141
0
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Dict = [] lowercase__ : Tuple = [] lowercase__ : str = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator lowercase__ : Optional[int] = len(a__ ) if (len(a__ ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(a__ ) , '''Postfix'''.center(a__ ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(a__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(a__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(a__ ) == 0: stack.append(a__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(a__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(a__ ) # push x to stack print( x.center(8 ) , (''''''.join(a__ )).ljust(a__ ) , (''''''.join(a__ )).ljust(a__ ) , sep=''' | ''' , ) # Output in tabular format while len(a__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(a__ )).ljust(a__ ) , (''''''.join(a__ )).ljust(a__ ) , sep=''' | ''' , ) # Output in tabular format return "".join(a__ ) # return Postfix as str def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : int = list(infix[::-1] ) # reverse the infix equation for i in range(len(a__ ) ): if infix[i] == "(": lowercase__ : List[Any] = ''')''' # change "(" to ")" elif infix[i] == ")": lowercase__ : int = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(a__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __a: Optional[Any] = input("""\nEnter an Infix Equation = """) # Input an Infix equation __a: Tuple = ''''''.join(Infix.split()) # Remove spaces from the input print("""\n\t""", Infix, """(Infix) -> """, infix_2_prefix(Infix), """(Prefix)""")
198
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType a__ : Any = logging.get_logger(__name__) a__ : Dict = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = 'imagegpt' __SCREAMING_SNAKE_CASE : Optional[Any] = ['past_key_values'] __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowerCamelCase=512 + 1 , _lowerCamelCase=32 * 32 , _lowerCamelCase=512 , _lowerCamelCase=24 , _lowerCamelCase=8 , _lowerCamelCase=None , _lowerCamelCase="quick_gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1e-5 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , **_lowerCamelCase , ) ->str: SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = n_positions SCREAMING_SNAKE_CASE : Optional[int] = n_embd SCREAMING_SNAKE_CASE : List[Any] = n_layer SCREAMING_SNAKE_CASE : List[Any] = n_head SCREAMING_SNAKE_CASE : int = n_inner SCREAMING_SNAKE_CASE : Dict = activation_function SCREAMING_SNAKE_CASE : Union[str, Any] = resid_pdrop SCREAMING_SNAKE_CASE : Dict = embd_pdrop SCREAMING_SNAKE_CASE : List[str] = attn_pdrop SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : int = scale_attn_weights SCREAMING_SNAKE_CASE : Optional[int] = use_cache SCREAMING_SNAKE_CASE : Optional[Any] = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE : str = reorder_and_upcast_attn SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings super().__init__(tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase ) class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = 3 , _lowerCamelCase = 32 , _lowerCamelCase = 32 , ) ->Mapping[str, Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_images(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = dict(preprocessor(images=_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return inputs
313
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCamelCase = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
355
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowerCamelCase = logging.get_logger(__name__) class a ( _A ): '''simple docstring''' lowerCAmelCase : str = ['input_values', 'padding_mask'] def __init__( self : Optional[Any] , __snake_case : int = 1 , __snake_case : int = 2_40_00 , __snake_case : float = 0.0 , __snake_case : float = None , __snake_case : float = None , **__snake_case : Dict , ): super().__init__(feature_size=__snake_case , sampling_rate=__snake_case , padding_value=__snake_case , **__snake_case ) UpperCAmelCase_ = chunk_length_s UpperCAmelCase_ = overlap @property def lowerCamelCase_ ( self : List[str] ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowerCamelCase_ ( self : List[str] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : List[str] , __snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __snake_case : Optional[Union[bool, str, PaddingStrategy]] = None , __snake_case : Optional[bool] = False , __snake_case : Optional[int] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[int] = None , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs UpperCAmelCase_ = True UpperCAmelCase_ = bool( isinstance(__snake_case , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase_ = [np.asarray(__snake_case , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__snake_case , np.ndarray ): UpperCAmelCase_ = np.asarray(__snake_case , dtype=np.floataa ) elif isinstance(__snake_case , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): UpperCAmelCase_ = raw_audio.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase_ = [np.asarray(__snake_case ).T] # verify inputs are valid for idx, example in enumerate(__snake_case ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) UpperCAmelCase_ = None UpperCAmelCase_ = BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: UpperCAmelCase_ = min(array.shape[0] for array in raw_audio ) UpperCAmelCase_ = int(np.floor(max_length / self.chunk_stride ) ) UpperCAmelCase_ = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: UpperCAmelCase_ = max(array.shape[0] for array in raw_audio ) UpperCAmelCase_ = int(np.ceil(max_length / self.chunk_stride ) ) UpperCAmelCase_ = (nb_step - 1) * self.chunk_stride + self.chunk_length UpperCAmelCase_ = '''max_length''' else: UpperCAmelCase_ = input_values # normal padding on batch if padded_inputs is None: UpperCAmelCase_ = self.pad( __snake_case , max_length=__snake_case , truncation=__snake_case , padding=__snake_case , return_attention_mask=__snake_case , ) if padding: UpperCAmelCase_ = padded_inputs.pop('''attention_mask''' ) UpperCAmelCase_ = [] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: UpperCAmelCase_ = example[..., None] input_values.append(example.T ) UpperCAmelCase_ = input_values if return_tensors is not None: UpperCAmelCase_ = padded_inputs.convert_to_tensors(__snake_case ) return padded_inputs
177
0
from math import isclose, sqrt def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> tuple[float, float, float]: __lowerCamelCase : Tuple = point_y / 4 / point_x __lowerCamelCase : Tuple = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) __lowerCamelCase : List[Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __lowerCamelCase : int = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __lowerCamelCase : Any = outgoing_gradient**2 + 4 __lowerCamelCase : Optional[int] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __lowerCamelCase : str = (point_y - outgoing_gradient * point_x) ** 2 - 1_0_0 __lowerCamelCase : str = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __lowerCamelCase : Optional[Any] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __lowerCamelCase : Optional[Any] = x_minus if isclose(lowerCamelCase__ , lowerCamelCase__ ) else x_plus __lowerCamelCase : Tuple = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = 1.4 , lowerCamelCase__ = -9.6 ) -> int: __lowerCamelCase : int = 0 __lowerCamelCase : float = first_x_coord __lowerCamelCase : float = first_y_coord __lowerCamelCase : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = next_point(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
73
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None ) -> str: if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __lowerCamelCase : int = quote(lowerCamelCase__ ) return hfh.hf_hub_url(lowerCamelCase__ , lowerCamelCase__ , repo_type='dataset' , revision=lowerCamelCase__ )
73
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Optional[int] = logging.get_logger(__name__) _lowercase : Tuple = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Union[str, Any] = "markuplm" def __init__( self : List[str] , _lowercase : int=3_05_22 , _lowercase : List[str]=7_68 , _lowercase : List[str]=12 , _lowercase : List[str]=12 , _lowercase : Any=30_72 , _lowercase : int="gelu" , _lowercase : Tuple=0.1 , _lowercase : Union[str, Any]=0.1 , _lowercase : Any=5_12 , _lowercase : Union[str, Any]=2 , _lowercase : int=0.02 , _lowercase : List[Any]=1E-12 , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=2 , _lowercase : Union[str, Any]=2_56 , _lowercase : List[Any]=10_24 , _lowercase : Union[str, Any]=2_16 , _lowercase : Dict=10_01 , _lowercase : Optional[Any]=32 , _lowercase : Tuple=50 , _lowercase : Optional[int]="absolute" , _lowercase : str=True , _lowercase : List[Any]=None , **_lowercase : List[Any] , ): super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache __UpperCAmelCase = classifier_dropout # additional properties __UpperCAmelCase = max_depth __UpperCAmelCase = max_xpath_tag_unit_embeddings __UpperCAmelCase = max_xpath_subs_unit_embeddings __UpperCAmelCase = tag_pad_id __UpperCAmelCase = subs_pad_id __UpperCAmelCase = xpath_unit_hidden_size
86
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _UpperCAmelCase : def __init__( self : Dict , _lowercase : int , _lowercase : List[str]=13 , _lowercase : Dict=32 , _lowercase : Any=2 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=16 , _lowercase : Optional[int]=[1, 2, 1] , _lowercase : int=[2, 2, 4] , _lowercase : Optional[Any]=2 , _lowercase : Union[str, Any]=2.0 , _lowercase : Any=True , _lowercase : Optional[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : Dict=0.1 , _lowercase : str="gelu" , _lowercase : List[Any]=False , _lowercase : List[Any]=True , _lowercase : Optional[Any]=0.02 , _lowercase : str=1E-5 , _lowercase : str=True , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Any=10 , _lowercase : int=8 , _lowercase : Optional[Any]=["stage1", "stage2", "stage3"] , _lowercase : Optional[Any]=[1, 2, 3] , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = patch_norm __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = is_training __UpperCAmelCase = scope __UpperCAmelCase = use_labels __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = encoder_stride __UpperCAmelCase = out_features __UpperCAmelCase = out_indices def a ( self : int ): __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def a ( self : Dict ): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a ( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : int ): __UpperCAmelCase = MaskFormerSwinModel(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase ) __UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a ( self : int , _lowercase : Optional[Any] , _lowercase : Any , _lowercase : Dict ): __UpperCAmelCase = MaskFormerSwinBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowercase ): __UpperCAmelCase = ['''stem'''] __UpperCAmelCase = MaskFormerSwinBackbone(config=_lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) a__ : Optional[int] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} a__ : List[str] = False a__ : int = False a__ : str = False a__ : str = False a__ : Any = False def a ( self : Optional[Any] ): __UpperCAmelCase = MaskFormerSwinModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=_lowercase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def a ( self : int ): pass def a ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a ( self : str ): return def a ( self : Optional[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowercase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def a ( self : List[Any] ): pass @unittest.skip('''Swin does not support feedforward chunking''' ) def a ( self : str ): pass def a ( self : Union[str, Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def a ( self : Union[str, Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowercase ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def a ( self : Optional[Any] ): pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def a ( self : Optional[Any] ): pass def a ( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : Dict , _lowercase : Tuple ): __UpperCAmelCase = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) # Swin has a different seq_length __UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a ( self : str ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = 3 __UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def a ( self : Any ): pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def a ( self : str ): pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def a ( self : Tuple ): pass def a ( self : Tuple ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowercase : List[str] ): __UpperCAmelCase = 0 return t def check_equivalence(_lowercase : List[Any] , _lowercase : Any , _lowercase : str , _lowercase : List[str]={} ): with torch.no_grad(): __UpperCAmelCase = model(**_lowercase , return_dict=_lowercase , **_lowercase ) __UpperCAmelCase = model(**_lowercase , return_dict=_lowercase , **_lowercase ).to_tuple() def recursive_check(_lowercase : Dict , _lowercase : Optional[Any] ): if isinstance(_lowercase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowercase , _lowercase ): recursive_check(_lowercase , _lowercase ) elif isinstance(_lowercase , _lowercase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowercase , _lowercase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowercase ) , set_nan_tensor_to_zero(_lowercase ) , atol=1E-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}. Dict has''' F''' `nan`: {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}.''' ) , ) recursive_check(_lowercase , _lowercase ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {'''output_hidden_states''': True} ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {'''output_hidden_states''': True} ) @require_torch class _UpperCAmelCase ( unittest.TestCase , _lowerCAmelCase ): a__ : Optional[Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () a__ : List[str] = MaskFormerSwinConfig def a ( self : List[str] ): __UpperCAmelCase = MaskFormerSwinModelTester(self ) def a ( self : List[Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: __UpperCAmelCase = backbone_class(_lowercase ) backbone.to(_lowercase ) backbone.eval() __UpperCAmelCase = backbone(**_lowercase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowercase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __UpperCAmelCase = backbone(**_lowercase , output_hidden_states=_lowercase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __UpperCAmelCase = backbone(**_lowercase , output_attentions=_lowercase ) self.assertIsNotNone(outputs.attentions )
86
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore SCREAMING_SNAKE_CASE = "\nHuman: <<task>>\n\nAssistant: " SCREAMING_SNAKE_CASE = "huggingface-tools/default-prompts" SCREAMING_SNAKE_CASE = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_="run" ) -> List[Any]: if prompt_or_repo_id is None: A__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , lowercase_ ) is not None: return prompt_or_repo_id A__ = cached_file( lowercase_ , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(lowercase_ , "r" , encoding="utf-8" ) as f: return f.read()
247
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class UpperCAmelCase_ ( A_ ): lowercase__ = '''codegen''' lowercase__ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Any , snake_case_ : int=50_400 , snake_case_ : Any=2_048 , snake_case_ : List[str]=2_048 , snake_case_ : List[Any]=4_096 , snake_case_ : Union[str, Any]=28 , snake_case_ : List[str]=16 , snake_case_ : Dict=64 , snake_case_ : Dict=None , snake_case_ : List[Any]="gelu_new" , snake_case_ : List[str]=0.0 , snake_case_ : int=0.0 , snake_case_ : List[str]=0.0 , snake_case_ : Optional[Any]=1e-5 , snake_case_ : Optional[int]=0.02 , snake_case_ : Dict=True , snake_case_ : Union[str, Any]=50_256 , snake_case_ : Optional[Any]=50_256 , snake_case_ : Optional[Any]=False , **snake_case_ : Any , ) -> List[Any]: '''simple docstring''' A__ = vocab_size A__ = n_ctx A__ = n_positions A__ = n_embd A__ = n_layer A__ = n_head A__ = n_inner A__ = rotary_dim A__ = activation_function A__ = resid_pdrop A__ = embd_pdrop A__ = attn_pdrop A__ = layer_norm_epsilon A__ = initializer_range A__ = use_cache A__ = bos_token_id A__ = eos_token_id super().__init__( bos_token_id=snake_case_ , eos_token_id=snake_case_ , tie_word_embeddings=snake_case_ , **snake_case_ ) class UpperCAmelCase_ ( A_ ): def __init__( self : Any , snake_case_ : PretrainedConfig , snake_case_ : str = "default" , snake_case_ : List[PatchingSpec] = None , snake_case_ : bool = False , ) -> int: '''simple docstring''' super().__init__(snake_case_ , task=snake_case_ , patching_specs=snake_case_ , use_past=snake_case_ ) if not getattr(self._config , "pad_token_id" , snake_case_ ): # TODO: how to do that better? A__ = 0 @property def __magic_name__ ( self : Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' A__ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction="inputs" ) A__ = {0: "batch", 1: "past_sequence + sequence"} else: A__ = {0: "batch", 1: "sequence"} return common_inputs @property def __magic_name__ ( self : List[Any] ) -> int: '''simple docstring''' return self._config.n_layer @property def __magic_name__ ( self : Optional[int] ) -> int: '''simple docstring''' return self._config.n_head def __magic_name__ ( self : str , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' A__ = super(snake_case_ , self ).generate_dummy_inputs( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) # We need to order the input in the way they appears in the forward() A__ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch A__, A__ = common_inputs["input_ids"].shape # Not using the same length for past_key_values A__ = seqlen + 2 A__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A__ = [ (torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) for _ in range(self.num_layers ) ] A__ = common_inputs["attention_mask"] if self.use_past: A__ = ordered_inputs["attention_mask"].dtype A__ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_ )] , dim=1 ) return ordered_inputs @property def __magic_name__ ( self : Optional[int] ) -> int: '''simple docstring''' return 13
247
1
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowerCamelCase :List[str] = logging.getLogger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase , lowercase , lowercase=None ): super().__init__( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) A_ : List[str] = None def _a (self , lowercase ): logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually A_ : str = self._infer_socket_ifname() # avoid clash with the NCCL port A_ : Tuple = str(distributed_port + 1 ) A_ : int = dist.new_group(ranks=lowercase , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _a (self ): return dist.get_rank(group=self.process_group ) == 0 def _a (self , lowercase , lowercase , lowercase=torch.floataa ): A_ : str = torch.empty(lowercase , dtype=lowercase ) dist.scatter(lowercase , src=0 , scatter_list=lowercase , group=self.process_group ) return target_tensor def _a (self ): A_ : Any = psutil.net_if_addrs() # a hacky way to deal with varying network interface names A_ : int = next((addr for addr in addrs if addr.startswith("""e""" )) , lowercase ) return ifname def _a (self , lowercase , lowercase ): # single GPU training if not dist.is_initialized(): A_, A_ : Dict = self._main_retrieve(lowercase , lowercase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase ) # distributed training A_ : Any = dist.get_world_size(group=self.process_group ) # gather logic A_ : str = None if self._is_main(): A_ : Any = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(lowercase )] dist.gather(torch.tensor(lowercase ) , dst=0 , gather_list=lowercase , group=self.process_group ) # scatter logic A_ : str = question_hidden_states.shape[0] A_ : Optional[int] = [] A_ : Dict = [] if self._is_main(): assert len(lowercase ) == world_size A_, A_ : Union[str, Any] = self._main_retrieve(torch.cat(lowercase ).numpy() , lowercase ) A_, A_ : Optional[int] = torch.tensor(lowercase ), torch.tensor(lowercase ) A_ : Tuple = self._chunk_tensor(lowercase , lowercase ) A_ : Any = self._chunk_tensor(lowercase , lowercase ) A_ : Tuple = self._scattered(lowercase , [n_queries, n_docs] , target_type=torch.intaa ) A_ : Optional[int] = self._scattered(lowercase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowercase )
135
'''simple docstring''' def a ( lowerCamelCase__ ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
135
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class A ( unittest.TestCase ): """simple docstring""" lowerCamelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def snake_case__ ( self : List[Any],lowercase_ : Union[str, Any],lowercase_ : int,lowercase_ : Dict )-> Any: '''simple docstring''' A__ = TextaTextGenerationPipeline(model=lowercase_,tokenizer=lowercase_ ) return generator, ["Something to write", "Something else"] def snake_case__ ( self : int,lowercase_ : List[str],lowercase_ : List[Any] )-> Optional[int]: '''simple docstring''' A__ = generator('Something there' ) self.assertEqual(lowercase_,[{'generated_text': ANY(lowercase_ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) A__ = generator(['This is great !', 'Something else'],num_return_sequences=2,do_sample=lowercase_ ) self.assertEqual( lowercase_,[ [{'generated_text': ANY(lowercase_ )}, {'generated_text': ANY(lowercase_ )}], [{'generated_text': ANY(lowercase_ )}, {'generated_text': ANY(lowercase_ )}], ],) A__ = generator( ['This is great !', 'Something else'],num_return_sequences=2,batch_size=2,do_sample=lowercase_ ) self.assertEqual( lowercase_,[ [{'generated_text': ANY(lowercase_ )}, {'generated_text': ANY(lowercase_ )}], [{'generated_text': ANY(lowercase_ )}, {'generated_text': ANY(lowercase_ )}], ],) with self.assertRaises(lowercase_ ): generator(4 ) @require_torch def snake_case__ ( self : Tuple )-> List[Any]: '''simple docstring''' A__ = pipeline('text2text-generation',model='patrickvonplaten/t5-tiny-random',framework='pt' ) # do_sample=False necessary for reproducibility A__ = generator('Something there',do_sample=lowercase_ ) self.assertEqual(lowercase_,[{'generated_text': ''}] ) A__ = 3 A__ = generator( 'Something there',num_return_sequences=lowercase_,num_beams=lowercase_,) A__ = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(lowercase_,lowercase_ ) A__ = generator('This is a test',do_sample=lowercase_,num_return_sequences=2,return_tensors=lowercase_ ) self.assertEqual( lowercase_,[ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ],) A__ = generator.model.config.eos_token_id A__ = '<pad>' A__ = generator( ['This is a test', 'This is a second test'],do_sample=lowercase_,num_return_sequences=2,batch_size=2,return_tensors=lowercase_,) self.assertEqual( lowercase_,[ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ],) @require_tf def snake_case__ ( self : List[str] )-> List[str]: '''simple docstring''' A__ = pipeline('text2text-generation',model='patrickvonplaten/t5-tiny-random',framework='tf' ) # do_sample=False necessary for reproducibility A__ = generator('Something there',do_sample=lowercase_ ) self.assertEqual(lowercase_,[{'generated_text': ''}] )
7
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class lowerCAmelCase ( A ): def __init__( self : Optional[Any] , *__lowercase : str , **__lowercase : Union[str, Any] ): """simple docstring""" super().__init__(*__lowercase , **__lowercase ) __lowercase ={} def snake_case ( self : Union[str, Any] , __lowercase : List[Any] , *__lowercase : Optional[int] , **__lowercase : int ): """simple docstring""" __lowercase =super().add_tokens(__lowercase , *__lowercase , **__lowercase ) if num_added_tokens == 0: raise ValueError( f'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' ' `placeholder_token` that is not already in the tokenizer.' ) def snake_case ( self : int , __lowercase : List[Any] , *__lowercase : Union[str, Any] , __lowercase : Dict=1 , **__lowercase : Dict ): """simple docstring""" __lowercase =[] if num_vec_per_token == 1: self.try_adding_tokens(__lowercase , *__lowercase , **__lowercase ) output.append(__lowercase ) else: __lowercase =[] for i in range(__lowercase ): __lowercase =placeholder_token + f'''_{i}''' self.try_adding_tokens(__lowercase , *__lowercase , **__lowercase ) output.append(__lowercase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'''The tokenizer already has placeholder token {token} that can get confused with''' f''' {placeholder_token}keep placeholder tokens independent''' ) __lowercase =output def snake_case ( self : Tuple , __lowercase : Optional[int] , __lowercase : Optional[int]=False , __lowercase : Optional[int]=1.0 ): """simple docstring""" if isinstance(__lowercase , __lowercase ): __lowercase =[] for i in range(len(__lowercase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__lowercase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: __lowercase =self.token_map[placeholder_token] __lowercase =tokens[: 1 + int(len(__lowercase ) * prop_tokens_to_load )] if vector_shuffle: __lowercase =copy.copy(__lowercase ) random.shuffle(__lowercase ) __lowercase =text.replace(__lowercase , ' '.join(__lowercase ) ) return text def __call__( self : int , __lowercase : List[Any] , *__lowercase : Tuple , __lowercase : Optional[Any]=False , __lowercase : Dict=1.0 , **__lowercase : List[Any] ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( __lowercase , vector_shuffle=__lowercase , prop_tokens_to_load=__lowercase ) , *__lowercase , **__lowercase , ) def snake_case ( self : Dict , __lowercase : List[str] , *__lowercase : Tuple , __lowercase : Dict=False , __lowercase : List[str]=1.0 , **__lowercase : Optional[int] ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( __lowercase , vector_shuffle=__lowercase , prop_tokens_to_load=__lowercase ) , *__lowercase , **__lowercase , )
141
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __A ( self ) -> str: SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = (32, 32) SCREAMING_SNAKE_CASE = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def __A ( self ) -> Any: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=lowerCAmelCase__ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def __A ( self ) -> Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __A ( self ) -> Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) return CLIPTextModel(lowerCAmelCase__ ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE = DDPMScheduler() SCREAMING_SNAKE_CASE = DDIMScheduler(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE = self.dummy_vae SCREAMING_SNAKE_CASE = self.dummy_text_encoder SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE = StableDiffusionUpscalePipeline( unet=lowerCAmelCase__ , low_res_scheduler=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , max_noise_level=350 , ) SCREAMING_SNAKE_CASE = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=lowerCAmelCase__ , )[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) SCREAMING_SNAKE_CASE = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> int: SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE = DDPMScheduler() SCREAMING_SNAKE_CASE = DDIMScheduler(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE = self.dummy_vae SCREAMING_SNAKE_CASE = self.dummy_text_encoder SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE = StableDiffusionUpscalePipeline( unet=lowerCAmelCase__ , low_res_scheduler=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , max_noise_level=350 , ) SCREAMING_SNAKE_CASE = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images assert image.shape[0] == 2 SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE = DDPMScheduler() SCREAMING_SNAKE_CASE = DDIMScheduler(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE = self.dummy_vae SCREAMING_SNAKE_CASE = self.dummy_text_encoder SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 SCREAMING_SNAKE_CASE = unet.half() SCREAMING_SNAKE_CASE = text_encoder.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE = StableDiffusionUpscalePipeline( unet=lowerCAmelCase__ , low_res_scheduler=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , max_noise_level=350 , ) SCREAMING_SNAKE_CASE = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type='np' , ).images SCREAMING_SNAKE_CASE = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) SCREAMING_SNAKE_CASE = 'stabilityai/stable-diffusion-x4-upscaler' SCREAMING_SNAKE_CASE = StableDiffusionUpscalePipeline.from_pretrained(lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE = 'a cat sitting on a park bench' SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) SCREAMING_SNAKE_CASE = 'stabilityai/stable-diffusion-x4-upscaler' SCREAMING_SNAKE_CASE = StableDiffusionUpscalePipeline.from_pretrained( lowerCAmelCase__ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE = 'a cat sitting on a park bench' SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __A ( self ) -> List[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) SCREAMING_SNAKE_CASE = 'stabilityai/stable-diffusion-x4-upscaler' SCREAMING_SNAKE_CASE = StableDiffusionUpscalePipeline.from_pretrained( lowerCAmelCase__ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE = 'a cat sitting on a park bench' SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , output_type='np' , ) SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
38
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str ) -> Any: # Load configuration defined in the metadata file with open(SCREAMING_SNAKE_CASE_ ) as metadata_file: SCREAMING_SNAKE_CASE = json.load(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE_ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' )['module'] # Load the entity vocab file SCREAMING_SNAKE_CASE = load_original_entity_vocab(SCREAMING_SNAKE_CASE_ ) # add an entry for [MASK2] SCREAMING_SNAKE_CASE = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE = AddedToken('<ent>' , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = AddedToken('<ent2>' , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'tokenizer_config.json' ) , 'r' ) as f: SCREAMING_SNAKE_CASE = json.load(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 'MLukeTokenizer' with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(['@'] )[0] SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(['#'] )[0] SCREAMING_SNAKE_CASE = state_dict['embeddings.word_embeddings.weight'] SCREAMING_SNAKE_CASE = word_emb[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = word_emb[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: SCREAMING_SNAKE_CASE = state_dict[bias_name] SCREAMING_SNAKE_CASE = decoder_bias[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = decoder_bias[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE = F'encoder.layer.{layer_index}.attention.self.' SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE = state_dict['entity_embeddings.entity_embeddings.weight'] SCREAMING_SNAKE_CASE = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' SCREAMING_SNAKE_CASE = state_dict['entity_predictions.bias'] SCREAMING_SNAKE_CASE = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([entity_prediction_bias, entity_mask_bias] ) SCREAMING_SNAKE_CASE = LukeForMaskedLM(config=SCREAMING_SNAKE_CASE_ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): SCREAMING_SNAKE_CASE = state_dict[key] else: SCREAMING_SNAKE_CASE = state_dict[key] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) if set(SCREAMING_SNAKE_CASE_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(SCREAMING_SNAKE_CASE_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , task='entity_classification' ) SCREAMING_SNAKE_CASE = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' SCREAMING_SNAKE_CASE = (0, 9) SCREAMING_SNAKE_CASE = tokenizer(SCREAMING_SNAKE_CASE_ , entity_spans=[span] , return_tensors='pt' ) SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE = torch.Size((1, 33, 7_68) ) SCREAMING_SNAKE_CASE = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE = torch.Size((1, 1, 7_68) ) SCREAMING_SNAKE_CASE = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 'Tokyo is the capital of <mask>.' SCREAMING_SNAKE_CASE = (24, 30) SCREAMING_SNAKE_CASE = tokenizer(SCREAMING_SNAKE_CASE_ , entity_spans=[span] , return_tensors='pt' ) SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = encoding['input_ids'][0].tolist() SCREAMING_SNAKE_CASE = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) SCREAMING_SNAKE_CASE = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = outputs.entity_logits[0][0].argmax().item() SCREAMING_SNAKE_CASE = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(SCREAMING_SNAKE_CASE_ ) ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> int: SCREAMING_SNAKE_CASE = ['[MASK]', '[PAD]', '[UNK]'] SCREAMING_SNAKE_CASE = [json.loads(SCREAMING_SNAKE_CASE_ ) for line in open(SCREAMING_SNAKE_CASE_ )] SCREAMING_SNAKE_CASE = {} for entry in data: SCREAMING_SNAKE_CASE = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: SCREAMING_SNAKE_CASE = entity_id break SCREAMING_SNAKE_CASE = F'{language}:{entity_name}' SCREAMING_SNAKE_CASE = entity_id return new_mapping if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
38
1
'''simple docstring''' import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __SCREAMING_SNAKE_CASE (_UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" __a =1 @register_to_config def __init__( self : Optional[int] , __a : List[Any]=20_00 , __a : List[Any]=0.1 , __a : Optional[int]=20 , __a : Optional[Any]=1e-3 ): _a = None _a = None _a = None def UpperCamelCase__ ( self : Union[str, Any] , __a : Optional[Any] , __a : List[str] = None ): _a = torch.linspace(1 , self.config.sampling_eps , _UpperCAmelCase , device=_UpperCAmelCase ) def UpperCamelCase__ ( self : Tuple , __a : str , __a : Optional[Any] , __a : Any , __a : int=None ): if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _a = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _a = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _a = std.flatten() while len(std.shape ) < len(score.shape ): _a = std.unsqueeze(-1 ) _a = -score / std # compute _a = -1.0 / len(self.timesteps ) _a = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _a = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _a = beta_t.unsqueeze(-1 ) _a = -0.5 * beta_t * x _a = torch.sqrt(_UpperCAmelCase ) _a = drift - diffusion**2 * score _a = x + drift * dt # add noise _a = randn_tensor(x.shape , layout=x.layout , generator=_UpperCAmelCase , device=x.device , dtype=x.dtype ) _a = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Optional[int] ): return self.config.num_train_timesteps
63
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
177
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class __UpperCamelCase : SCREAMING_SNAKE_CASE = PegasusConfig SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = "gelu" def __init__(self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple=1_3 , __SCREAMING_SNAKE_CASE : Optional[int]=7 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : Any=9_9 , __SCREAMING_SNAKE_CASE : Optional[int]=3_2 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : Optional[int]=4 , __SCREAMING_SNAKE_CASE : Tuple=3_7 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=4_0 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : Tuple=1 , __SCREAMING_SNAKE_CASE : List[Any]=0 , ): A = parent A = batch_size A = seq_length A = is_training A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = eos_token_id A = pad_token_id A = bos_token_id def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) A = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) A = tf.concat([input_ids, eos_tensor] , axis=1) A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A = prepare_pegasus_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) return config, inputs_dict def SCREAMING_SNAKE_CASE__ (self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict): A = TFPegasusModel(config=__SCREAMING_SNAKE_CASE).get_decoder() A = inputs_dict["input_ids"] A = input_ids[:1, :] A = inputs_dict["attention_mask"][:1, :] A = inputs_dict["head_mask"] A = 1 # first forward pass A = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE) A , A = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A = ids_tensor((self.batch_size, 3) , config.vocab_size) A = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and A = tf.concat([input_ids, next_tokens] , axis=-1) A = tf.concat([attention_mask, next_attn_mask] , axis=-1) A = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE)[0] A = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice A = int(ids_tensor((1,) , output_from_past.shape[-1])) A = output_from_no_past[:, -3:, random_slice_idx] A = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rtol=1E-3) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , ): """simple docstring""" if attention_mask is None: A = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __UpperCamelCase ( _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = TFPegasusModelTester(self) A = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Tuple): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ (self : Tuple): A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE) @require_sentencepiece @require_tokenizers @require_tf class __UpperCamelCase ( unittest.TestCase ): SCREAMING_SNAKE_CASE = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] SCREAMING_SNAKE_CASE = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers SCREAMING_SNAKE_CASE = "google/pegasus-xsum" @cached_property def SCREAMING_SNAKE_CASE__ (self : int): return AutoTokenizer.from_pretrained(self.model_name) @cached_property def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model def SCREAMING_SNAKE_CASE__ (self : List[str] , **__SCREAMING_SNAKE_CASE : Optional[int]): A = self.translate_src_text(**__SCREAMING_SNAKE_CASE) assert self.expected_text == generated_words def SCREAMING_SNAKE_CASE__ (self : Tuple , **__SCREAMING_SNAKE_CASE : Optional[Any]): A = self.tokenizer(self.src_text , **__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors="tf") A = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__SCREAMING_SNAKE_CASE , ) A = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__SCREAMING_SNAKE_CASE) return generated_words @slow def SCREAMING_SNAKE_CASE__ (self : int): self._assert_generated_batch_equal_expected()
57
"""simple docstring""" from __future__ import annotations class __UpperCamelCase : def __init__(self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str): A , A = text, pattern A , A = len(__SCREAMING_SNAKE_CASE), len(__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str): for i in range(self.patLen - 1 , -1 , -1): if char == self.pattern[i]: return i return -1 def SCREAMING_SNAKE_CASE__ (self : str , __SCREAMING_SNAKE_CASE : int): for i in range(self.patLen - 1 , -1 , -1): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def SCREAMING_SNAKE_CASE__ (self : List[Any]): # searches pattern in text and returns index positions A = [] for i in range(self.textLen - self.patLen + 1): A = self.mismatch_in_text(__SCREAMING_SNAKE_CASE) if mismatch_index == -1: positions.append(__SCREAMING_SNAKE_CASE) else: A = self.match_in_pattern(self.text[mismatch_index]) A = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __A : int = 'ABAABA' __A : Optional[Any] = 'AB' __A : Any = BoyerMooreSearch(text, pattern) __A : Any = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
57
1
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase = 1000 ): __lowerCAmelCase , __lowerCAmelCase : Optional[int] = 1, 1 __lowerCAmelCase : int = 2 while True: __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : List[str] = fa + fa __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = fa, f index += 1 for _ in str(_UpperCamelCase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
86
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class A__ ( _lowerCamelCase): A_ : List[Any] = 'markuplm' def __init__( self , _SCREAMING_SNAKE_CASE=3_05_22 , _SCREAMING_SNAKE_CASE=7_68 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=30_72 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2_56 , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=2_16 , _SCREAMING_SNAKE_CASE=10_01 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=50 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ): super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = vocab_size __lowerCAmelCase : Any = hidden_size __lowerCAmelCase : List[Any] = num_hidden_layers __lowerCAmelCase : Tuple = num_attention_heads __lowerCAmelCase : Union[str, Any] = hidden_act __lowerCAmelCase : List[Any] = intermediate_size __lowerCAmelCase : List[str] = hidden_dropout_prob __lowerCAmelCase : List[str] = attention_probs_dropout_prob __lowerCAmelCase : Optional[int] = max_position_embeddings __lowerCAmelCase : int = type_vocab_size __lowerCAmelCase : Tuple = initializer_range __lowerCAmelCase : int = layer_norm_eps __lowerCAmelCase : List[str] = position_embedding_type __lowerCAmelCase : List[Any] = use_cache __lowerCAmelCase : Optional[Any] = classifier_dropout # additional properties __lowerCAmelCase : Optional[int] = max_depth __lowerCAmelCase : List[str] = max_xpath_tag_unit_embeddings __lowerCAmelCase : Optional[Any] = max_xpath_subs_unit_embeddings __lowerCAmelCase : Any = tag_pad_id __lowerCAmelCase : Union[str, Any] = subs_pad_id __lowerCAmelCase : int = xpath_unit_hidden_size
86
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = SamImageProcessor() __lowerCamelCase = SamProcessor(a ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , **a : int ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a ).image_processor def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(a , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_image_processor(do_normalize=a , padding_value=1.0 ) __lowerCamelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=a , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = self.get_image_processor() __lowerCamelCase = SamProcessor(image_processor=a ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(a , return_tensors='''np''' ) __lowerCamelCase = processor(images=a , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = self.get_image_processor() __lowerCamelCase = SamProcessor(image_processor=a ) __lowerCamelCase = [torch.ones((1, 3, 5, 5) )] __lowerCamelCase = [[17_64, 26_46]] __lowerCamelCase = [[6_83, 10_24]] __lowerCamelCase = processor.post_process_masks(a , a , a ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowerCamelCase = processor.post_process_masks( a , torch.tensor(a ) , torch.tensor(a ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowerCamelCase = [np.ones((1, 3, 5, 5) )] __lowerCamelCase = processor.post_process_masks(a , np.array(a ) , np.array(a ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowerCamelCase = [[1, 0], [0, 1]] with self.assertRaises(a ): __lowerCamelCase = processor.post_process_masks(a , np.array(a ) , np.array(a ) ) @require_vision @require_tf class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = SamImageProcessor() __lowerCamelCase = SamProcessor(a ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , **a : str ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a ).image_processor def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(a , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_image_processor(do_normalize=a , padding_value=1.0 ) __lowerCamelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=a , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase = self.get_image_processor() __lowerCamelCase = SamProcessor(image_processor=a ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(a , return_tensors='''np''' ) __lowerCamelCase = processor(images=a , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = self.get_image_processor() __lowerCamelCase = SamProcessor(image_processor=a ) __lowerCamelCase = [tf.ones((1, 3, 5, 5) )] __lowerCamelCase = [[17_64, 26_46]] __lowerCamelCase = [[6_83, 10_24]] __lowerCamelCase = processor.post_process_masks(a , a , a , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowerCamelCase = processor.post_process_masks( a , tf.convert_to_tensor(a ) , tf.convert_to_tensor(a ) , return_tensors='''tf''' , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowerCamelCase = [np.ones((1, 3, 5, 5) )] __lowerCamelCase = processor.post_process_masks( a , np.array(a ) , np.array(a ) , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowerCamelCase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __lowerCamelCase = processor.post_process_masks( a , np.array(a ) , np.array(a ) , return_tensors='''tf''' ) @require_vision @require_torchvision class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = SamImageProcessor() __lowerCamelCase = SamProcessor(a ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : str , **a : Any ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a ).image_processor def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(a , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = self.get_image_processor() __lowerCamelCase = SamProcessor(image_processor=a ) __lowerCamelCase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __lowerCamelCase = [tf.convert_to_tensor(a )] __lowerCamelCase = [torch.tensor(a )] __lowerCamelCase = [[17_64, 26_46]] __lowerCamelCase = [[6_83, 10_24]] __lowerCamelCase = processor.post_process_masks( a , a , a , return_tensors='''tf''' ) __lowerCamelCase = processor.post_process_masks( a , a , a , return_tensors='''pt''' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase = self.get_image_processor() __lowerCamelCase = SamProcessor(image_processor=a ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(a , return_tensors='''pt''' )['''pixel_values'''].numpy() __lowerCamelCase = processor(images=a , return_tensors='''pt''' )['''pixel_values'''].numpy() __lowerCamelCase = image_processor(a , return_tensors='''tf''' )['''pixel_values'''].numpy() __lowerCamelCase = processor(images=a , return_tensors='''tf''' )['''pixel_values'''].numpy() self.assertTrue(np.allclose(a , a ) ) self.assertTrue(np.allclose(a , a ) ) self.assertTrue(np.allclose(a , a ) )
237
'''simple docstring''' import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a__ ( UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self : Any , *, a : int = 4 , a : int = 7_68 , a : int , a : Optional[int] , ): """simple docstring""" super().__init__() __lowerCamelCase = nn.Parameter(torch.zeros(a ) ) # parameters for additional clip time embeddings __lowerCamelCase = nn.Linear(a , a ) __lowerCamelCase = nn.Linear(a , a ) # parameters for encoder hidden states __lowerCamelCase = clip_extra_context_tokens __lowerCamelCase = nn.Linear( a , self.clip_extra_context_tokens * cross_attention_dim ) __lowerCamelCase = nn.Linear(a , a ) __lowerCamelCase = nn.LayerNorm(a ) def SCREAMING_SNAKE_CASE__ ( self : int , *, a : Union[str, Any] , a : Any , a : str , a : Any ): """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowerCamelCase = image_embeddings.shape[0] __lowerCamelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowerCamelCase = classifier_free_guidance_embeddings.expand( a , -1 ) __lowerCamelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowerCamelCase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowerCamelCase = self.embedding_proj(a ) __lowerCamelCase = self.clip_image_embeddings_project_to_time_embeddings(a ) __lowerCamelCase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowerCamelCase = self.clip_extra_context_tokens_proj(a ) __lowerCamelCase = clip_extra_context_tokens.reshape(a , -1 , self.clip_extra_context_tokens ) __lowerCamelCase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowerCamelCase = self.encoder_hidden_states_proj(a ) __lowerCamelCase = self.text_encoder_hidden_states_norm(a ) __lowerCamelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
237
1
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case : def __init__( self : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : str=7 , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : int=99 , UpperCAmelCase : str=32 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : str=4 , UpperCAmelCase : Optional[Any]=37 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=128 , UpperCAmelCase : Dict=32 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Tuple=0.0_2 , UpperCAmelCase : Any=3 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : int=None , ): __lowerCamelCase : Dict = parent __lowerCamelCase : List[Any] = batch_size __lowerCamelCase : Optional[Any] = seq_length __lowerCamelCase : List[str] = is_training __lowerCamelCase : Tuple = use_input_mask __lowerCamelCase : Optional[Any] = use_token_type_ids __lowerCamelCase : Any = use_labels __lowerCamelCase : List[str] = vocab_size __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : str = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : Optional[Any] = intermediate_size __lowerCamelCase : Optional[Any] = hidden_act __lowerCamelCase : Any = hidden_dropout_prob __lowerCamelCase : Optional[int] = attention_probs_dropout_prob __lowerCamelCase : int = max_position_embeddings __lowerCamelCase : List[Any] = type_vocab_size __lowerCamelCase : Tuple = type_sequence_label_size __lowerCamelCase : Union[str, Any] = initializer_range __lowerCamelCase : Union[str, Any] = num_labels __lowerCamelCase : Dict = num_choices __lowerCamelCase : Optional[Any] = scope def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase : List[str] = None if self.use_input_mask: __lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase : Union[str, Any] = None if self.use_token_type_ids: __lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase : List[str] = None __lowerCamelCase : List[str] = None __lowerCamelCase : Tuple = None if self.use_labels: __lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : Dict ): return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : Union[str, Any] ): ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : Optional[int] = self.prepare_config_and_inputs() __lowerCamelCase : int = True __lowerCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] ): __lowerCamelCase : int = NezhaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase : List[str] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = model(UpperCAmelCase , token_type_ids=UpperCAmelCase ) __lowerCamelCase : int = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : int , ): __lowerCamelCase : int = True __lowerCamelCase : List[Any] = NezhaModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase : int = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , ) __lowerCamelCase : int = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , ) __lowerCamelCase : Dict = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] ): __lowerCamelCase : Any = NezhaForMaskedLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase : Any = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] ): __lowerCamelCase : Dict = NezhaForNextSentencePrediction(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase : Union[str, Any] = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Optional[int] ): __lowerCamelCase : Optional[Any] = NezhaForPreTraining(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase : Optional[int] = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , next_sentence_label=UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCamelCase__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ): __lowerCamelCase : Union[str, Any] = NezhaForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase : List[str] = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): __lowerCamelCase : Optional[int] = self.num_labels __lowerCamelCase : str = NezhaForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase : Tuple = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] ): __lowerCamelCase : Optional[Any] = self.num_labels __lowerCamelCase : Dict = NezhaForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase : Dict = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] ): __lowerCamelCase : str = self.num_choices __lowerCamelCase : List[Any] = NezhaForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase : List[str] = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : int ): __lowerCamelCase : Any = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : Optional[Any] = config_and_inputs __lowerCamelCase : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _snake_case ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) snake_case__ = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = True def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=False ): __lowerCamelCase : Union[str, Any] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class in get_values(UpperCAmelCase ): __lowerCamelCase : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : int = NezhaModelTester(self ) __lowerCamelCase : Dict = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ ( self : int ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : str ): __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase ) def lowerCamelCase__ ( self : Tuple ): # This regression test was failing with PyTorch < 1.3 ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() __lowerCamelCase : List[str] = None self.model_tester.create_and_check_model_as_decoder( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def lowerCamelCase__ ( self : int ): __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*UpperCAmelCase ) def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase ) def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def lowerCamelCase__ ( self : Tuple ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Dict = NezhaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @slow @require_torch_gpu def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowerCamelCase : List[Any] = True __lowerCamelCase : Tuple = model_class(config=UpperCAmelCase ) __lowerCamelCase : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : str = torch.jit.trace( UpperCAmelCase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCAmelCase , os.path.join(UpperCAmelCase , "bert.pt" ) ) __lowerCamelCase : Tuple = torch.jit.load(os.path.join(UpperCAmelCase , "bert.pt" ) , map_location=UpperCAmelCase ) loaded(inputs_dict["input_ids"].to(UpperCAmelCase ) , inputs_dict["attention_mask"].to(UpperCAmelCase ) ) @require_torch class _snake_case ( unittest.TestCase ): @slow def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Optional[Any] = NezhaModel.from_pretrained("sijunhe/nezha-cn-base" ) __lowerCamelCase : Union[str, Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowerCamelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCamelCase : List[str] = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __lowerCamelCase : Union[str, Any] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self : str ): __lowerCamelCase : Union[str, Any] = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base" ) __lowerCamelCase : List[str] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowerCamelCase : Optional[int] = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCamelCase : List[str] = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __lowerCamelCase : Optional[int] = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape , UpperCAmelCase ) __lowerCamelCase : Optional[Any] = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) )
135
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 __A = get_tests_dir('''fixtures''') class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : List[Any] ): # A mock response for an HTTP head request to emulate server down __lowerCamelCase : List[str] = mock.Mock() __lowerCamelCase : Any = 500 __lowerCamelCase : int = {} __lowerCamelCase : Optional[Any] = HTTPError __lowerCamelCase : List[str] = {} # Download this model to make sure it's in the cache. __lowerCamelCase : int = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase ) as mock_head: __lowerCamelCase : str = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase__ ( self : Dict ): # This test is for deprecated behavior and can be removed in v5 __lowerCamelCase : List[str] = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" ) def lowerCamelCase__ ( self : str ): with self.assertRaises(UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder __lowerCamelCase : Dict = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants" ) __lowerCamelCase : Any = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor" ) self.assertIsNotNone(UpperCAmelCase ) @is_staging_test class _snake_case ( unittest.TestCase ): @classmethod def lowerCamelCase__ ( cls : List[str] ): __lowerCamelCase : Any = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] ): try: delete_repo(token=cls._token , repo_id="test-image-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor" ) except HTTPError: pass def lowerCamelCase__ ( self : str ): __lowerCamelCase : Union[str, Any] = ViTImageProcessor.from_pretrained(UpperCAmelCase ) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token ) __lowerCamelCase : Tuple = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCAmelCase , repo_id="test-image-processor" , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCamelCase : int = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : List[Any] = ViTImageProcessor.from_pretrained(UpperCAmelCase ) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token ) __lowerCamelCase : Union[str, Any] = ViTImageProcessor.from_pretrained("valid_org/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCAmelCase , repo_id="valid_org/test-image-processor-org" , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) __lowerCamelCase : Any = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org" ) for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def lowerCamelCase__ ( self : Union[str, Any] ): CustomImageProcessor.register_for_auto_class() __lowerCamelCase : int = CustomImageProcessor.from_pretrained(UpperCAmelCase ) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) __lowerCamelCase : List[str] = AutoImageProcessor.from_pretrained( F"""{USER}/test-dynamic-image-processor""" , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor" )
135
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin snake_case : List[Any] = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = BartphoTokenizer SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() a :Dict = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] a :Optional[Any] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) a :Tuple = {'''unk_token''': '''<unk>'''} a :Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) a :Any = BartphoTokenizer(_lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self , **_lowerCamelCase ): kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :int = '''This is a là test''' a :str = '''This is a<unk><unk> test''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = BartphoTokenizer(_lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) a :Optional[Any] = '''This is a là test''' a :Tuple = '''▁This ▁is ▁a ▁l à ▁t est'''.split() a :int = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) a :Union[str, Any] = tokens + [tokenizer.unk_token] a :str = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase )
281
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str]=0.999 , UpperCAmelCase_ : str="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCAmelCase_ : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCAmelCase_ : List[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) a :Union[str, Any] = [] for i in range(UpperCAmelCase_ ): a :Optional[Any] = i / num_diffusion_timesteps a :int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCAmelCase_ ) / alpha_bar_fn(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) return torch.tensor(UpperCAmelCase_ , dtype=torch.floataa ) class _snake_case ( _snake_case , _snake_case ): @register_to_config def __init__( self , _lowerCamelCase = 1000 , _lowerCamelCase = "fixed_small_log" , _lowerCamelCase = True , _lowerCamelCase = 1.0 , _lowerCamelCase = "epsilon" , _lowerCamelCase = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) a :List[Any] = betas_for_alpha_bar(_lowerCamelCase ) a :Any = 1.0 - self.betas a :int = torch.cumprod(self.alphas , dim=0 ) a :Union[str, Any] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution a :List[Any] = 1.0 # setable values a :Optional[Any] = None a :List[str] = torch.from_numpy(np.arange(0 , _lowerCamelCase )[::-1].copy() ) a :List[str] = variance_type def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): return sample def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): a :Optional[int] = num_inference_steps a :Union[str, Any] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) a :int = (np.arange(0 , _lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) a :List[str] = torch.from_numpy(_lowerCamelCase ).to(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None ): if prev_timestep is None: a :Union[str, Any] = t - 1 a :Dict = self.alphas_cumprod[t] a :str = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one a :Optional[Any] = 1 - alpha_prod_t a :Tuple = 1 - alpha_prod_t_prev if prev_timestep == t - 1: a :int = self.betas[t] else: a :Tuple = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample a :str = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: a :Optional[int] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": a :Dict = torch.log(torch.clamp(_lowerCamelCase , min=1e-20 ) ) a :Optional[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler a :List[Any] = variance.log() a :Any = beta.log() a :List[Any] = (predicted_variance + 1) / 2 a :Dict = frac * max_log + (1 - frac) * min_log return variance def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = True , ): a :Optional[int] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": a , a :Optional[int] = torch.split(_lowerCamelCase , sample.shape[1] , dim=1 ) else: a :int = None # 1. compute alphas, betas if prev_timestep is None: a :Any = t - 1 a :Tuple = self.alphas_cumprod[t] a :Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one a :Tuple = 1 - alpha_prod_t a :List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: a :Union[str, Any] = self.betas[t] a :Optional[Any] = self.alphas[t] else: a :Dict = 1 - alpha_prod_t / alpha_prod_t_prev a :Optional[Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": a :List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": a :List[str] = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: a :List[str] = torch.clamp( _lowerCamelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf a :List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t a :Any = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf a :Optional[int] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise a :Dict = 0 if t > 0: a :Optional[int] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=_lowerCamelCase , device=model_output.device ) a :Dict = self._get_variance( _lowerCamelCase , predicted_variance=_lowerCamelCase , prev_timestep=_lowerCamelCase , ) if self.variance_type == "fixed_small_log": a :Optional[int] = variance elif self.variance_type == "learned_range": a :Union[str, Any] = (0.5 * variance).exp() else: raise ValueError( F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ''' for the UnCLIPScheduler.''' ) a :Optional[int] = variance * variance_noise a :List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=_lowerCamelCase , pred_original_sample=_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples a :List[Any] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) a :Optional[Any] = timesteps.to(original_samples.device ) a :Tuple = alphas_cumprod[timesteps] ** 0.5 a :List[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): a :Any = sqrt_alpha_prod.unsqueeze(-1 ) a :List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5 a :Optional[int] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): a :List[Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) a :str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
281
1
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> bool: """simple docstring""" UpperCamelCase :str = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
38
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup UpperCAmelCase_ : Any = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( _a ): def __init__( self : Optional[int] , **__lowerCamelCase : Optional[int] ): requires_backends(self , ["""bs4"""] ) super().__init__(**__lowerCamelCase ) def _A ( self : List[str] , __lowerCamelCase : Any ): UpperCamelCase :Optional[int] = [] UpperCamelCase :List[str] = [] UpperCamelCase :Union[str, Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag UpperCamelCase :Optional[Any] = parent.find_all(child.name , recursive=__lowerCamelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__lowerCamelCase ) else next(i for i, s in enumerate(__lowerCamelCase , 1 ) if s is child ) ) UpperCamelCase :Any = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _A ( self : Any , __lowerCamelCase : Tuple ): UpperCamelCase :Any = BeautifulSoup(__lowerCamelCase , """html.parser""" ) UpperCamelCase :Union[str, Any] = [] UpperCamelCase :Tuple = [] UpperCamelCase :Tuple = [] for element in html_code.descendants: if type(__lowerCamelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue UpperCamelCase :Any = html.unescape(__lowerCamelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Optional[Any] = self.xpath_soup(__lowerCamelCase ) stringaxtag_seq.append(__lowerCamelCase ) stringaxsubs_seq.append(__lowerCamelCase ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _A ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): UpperCamelCase :Tuple = """""" for tagname, subs in zip(__lowerCamelCase , __lowerCamelCase ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self : Any , __lowerCamelCase : Dict ): UpperCamelCase :Any = False # Check that strings has a valid type if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase :List[Any] = True elif isinstance(__lowerCamelCase , (list, tuple) ): if len(__lowerCamelCase ) == 0 or isinstance(html_strings[0] , __lowerCamelCase ): UpperCamelCase :Any = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ F"""but is of type {type(__lowerCamelCase )}.""" ) UpperCamelCase :str = bool(isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(html_strings[0] , __lowerCamelCase )) ) if not is_batched: UpperCamelCase :Any = [html_strings] # Get nodes + xpaths UpperCamelCase :Union[str, Any] = [] UpperCamelCase :str = [] for html_string in html_strings: UpperCamelCase , UpperCamelCase , UpperCamelCase :int = self.get_three_from_single(__lowerCamelCase ) nodes.append(__lowerCamelCase ) UpperCamelCase :int = [] for node, tag_list, sub_list in zip(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): UpperCamelCase :str = self.construct_xpath(__lowerCamelCase , __lowerCamelCase ) xpath_strings.append(__lowerCamelCase ) xpaths.append(__lowerCamelCase ) # return as Dict UpperCamelCase :Optional[int] = {"""nodes""": nodes, """xpaths""": xpaths} UpperCamelCase :Any = BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase ) return encoded_inputs
38
1
def __lowerCAmelCase ( lowercase : str , lowercase : bool = False ) -> str: """simple docstring""" if not isinstance(lowercase , lowercase ): snake_case : Any = F'Expected string as input, found {type(lowercase )}' raise ValueError(lowercase ) if not isinstance(lowercase , lowercase ): snake_case : Tuple = F'Expected boolean as use_pascal parameter, found {type(lowercase )}' raise ValueError(lowercase ) snake_case : Optional[Any] = input_str.split("_" ) snake_case : Dict = 0 if use_pascal else 1 snake_case : Tuple = words[start_index:] snake_case : List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] snake_case : str = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
356
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def __lowerCAmelCase ( lowercase : int ) -> Tuple: """simple docstring""" snake_case : Any = fname.split(os.path.sep )[-1] return re.search(R"^(.*)_\d+\.jpg$" , lowercase ).groups()[0] class _lowerCAmelCase ( snake_case_ ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ) -> Union[str, Any]: '''simple docstring''' snake_case : Union[str, Any] = file_names snake_case : Optional[Any] = image_transform snake_case : Optional[int] = label_to_id def __len__( self ) -> Tuple: '''simple docstring''' return len(self.file_names ) def __getitem__( self , UpperCamelCase__ ) -> int: '''simple docstring''' snake_case : str = self.file_names[idx] snake_case : Any = PIL.Image.open(UpperCamelCase__ ) snake_case : Optional[int] = raw_image.convert("RGB" ) if self.image_transform is not None: snake_case : Optional[Any] = self.image_transform(UpperCamelCase__ ) snake_case : Optional[Any] = extract_label(UpperCamelCase__ ) if self.label_to_id is not None: snake_case : Optional[Any] = self.label_to_id[label] return {"image": image, "label": label} def __lowerCAmelCase ( lowercase : Any , lowercase : List[Any] ) -> List[str]: """simple docstring""" if args.with_tracking: snake_case : List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: snake_case : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case : str = config["lr"] snake_case : Union[str, Any] = int(config["num_epochs"] ) snake_case : str = int(config["seed"] ) snake_case : str = int(config["batch_size"] ) snake_case : Any = config["image_size"] if not isinstance(lowercase , (list, tuple) ): snake_case : str = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": snake_case : List[str] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): snake_case : Any = int(args.checkpointing_steps ) else: raise ValueError( F'Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.' ) else: snake_case : List[str] = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: snake_case : Union[str, Any] = os.path.split(lowercase )[-1].split("." )[0] accelerator.init_trackers(lowercase , lowercase ) # Grab all the image filenames snake_case : int = [os.path.join(args.data_dir , lowercase ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences snake_case : Union[str, Any] = [extract_label(lowercase ) for fname in file_names] snake_case : Any = list(set(lowercase ) ) id_to_label.sort() snake_case : int = {lbl: i for i, lbl in enumerate(lowercase )} # Set the seed before splitting the data. np.random.seed(lowercase ) torch.manual_seed(lowercase ) torch.cuda.manual_seed_all(lowercase ) # Split our filenames between train and validation snake_case : Optional[Any] = np.random.permutation(len(lowercase ) ) snake_case : int = int(0.8 * len(lowercase ) ) snake_case : int = random_perm[:cut] snake_case : int = random_perm[cut:] # For training we use a simple RandomResizedCrop snake_case : List[Any] = Compose([RandomResizedCrop(lowercase , scale=(0.5, 1.0) ), ToTensor()] ) snake_case : List[str] = PetsDataset( [file_names[i] for i in train_split] , image_transform=lowercase , label_to_id=lowercase ) # For evaluation, we use a deterministic Resize snake_case : Optional[Any] = Compose([Resize(lowercase ), ToTensor()] ) snake_case : Optional[Any] = PetsDataset([file_names[i] for i in eval_split] , image_transform=lowercase , label_to_id=lowercase ) # Instantiate dataloaders. snake_case : Optional[Any] = DataLoader(lowercase , shuffle=lowercase , batch_size=lowercase , num_workers=4 ) snake_case : Tuple = DataLoader(lowercase , shuffle=lowercase , batch_size=lowercase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case : Optional[int] = create_model("resnet50d" , pretrained=lowercase , num_classes=len(lowercase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case : Any = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): snake_case : Dict = False for param in model.get_classifier().parameters(): snake_case : List[Any] = True # We normalize the batches of images to be a bit faster. snake_case : Dict = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) snake_case : Union[str, Any] = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer snake_case : int = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler snake_case : Dict = OneCycleLR(optimizer=lowercase , max_lr=lowercase , epochs=lowercase , steps_per_epoch=len(lowercase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case ,snake_case ,snake_case ,snake_case ,snake_case : List[str] = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # We need to keep track of how many total steps we have iterated over snake_case : List[Any] = 0 # We also need to keep track of the starting epoch so files are named properly snake_case : Optional[int] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'Resumed from checkpoint: {args.resume_from_checkpoint}' ) accelerator.load_state(args.resume_from_checkpoint ) snake_case : List[str] = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint snake_case : List[Any] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) snake_case : int = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` snake_case : Union[str, Any] = os.path.splitext(lowercase )[0] if "epoch" in training_difference: snake_case : Any = int(training_difference.replace("epoch_" , "" ) ) + 1 snake_case : int = None else: snake_case : Any = int(training_difference.replace("step_" , "" ) ) snake_case : Optional[int] = resume_step // len(lowercase ) resume_step -= starting_epoch * len(lowercase ) # Now we train the model for epoch in range(lowercase , lowercase ): model.train() if args.with_tracking: snake_case : Union[str, Any] = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step snake_case : List[str] = accelerator.skip_first_batches(lowercase , lowercase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader snake_case : Any = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. snake_case : List[Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} snake_case : Optional[int] = (batch["image"] - mean) / std snake_case : str = model(lowercase ) snake_case : Dict = torch.nn.functional.cross_entropy(lowercase , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(lowercase , lowercase ): snake_case : Any = F'step_{overall_step}' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: snake_case : List[str] = os.path.join(args.output_dir , lowercase ) accelerator.save_state(lowercase ) model.eval() snake_case : List[str] = 0 snake_case : List[str] = 0 for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. snake_case : int = {k: v.to(accelerator.device ) for k, v in batch.items()} snake_case : Tuple = (batch["image"] - mean) / std with torch.no_grad(): snake_case : Optional[int] = model(lowercase ) snake_case : List[Any] = outputs.argmax(dim=-1 ) snake_case ,snake_case : int = accelerator.gather_for_metrics((predictions, batch["label"]) ) snake_case : Union[str, Any] = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() snake_case : List[Any] = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}: {100 * eval_metric:.2f}' ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(lowercase ), "epoch": epoch, } , step=lowercase , ) if checkpointing_steps == "epoch": snake_case : Optional[Any] = F'epoch_{epoch}' if args.output_dir is not None: snake_case : Union[str, Any] = os.path.join(args.output_dir , lowercase ) accelerator.save_state(lowercase ) if args.with_tracking: accelerator.end_training() def __lowerCAmelCase ( ) -> str: """simple docstring""" snake_case : Optional[Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=lowercase , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=lowercase , default=lowercase , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=lowercase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=lowercase , default=lowercase , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=lowercase , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) snake_case : Optional[Any] = parser.parse_args() snake_case : List[str] = {"lr": 3e-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
112
0
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[Any] ="""pixel_values""" __UpperCAmelCase : Union[str, Any] =False __UpperCAmelCase : Union[str, Any] =TimmBackboneConfig def __init__( self , __a , **__a ): requires_backends(self , "timm" ) super().__init__(__a ) __lowerCAmelCase = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name." ) if config.backbone not in timm.list_models(): raise ValueError(f"backbone {config.backbone} is not supported by timm." ) if hasattr(__a , "out_features" ) and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead." ) __lowerCAmelCase = getattr(__a , "use_pretrained_backbone" , __a ) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False." ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCAmelCase = config.out_indices if getattr(__a , "out_indices" , __a ) is not None else (-1,) __lowerCAmelCase = timm.create_model( config.backbone , pretrained=__a , features_only=config.features_only , in_chans=config.num_channels , out_indices=__a , **__a , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCAmelCase = self._backbone.return_layers __lowerCAmelCase = {layer["module"]: str(__a ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(__a ) @classmethod def snake_case ( cls , __a , *__a , **__a ): requires_backends(cls , ["vision", "timm"] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCAmelCase = kwargs.pop("config" , TimmBackboneConfig() ) __lowerCAmelCase = kwargs.pop("use_timm_backbone" , __a ) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones" ) __lowerCAmelCase = kwargs.pop("num_channels" , config.num_channels ) __lowerCAmelCase = kwargs.pop("features_only" , config.features_only ) __lowerCAmelCase = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone ) __lowerCAmelCase = kwargs.pop("out_indices" , config.out_indices ) __lowerCAmelCase = TimmBackboneConfig( backbone=__a , num_channels=__a , features_only=__a , use_pretrained_backbone=__a , out_indices=__a , ) return super()._from_config(__a , **__a ) def snake_case ( self , __a ): pass def snake_case ( self , __a , __a=None , __a=None , __a=None , **__a ): __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCAmelCase = self._all_layers __lowerCAmelCase = self._backbone(__a , **__a ) __lowerCAmelCase = self._return_layers __lowerCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCAmelCase = self._backbone(__a , **__a ) __lowerCAmelCase = None __lowerCAmelCase = tuple(__a ) __lowerCAmelCase = tuple(__a ) if hidden_states is not None else None if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: __lowerCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=__a , hidden_states=__a , attentions=__a )
57
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Optional[int] = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys A : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
1
"""simple docstring""" lowercase__ = tuple[float, float, float] lowercase__ = tuple[float, float, float] def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: a__: Union[str, Any] = end_pointa[0] - end_pointa[0] a__: Union[str, Any] = end_pointa[1] - end_pointa[1] a__: str = end_pointa[2] - end_pointa[2] return (x, y, z) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: a__: Any = ab[1] * ac[2] - ab[2] * ac[1] # *i a__: Tuple = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j a__: Any = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: return tuple(round(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for x in vector ) == (0, 0, 0) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 10 ) ->Tuple: a__: Any = create_vector(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Optional[int] = create_vector(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return is_zero_vector(get_ad_vectors_cross(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
359
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def __a ( _SCREAMING_SNAKE_CASE ) ->Tuple: a__: Tuple = {} a__: Tuple = job['started_at'] a__: int = job['completed_at'] a__: Any = date_parser.parse(_SCREAMING_SNAKE_CASE ) a__: Tuple = date_parser.parse(_SCREAMING_SNAKE_CASE ) a__: str = round((end_datetime - start_datetime).total_seconds() / 60.0 ) a__: Any = start a__: Dict = end a__: Optional[int] = duration_in_min return job_info def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->Optional[int]: a__: Tuple = None if token is not None: a__: List[str] = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} a__: int = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' a__: Union[str, Any] = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() a__: str = {} try: job_time.update({job['name']: extract_time_from_single_job(_SCREAMING_SNAKE_CASE ) for job in result['jobs']} ) a__: Dict = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_SCREAMING_SNAKE_CASE ): a__: str = requests.get(url + F'&page={i + 2}' , headers=_SCREAMING_SNAKE_CASE ).json() job_time.update({job['name']: extract_time_from_single_job(_SCREAMING_SNAKE_CASE ) for job in result['jobs']} ) return job_time except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') lowercase__ = parser.parse_args() lowercase__ = get_job_time(args.workflow_run_id) lowercase__ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"{k}: {v['duration']}")
203
0
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCAmelCase : Optional[int] =16 __lowerCAmelCase : Tuple =32 def UpperCamelCase ( _lowerCamelCase : Accelerator , _lowerCamelCase : DatasetDict , _lowerCamelCase : List[int] , _lowerCamelCase : List[int] , _lowerCamelCase : int = 16 ): A__ = AutoTokenizer.from_pretrained("bert-base-cased" ) A__ = DatasetDict( { "train": dataset["train"].select(_lowerCamelCase ), "validation": dataset["train"].select(_lowerCamelCase ), "test": dataset["validation"], } ) def tokenize_function(_lowerCamelCase : Dict ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( _lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) A__ = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) A__ = DataLoader( tokenized_datasets["test"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader, test_dataloader def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : str ): # New Code # A__ = [] # Download the dataset A__ = load_dataset("glue" , "mrpc" ) # Create our splits A__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config["lr"] A__ = int(config["num_epochs"] ) A__ = int(config["seed"] ) A__ = int(config["batch_size"] ) A__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE set_seed(_lowerCamelCase ) # New Code # # Create our folds: A__ = kfold.split(np.zeros(datasets["train"].num_rows ) , datasets["train"]["label"] ) A__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_lowerCamelCase ): A__, A__, A__ = get_fold_dataloaders( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=_lowerCamelCase ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__, A__, A__, A__, A__ = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**_lowerCamelCase ) A__ = outputs.loss A__ = loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**_lowerCamelCase ) A__ = outputs.logits.argmax(dim=-1 ) A__, A__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , _lowerCamelCase ) # New Code # # We also run predictions on the test set at the very end A__ = [] for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**_lowerCamelCase ) A__ = outputs.logits A__, A__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_lowerCamelCase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: A__ = torch.cat(_lowerCamelCase , dim=0 ) A__ = torch.stack(_lowerCamelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) A__ = metric.compute(predictions=_lowerCamelCase , references=_lowerCamelCase ) accelerator.print("Average test metrics from all folds:" , _lowerCamelCase ) def UpperCamelCase ( ): A__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) # New Code # parser.add_argument("--num_folds" , type=_lowerCamelCase , default=3 , help="The number of splits to perform across the dataset" ) A__ = parser.parse_args() A__ = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
237
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __lowerCAmelCase : Optional[Any] ={ "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """facebook/nllb-200-distilled-600M""" __lowercase = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __lowercase = """translator""" __lowercase = AutoTokenizer __lowercase = AutoModelForSeqaSeqLM __lowercase = LANGUAGE_CODES __lowercase = ["""text""", """text""", """text"""] __lowercase = ["""text"""] def UpperCAmelCase_ ( self :List[Any] , lowercase_ :Any , lowercase_ :List[str] , lowercase_ :int )-> str: if src_lang not in self.lang_to_code: raise ValueError(F"{src_lang} is not a supported language." ) if tgt_lang not in self.lang_to_code: raise ValueError(F"{tgt_lang} is not a supported language." ) A__ = self.lang_to_code[src_lang] A__ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase_ , return_tensors="pt" , src_lang=lowercase_ , tgt_lang=lowercase_ ) def UpperCAmelCase_ ( self :Dict , lowercase_ :Any )-> int: return self.model.generate(**lowercase_ ) def UpperCAmelCase_ ( self :int , lowercase_ :Optional[Any] )-> str: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase_ )
237
1
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: if height >= 1: move_tower(height - 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) move_disk(__UpperCamelCase , __UpperCamelCase ) move_tower(height - 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> str: print("""moving disk from""" , __UpperCamelCase , """to""" , __UpperCamelCase ) def _lowerCamelCase() -> Optional[Any]: _lowerCAmelCase =int(input("""Height of hanoi: """ ).strip() ) move_tower(__UpperCamelCase , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
341
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def _lowerCamelCase() -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
341
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Dict = logging.get_logger(__name__) snake_case : str = { "google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _snake_case ( snake_case ): UpperCamelCase__ = 'pegasus' UpperCamelCase__ = ['past_key_values'] UpperCamelCase__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _a=50_265 , _a=1_024 , _a=12 , _a=4_096 , _a=16 , _a=12 , _a=4_096 , _a=16 , _a=0.0 , _a=0.0 , _a=True , _a=True , _a="gelu" , _a=1_024 , _a=0.1 , _a=0.0 , _a=0.0 , _a=0.02 , _a=0 , _a=False , _a=0 , _a=1 , _a=1 , **_a , ): __magic_name__ : Tuple = vocab_size __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Union[str, Any] = d_model __magic_name__ : Tuple = encoder_ffn_dim __magic_name__ : Union[str, Any] = encoder_layers __magic_name__ : List[Any] = encoder_attention_heads __magic_name__ : Any = decoder_ffn_dim __magic_name__ : int = decoder_layers __magic_name__ : str = decoder_attention_heads __magic_name__ : Union[str, Any] = dropout __magic_name__ : List[Any] = attention_dropout __magic_name__ : Dict = activation_dropout __magic_name__ : Any = activation_function __magic_name__ : str = init_std __magic_name__ : Union[str, Any] = encoder_layerdrop __magic_name__ : Union[str, Any] = decoder_layerdrop __magic_name__ : List[str] = use_cache __magic_name__ : List[Any] = encoder_layers __magic_name__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , decoder_start_token_id=_a , forced_eos_token_id=_a , **_a , ) @property def SCREAMING_SNAKE_CASE ( self ): return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE ( self ): return self.d_model
281
snake_case : Optional[int] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def lowerCAmelCase_ ( _snake_case : bytes ) -> bytes: '''simple docstring''' if not isinstance(_snake_case , _snake_case ): __magic_name__ : Tuple = F'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_snake_case ) __magic_name__ : Optional[int] = "".join(bin(_snake_case )[2:].zfill(8 ) for byte in data ) __magic_name__ : List[Any] = len(_snake_case ) % 6 != 0 if padding_needed: # The padding that will be added later __magic_name__ : List[str] = B"=" * ((6 - len(_snake_case ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_snake_case ) % 6) else: __magic_name__ : List[str] = B"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_snake_case ) , 6 ) ).encode() + padding ) def lowerCAmelCase_ ( _snake_case : str ) -> bytes: '''simple docstring''' if not isinstance(_snake_case , _snake_case ) and not isinstance(_snake_case , _snake_case ): __magic_name__ : List[str] = ( "argument should be a bytes-like object or ASCII string, " F'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_snake_case ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_snake_case , _snake_case ): try: __magic_name__ : List[Any] = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) __magic_name__ : List[str] = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_snake_case ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __magic_name__ : Optional[int] = encoded_data[:-padding] __magic_name__ : Dict = "".join( bin(B64_CHARSET.index(_snake_case ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __magic_name__ : Union[str, Any] = "".join( bin(B64_CHARSET.index(_snake_case ) )[2:].zfill(6 ) for char in encoded_data ) __magic_name__ : List[Any] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_snake_case ) , 8 ) ] return bytes(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
281
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) snake_case : Any = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(lowercase_ ) snake_case : Optional[int] = -1 snake_case : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) snake_case : Tuple = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ ) snake_case : str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: snake_case : int = TextStreamer(lowercase_ ) model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ , streamer=lowercase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer snake_case : str = cs.out[:-1] self.assertEqual(lowercase_ , lowercase_ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Tuple: '''simple docstring''' snake_case : Any = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) snake_case : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(lowercase_ ) snake_case : int = -1 snake_case : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) snake_case : Any = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ ) snake_case : str = tokenizer.decode(greedy_ids[0] ) snake_case : Any = TextIteratorStreamer(lowercase_ ) snake_case : List[Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} snake_case : List[str] = Thread(target=model.generate , kwargs=lowercase_ ) thread.start() snake_case : Dict = "" for new_text in streamer: streamer_text += new_text self.assertEqual(lowercase_ , lowercase_ ) def _SCREAMING_SNAKE_CASE (self : int ) -> int: '''simple docstring''' snake_case : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(lowercase_ ) snake_case : int = -1 snake_case : Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) snake_case : int = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ ) snake_case : Optional[Any] = greedy_ids[:, input_ids.shape[1] :] snake_case : int = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: snake_case : Dict = TextStreamer(lowercase_ , skip_prompt=lowercase_ ) model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ , streamer=lowercase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer snake_case : Optional[int] = cs.out[:-1] self.assertEqual(lowercase_ , lowercase_ ) def _SCREAMING_SNAKE_CASE (self : str ) -> Dict: '''simple docstring''' snake_case : Tuple = AutoTokenizer.from_pretrained("distilgpt2" ) snake_case : Union[str, Any] = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(lowercase_ ) snake_case : Optional[int] = -1 snake_case : Optional[int] = torch.ones((1, 5) , device=lowercase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: snake_case : Optional[Any] = TextStreamer(lowercase_ , skip_special_tokens=lowercase_ ) model.generate(lowercase_ , max_new_tokens=1 , do_sample=lowercase_ , streamer=lowercase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token snake_case : Optional[int] = cs.out[:-1] # Remove the final "\n" snake_case : List[Any] = tokenizer(lowercase_ , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _SCREAMING_SNAKE_CASE (self : Any ) -> str: '''simple docstring''' snake_case : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) snake_case : Tuple = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(lowercase_ ) snake_case : Any = -1 snake_case : int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) snake_case : List[Any] = TextIteratorStreamer(lowercase_ , timeout=0.001 ) snake_case : int = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} snake_case : Union[str, Any] = Thread(target=model.generate , kwargs=lowercase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowercase_ ): snake_case : Optional[Any] = "" for new_text in streamer: streamer_text += new_text
355
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("String lengths must match!" ) snake_case : Optional[Any] = 0 for chara, chara in zip(__lowerCamelCase , __lowerCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
10
0
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def a_ ( _lowerCAmelCase : SplitDict ): '''simple docstring''' lowercase__ : List[str] = split_dict._to_yaml_list() assert len(_lowerCamelCase ) == len(_lowerCamelCase ) lowercase__ : Any = SplitDict._from_yaml_list(_lowerCamelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowercase__ : List[Any] = None # the split name of split_dict takes over the name of the split info object lowercase__ : Dict = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=_lowerCamelCase ), SplitInfo(dataset_name='my_dataset' )] ) def a_ ( _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : Optional[Any] = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
77
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( _lowerCamelCase: list[int] , _lowerCamelCase: list[int] , _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : List[Any] = list(range(len(_lowerCamelCase ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = [v / w for v, w in zip(_lowerCamelCase , _lowerCamelCase )] index.sort(key=lambda _lowerCamelCase : ratio[i] , reverse=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : list[float] = [0] * len(_lowerCamelCase ) for i in index: if weight[i] <= capacity: __SCREAMING_SNAKE_CASE : str = 1 max_value += value[i] capacity -= weight[i] else: __SCREAMING_SNAKE_CASE : int = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
112
0
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel a : List[Any] = logging.getLogger(__name__) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: # save results if os.path.exists(_lowercase ): if os.path.exists(os.path.join(_lowercase , """config.json""" ) ) and os.path.isfile( os.path.join(_lowercase , """config.json""" ) ): os.remove(os.path.join(_lowercase , """config.json""" ) ) if os.path.exists(os.path.join(_lowercase , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(_lowercase , """pytorch_model.bin""" ) ): os.remove(os.path.join(_lowercase , """pytorch_model.bin""" ) ) else: os.makedirs(_lowercase ) model.save_pretrained(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase=False ) -> List[Any]: UpperCAmelCase : Tuple = 2 if unlogit: UpperCAmelCase : Any = torch.pow(_lowercase , _lowercase ) UpperCAmelCase : Any = p * torch.log(_lowercase ) UpperCAmelCase : List[Any] = 0 return -plogp.sum(dim=-1 ) def __lowerCamelCase ( _lowercase ) -> Any: logger.info("""lv, h >\t""" + """\t""".join(F'''{x + 1}''' for x in range(len(_lowercase ) ) ) ) for row in range(len(_lowercase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase=True , _lowercase=None , _lowercase=False ) -> int: UpperCAmelCase , UpperCAmelCase : Any = model.config.num_hidden_layers, model.config.num_attention_heads UpperCAmelCase : int = torch.zeros(_lowercase , _lowercase ).to(args.device ) UpperCAmelCase : Union[str, Any] = torch.zeros(_lowercase , _lowercase ).to(args.device ) if head_mask is None: UpperCAmelCase : Optional[Any] = torch.ones(_lowercase , _lowercase ).to(args.device ) head_mask.requires_grad_(requires_grad=_lowercase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: UpperCAmelCase : List[str] = None UpperCAmelCase : List[str] = 0.0 UpperCAmelCase : List[Any] = 0.0 for step, inputs in enumerate(tqdm(_lowercase , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): UpperCAmelCase : List[Any] = tuple(t.to(args.device ) for t in inputs ) ((UpperCAmelCase) , ) : Dict = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) UpperCAmelCase : Optional[int] = model(_lowercase , labels=_lowercase , head_mask=_lowercase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_lowercase ): UpperCAmelCase : Union[str, Any] = entropy(attn.detach() , _lowercase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_lowercase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: UpperCAmelCase : List[Any] = 2 UpperCAmelCase : Any = torch.pow(torch.pow(_lowercase , _lowercase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: UpperCAmelCase : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(_lowercase ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(_lowercase ) logger.info("""Head ranked by importance scores""" ) UpperCAmelCase : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) UpperCAmelCase : Tuple = torch.arange( head_importance.numel() , device=args.device ) UpperCAmelCase : Any = head_ranks.view_as(_lowercase ) print_ad_tensor(_lowercase ) return attn_entropy, head_importance, total_loss def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = compute_heads_importance(_lowercase , _lowercase , _lowercase , compute_entropy=_lowercase ) UpperCAmelCase : List[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , _lowercase , original_score * args.masking_threshold ) UpperCAmelCase : Optional[Any] = torch.ones_like(_lowercase ) UpperCAmelCase : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) UpperCAmelCase : Dict = original_score while current_score >= original_score * args.masking_threshold: UpperCAmelCase : Any = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads UpperCAmelCase : Tuple = float("""Inf""" ) UpperCAmelCase : List[str] = head_importance.view(-1 ).sort()[1] if len(_lowercase ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads UpperCAmelCase : Tuple = current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) UpperCAmelCase : Tuple = new_head_mask.view(-1 ) UpperCAmelCase : Dict = 0.0 UpperCAmelCase : Optional[int] = new_head_mask.view_as(_lowercase ) UpperCAmelCase : Any = new_head_mask.clone().detach() print_ad_tensor(_lowercase ) # Compute metric and head importance again UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = compute_heads_importance( _lowercase , _lowercase , _lowercase , compute_entropy=_lowercase , head_mask=_lowercase ) UpperCAmelCase : Optional[int] = 1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , _lowercase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info("""Final head mask""" ) print_ad_tensor(_lowercase ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : str = datetime.now() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = compute_heads_importance( _lowercase , _lowercase , _lowercase , compute_entropy=_lowercase , compute_importance=_lowercase , head_mask=_lowercase ) UpperCAmelCase : List[Any] = 1 / loss UpperCAmelCase : List[str] = datetime.now() - before_time UpperCAmelCase : str = sum(p.numel() for p in model.parameters() ) UpperCAmelCase : Dict = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_lowercase ) ) } for k, v in heads_to_prune.items(): if isinstance(_lowercase , _lowercase ): UpperCAmelCase : Optional[int] = [ v, ] assert sum(len(_lowercase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_lowercase ) UpperCAmelCase : Optional[int] = sum(p.numel() for p in model.parameters() ) UpperCAmelCase : Any = datetime.now() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = compute_heads_importance( _lowercase , _lowercase , _lowercase , compute_entropy=_lowercase , compute_importance=_lowercase , head_mask=_lowercase , actually_pruned=_lowercase , ) UpperCAmelCase : List[Any] = 1 / loss UpperCAmelCase : Optional[int] = datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , _lowercase , _lowercase , pruned_num_params / original_num_params * 1_0_0 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , _lowercase , _lowercase ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 1_0_0 ) save_model(_lowercase , args.output_dir ) def __lowerCamelCase ( ) -> int: UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=_lowercase , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=_lowercase , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=_lowercase , type=_lowercase , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=_lowercase , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=_lowercase , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=_lowercase , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=_lowercase , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=1_2_8 , type=_lowercase , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=_lowercase , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=_lowercase , default=4_2 ) parser.add_argument("""--local_rank""" , type=_lowercase , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=_lowercase , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=_lowercase , default="""""" , help="""Can be used for distant debugging.""" ) UpperCAmelCase : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowercase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: UpperCAmelCase : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) UpperCAmelCase : Dict = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) UpperCAmelCase : Tuple = torch.device("""cuda""" , args.local_rank ) UpperCAmelCase : str = 1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) UpperCAmelCase : Dict = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: UpperCAmelCase : Tuple = nn.parallel.DistributedDataParallel( _lowercase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_lowercase ) elif args.n_gpu > 1: UpperCAmelCase : Dict = nn.DataParallel(_lowercase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_lowercase ) torch.save(_lowercase , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , _lowercase ) # Prepare dataset UpperCAmelCase : List[str] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) UpperCAmelCase : str = (torch.from_numpy(_lowercase ),) UpperCAmelCase : Union[str, Any] = TensorDataset(*_lowercase ) UpperCAmelCase : List[str] = RandomSampler(_lowercase ) UpperCAmelCase : Any = DataLoader(_lowercase , sampler=_lowercase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_lowercase , _lowercase , _lowercase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: UpperCAmelCase : Optional[Any] = mask_heads(_lowercase , _lowercase , _lowercase ) prune_heads(_lowercase , _lowercase , _lowercase , _lowercase ) if __name__ == "__main__": main()
338
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
1
import argparse import json from tqdm import tqdm def UpperCAmelCase_ ( ) -> int: """simple docstring""" _lowercase =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__snake_case , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__snake_case , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__snake_case , help='''where to store parsed gold_data_path file''' , ) _lowercase =parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowercase =json.load(__snake_case ) for dpr_record in tqdm(__snake_case ): _lowercase =dpr_record['''question'''] _lowercase =[context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__snake_case ) + '''\n''' ) if __name__ == "__main__": main()
5
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __snake_case = logging.get_logger(__name__) def __lowerCAmelCase ( ) -> str: """simple docstring""" snake_case : Dict = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. snake_case : Optional[int] = json.loads(lowercase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. snake_case : Optional[int] = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". snake_case : Any = json.loads(lowercase ) if not mpi_options.get("sagemaker_mpi_enabled" , lowercase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : str = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , UpperCamelCase__ , ) @cached_property def lowerCamelCase ( self ) -> "torch.device": '''simple docstring''' logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: snake_case : Optional[Any] = torch.device("cpu" ) snake_case : List[Any] = 0 elif is_sagemaker_model_parallel_available(): snake_case : Tuple = smp.local_rank() snake_case : int = torch.device("cuda" , UpperCamelCase__ ) snake_case : Dict = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) snake_case : Any = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) snake_case : Optional[Any] = torch.device("cuda" , self.local_rank ) snake_case : str = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 snake_case : List[str] = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. snake_case : Optional[Any] = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) snake_case : Any = torch.device("cuda" , self.local_rank ) snake_case : Dict = 1 if device.type == "cuda": torch.cuda.set_device(UpperCamelCase__ ) return device @property def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' return not is_sagemaker_model_parallel_available() @property def lowerCamelCase ( self ) -> str: '''simple docstring''' return False
203
0
"""simple docstring""" def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [0] * len(lowerCAmelCase__ ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowerCAmelCase__ ) ): if indegree[i] == 0: queue.append(lowerCAmelCase__ ) while queue: UpperCAmelCase_ = queue.pop(0 ) cnt += 1 topo.append(lowerCAmelCase__ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(lowerCAmelCase__ ) if cnt != len(lowerCAmelCase__ ): print("Cycle exists" ) else: print(lowerCAmelCase__ ) # Adjacency List of Graph lowerCamelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
360
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): return [sentence[i : i + ngram_size] for i in range(len(lowerCAmelCase__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
241
0