code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance lowercase__ : Any = 6_37_81_37.0 lowercase__ : Tuple = 6_35_67_52.31_42_45 lowercase__ : Any = 637_8137 def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' snake_case_ = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude snake_case_ = atan((1 - flattening) * tan(radians(_A ) ) ) snake_case_ = atan((1 - flattening) * tan(radians(_A ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius snake_case_ = haversine_distance(_A , _A , _A , _A ) / EQUATORIAL_RADIUS # Intermediate P and Q values snake_case_ = (b_lata + b_lata) / 2 snake_case_ = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) snake_case_ = (sin(_A ) ** 2) * (cos(_A ) ** 2) snake_case_ = cos(sigma / 2 ) ** 2 snake_case_ = (sigma - sin(_A )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) snake_case_ = (cos(_A ) ** 2) * (sin(_A ) ** 2) snake_case_ = sin(sigma / 2 ) ** 2 snake_case_ = (sigma + sin(_A )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
187
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase__ ( _A , _A , _A , _A , _A=True , _A="pt" ): '''simple docstring''' snake_case_ = {"add_prefix_space": True} if isinstance(_A , _A ) and not line.startswith(" " ) else {} snake_case_ = padding_side return tokenizer( [line] , max_length=_A , padding="max_length" if pad_to_max_length else None , truncation=_A , return_tensors=_A , add_special_tokens=_A , **_A , ) def lowerCamelCase__ ( _A , _A , _A=None , ): '''simple docstring''' snake_case_ = input_ids.ne(_A ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : int , __lowercase : List[Any] , __lowercase : Tuple , __lowercase : List[Any] , __lowercase : str , __lowercase : Tuple="train" , __lowercase : List[str]=None , __lowercase : List[Any]=None , __lowercase : Optional[Any]=None , __lowercase : Union[str, Any]="" , ): """simple docstring""" super().__init__() snake_case_ = Path(__lowercase ).joinpath(type_path + ".source" ) snake_case_ = Path(__lowercase ).joinpath(type_path + ".target" ) snake_case_ = self.get_char_lens(self.src_file ) snake_case_ = max_source_length snake_case_ = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" snake_case_ = tokenizer snake_case_ = prefix if n_obs is not None: snake_case_ = self.src_lens[:n_obs] snake_case_ = src_lang snake_case_ = tgt_lang def __len__( self : List[Any] ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : List[Any] , __lowercase : Dict ): """simple docstring""" snake_case_ = index + 1 # linecache starts at 1 snake_case_ = self.prefix + linecache.getline(str(self.src_file ) , __lowercase ).rstrip("\n" ) snake_case_ = linecache.getline(str(self.tgt_file ) , __lowercase ).rstrip("\n" ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , __lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __lowercase ) else self.tokenizer ) snake_case_ = self.tokenizer.generator if isinstance(self.tokenizer , __lowercase ) else self.tokenizer snake_case_ = encode_line(__lowercase , __lowercase , self.max_source_length , "right" ) snake_case_ = encode_line(__lowercase , __lowercase , self.max_target_length , "right" ) snake_case_ = source_inputs["input_ids"].squeeze() snake_case_ = target_inputs["input_ids"].squeeze() snake_case_ = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case__ ( __lowercase : Optional[int] ): """simple docstring""" return [len(__lowercase ) for x in Path(__lowercase ).open().readlines()] def snake_case__ ( self : Dict , __lowercase : Union[str, Any] ): """simple docstring""" snake_case_ = torch.stack([x["input_ids"] for x in batch] ) snake_case_ = torch.stack([x["attention_mask"] for x in batch] ) snake_case_ = torch.stack([x["decoder_input_ids"] for x in batch] ) snake_case_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __lowercase ) else self.tokenizer.pad_token_id ) snake_case_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __lowercase ) else self.tokenizer.pad_token_id ) snake_case_ = trim_batch(__lowercase , __lowercase ) snake_case_ , snake_case_ = trim_batch(__lowercase , __lowercase , attention_mask=__lowercase ) snake_case_ = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch lowercase__ : str = getLogger(__name__) def lowerCamelCase__ ( _A ): '''simple docstring''' return list(itertools.chain.from_iterable(_A ) ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = get_git_info() save_json(_A , os.path.join(_A , "git_log.json" ) ) def lowerCamelCase__ ( _A , _A , _A=4 , **_A ): '''simple docstring''' with open(_A , "w" ) as f: json.dump(_A , _A , indent=_A , **_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' with open(_A ) as f: return json.load(_A ) def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = git.Repo(search_parent_directories=_A ) snake_case_ = { "repo_id": str(_A ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def lowerCamelCase__ ( _A , _A ): '''simple docstring''' return list(map(_A , _A ) ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' with open(_A , "wb" ) as f: return pickle.dump(_A , _A ) def lowerCamelCase__ ( _A ): '''simple docstring''' def remove_articles(_A ): return re.sub(R"\b(a|an|the)\b" , " " , _A ) def white_space_fix(_A ): return " ".join(text.split() ) def remove_punc(_A ): snake_case_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_A ) ) ) ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = normalize_answer(_A ).split() snake_case_ = normalize_answer(_A ).split() snake_case_ = Counter(_A ) & Counter(_A ) snake_case_ = sum(common.values() ) if num_same == 0: return 0 snake_case_ = 1.0 * num_same / len(_A ) snake_case_ = 1.0 * num_same / len(_A ) snake_case_ = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase__ ( _A , _A ): '''simple docstring''' return normalize_answer(_A ) == normalize_answer(_A ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' assert len(_A ) == len(_A ) snake_case_ = 0 for hypo, pred in zip(_A , _A ): em += exact_match_score(_A , _A ) if len(_A ) > 0: em /= len(_A ) return {"em": em} def lowerCamelCase__ ( _A ): '''simple docstring''' return model_prefix.startswith("rag" ) def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case_ = "dropout_rate" for p in extra_params: if getattr(_A , _A , _A ): if not hasattr(_A , _A ) and not hasattr(_A , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(_A ) ) delattr(_A , _A ) continue snake_case_ = p if hasattr(_A , _A ) else equivalent_param[p] setattr(_A , _A , getattr(_A , _A ) ) delattr(_A , _A ) return hparams, config
187
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class UpperCamelCase ( lowercase_ ): lowercase = 'xglm' lowercase = ['past_key_values'] lowercase = { 'num_attention_heads': 'attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'num_layers', } def __init__( self ,__UpperCamelCase=25_6008 ,__UpperCamelCase=2048 ,__UpperCamelCase=1024 ,__UpperCamelCase=4096 ,__UpperCamelCase=24 ,__UpperCamelCase=16 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=2 ,__UpperCamelCase=1 ,__UpperCamelCase=0 ,__UpperCamelCase=2 ,**__UpperCamelCase ,) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = vocab_size lowercase_ : Optional[Any] = max_position_embeddings lowercase_ : Tuple = d_model lowercase_ : int = ffn_dim lowercase_ : Tuple = num_layers lowercase_ : Optional[int] = attention_heads lowercase_ : Dict = activation_function lowercase_ : Any = dropout lowercase_ : Dict = attention_dropout lowercase_ : Union[str, Any] = activation_dropout lowercase_ : Dict = layerdrop lowercase_ : Dict = init_std lowercase_ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True lowercase_ : Dict = use_cache super().__init__( pad_token_id=__UpperCamelCase ,bos_token_id=__UpperCamelCase ,eos_token_id=__UpperCamelCase ,decoder_start_token_id=__UpperCamelCase ,**__UpperCamelCase ,)
321
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]] lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 ) lowercase_ : str = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 ) lowercase_ : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 ) lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
321
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Tuple =logging.get_logger(__name__) __lowerCAmelCase : int ={ """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _lowercase ( a_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = '''unispeech''' def __init__( self :Union[str, Any] , lowerCAmelCase__ :Tuple=32 , lowerCAmelCase__ :Any=768 , lowerCAmelCase__ :int=12 , lowerCAmelCase__ :Optional[int]=12 , lowerCAmelCase__ :Union[str, Any]=3_072 , lowerCAmelCase__ :List[Any]="gelu" , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :Any=0.1 , lowerCAmelCase__ :Any=0.1 , lowerCAmelCase__ :Dict=0.0 , lowerCAmelCase__ :Optional[int]=0.0 , lowerCAmelCase__ :Union[str, Any]=0.1 , lowerCAmelCase__ :Tuple=0.1 , lowerCAmelCase__ :Optional[Any]=0.02 , lowerCAmelCase__ :Dict=1E-5 , lowerCAmelCase__ :List[str]="group" , lowerCAmelCase__ :Tuple="gelu" , lowerCAmelCase__ :List[str]=(512, 512, 512, 512, 512, 512, 512) , lowerCAmelCase__ :str=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__ :Any=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :Union[str, Any]=128 , lowerCAmelCase__ :int=16 , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :int=True , lowerCAmelCase__ :List[Any]=0.05 , lowerCAmelCase__ :Optional[int]=10 , lowerCAmelCase__ :Optional[int]=2 , lowerCAmelCase__ :Optional[Any]=0.0 , lowerCAmelCase__ :Dict=10 , lowerCAmelCase__ :List[str]=0 , lowerCAmelCase__ :int=320 , lowerCAmelCase__ :str=2 , lowerCAmelCase__ :Dict=0.1 , lowerCAmelCase__ :str=100 , lowerCAmelCase__ :Tuple=256 , lowerCAmelCase__ :List[Any]=256 , lowerCAmelCase__ :Optional[int]=0.1 , lowerCAmelCase__ :Tuple="mean" , lowerCAmelCase__ :List[Any]=False , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Any=256 , lowerCAmelCase__ :Dict=80 , lowerCAmelCase__ :List[str]=0 , lowerCAmelCase__ :Any=1 , lowerCAmelCase__ :str=2 , lowerCAmelCase__ :Union[str, Any]=0.5 , **lowerCAmelCase__ :List[Any] , ) -> Optional[int]: super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : str = feat_extract_norm __SCREAMING_SNAKE_CASE : List[Any] = feat_extract_activation __SCREAMING_SNAKE_CASE : Optional[Any] = list(snake_case__ ) __SCREAMING_SNAKE_CASE : Tuple = list(snake_case__ ) __SCREAMING_SNAKE_CASE : Any = list(snake_case__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = conv_bias __SCREAMING_SNAKE_CASE : int = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE : str = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE : int = len(self.conv_dim ) __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size __SCREAMING_SNAKE_CASE : str = hidden_act __SCREAMING_SNAKE_CASE : Any = num_attention_heads __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout __SCREAMING_SNAKE_CASE : Optional[Any] = attention_dropout __SCREAMING_SNAKE_CASE : Union[str, Any] = activation_dropout __SCREAMING_SNAKE_CASE : Any = feat_proj_dropout __SCREAMING_SNAKE_CASE : List[Any] = final_dropout __SCREAMING_SNAKE_CASE : Optional[int] = layerdrop __SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : List[Any] = num_ctc_classes __SCREAMING_SNAKE_CASE : List[Any] = vocab_size __SCREAMING_SNAKE_CASE : str = do_stable_layer_norm __SCREAMING_SNAKE_CASE : Union[str, Any] = use_weighted_layer_sum __SCREAMING_SNAKE_CASE : Optional[Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE : List[Any] = apply_spec_augment __SCREAMING_SNAKE_CASE : Optional[int] = mask_time_prob __SCREAMING_SNAKE_CASE : Tuple = mask_time_length __SCREAMING_SNAKE_CASE : Any = mask_time_min_masks __SCREAMING_SNAKE_CASE : Any = mask_feature_prob __SCREAMING_SNAKE_CASE : Optional[Any] = mask_feature_length __SCREAMING_SNAKE_CASE : List[str] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __SCREAMING_SNAKE_CASE : Dict = num_codevectors_per_group __SCREAMING_SNAKE_CASE : List[Any] = num_codevector_groups __SCREAMING_SNAKE_CASE : Optional[Any] = contrastive_logits_temperature __SCREAMING_SNAKE_CASE : Union[str, Any] = feat_quantizer_dropout __SCREAMING_SNAKE_CASE : Tuple = num_negatives __SCREAMING_SNAKE_CASE : int = codevector_dim __SCREAMING_SNAKE_CASE : Optional[Any] = proj_codevector_dim __SCREAMING_SNAKE_CASE : Optional[int] = diversity_loss_weight # ctc loss __SCREAMING_SNAKE_CASE : Tuple = ctc_loss_reduction __SCREAMING_SNAKE_CASE : int = ctc_zero_infinity # pretraining loss __SCREAMING_SNAKE_CASE : Any = replace_prob @property def __magic_name__( self :Tuple ) -> str: return functools.reduce(operator.mul , self.conv_stride , 1 )
9
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): UpperCamelCase_ , UpperCamelCase_ = coefficient_matrix.shape UpperCamelCase_ , UpperCamelCase_ = constant_matrix.shape if rowsa != colsa: UpperCamelCase_ = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase) if colsa != 1: UpperCamelCase_ = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase) if rowsa != rowsa: UpperCamelCase_ = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(_lowerCAmelCase) if len(_lowerCAmelCase) != rowsa: UpperCamelCase_ = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(_lowerCAmelCase)} and {rowsa}""" ) raise ValueError(_lowerCAmelCase) if iterations <= 0: raise ValueError("Iterations must be at least 1") UpperCamelCase_ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1) UpperCamelCase_ , UpperCamelCase_ = table.shape strictly_diagonally_dominant(_lowerCAmelCase) # Iterates the whole matrix for given number of times for _ in range(_lowerCAmelCase): UpperCamelCase_ = [] for row in range(_lowerCAmelCase): UpperCamelCase_ = 0 for col in range(_lowerCAmelCase): if col == row: UpperCamelCase_ = table[row][col] elif col == cols - 1: UpperCamelCase_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] UpperCamelCase_ = (temp + val) / denom new_val.append(_lowerCAmelCase) UpperCamelCase_ = new_val return [float(_lowerCAmelCase) for i in new_val] def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ , UpperCamelCase_ = table.shape UpperCamelCase_ = True for i in range(0 , _lowerCAmelCase): UpperCamelCase_ = 0 for j in range(0 , cols - 1): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant") return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
128
0
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : int = 1000000 ): UpperCAmelCase_ : int = limit + 1 UpperCAmelCase_ : str = [0] * limit for first_term in range(1 , lowerCamelCase_ ): for n in range(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase_ : str = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCAmelCase_ : Any = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f'''{solution() = }''')
351
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : str ): """simple docstring""" UpperCAmelCase_ : Optional[int] = [0] * len(lowerCamelCase_ ) for i in range(1 , len(lowerCamelCase_ ) ): # use last results for better performance - dynamic programming UpperCAmelCase_ : List[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: UpperCAmelCase_ : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 UpperCAmelCase_ : Any = j return prefix_result def _lowerCamelCase ( lowerCamelCase_ : str ): """simple docstring""" return max(prefix_function(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
274
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = KandinskyVaaControlnetImgaImgPipeline SCREAMING_SNAKE_CASE = ["image_embeds", "negative_image_embeds", "image", "hint"] SCREAMING_SNAKE_CASE = ["image_embeds", "negative_image_embeds", "image", "hint"] SCREAMING_SNAKE_CASE = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] SCREAMING_SNAKE_CASE = False @property def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' return 32 @property def __magic_name__ ( self ) -> Any: '''simple docstring''' return 32 @property def __magic_name__ ( self ) -> Dict: '''simple docstring''' return self.time_input_dim @property def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' return self.time_input_dim * 4 @property def __magic_name__ ( self ) -> List[str]: '''simple docstring''' return 100 @property def __magic_name__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) __a ={ 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __a =UNetaDConditionModel(**_lowerCamelCase ) return model @property def __magic_name__ ( self ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __magic_name__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __a =VQModel(**self.dummy_movq_kwargs ) return model def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.dummy_unet __a =self.dummy_movq __a ={ 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_0085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } __a =DDIMScheduler(**_lowerCamelCase ) __a ={ 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __magic_name__ ( self , __snake_case , __snake_case=0 ) -> Any: '''simple docstring''' __a =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) __a =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCamelCase ) # create init_image __a =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) __a =image.cpu().permute(0 , 2 , 3 , 1 )[0] __a =Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('RGB' ).resize((256, 256) ) # create hint __a =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('mps' ): __a =torch.manual_seed(_lowerCamelCase ) else: __a =torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) __a ={ 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a ='cpu' __a =self.get_dummy_components() __a =self.pipeline_class(**_lowerCamelCase ) __a =pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __a =pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) __a =output.images __a =pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] __a =image[0, -3:, -3:, -1] __a =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a =np.array( [0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) __a =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __a =init_image.resize((512, 512) ) __a =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) __a =torch.from_numpy(np.array(_lowerCamelCase ) ).float() / 255.0 __a =hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __a ='A robot, 4k photo' __a =KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) __a =KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) __a =pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) __a =torch.Generator(device='cpu' ).manual_seed(0 ) __a , __a =pipe_prior( _lowerCamelCase , image=_lowerCamelCase , strength=0.85 , generator=_lowerCamelCase , negative_prompt='' , ).to_tuple() __a =pipeline( image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , hint=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='np' , ) __a =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
218
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=1_8 , _lowerCamelCase=3_0 , _lowerCamelCase=4_0_0 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , ): lowercase = size if size is not None else {'height': 1_8, 'width': 1_8} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_normalize lowercase = image_mean lowercase = image_std def UpperCamelCase_ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class a ( a_, unittest.TestCase ): UpperCAmelCase_ : Optional[int] =DPTImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): lowercase = DPTImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'image_std' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'size' ) ) def UpperCamelCase_ ( self ): lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def UpperCamelCase_ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def UpperCamelCase_ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def UpperCamelCase_ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
220
0
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: if exponent == 1: return base if exponent % 2 == 0: UpperCAmelCase__ : int = _modexpt(lowerCAmelCase__ , exponent // 2 , lowerCAmelCase__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCAmelCase__ , exponent - 1 , lowerCAmelCase__ )) % modulo_value def a__ ( lowerCAmelCase__ = 17_77 , lowerCAmelCase__ = 18_55 , lowerCAmelCase__ = 8 ) -> int: UpperCAmelCase__ : List[Any] = base for _ in range(1 , lowerCAmelCase__ ): UpperCAmelCase__ : List[Any] = _modexpt(lowerCAmelCase__ , lowerCAmelCase__ , 10**digits ) return result if __name__ == "__main__": print(F"""{solution() = }""")
354
'''simple docstring''' from collections.abc import Iterable from typing import Any class lowerCamelCase_ : def __init__( self : List[Any] , _A : int | None = None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = value UpperCAmelCase__ : Node | None = None # Added in order to delete a node easier UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class lowerCamelCase_ : def __init__( self : Optional[Any] , _A : Node | None = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = root def __str__( self : Union[str, Any] ): '''simple docstring''' return str(self.root ) def lowercase_ ( self : str , _A : Node , _A : Node | None ): '''simple docstring''' if new_children is not None: # reset its kids UpperCAmelCase__ : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(_A ): # If it is the right children UpperCAmelCase__ : str = new_children else: UpperCAmelCase__ : Optional[int] = new_children else: UpperCAmelCase__ : Union[str, Any] = new_children def lowercase_ ( self : Union[str, Any] , _A : Node ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def lowercase_ ( self : int ): '''simple docstring''' return self.root is None def lowercase_ ( self : List[str] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = Node(_A ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase__ : List[Any] = new_node # set its root else: # Tree is not empty UpperCAmelCase__ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase__ : Optional[Any] = new_node # We insert the new node in a leaf break else: UpperCAmelCase__ : Any = parent_node.left else: if parent_node.right is None: UpperCAmelCase__ : str = new_node break else: UpperCAmelCase__ : List[str] = parent_node.right UpperCAmelCase__ : Tuple = parent_node def lowercase_ ( self : Optional[Any] , *_A : Tuple ): '''simple docstring''' for value in values: self.__insert(_A ) def lowercase_ ( self : Union[str, Any] , _A : int ): '''simple docstring''' if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase__ : List[Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase__ : str = node.left if value < node.value else node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: if self.root is None: return None UpperCAmelCase__ : int = self.root if not self.empty(): while node.right is not None: UpperCAmelCase__ : Tuple = node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: UpperCAmelCase__ : Optional[int] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase__ : Optional[int] = self.root while node.left is not None: UpperCAmelCase__ : Tuple = node.left return node def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.search(_A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_A , _A ) elif node.left is None: # Has only right children self.__reassign_nodes(_A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_A , node.left ) else: UpperCAmelCase__ : Union[str, Any] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase__ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowercase_ ( self : List[str] , _A : Node | None ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowercase_ ( self : str , _A : Any=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowercase_ ( self : Dict , _A : list , _A : Node | None ): '''simple docstring''' if node: self.inorder(_A , node.left ) arr.append(node.value ) self.inorder(_A , node.right ) def lowercase_ ( self : Optional[Any] , _A : int , _A : Node ): '''simple docstring''' UpperCAmelCase__ : list[int] = [] self.inorder(_A , _A ) # append all values to list using inorder traversal return arr[k - 1] def a__ ( lowerCAmelCase__ ) -> list[Node]: UpperCAmelCase__ : Union[str, Any] = [] if curr_node is not None: UpperCAmelCase__ : str = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def a__ ( ) -> None: UpperCAmelCase__ : List[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase__ : str = BinarySearchTree() for i in testlist: t.insert(lowerCAmelCase__ ) # Prints all the elements of the list in order traversal print(lowerCAmelCase__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowerCAmelCase__ ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
299
0
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : List[str] = """bart""" lowerCamelCase_ : List[str] = ["""past_key_values"""] lowerCamelCase_ : Dict = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , UpperCamelCase__=5_0265 , UpperCamelCase__=1024 , UpperCamelCase__=12 , UpperCamelCase__=4096 , UpperCamelCase__=16 , UpperCamelCase__=12 , UpperCamelCase__=4096 , UpperCamelCase__=16 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__="gelu" , UpperCamelCase__=1024 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=0.0 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=3 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__=True , UpperCamelCase__=2 , UpperCamelCase__=2 , **UpperCamelCase__ , ) -> Optional[int]: lowerCamelCase : int = vocab_size lowerCamelCase : Optional[int] = max_position_embeddings lowerCamelCase : Tuple = d_model lowerCamelCase : Optional[int] = encoder_ffn_dim lowerCamelCase : str = encoder_layers lowerCamelCase : Union[str, Any] = encoder_attention_heads lowerCamelCase : Tuple = decoder_ffn_dim lowerCamelCase : Tuple = decoder_layers lowerCamelCase : str = decoder_attention_heads lowerCamelCase : Union[str, Any] = dropout lowerCamelCase : Optional[int] = attention_dropout lowerCamelCase : Optional[Any] = activation_dropout lowerCamelCase : int = activation_function lowerCamelCase : Union[str, Any] = init_std lowerCamelCase : Optional[Any] = encoder_layerdrop lowerCamelCase : List[str] = decoder_layerdrop lowerCamelCase : Optional[int] = classifier_dropout lowerCamelCase : Optional[int] = use_cache lowerCamelCase : List[Any] = encoder_layers lowerCamelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , UpperCamelCase__ ): lowerCamelCase : str = self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' "The config can simply be saved and uploaded again to be fixed." ) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowerCamelCase : List[Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase : int = {0: "batch"} lowerCamelCase : str = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowerCamelCase : List[Any] = {0: "batch", 1: "decoder_sequence"} lowerCamelCase : Dict = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase : Union[str, Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase , lowerCamelCase : str = self.num_layers for i in range(UpperCamelCase__ ): lowerCamelCase : Any = {0: "batch", 2: "past_sequence + sequence"} lowerCamelCase : Tuple = {0: "batch", 2: "past_sequence + sequence"} else: lowerCamelCase : Optional[int] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowerCamelCase : List[str] = super().outputs else: lowerCamelCase : Union[str, Any] = super(UpperCamelCase__ , self ).outputs if self.use_past: lowerCamelCase , lowerCamelCase : List[str] = self.num_layers for i in range(UpperCamelCase__ ): lowerCamelCase : Dict = {0: "batch", 2: "past_sequence + sequence"} lowerCamelCase : str = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , ) -> Mapping[str, Any]: lowerCamelCase : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Generate decoder inputs lowerCamelCase : Optional[int] = seq_length if not self.use_past else 1 lowerCamelCase : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowerCamelCase : int = dict(**UpperCamelCase__ , **UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase , lowerCamelCase : Union[str, Any] = common_inputs["input_ids"].shape lowerCamelCase : Union[str, Any] = common_inputs["decoder_input_ids"].shape[1] lowerCamelCase , lowerCamelCase : List[str] = self.num_attention_heads lowerCamelCase : List[str] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase : str = decoder_seq_length + 3 lowerCamelCase : List[str] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase : List[str] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 ) lowerCamelCase : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase , lowerCamelCase : Tuple = self.num_layers lowerCamelCase : str = min(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : str = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers lowerCamelCase : Tuple = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(UpperCamelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), ) ) # TODO: test this. lowerCamelCase : Any = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(UpperCamelCase__ , UpperCamelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) ) return common_inputs def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , ) -> Mapping[str, Any]: lowerCamelCase : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase , lowerCamelCase : Optional[Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCamelCase : Optional[Any] = seqlen + 2 lowerCamelCase , lowerCamelCase : Tuple = self.num_layers lowerCamelCase , lowerCamelCase : Tuple = self.num_attention_heads lowerCamelCase : int = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase : Any = common_inputs["attention_mask"].dtype lowerCamelCase : Any = torch.cat( [common_inputs["attention_mask"], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) lowerCamelCase : Optional[Any] = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ ) ] return common_inputs def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCamelCase : Dict = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase : str = tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) lowerCamelCase : Optional[Any] = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase : Union[str, Any] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase : Any = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return common_inputs def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: lowerCamelCase : Optional[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) elif self.task == "causal-lm": lowerCamelCase : int = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) else: lowerCamelCase : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) return common_inputs def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: if self.task in ["default", "seq2seq-lm"]: lowerCamelCase : Union[str, Any] = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: lowerCamelCase : int = super(UpperCamelCase__ , self )._flatten_past_key_values_( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
48
'''simple docstring''' def lowercase ( __magic_name__ ): '''simple docstring''' if number > 0: raise ValueError("input must be a negative integer" ) UpperCAmelCase : List[Any] = len(bin(__magic_name__ )[3:] ) UpperCAmelCase : Optional[Any] = bin(abs(__magic_name__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase : Tuple = ( ( "1" + "0" * (binary_number_length - len(__magic_name__ )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
311
0
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) lowercase__ = logging.getLogger(__name__) lowercase__ = {"facebook/bart-base": BartForConditionalGeneration} lowercase__ = {"facebook/bart-base": BartTokenizer} def _UpperCamelCase ( ) -> int: '''simple docstring''' snake_case : int = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=SCREAMING_SNAKE_CASE__ , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=SCREAMING_SNAKE_CASE__ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=SCREAMING_SNAKE_CASE__ , ) parser.add_argument( '''--config_name''' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=SCREAMING_SNAKE_CASE__ , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='''Where to store the final ONNX file.''' ) snake_case : List[str] = parser.parse_args() return args def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="cpu" ) -> int: '''simple docstring''' snake_case : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case : Any = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE__ ) if model_name in ["facebook/bart-base"]: snake_case : Dict = 0 snake_case : Optional[Any] = None snake_case : int = 0 return huggingface_model, tokenizer def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: '''simple docstring''' model.eval() snake_case : List[Any] = None snake_case : Tuple = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE__ ) ) with torch.no_grad(): snake_case : Optional[int] = '''My friends are cool but they eat too many carbs.''' snake_case : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='''pt''' ).to(model.device ) snake_case : Dict = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , early_stopping=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE__ , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE__ , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=SCREAMING_SNAKE_CASE__ , ) logger.info('''Model exported to {}'''.format(SCREAMING_SNAKE_CASE__ ) ) snake_case : Any = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE__ ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(SCREAMING_SNAKE_CASE__ ) ) snake_case : int = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE__ ) snake_case : Optional[int] = ort_sess.run( SCREAMING_SNAKE_CASE__ , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(SCREAMING_SNAKE_CASE__ ), '''max_length''': np.array(SCREAMING_SNAKE_CASE__ ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def _UpperCamelCase ( ) -> Any: '''simple docstring''' snake_case : List[str] = parse_args() snake_case : Tuple = 5 snake_case : int = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() snake_case : str = torch.device(args.device ) snake_case : Any = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE__ ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(SCREAMING_SNAKE_CASE__ ) if args.max_length: snake_case : Tuple = args.max_length if args.num_beams: snake_case : List[Any] = args.num_beams if args.output_file_path: snake_case : str = args.output_file_path else: snake_case : int = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
351
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = DebertaTokenizer lowerCamelCase = True lowerCamelCase = DebertaTokenizerFast def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case : int = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] snake_case : Optional[int] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : Tuple = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] snake_case : List[Any] = {'''unk_token''': '''[UNK]'''} snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) def lowerCAmelCase ( self : Union[str, Any] , **UpperCamelCase__ : Any ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCAmelCase ( self : Any , UpperCamelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case : Tuple = '''lower newer''' snake_case : Optional[Any] = '''lower newer''' return input_text, output_text def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case : Dict = self.get_tokenizer() snake_case : Optional[Any] = '''lower newer''' snake_case : Tuple = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] snake_case : Optional[Any] = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Union[str, Any] = tokens + [tokenizer.unk_token] snake_case : List[str] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" snake_case : int = self.get_tokenizer() snake_case : Optional[int] = tokenizer('''Hello''' , '''World''' ) snake_case : Optional[Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , UpperCamelCase__ ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" snake_case : Optional[int] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) snake_case : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase__ ) snake_case : List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase__ ) snake_case : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) snake_case : Optional[int] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) snake_case : List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) snake_case : int = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" snake_case : Dict = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: snake_case : Any = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) snake_case : Optional[Any] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] snake_case : Optional[Any] = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ ) snake_case : List[str] = [tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) for seq in encoding['''input_ids''']] # fmt: off snake_case : Optional[int] = { '''input_ids''': [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on snake_case : Any = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , UpperCamelCase__ ) for expected, decoded in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
83
0
'''simple docstring''' from __future__ import annotations def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> list[str]: if nth_term == "": return [""] UpperCamelCase = int(__UpperCamelCase ) UpperCamelCase = int(__UpperCamelCase ) UpperCamelCase = [] for temp in range(int(__UpperCamelCase ) ): series.append(F"1 / {pow(temp + 1 , int(__UpperCamelCase ) )}" if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = int(input('Enter the last number (nth term) of the P-Series')) SCREAMING_SNAKE_CASE__ = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
321
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance == 0: return {"resistance": sqrt(pow(__UpperCamelCase , 2 ) - pow(__UpperCamelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__UpperCamelCase , 2 ) - pow(__UpperCamelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__UpperCamelCase , 2 ) + pow(__UpperCamelCase , 2 ) )} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
321
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters lowercase : Optional[int] = (720, 1280) # Height, Width lowercase : Any = (0.4, 0.6) # if height or width lower than this scale, drop it. lowercase : str = 1 / 100 lowercase : int = """""" lowercase : Tuple = """""" lowercase : List[str] = """""" lowercase : Dict = 250 def _snake_case( ) -> None: lowercase : Any = get_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for index in range(SCREAMING_SNAKE_CASE__ ): lowercase : int = random.sample(range(len(SCREAMING_SNAKE_CASE__ ) ) , 4 ) lowercase : Union[str, Any] = update_image_and_anno( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , filter_scale=SCREAMING_SNAKE_CASE__ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase : Optional[int] = random_chars(32 ) lowercase : Optional[int] = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] lowercase : str = f"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" cva.imwrite(f"{file_root}.jpg" , SCREAMING_SNAKE_CASE__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" ) lowercase : Tuple = [] for anno in new_annos: lowercase : List[str] = anno[3] - anno[1] lowercase : Any = anno[4] - anno[2] lowercase : Union[str, Any] = anno[1] + width / 2 lowercase : Tuple = anno[2] + height / 2 lowercase : Tuple = f"{anno[0]} {x_center} {y_center} {width} {height}" annos_list.append(SCREAMING_SNAKE_CASE__ ) with open(f"{file_root}.txt" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> tuple[list, list]: lowercase : List[Any] = [] lowercase : Optional[Any] = [] for label_file in glob.glob(os.path.join(SCREAMING_SNAKE_CASE__ , """*.txt""" ) ): lowercase : Any = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(SCREAMING_SNAKE_CASE__ ) as in_file: lowercase : str = in_file.readlines() lowercase : Any = os.path.join(SCREAMING_SNAKE_CASE__ , f"{label_name}.jpg" ) lowercase : Optional[int] = [] for obj_list in obj_lists: lowercase : List[str] = obj_list.rstrip("""\n""" ).split(""" """ ) lowercase : Tuple = float(obj[1] ) - float(obj[3] ) / 2 lowercase : int = float(obj[2] ) - float(obj[4] ) / 2 lowercase : Tuple = float(obj[1] ) + float(obj[3] ) / 2 lowercase : int = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(SCREAMING_SNAKE_CASE__ ) labels.append(SCREAMING_SNAKE_CASE__ ) return img_paths, labels def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 0.0 , ) -> tuple[list, list, str]: lowercase : List[Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowercase : List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase : int = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase : str = int(scale_x * output_size[1] ) lowercase : Tuple = int(scale_y * output_size[0] ) lowercase : Any = [] lowercase : Any = [] for i, index in enumerate(SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = all_img_list[index] path_list.append(SCREAMING_SNAKE_CASE__ ) lowercase : str = all_annos[index] lowercase : List[str] = cva.imread(SCREAMING_SNAKE_CASE__ ) if i == 0: # top-left lowercase : List[str] = cva.resize(SCREAMING_SNAKE_CASE__ , (divid_point_x, divid_point_y) ) lowercase : Union[str, Any] = img for bbox in img_annos: lowercase : Optional[Any] = bbox[1] * scale_x lowercase : Optional[Any] = bbox[2] * scale_y lowercase : List[str] = bbox[3] * scale_x lowercase : List[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowercase : List[str] = cva.resize(SCREAMING_SNAKE_CASE__ , (output_size[1] - divid_point_x, divid_point_y) ) lowercase : List[Any] = img for bbox in img_annos: lowercase : Optional[Any] = scale_x + bbox[1] * (1 - scale_x) lowercase : Tuple = bbox[2] * scale_y lowercase : Union[str, Any] = scale_x + bbox[3] * (1 - scale_x) lowercase : str = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowercase : Any = cva.resize(SCREAMING_SNAKE_CASE__ , (divid_point_x, output_size[0] - divid_point_y) ) lowercase : int = img for bbox in img_annos: lowercase : str = bbox[1] * scale_x lowercase : str = scale_y + bbox[2] * (1 - scale_y) lowercase : Optional[Any] = bbox[3] * scale_x lowercase : List[str] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowercase : Dict = cva.resize( SCREAMING_SNAKE_CASE__ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowercase : Union[str, Any] = img for bbox in img_annos: lowercase : int = scale_x + bbox[1] * (1 - scale_x) lowercase : List[str] = scale_y + bbox[2] * (1 - scale_y) lowercase : Dict = scale_x + bbox[3] * (1 - scale_x) lowercase : Tuple = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowercase : Dict = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: assert number_char > 1, "The number of character should greater than 1" lowercase : Optional[int] = ascii_lowercase + digits return "".join(random.choice(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
352
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and number_of_steps > 0 ), f"number_of_steps needs to be positive integer, your input {number_of_steps}" if number_of_steps == 1: return 1 lowercase , lowercase : Tuple = 1, 1 for _ in range(number_of_steps - 1 ): lowercase , lowercase : str = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
285
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: A : Tuple = None A : Optional[Any] = logging.get_logger(__name__) A : Tuple = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} A : List[str] = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } A : List[str] = { '''albert-base-v1''': 5_1_2, '''albert-large-v1''': 5_1_2, '''albert-xlarge-v1''': 5_1_2, '''albert-xxlarge-v1''': 5_1_2, '''albert-base-v2''': 5_1_2, '''albert-large-v2''': 5_1_2, '''albert-xlarge-v2''': 5_1_2, '''albert-xxlarge-v2''': 5_1_2, } A : Optional[int] = '''▁''' class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : str = VOCAB_FILES_NAMES __lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[str] = AlbertTokenizer def __init__( self : Tuple , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : str=False , __lowerCAmelCase : Union[str, Any]="[CLS]" , __lowerCAmelCase : int="[SEP]" , __lowerCAmelCase : Dict="<unk>" , __lowerCAmelCase : Dict="[SEP]" , __lowerCAmelCase : Union[str, Any]="<pad>" , __lowerCAmelCase : str="[CLS]" , __lowerCAmelCase : int="[MASK]" , **__lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" A__ = ( AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase , normalized=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token ) super().__init__( __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , **__lowerCAmelCase , ) A__ = do_lower_case A__ = remove_space A__ = keep_accents A__ = vocab_file A__ = False if not self.vocab_file else True def a_ ( self : List[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a_ ( self : Union[str, Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A__ = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) return (out_vocab_file,)
274
0
"""simple docstring""" from collections import defaultdict class a : """simple docstring""" def __init__( self: Any , UpperCamelCase: str , UpperCamelCase: Dict ): """simple docstring""" A__ = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 A__ = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(__lowercase ) ) ] A__ = defaultdict(__lowercase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 A__ = (1 << len(__lowercase )) - 1 def UpperCamelCase ( self: List[Any] , UpperCamelCase: str , UpperCamelCase: List[Any] ): """simple docstring""" if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement A__ = self.count_ways_until(__lowercase , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. A__ = total_ways_util return self.dp[mask][task_no] def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: List[str] ): """simple docstring""" for i in range(len(__lowercase ) ): for j in task_performed[i]: self.task[j].append(__lowercase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : List[str] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. SCREAMING_SNAKE_CASE_ : List[Any] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
366
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def _snake_case ( UpperCAmelCase_ : int="ro" , UpperCAmelCase_ : Optional[int]="en" , UpperCAmelCase_ : List[Any]="wmt16" , UpperCAmelCase_ : str=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) A__ = F"""{src_lang}-{tgt_lang}""" print(F"""Converting {dataset}-{pair}""" ) A__ = datasets.load_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) if save_dir is None: A__ = F"""{dataset}-{pair}""" A__ = Path(UpperCAmelCase_ ) save_dir.mkdir(exist_ok=UpperCAmelCase_ ) for split in ds.keys(): print(F"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets A__ = """val""" if split == """validation""" else split A__ = save_dir.joinpath(F"""{fn}.source""" ) A__ = save_dir.joinpath(F"""{fn}.target""" ) A__ = src_path.open("""w+""" ) A__ = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): A__ = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
69
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase__ = get_tests_dir('''fixtures''') lowerCAmelCase__ = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') lowerCAmelCase__ = get_tests_dir('''fixtures/dummy-config.json''') class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(_A ,_A ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = AutoFeatureExtractor.from_pretrained(_A ) self.assertIsInstance(_A ,_A ) def SCREAMING_SNAKE_CASE ( self : List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __lowercase = AutoFeatureExtractor.from_pretrained(_A ).to_dict() config_dict.pop('''feature_extractor_type''' ) __lowercase = WavaVecaFeatureExtractor(**_A ) # save in new folder model_config.save_pretrained(_A ) config.save_pretrained(_A ) __lowercase = AutoFeatureExtractor.from_pretrained(_A ) # make sure private variable is not incorrectly saved __lowercase = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_A ,_A ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = AutoFeatureExtractor.from_pretrained(_A ) self.assertIsInstance(_A ,_A ) def SCREAMING_SNAKE_CASE ( self : int ): with self.assertRaisesRegex( _A ,'''bert-base is not a local folder and is not a valid model identifier''' ): __lowercase = AutoFeatureExtractor.from_pretrained('''bert-base''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): with self.assertRaisesRegex( _A ,r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __lowercase = AutoFeatureExtractor.from_pretrained(_A ,revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): with self.assertRaisesRegex( _A ,'''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' ,): __lowercase = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_A ): __lowercase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): __lowercase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ,trust_remote_code=_A ) __lowercase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ,trust_remote_code=_A ) self.assertEqual(feature_extractor.__class__.__name__ ,'''NewFeatureExtractor''' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_A ) __lowercase = AutoFeatureExtractor.from_pretrained(_A ,trust_remote_code=_A ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ ,'''NewFeatureExtractor''' ) def SCREAMING_SNAKE_CASE ( self : str ): try: AutoConfig.register('''custom''' ,_A ) AutoFeatureExtractor.register(_A ,_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoFeatureExtractor.register(_A ,_A ) # Now that the config is registered, it can be used as any other config with the auto-API __lowercase = CustomFeatureExtractor.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_A ) __lowercase = AutoFeatureExtractor.from_pretrained(_A ) self.assertIsInstance(_A ,_A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self : Dict ): class lowercase_ (__SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = True try: AutoConfig.register('''custom''' ,_A ) AutoFeatureExtractor.register(_A ,_A ) # If remote code is not set, the default is to use local __lowercase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) self.assertEqual(feature_extractor.__class__.__name__ ,'''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __lowercase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ,trust_remote_code=_A ) self.assertEqual(feature_extractor.__class__.__name__ ,'''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __lowercase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ,trust_remote_code=_A ) self.assertEqual(feature_extractor.__class__.__name__ ,'''NewFeatureExtractor''' ) self.assertTrue(not hasattr(_A ,'''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
104
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowerCamelCase__ ( snake_case_ : Optional[Any] , snake_case_ : str ) -> List[str]: __snake_case = args.log_outputs __snake_case = '_'.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('''wer''' ) __snake_case = load_metric('''cer''' ) # compute metrics __snake_case = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) __snake_case = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results __snake_case = f"""WER: {wer_result}\nCER: {cer_result}""" print(_UpperCAmelCase ) with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(_UpperCAmelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"""log_{dataset_id}_predictions.txt""" __snake_case = f"""log_{dataset_id}_targets.txt""" with open(_UpperCAmelCase , '''w''' ) as p, open(_UpperCAmelCase , '''w''' ) as t: # mapping function to write output def write_to_file(snake_case_ : Any , snake_case_ : Any ): p.write(f"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(_UpperCAmelCase , with_indices=_UpperCAmelCase ) def lowerCamelCase__ ( snake_case_ : Optional[Any] ) -> str: __snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(_UpperCAmelCase , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __snake_case = ' '.join(text.split(_UpperCAmelCase ) ) return text def lowerCamelCase__ ( snake_case_ : List[Any] ) -> Union[str, Any]: # load dataset __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_UpperCAmelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('''audio''' , Audio(sampling_rate=_UpperCAmelCase ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Tuple ): __snake_case = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['text'] __snake_case = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples __snake_case = dataset.map(_UpperCAmelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) snake_case_ = parser.parse_args() main(args)
351
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 snake_case_ = data_utils.TransfoXLTokenizer snake_case_ = data_utils.TransfoXLCorpus snake_case_ = data_utils snake_case_ = data_utils def lowerCamelCase__ ( snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : int ) -> Dict: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case_ , '''rb''' ) as fp: __snake_case = pickle.load(snake_case_ , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __snake_case = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(f"""Save vocabulary to {pytorch_vocab_dump_path}""" ) __snake_case = corpus.vocab.__dict__ torch.save(snake_case_ , snake_case_ ) __snake_case = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , snake_case_ ) __snake_case = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(f"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(snake_case_ , snake_case_ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __snake_case = os.path.abspath(snake_case_ ) __snake_case = os.path.abspath(snake_case_ ) print(f"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": __snake_case = TransfoXLConfig() else: __snake_case = TransfoXLConfig.from_json_file(snake_case_ ) print(f"""Building PyTorch model from configuration: {config}""" ) __snake_case = TransfoXLLMHeadModel(snake_case_ ) __snake_case = load_tf_weights_in_transfo_xl(snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model __snake_case = os.path.join(snake_case_ , snake_case_ ) __snake_case = os.path.join(snake_case_ , snake_case_ ) print(f"""Save PyTorch model to {os.path.abspath(snake_case_ )}""" ) torch.save(model.state_dict() , snake_case_ ) print(f"""Save configuration file to {os.path.abspath(snake_case_ )}""" ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) snake_case_ = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
238
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : int = { 'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'], 'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ['VisionTextDualEncoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ['FlaxVisionTextDualEncoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['TFVisionTextDualEncoderModel'] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys __A : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
120
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class lowercase__ : def __init__( self : List[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : MutableSequence[float] ): '''simple docstring''' if len(lowerCamelCase__ ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _UpperCamelCase : list[float] = list(lowerCamelCase__ ) _UpperCamelCase : Tuple = degree def __add__( self : Optional[int] ,lowerCamelCase__ : Polynomial ): '''simple docstring''' if self.degree > polynomial_a.degree: _UpperCamelCase : str = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree ,lowerCamelCase__ ) else: _UpperCamelCase : str = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree ,lowerCamelCase__ ) def __sub__( self : Dict ,lowerCamelCase__ : Polynomial ): '''simple docstring''' return self + polynomial_a * Polynomial(0 ,[-1] ) def __neg__( self : Dict ): '''simple docstring''' return Polynomial(self.degree ,[-c for c in self.coefficients] ) def __mul__( self : Union[str, Any] ,lowerCamelCase__ : Polynomial ): '''simple docstring''' _UpperCamelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : int | float ): '''simple docstring''' _UpperCamelCase : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Dict = '' for i in range(self.degree ,-1 ,-1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCamelCase__ ) return polynomial def __repr__( self : List[str] ): '''simple docstring''' return self.__str__() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : list[float] = [0] * self.degree for i in range(self.degree ): _UpperCamelCase : Optional[int] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : int | float = 0 ): '''simple docstring''' _UpperCamelCase : list[float] = [0] * (self.degree + 2) _UpperCamelCase : Any = constant for i in range(self.degree + 1 ): _UpperCamelCase : Optional[Any] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 ,lowerCamelCase__ ) def __eq__( self : str ,lowerCamelCase__ : object ): '''simple docstring''' if not isinstance(lowerCamelCase__ ,lowerCamelCase__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : List[str] ,lowerCamelCase__ : object ): '''simple docstring''' return not self.__eq__(lowerCamelCase__ )
83
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json", "google/bigbird-roberta-large": "https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json", "google/bigbird-base-trivia-itc": "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __lowerCAmelCase ( A__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = "big_bird" def __init__( self , _a=50_358 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=4_096 , _a=2 , _a=0.02 , _a=1E-12 , _a=True , _a=0 , _a=1 , _a=2 , _a=66 , _a="block_sparse" , _a=True , _a=False , _a=64 , _a=3 , _a=None , **_a , ): super().__init__( pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , sep_token_id=__A , **__A , ) __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = type_vocab_size __a = layer_norm_eps __a = use_cache __a = rescale_embeddings __a = attention_type __a = use_bias __a = block_size __a = num_random_blocks __a = classifier_dropout class __lowerCAmelCase ( A__ ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __a = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
351
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'funnel' __UpperCAmelCase : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self , _a=30_522 , _a=[4, 4, 4] , _a=None , _a=2 , _a=768 , _a=12 , _a=64 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1E-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = block_sizes __a = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __a = num_decoder_layers __a = d_model __a = n_head __a = d_head __a = d_inner __a = hidden_act __a = hidden_dropout __a = attention_dropout __a = activation_dropout __a = initializer_range __a = initializer_std __a = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' __a = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' __a = attention_type __a = separate_cls __a = truncate_seq __a = pool_q_only super().__init__(**_a ) @property def __UpperCAmelCase ( self ): return sum(self.block_sizes ) @num_hidden_layers.setter def __UpperCAmelCase ( self , _a ): raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __UpperCAmelCase ( self ): return len(self.block_sizes ) @num_blocks.setter def __UpperCAmelCase ( self , _a ): raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
11
0
from typing import Dict, Optional import numpy as np import datasets A : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ A : List[Any] = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ A : Optional[int] = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def lowercase_ ( _A : int , _A : Any , _A : List[Any] , _A : Optional[Any] , _A : Any = None , _A : int = False , ): """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowerCamelCase__ : Tuple = new_id # turn into Numpy arrays lowerCamelCase__ : Any = np.array(UpperCamelCase__ ) lowerCamelCase__ : List[str] = np.array(UpperCamelCase__ ) if reduce_labels: lowerCamelCase__ : List[Any] = 255 lowerCamelCase__ : Tuple = label - 1 lowerCamelCase__ : int = 255 lowerCamelCase__ : List[Any] = label != ignore_index lowerCamelCase__ : Any = np.not_equal(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : int = pred_label[mask] lowerCamelCase__ : Dict = np.array(UpperCamelCase__ )[mask] lowerCamelCase__ : int = pred_label[pred_label == label] lowerCamelCase__ : Tuple = np.histogram(UpperCamelCase__ , bins=UpperCamelCase__ , range=(0, num_labels - 1) )[0] lowerCamelCase__ : Union[str, Any] = np.histogram(UpperCamelCase__ , bins=UpperCamelCase__ , range=(0, num_labels - 1) )[0] lowerCamelCase__ : Dict = np.histogram(UpperCamelCase__ , bins=UpperCamelCase__ , range=(0, num_labels - 1) )[0] lowerCamelCase__ : int = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def lowercase_ ( _A : Optional[Any] , _A : List[str] , _A : Tuple , _A : Optional[Any] , _A : Dict = None , _A : Tuple = False , ): """simple docstring""" lowerCamelCase__ : Optional[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowerCamelCase__ : str = np.zeros((num_labels,) , dtype=np.floataa ) lowerCamelCase__ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowerCamelCase__ : Optional[int] = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = intersect_and_union( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def lowercase_ ( _A : Optional[Any] , _A : Any , _A : List[str] , _A : List[str] , _A : Any = None , _A : Tuple = None , _A : List[Any] = False , ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = total_intersect_and_union( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # compute metrics lowerCamelCase__ : Any = {} lowerCamelCase__ : Dict = total_area_intersect.sum() / total_area_label.sum() lowerCamelCase__ : List[Any] = total_area_intersect / total_area_union lowerCamelCase__ : str = total_area_intersect / total_area_label lowerCamelCase__ : int = np.nanmean(UpperCamelCase__ ) lowerCamelCase__ : int = np.nanmean(UpperCamelCase__ ) lowerCamelCase__ : List[str] = all_acc lowerCamelCase__ : List[Any] = iou lowerCamelCase__ : List[str] = acc if nan_to_num is not None: lowerCamelCase__ : Tuple = {metric: np.nan_to_num(UpperCamelCase__ , nan=UpperCamelCase__ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _lowercase ( datasets.Metric): """simple docstring""" def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), } ) , reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] , ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : str = None , __lowerCamelCase : int = None , __lowerCamelCase : Optional[Any] = False , ): '''simple docstring''' lowerCamelCase__ : Tuple = mean_iou( results=__lowerCamelCase , gt_seg_maps=__lowerCamelCase , num_labels=__lowerCamelCase , ignore_index=__lowerCamelCase , nan_to_num=__lowerCamelCase , label_map=__lowerCamelCase , reduce_labels=__lowerCamelCase , ) return iou_result
184
class lowercase : def __init__( self , snake_case , snake_case , snake_case ): snake_case_ = name snake_case_ = value snake_case_ = weight def __repr__( self ): return F'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def a ( self ): return self.value def a ( self ): return self.name def a ( self ): return self.weight def a ( self ): return self.value / self.weight def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = [] for i in range(len(UpperCamelCase__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = sorted(UpperCamelCase__ , key=UpperCamelCase__ , reverse=UpperCamelCase__ ) snake_case_ = [] snake_case_ , snake_case_ = 0.0, 0.0 for i in range(len(UpperCamelCase__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __lowerCamelCase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
285
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCamelCase_ : Dict = False class a__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __a = torch.manual_seed(0 ) __a = pipe.dual_guided( prompt='first prompt' , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCAmelCase ) __a = VersatileDiffusionPipeline.from_pretrained(_UpperCAmelCase , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a = generator.manual_seed(0 ) __a = pipe.dual_guided( prompt='first prompt' , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a = 'cyberpunk 2077' __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __a = torch.manual_seed(0 ) __a = pipe.dual_guided( prompt=_UpperCAmelCase , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images __a = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __a = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 __a = 'A painting of a squirrel eating a burger ' __a = torch.manual_seed(0 ) __a = pipe.text_to_image( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' ).images __a = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __a = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 __a = pipe.image_variation(_UpperCAmelCase , generator=_UpperCAmelCase , output_type='numpy' ).images __a = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __a = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
367
def lowerCAmelCase( __lowerCamelCase ): if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) __a = '' while len(__lowerCamelCase ) % 3 != 0: __a = '0' + bin_string __a = [ bin_string[index : index + 3] for index in range(len(__lowerCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __a = 0 for index, val in enumerate(__lowerCamelCase ): oct_val += int(2 ** (2 - index) * int(__lowerCamelCase ) ) oct_string += str(__lowerCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
197
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer A__ : Optional[int] = logging.get_logger(__name__) A__ : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart A__ : Optional[Any] = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } A__ : List[Any] = { '''facebook/bart-base''': 1024, '''facebook/bart-large''': 1024, '''facebook/bart-large-mnli''': 1024, '''facebook/bart-large-cnn''': 1024, '''facebook/bart-large-xsum''': 1024, '''yjernite/bart_eli5''': 1024, } class __snake_case ( UpperCamelCase_ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ['''input_ids''', '''attention_mask'''] _a = BartTokenizer def __init__( self : Optional[int] , A_ : int=None , A_ : Any=None , A_ : Tuple=None , A_ : str="replace" , A_ : List[Any]="<s>" , A_ : List[Any]="</s>" , A_ : Any="</s>" , A_ : List[str]="<s>" , A_ : Any="<unk>" , A_ : Tuple="<pad>" , A_ : List[str]="<mask>" , A_ : int=False , A_ : List[str]=True , **A_ : str , ): super().__init__( A_ , A_ , tokenizer_file=A_ , errors=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , trim_offsets=A_ , **A_ , ) lowerCAmelCase_ : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , A_) != add_prefix_space: lowerCAmelCase_ : str = getattr(A_ , pre_tok_state.pop('''type''')) lowerCAmelCase_ : int = add_prefix_space lowerCAmelCase_ : List[Any] = pre_tok_class(**A_) lowerCAmelCase_ : Optional[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCAmelCase_ : Optional[int] = '''post_processor''' lowerCAmelCase_ : Tuple = getattr(self.backend_tokenizer , A_ , A_) if tokenizer_component_instance: lowerCAmelCase_ : List[Any] = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase_ : Optional[Any] = tuple(state['''sep''']) if "cls" in state: lowerCAmelCase_ : List[str] = tuple(state['''cls''']) lowerCAmelCase_ : List[str] = False if state.get('''add_prefix_space''' , A_) != add_prefix_space: lowerCAmelCase_ : List[str] = add_prefix_space lowerCAmelCase_ : str = True if state.get('''trim_offsets''' , A_) != trim_offsets: lowerCAmelCase_ : Optional[Any] = trim_offsets lowerCAmelCase_ : Optional[Any] = True if changes_to_apply: lowerCAmelCase_ : str = getattr(A_ , state.pop('''type''')) lowerCAmelCase_ : int = component_class(**A_) setattr(self.backend_tokenizer , A_ , A_) @property def UpperCAmelCase__ ( self : Tuple): if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''') return None return str(self._mask_token) @mask_token.setter def UpperCAmelCase__ ( self : Any , A_ : Union[str, Any]): lowerCAmelCase_ : Optional[int] = AddedToken(A_ , lstrip=A_ , rstrip=A_) if isinstance(A_ , A_) else value lowerCAmelCase_ : Optional[int] = value def UpperCAmelCase__ ( self : int , *A_ : Tuple , **A_ : Tuple): lowerCAmelCase_ : Any = kwargs.get('''is_split_into_words''' , A_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''') return super()._batch_encode_plus(*A_ , **A_) def UpperCAmelCase__ ( self : List[Any] , *A_ : Any , **A_ : int): lowerCAmelCase_ : List[str] = kwargs.get('''is_split_into_words''' , A_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''') return super()._encode_plus(*A_ , **A_) def UpperCAmelCase__ ( self : List[str] , A_ : str , A_ : Optional[str] = None): lowerCAmelCase_ : str = self._tokenizer.model.save(A_ , name=A_) return tuple(A_) def UpperCAmelCase__ ( self : str , A_ : Tuple , A_ : int=None): lowerCAmelCase_ : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Optional[Any] , A_ : List[int] , A_ : Optional[List[int]] = None): lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
103
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
0
from __future__ import annotations import math from collections.abc import Callable def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 100, ): UpperCAmelCase_ : Dict = x_start UpperCAmelCase_ : Union[str, Any] = fnc(a__ ) UpperCAmelCase_ : Optional[int] = 0.0 for _ in range(a__ ): # Approximates curve as a sequence of linear lines and sums their length UpperCAmelCase_ : Union[str, Any] = (x_end - x_start) / steps + xa UpperCAmelCase_ : Dict = fnc(a__ ) length += math.hypot(xa - xa, fxa - fxa ) # Increment step UpperCAmelCase_ : Optional[int] = xa UpperCAmelCase_ : Any = fxa return length if __name__ == "__main__": def __a ( __lowerCamelCase ): return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') _a = 10 while i <= 100_000: print(f"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
368
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _a = object() # For specifying empty leaf dict `{}` _a = object() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ): UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )] if matches and all(__lowerCamelCase ): return True return False def __a ( __lowerCamelCase ): def replace(__lowerCamelCase, __lowerCamelCase ): for rule, replacement in rules: if _match(__lowerCamelCase, __lowerCamelCase ): return replacement return val return replace def __a ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )), (("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )), (("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = _get_partition_rules() UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase ) UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )} UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCamelCase ) )
23
0
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _a = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _a = [ord(letter) for letter in string.ascii_lowercase] _a = {ord(char) for char in VALID_CHARS} _a = ["the", "be", "to", "of", "and", "in", "that", "have"] def __A ( __lowerCAmelCase , __lowerCAmelCase )-> str | None: """simple docstring""" _UpperCAmelCase = "" _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 for keychar, cipherchar in zip(cycle(__lowerCAmelCase ) , __lowerCAmelCase ): _UpperCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__lowerCAmelCase ) return decoded def __A ( __lowerCAmelCase )-> list[str]: """simple docstring""" _UpperCAmelCase = [] for key in product(__lowerCAmelCase , repeat=3 ): _UpperCAmelCase = try_key(__lowerCAmelCase , __lowerCAmelCase ) if encoded is not None: possibles.append(__lowerCAmelCase ) return possibles def __A ( __lowerCAmelCase , __lowerCAmelCase )-> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def __A ( __lowerCAmelCase = "p059_cipher.txt" )-> int: """simple docstring""" _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = Path(__lowerCAmelCase ).parent.joinpath(__lowerCAmelCase ).read_text(encoding='utf-8' ) _UpperCAmelCase = [int(__lowerCAmelCase ) for number in data.strip().split(',' )] _UpperCAmelCase = filter_valid_chars(__lowerCAmelCase ) for common_word in COMMON_WORDS: _UpperCAmelCase = filter_common_word(__lowerCAmelCase , __lowerCAmelCase ) if len(__lowerCAmelCase ) == 1: break _UpperCAmelCase = possibles[0] return sum(ord(__lowerCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
39
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowercase : int = logging.get_logger(__name__) # pylint: disable=invalid-name class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Dict )-> Optional[int]: super().__init__() self.register_modules(unet=lowerCamelCase, scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self : Optional[int], lowerCamelCase : int = 1, lowerCamelCase : int = 100, lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None, lowerCamelCase : Optional[float] = None, lowerCamelCase : bool = True, )-> Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: lowerCamelCase__ : int =self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase__ : List[str] =audio_length_in_s * self.unet.config.sample_rate lowerCamelCase__ : Any =2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCamelCase__ : Optional[int] =int(lowerCamelCase ) if sample_size % down_scale_factor != 0: lowerCamelCase__ : Tuple =( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) lowerCamelCase__ : int =int(lowerCamelCase ) lowerCamelCase__ : str =next(iter(self.unet.parameters() ) ).dtype lowerCamelCase__ : Union[str, Any] =(batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase, lowerCamelCase ) and len(lowerCamelCase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowerCamelCase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : str =randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase ) # set step values self.scheduler.set_timesteps(lowerCamelCase, device=audio.device ) lowerCamelCase__ : Any =self.scheduler.timesteps.to(lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : str =self.unet(lowerCamelCase, lowerCamelCase ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase__ : Dict =self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase ).prev_sample lowerCamelCase__ : Optional[int] =audio.clamp(-1, 1 ).float().cpu().numpy() lowerCamelCase__ : List[Any] =audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase )
238
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self : Optional[int] ): UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = BlipImageProcessor() UpperCAmelCase_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) UpperCAmelCase_ = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) UpperCAmelCase_ = InstructBlipProcessor(__snake_case , __snake_case , __snake_case ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : Union[str, Any] , **__snake_case : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **__snake_case ).tokenizer def lowerCamelCase_ ( self : Optional[int] , **__snake_case : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname , **__snake_case ).image_processor def lowerCamelCase_ ( self : Dict , **__snake_case : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **__snake_case ).qformer_tokenizer def lowerCamelCase_ ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self : Optional[int] ): UpperCAmelCase_ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] UpperCAmelCase_ = [Image.fromarray(np.moveaxis(__snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self : Any ): UpperCAmelCase_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCAmelCase_ = self.get_image_processor(do_normalize=__snake_case , padding_value=1.0 ) UpperCAmelCase_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __snake_case ) self.assertIsInstance(processor.qformer_tokenizer , __snake_case ) def lowerCamelCase_ ( self : Union[str, Any] ): UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=__snake_case , image_processor=__snake_case , qformer_tokenizer=__snake_case ) UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = image_processor(__snake_case , return_tensors='''np''' ) UpperCAmelCase_ = processor(images=__snake_case , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase_ ( self : Dict ): UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=__snake_case , image_processor=__snake_case , qformer_tokenizer=__snake_case ) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = processor(text=__snake_case ) UpperCAmelCase_ = tokenizer(__snake_case , return_token_type_ids=__snake_case ) UpperCAmelCase_ = qformer_tokenizer(__snake_case , return_token_type_ids=__snake_case ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def lowerCamelCase_ ( self : Optional[Any] ): UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=__snake_case , image_processor=__snake_case , qformer_tokenizer=__snake_case ) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=__snake_case , images=__snake_case ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(__snake_case ): processor() def lowerCamelCase_ ( self : Optional[int] ): UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=__snake_case , image_processor=__snake_case , qformer_tokenizer=__snake_case ) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.batch_decode(__snake_case ) UpperCAmelCase_ = tokenizer.batch_decode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowerCamelCase_ ( self : Tuple ): UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=__snake_case , image_processor=__snake_case , qformer_tokenizer=__snake_case ) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=__snake_case , images=__snake_case ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
177
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_A ) class a ( _A ): '''simple docstring''' lowerCAmelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) lowerCAmelCase : ClassVar[Features] = Features({'audio': Audio()} ) lowerCAmelCase : ClassVar[Features] = Features({'labels': ClassLabel} ) lowerCAmelCase : str = "audio" lowerCAmelCase : str = "labels" def lowerCamelCase_ ( self : Optional[Any] , __snake_case : List[Any] ): if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __snake_case ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) UpperCAmelCase_ = copy.deepcopy(self ) UpperCAmelCase_ = self.label_schema.copy() UpperCAmelCase_ = features[self.label_column] UpperCAmelCase_ = label_schema return task_template @property def lowerCamelCase_ ( self : Tuple ): return { self.audio_column: "audio", self.label_column: "labels", }
177
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input SCREAMING_SNAKE_CASE_: Dict ='Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def lowerCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: UpperCAmelCase_ = get_sagemaker_input() else: UpperCAmelCase_ = get_cluster_input() return config def lowerCAmelCase_ ( snake_case_ : Dict=None ) -> Union[str, Any]: '''simple docstring''' if subparsers is not None: UpperCAmelCase_ = subparsers.add_parser("config" , description=snake_case_ ) else: UpperCAmelCase_ = argparse.ArgumentParser("Accelerate config command" , description=snake_case_ ) parser.add_argument( "--config_file" , default=snake_case_ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def lowerCAmelCase_ ( snake_case_ : int ) -> Any: '''simple docstring''' UpperCAmelCase_ = get_user_input() if args.config_file is not None: UpperCAmelCase_ = args.config_file else: if not os.path.isdir(snake_case_ ): os.makedirs(snake_case_ ) UpperCAmelCase_ = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(snake_case_ ) else: config.to_yaml_file(snake_case_ ) print(f"""accelerate configuration saved at {config_file}""" ) def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = config_command_parser() UpperCAmelCase_ = parser.parse_args() config_command(snake_case_ ) if __name__ == "__main__": main()
1
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') lowerCAmelCase__ = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __SCREAMING_SNAKE_CASE = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = field(default=a , metadata={"help": "The input training data file (a text file)."}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Overwrite the cached training and evaluation sets"}) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "The number of processes to use for the preprocessing."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _lowerCamelCase ( self) -> int: if self.train_file is not None: _A : Optional[int] = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _A : Dict = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def __call__( self , __lowerCamelCase) -> str: _A : List[Any] = "label" if "label" in features[0].keys() else "labels" _A : Any = [feature.pop(__lowerCamelCase) for feature in features] _A : Optional[int] = len(__lowerCamelCase) _A : int = len(features[0]["input_ids"]) _A : Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(__lowerCamelCase)] for feature in features ] _A : str = list(chain(*__lowerCamelCase)) _A : Tuple = self.tokenizer.pad( __lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _A : Optional[int] = {k: v.view(__lowerCamelCase , __lowerCamelCase , -1) for k, v in batch.items()} # Add back labels _A : Optional[int] = torch.tensor(__lowerCamelCase , dtype=torch.intaa) return batch def _UpperCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _A : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag" , UpperCamelCase__ , UpperCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A : int = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) datasets.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _A : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _A : List[str] = {} if data_args.train_file is not None: _A : Optional[int] = data_args.train_file if data_args.validation_file is not None: _A : Tuple = data_args.validation_file _A : Union[str, Any] = data_args.train_file.split("." )[-1] _A : List[str] = load_dataset( UpperCamelCase__ , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _A : Union[str, Any] = load_dataset( "swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _A : str = [f"ending{i}" for i in range(4 )] _A : Union[str, Any] = "sent1" _A : str = "sent2" if data_args.max_seq_length is None: _A : Any = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _A : Optional[Any] = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) _A : int = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCamelCase__ : List[Any] ): _A : List[Any] = [[context] * 4 for context in examples[context_name]] _A : Any = examples[question_header_name] _A : Union[str, Any] = [ [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(UpperCamelCase__ ) ] # Flatten out _A : Dict = list(chain(*UpperCamelCase__ ) ) _A : List[Any] = list(chain(*UpperCamelCase__ ) ) # Tokenize _A : str = tokenizer( UpperCamelCase__ , UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(UpperCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _A : Optional[int] = raw_datasets["train"] if data_args.max_train_samples is not None: _A : Union[str, Any] = min(len(UpperCamelCase__ ) , data_args.max_train_samples ) _A : Any = train_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _A : Optional[int] = train_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _A : Optional[int] = raw_datasets["validation"] if data_args.max_eval_samples is not None: _A : str = min(len(UpperCamelCase__ ) , data_args.max_eval_samples ) _A : Dict = eval_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _A : List[str] = eval_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _A : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCamelCase__ : Tuple ): _A , _A : List[str] = eval_predictions _A : Optional[int] = np.argmax(UpperCamelCase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _A : List[str] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: _A : Any = None if training_args.resume_from_checkpoint is not None: _A : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A : int = last_checkpoint _A : Any = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload _A : Optional[int] = train_result.metrics _A : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ ) ) _A : Tuple = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics("train" , UpperCamelCase__ ) trainer.save_metrics("train" , UpperCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _A : List[Any] = trainer.evaluate() _A : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ ) _A : Optional[Any] = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics("eval" , UpperCamelCase__ ) trainer.save_metrics("eval" , UpperCamelCase__ ) _A : Tuple = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase__ ) else: trainer.create_model_card(**UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
11
0
"""simple docstring""" from jiwer import compute_measures import datasets __A = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ __A = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ __A = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def snake_case ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def snake_case ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False ): '''simple docstring''' if concatenate_texts: return compute_measures(__UpperCAmelCase , __UpperCAmelCase )["wer"] else: lowerCAmelCase__ :List[str] = 0 lowerCAmelCase__ :Dict = 0 for prediction, reference in zip(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :Union[str, Any] = compute_measures(__UpperCAmelCase , __UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
254
"""simple docstring""" from pathlib import Path import fire def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :List[str] = Path(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = Path(_SCREAMING_SNAKE_CASE ) dest_dir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) for path in src_dir.iterdir(): lowerCAmelCase__ :Union[str, Any] = [x.rstrip() for x in list(path.open().readlines() )][:n] lowerCAmelCase__ :Tuple = dest_dir.joinpath(path.name ) print(_SCREAMING_SNAKE_CASE ) dest_path.open('w' ).write('\n'.join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": fire.Fire(minify)
254
1
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : int __UpperCAmelCase : Node | None =None __UpperCAmelCase : Node | None =None def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = Node(1 ) __lowerCAmelCase = Node(2 ) __lowerCAmelCase = Node(3 ) __lowerCAmelCase = Node(4 ) __lowerCAmelCase = Node(5 ) return tree def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [] if root is None: return output __lowerCAmelCase = deque([root] ) while process_queue: __lowerCAmelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [] def populate_output(_UpperCamelCase , _UpperCamelCase ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(_UpperCamelCase , _UpperCamelCase ) return output def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [] def populate_output(_UpperCamelCase , _UpperCamelCase ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(_UpperCamelCase , _UpperCamelCase ) return output def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if root is None: return [] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = height(_UpperCamelCase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_UpperCamelCase , _UpperCamelCase ) ) __lowerCAmelCase = 1 else: output.append(get_nodes_from_right_to_left(_UpperCamelCase , _UpperCamelCase ) ) __lowerCAmelCase = 0 return output def _lowerCamelCase ( ): # Main function for testing. '''simple docstring''' __lowerCAmelCase = make_tree() print(f"In-order Traversal: {inorder(_UpperCamelCase )}" ) print(f"Pre-order Traversal: {preorder(_UpperCamelCase )}" ) print(f"Post-order Traversal: {postorder(_UpperCamelCase )}" , "\n" ) print(f"Height of Tree: {height(_UpperCamelCase )}" , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(_UpperCamelCase ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(_UpperCamelCase ) + 1 ): print(f"Level {level}:" , get_nodes_from_left_to_right(_UpperCamelCase , level=_UpperCamelCase ) ) print("\nZigZag order Traversal: " ) print(zigzag(_UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
"""simple docstring""" from __future__ import annotations from collections.abc import Callable __lowerCAmelCase : str =list[list[float | int]] def UpperCAmelCase__ ( lowerCAmelCase__ :Matrix , lowerCAmelCase__ :Matrix ) -> Matrix: '''simple docstring''' lowercase = len(lowerCAmelCase__ ) lowercase = [[0 for _ in range(size + 1 )] for _ in range(lowerCAmelCase__ )] lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 for row in range(lowerCAmelCase__ ): for col in range(lowerCAmelCase__ ): lowercase = matrix[row][col] lowercase = vector[row][0] lowercase = 0 lowercase = 0 while row < size and col < size: # pivoting lowercase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowerCAmelCase__ , lowerCAmelCase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowercase , lowercase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , lowerCAmelCase__ ): lowercase = augmented[rowa][col] / augmented[row][col] lowercase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , lowerCAmelCase__ ): for row in range(lowerCAmelCase__ ): lowercase = augmented[row][col] / augmented[col][col] for cola in range(lowerCAmelCase__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 1_0 )] for row in range(lowerCAmelCase__ ) ] def UpperCAmelCase__ ( lowerCAmelCase__ :list[int] ) -> Callable[[int], int]: '''simple docstring''' lowercase = len(lowerCAmelCase__ ) lowercase = [[0 for _ in range(lowerCAmelCase__ )] for _ in range(lowerCAmelCase__ )] lowercase = [[0] for _ in range(lowerCAmelCase__ )] lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 for x_val, y_val in enumerate(lowerCAmelCase__ ): for col in range(lowerCAmelCase__ ): lowercase = (x_val + 1) ** (size - col - 1) lowercase = y_val lowercase = solve(lowerCAmelCase__ , lowerCAmelCase__ ) def interpolated_func(lowerCAmelCase__ :int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(lowerCAmelCase__ ) ) return interpolated_func def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**1_0 ) def UpperCAmelCase__ ( lowerCAmelCase__ :Callable[[int], int] = question_function , lowerCAmelCase__ :int = 1_0 ) -> int: '''simple docstring''' lowercase = [func(lowerCAmelCase__ ) for x_val in range(1 , order + 1 )] lowercase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] lowercase = 0 lowercase = 42 lowercase = 42 for poly in polynomials: lowercase = 1 while func(lowerCAmelCase__ ) == poly(lowerCAmelCase__ ): x_val += 1 ret += poly(lowerCAmelCase__ ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
197
0
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger UpperCAmelCase_ = get_logger(__name__) class lowercase__ ( enum.Enum ): '''simple docstring''' a : Union[str, Any] = "all_checks" a : Any = "basic_checks" a : Optional[Any] = "no_checks" class lowercase__ ( __lowerCamelCase ): '''simple docstring''' class lowercase__ ( __lowerCamelCase ): '''simple docstring''' class lowercase__ ( __lowerCamelCase ): '''simple docstring''' class lowercase__ ( __lowerCamelCase ): '''simple docstring''' def lowerCAmelCase_ ( __UpperCAmelCase: Optional[dict] , __UpperCAmelCase: dict , __UpperCAmelCase: List[str]=None ) -> str: if expected_checksums is None: logger.info('''Unable to verify checksums.''' ) return if len(set(__UpperCAmelCase ) - set(__UpperCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__UpperCAmelCase ) - set(__UpperCAmelCase ) ) ) if len(set(__UpperCAmelCase ) - set(__UpperCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__UpperCAmelCase ) - set(__UpperCAmelCase ) ) ) UpperCamelCase__ : Optional[int] = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] UpperCamelCase__ : str = ''' for ''' + verification_name if verification_name is not None else '''''' if len(__UpperCAmelCase ) > 0: raise NonMatchingChecksumError( f"Checksums didn't match{for_verification_name}:\n" f"{bad_urls}\n" '''Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error''' ) logger.info('''All the checksums matched successfully''' + for_verification_name ) class lowercase__ ( __lowerCamelCase ): '''simple docstring''' class lowercase__ ( __lowerCamelCase ): '''simple docstring''' class lowercase__ ( __lowerCamelCase ): '''simple docstring''' class lowercase__ ( __lowerCamelCase ): '''simple docstring''' def lowerCAmelCase_ ( __UpperCAmelCase: Optional[dict] , __UpperCAmelCase: dict ) -> Optional[Any]: if expected_splits is None: logger.info('''Unable to verify splits sizes.''' ) return if len(set(__UpperCAmelCase ) - set(__UpperCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__UpperCAmelCase ) - set(__UpperCAmelCase ) ) ) if len(set(__UpperCAmelCase ) - set(__UpperCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(__UpperCAmelCase ) - set(__UpperCAmelCase ) ) ) UpperCamelCase__ : Tuple = [ {'''expected''': expected_splits[name], '''recorded''': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__UpperCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(__UpperCAmelCase ) ) logger.info('''All the splits matched successfully.''' ) def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: bool = True ) -> dict: if record_checksum: UpperCamelCase__ : List[Any] = shaaaa() with open(__UpperCAmelCase , '''rb''' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B'''''' ): m.update(__UpperCAmelCase ) UpperCamelCase__ : Optional[int] = m.hexdigest() else: UpperCamelCase__ : Optional[int] = None return {"num_bytes": os.path.getsize(__UpperCAmelCase ), "checksum": checksum} def lowerCAmelCase_ ( __UpperCAmelCase: Tuple ) -> List[str]: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
359
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowercase__ ( __lowerCamelCase ): '''simple docstring''' def __init__( self, __magic_name__=0.01, __magic_name__=1000 ) -> Tuple: """simple docstring""" UpperCamelCase__ : Union[str, Any] = p_stop UpperCamelCase__ : Any = max_length def __iter__( self ) -> int: """simple docstring""" UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : Tuple = False while not stop and count < self.max_length: yield count count += 1 UpperCamelCase__ : Union[str, Any] = random.random() < self.p_stop class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__=False, __magic_name__=True ) -> List[Any]: """simple docstring""" UpperCamelCase__ : str = [ BatchSamplerShard(__magic_name__, 2, __magic_name__, split_batches=__magic_name__, even_batches=__magic_name__ ) for i in range(2 ) ] UpperCamelCase__ : Union[str, Any] = [list(__magic_name__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__magic_name__ ) for shard in batch_sampler_shards], [len(__magic_name__ ) for e in expected] ) self.assertListEqual(__magic_name__, __magic_name__ ) def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" # Check the shards when the dataset is a round multiple of total batch size. UpperCamelCase__ : Any = BatchSampler(range(24 ), batch_size=3, drop_last=__magic_name__ ) UpperCamelCase__ : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__ ) UpperCamelCase__ : List[str] = BatchSampler(range(24 ), batch_size=3, drop_last=__magic_name__ ) # Expected shouldn't change self.check_batch_sampler_shards(__magic_name__, __magic_name__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCamelCase__ : Optional[int] = BatchSampler(range(21 ), batch_size=3, drop_last=__magic_name__ ) UpperCamelCase__ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__ ) UpperCamelCase__ : List[str] = BatchSampler(range(21 ), batch_size=3, drop_last=__magic_name__ ) UpperCamelCase__ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCamelCase__ : int = BatchSampler(range(22 ), batch_size=3, drop_last=__magic_name__ ) UpperCamelCase__ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__ ) UpperCamelCase__ : Any = BatchSampler(range(22 ), batch_size=3, drop_last=__magic_name__ ) UpperCamelCase__ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCamelCase__ : Union[str, Any] = BatchSampler(range(20 ), batch_size=3, drop_last=__magic_name__ ) UpperCamelCase__ : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__ ) UpperCamelCase__ : str = BatchSampler(range(20 ), batch_size=3, drop_last=__magic_name__ ) UpperCamelCase__ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__ ) # Check the shards when the dataset is very small. UpperCamelCase__ : Optional[int] = BatchSampler(range(2 ), batch_size=3, drop_last=__magic_name__ ) UpperCamelCase__ : int = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__magic_name__, __magic_name__ ) UpperCamelCase__ : Optional[int] = BatchSampler(range(2 ), batch_size=3, drop_last=__magic_name__ ) UpperCamelCase__ : List[Any] = [[], []] self.check_batch_sampler_shards(__magic_name__, __magic_name__ ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" # Check the shards when the dataset is a round multiple of batch size. UpperCamelCase__ : List[str] = BatchSampler(range(24 ), batch_size=4, drop_last=__magic_name__ ) UpperCamelCase__ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__, split_batches=__magic_name__ ) UpperCamelCase__ : List[Any] = BatchSampler(range(24 ), batch_size=4, drop_last=__magic_name__ ) # Expected shouldn't change self.check_batch_sampler_shards(__magic_name__, __magic_name__, split_batches=__magic_name__ ) # Check the shards when the dataset is not a round multiple of batch size. UpperCamelCase__ : Tuple = BatchSampler(range(22 ), batch_size=4, drop_last=__magic_name__ ) UpperCamelCase__ : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__, split_batches=__magic_name__ ) UpperCamelCase__ : Dict = BatchSampler(range(22 ), batch_size=4, drop_last=__magic_name__ ) UpperCamelCase__ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__, split_batches=__magic_name__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCamelCase__ : Dict = BatchSampler(range(21 ), batch_size=4, drop_last=__magic_name__ ) UpperCamelCase__ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__, split_batches=__magic_name__ ) UpperCamelCase__ : Tuple = BatchSampler(range(21 ), batch_size=4, drop_last=__magic_name__ ) UpperCamelCase__ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__, split_batches=__magic_name__ ) # Check the shards when the dataset is very small. UpperCamelCase__ : List[str] = BatchSampler(range(2 ), batch_size=4, drop_last=__magic_name__ ) UpperCamelCase__ : str = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__magic_name__, __magic_name__, split_batches=__magic_name__ ) UpperCamelCase__ : Optional[Any] = BatchSampler(range(2 ), batch_size=4, drop_last=__magic_name__ ) UpperCamelCase__ : Tuple = [[], []] self.check_batch_sampler_shards(__magic_name__, __magic_name__, split_batches=__magic_name__ ) def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" # Check the shards when the dataset is a round multiple of total batch size. UpperCamelCase__ : List[Any] = BatchSampler(range(24 ), batch_size=3, drop_last=__magic_name__ ) UpperCamelCase__ : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__, even_batches=__magic_name__ ) UpperCamelCase__ : Optional[int] = BatchSampler(range(24 ), batch_size=3, drop_last=__magic_name__ ) # Expected shouldn't change self.check_batch_sampler_shards(__magic_name__, __magic_name__, even_batches=__magic_name__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCamelCase__ : Tuple = BatchSampler(range(21 ), batch_size=3, drop_last=__magic_name__ ) UpperCamelCase__ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__, even_batches=__magic_name__ ) UpperCamelCase__ : Optional[Any] = BatchSampler(range(21 ), batch_size=3, drop_last=__magic_name__ ) UpperCamelCase__ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__, even_batches=__magic_name__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCamelCase__ : Union[str, Any] = BatchSampler(range(22 ), batch_size=3, drop_last=__magic_name__ ) UpperCamelCase__ : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__, even_batches=__magic_name__ ) UpperCamelCase__ : int = BatchSampler(range(22 ), batch_size=3, drop_last=__magic_name__ ) UpperCamelCase__ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__, even_batches=__magic_name__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCamelCase__ : List[Any] = BatchSampler(range(20 ), batch_size=3, drop_last=__magic_name__ ) UpperCamelCase__ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__, even_batches=__magic_name__ ) UpperCamelCase__ : Optional[int] = BatchSampler(range(20 ), batch_size=3, drop_last=__magic_name__ ) UpperCamelCase__ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__, even_batches=__magic_name__ ) # Check the shards when the dataset is very small. UpperCamelCase__ : List[Any] = BatchSampler(range(2 ), batch_size=3, drop_last=__magic_name__ ) UpperCamelCase__ : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(__magic_name__, __magic_name__, even_batches=__magic_name__ ) UpperCamelCase__ : Optional[Any] = BatchSampler(range(2 ), batch_size=3, drop_last=__magic_name__ ) UpperCamelCase__ : Tuple = [[], []] self.check_batch_sampler_shards(__magic_name__, __magic_name__, even_batches=__magic_name__ ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" # Check the shards when the dataset is a round multiple of batch size. UpperCamelCase__ : int = BatchSampler(range(24 ), batch_size=4, drop_last=__magic_name__ ) UpperCamelCase__ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__, split_batches=__magic_name__, even_batches=__magic_name__ ) UpperCamelCase__ : Dict = BatchSampler(range(24 ), batch_size=4, drop_last=__magic_name__ ) # Expected shouldn't change self.check_batch_sampler_shards(__magic_name__, __magic_name__, split_batches=__magic_name__, even_batches=__magic_name__ ) # Check the shards when the dataset is not a round multiple of batch size. UpperCamelCase__ : List[Any] = BatchSampler(range(22 ), batch_size=4, drop_last=__magic_name__ ) UpperCamelCase__ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__, split_batches=__magic_name__, even_batches=__magic_name__ ) UpperCamelCase__ : Optional[int] = BatchSampler(range(22 ), batch_size=4, drop_last=__magic_name__ ) UpperCamelCase__ : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__, split_batches=__magic_name__, even_batches=__magic_name__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCamelCase__ : Any = BatchSampler(range(21 ), batch_size=4, drop_last=__magic_name__ ) UpperCamelCase__ : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__, split_batches=__magic_name__, even_batches=__magic_name__ ) UpperCamelCase__ : Tuple = BatchSampler(range(21 ), batch_size=4, drop_last=__magic_name__ ) UpperCamelCase__ : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__magic_name__, __magic_name__, split_batches=__magic_name__, even_batches=__magic_name__ ) # Check the shards when the dataset is very small. UpperCamelCase__ : str = BatchSampler(range(2 ), batch_size=4, drop_last=__magic_name__ ) UpperCamelCase__ : Optional[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(__magic_name__, __magic_name__, split_batches=__magic_name__, even_batches=__magic_name__ ) UpperCamelCase__ : Dict = BatchSampler(range(2 ), batch_size=4, drop_last=__magic_name__ ) UpperCamelCase__ : int = [[], []] self.check_batch_sampler_shards(__magic_name__, __magic_name__, split_batches=__magic_name__, even_batches=__magic_name__ ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCamelCase__ : Optional[Any] = [BatchSamplerShard(__magic_name__, 2, __magic_name__, even_batches=__magic_name__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ), 3 ) self.assertEqual(len(batch_sampler_shards[1] ), 2 ) self.assertListEqual(list(batch_sampler_shards[0] ), [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ), [[3, 4], [9, 10, 11]] ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__=False, __magic_name__=2, __magic_name__=False ) -> str: """simple docstring""" random.seed(__magic_name__ ) UpperCamelCase__ : Dict = list(__magic_name__ ) UpperCamelCase__ : Optional[int] = [ IterableDatasetShard( __magic_name__, batch_size=__magic_name__, drop_last=__magic_name__, num_processes=__magic_name__, process_index=__magic_name__, split_batches=__magic_name__, ) for i in range(__magic_name__ ) ] UpperCamelCase__ : str = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__magic_name__ ) iterable_dataset_lists.append(list(__magic_name__ ) ) UpperCamelCase__ : Dict = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCamelCase__ : Dict = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__magic_name__ ), len(__magic_name__ ) ) self.assertTrue(len(__magic_name__ ) % shard_batch_size == 0 ) UpperCamelCase__ : int = [] for idx in range(0, len(__magic_name__ ), __magic_name__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__magic_name__ ) < len(__magic_name__ ): reference += reference self.assertListEqual(__magic_name__, reference[: len(__magic_name__ )] ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : List[Any] = 42 UpperCamelCase__ : Union[str, Any] = RandomIterableDataset() self.check_iterable_dataset_shards(__magic_name__, __magic_name__, batch_size=4, drop_last=__magic_name__, split_batches=__magic_name__ ) self.check_iterable_dataset_shards(__magic_name__, __magic_name__, batch_size=4, drop_last=__magic_name__, split_batches=__magic_name__ ) self.check_iterable_dataset_shards(__magic_name__, __magic_name__, batch_size=4, drop_last=__magic_name__, split_batches=__magic_name__ ) self.check_iterable_dataset_shards(__magic_name__, __magic_name__, batch_size=4, drop_last=__magic_name__, split_batches=__magic_name__ ) # Edge case with a very small dataset UpperCamelCase__ : Union[str, Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__magic_name__, __magic_name__, batch_size=4, drop_last=__magic_name__, split_batches=__magic_name__ ) self.check_iterable_dataset_shards(__magic_name__, __magic_name__, batch_size=4, drop_last=__magic_name__, split_batches=__magic_name__ ) self.check_iterable_dataset_shards(__magic_name__, __magic_name__, batch_size=4, drop_last=__magic_name__, split_batches=__magic_name__ ) self.check_iterable_dataset_shards(__magic_name__, __magic_name__, batch_size=4, drop_last=__magic_name__, split_batches=__magic_name__ ) def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : List[str] = BatchSampler(range(16 ), batch_size=4, drop_last=__magic_name__ ) UpperCamelCase__ : List[str] = SkipBatchSampler(__magic_name__, 2 ) self.assertListEqual(list(__magic_name__ ), [[8, 9, 10, 11], [12, 13, 14, 15]] ) def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : List[str] = SkipDataLoader(list(range(16 ) ), batch_size=4, skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader], [[8, 9, 10, 11], [12, 13, 14, 15]] ) def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : Union[str, Any] = DataLoader(list(range(16 ) ), batch_size=4 ) UpperCamelCase__ : Dict = skip_first_batches(__magic_name__, num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader], [[8, 9, 10, 11], [12, 13, 14, 15]] ) def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Any = DataLoaderShard(list(range(16 ) ), batch_size=4 ) for idx, _ in enumerate(__magic_name__ ): self.assertEqual(dataloader.end_of_dataloader, idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__magic_name__ ): self.assertEqual(dataloader.end_of_dataloader, idx == 3 ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" Accelerator() UpperCamelCase__ : Tuple = DataLoaderDispatcher(range(16 ), batch_size=4 ) for idx, _ in enumerate(__magic_name__ ): self.assertEqual(dataloader.end_of_dataloader, idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__magic_name__ ): self.assertEqual(dataloader.end_of_dataloader, idx == 3 )
247
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError('iterations must be defined as integers' ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) __UpperCamelCase ='' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(SCREAMING_SNAKE_CASE__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
62
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case ) UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )] UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[str] ) -> Dict: UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case ) UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Tuple = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__snake_case ) == num_samples def A ( self : List[Any] ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : Any = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : int = num_samples * [prompt] UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Tuple = shard(__snake_case ) UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def A ( self : int ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : List[str] = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : int ) -> Any: UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) UpperCAmelCase : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[int] = jax.device_count() UpperCAmelCase : List[str] = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : str = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : int = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , ) UpperCAmelCase : Tuple = scheduler.create_state() UpperCAmelCase : Dict = scheduler_state UpperCAmelCase : str = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : int = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Any = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : str = replicate(__snake_case ) UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def A ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , ) UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[str] = shard(__snake_case ) UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , ) UpperCAmelCase : int = replicate(__snake_case ) UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[Any] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : int = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
0
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Tuple: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCAmelCase =flax_key_tuple[:-1] + ("""weight""",) _lowerCAmelCase =torch.permute(__UpperCamelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__UpperCamelCase ): # linear layer _lowerCAmelCase =flax_key_tuple[:-1] + ("""weight""",) _lowerCAmelCase =flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCAmelCase =flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: if "metadata" in layer: _lowerCAmelCase =layer.split("""metadata""" ) _lowerCAmelCase ="""""".join(split_layer[0] )[:-1] _lowerCAmelCase =[tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: _lowerCAmelCase =layer.split("""kvstore""" ) _lowerCAmelCase ="""""".join(split_layer[0] )[:-1] _lowerCAmelCase =[tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: _lowerCAmelCase =layer.split("""/""" ) _lowerCAmelCase ="""/""".join(split_layer[:-1] ) _lowerCAmelCase =(split_layer[-1],) if "kvstore/path" in layer: _lowerCAmelCase =F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: _lowerCAmelCase ="""file""" else: _lowerCAmelCase =checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Dict: _lowerCAmelCase =rename_keys(__UpperCamelCase ) _lowerCAmelCase ={} for k, v in current_block.items(): _lowerCAmelCase =v _lowerCAmelCase =new_current_block torch.save(__UpperCamelCase , __UpperCamelCase ) def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = WEIGHTS_NAME ) -> Tuple: _lowerCAmelCase =convert_file_size_to_int(__UpperCamelCase ) _lowerCAmelCase =[] _lowerCAmelCase ={} _lowerCAmelCase =0 _lowerCAmelCase =0 os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: _lowerCAmelCase =serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] _lowerCAmelCase =flatten_dict(__UpperCamelCase , sep="""/""" ) _lowerCAmelCase ={} for layer in checkpoint_info.keys(): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =get_key_and_tensorstore_dict( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if curr_real_layer_name in all_layers: _lowerCAmelCase =content else: _lowerCAmelCase ={split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCAmelCase =ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCAmelCase =torch.tensor(__UpperCamelCase ) _lowerCAmelCase =raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCAmelCase , _lowerCAmelCase =rename_base_flax_keys(tuple(key.split("""/""" ) ) , __UpperCamelCase ) _lowerCAmelCase ="""/""".join(__UpperCamelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCAmelCase =os.path.join( __UpperCamelCase , weights_name.replace(""".bin""" , F'''-{len(__UpperCamelCase )+1:05d}-of-???.bin''' ) ) rename_and_save_block(__UpperCamelCase , __UpperCamelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCAmelCase ={} _lowerCAmelCase =0 _lowerCAmelCase =raw_weights.to(getattr(__UpperCamelCase , __UpperCamelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCAmelCase =os.path.join(__UpperCamelCase , weights_name.replace(""".bin""" , F'''-{len(__UpperCamelCase )+1:05d}-of-???.bin''' ) ) rename_and_save_block(__UpperCamelCase , __UpperCamelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__UpperCamelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCAmelCase ={} _lowerCAmelCase ={} for idx, shard in enumerate(__UpperCamelCase ): _lowerCAmelCase =weights_name.replace( """.bin""" , F'''-{idx+1:05d}-of-{len(__UpperCamelCase ):05d}.bin''' ) # len(sharded_state_dicts):05d} _lowerCAmelCase =os.path.join(__UpperCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__UpperCamelCase , os.path.join(__UpperCamelCase , __UpperCamelCase ) ) _lowerCAmelCase =shard for key in shard: _lowerCAmelCase =shard_file # Add the metadata _lowerCAmelCase ={"""total_size""": total_size} _lowerCAmelCase ={"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(__UpperCamelCase , __UpperCamelCase ) , """w""" , encoding="""utf-8""" ) as f: _lowerCAmelCase =json.dumps(__UpperCamelCase , indent=2 , sort_keys=__UpperCamelCase ) + """\n""" f.write(__UpperCamelCase ) return metadata, index if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) __A = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _lowerCamelCase() -> Optional[Any]: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCAmelCase =SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) _lowerCAmelCase =SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) _lowerCAmelCase =TaTokenizer.from_pretrained("""t5-small""" ) _lowerCAmelCase ="""A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" _lowerCAmelCase =tokenizer(__UpperCamelCase , return_tensors="""pt""" ).input_ids _lowerCAmelCase =model.generate(__UpperCamelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
341
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: lowercase__: List[str] = a[left_index] lowercase__: Optional[int] = left_index + 1 for j in range(left_index + 1 , __UpperCAmelCase ): if a[j] < pivot: lowercase__, lowercase__: Optional[int] = a[i], a[j] i += 1 lowercase__, lowercase__: Optional[Any] = a[i - 1], a[left_index] return i - 1 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: if left < right: lowercase__: Optional[int] = random.randint(__UpperCAmelCase , right - 1 ) lowercase__, lowercase__: Dict = ( a[left], a[pivot], ) # switches the pivot with the left most bound lowercase__: List[str] = partition(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) quick_sort_random( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( __UpperCAmelCase , pivot_index + 1 , __UpperCAmelCase ) # recursive quicksort to the right of the pivot point def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: lowercase__: int = input('''Enter numbers separated by a comma:\n''' ).strip() lowercase__: Tuple = [int(__UpperCAmelCase ) for item in user_input.split(''',''' )] quick_sort_random(__UpperCAmelCase , 0 , len(__UpperCAmelCase ) ) print(__UpperCAmelCase ) if __name__ == "__main__": main()
177
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: if n == 1 or not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return 0 elif n == 2: return 1 else: lowercase__: List[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: lowercase__: Union[str, Any] = 0 lowercase__: List[Any] = 2 while digits < n: index += 1 lowercase__: Dict = len(str(fibonacci(__UpperCAmelCase ) ) ) return index def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 1_0_0_0 ) -> int: return fibonacci_digits_index(__UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
177
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase = 60_08_51_47_51_43) -> int: try: a = int(__UpperCamelCase) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int.") if n <= 0: raise ValueError("Parameter n must be greater than or equal to one.") a = 2 a = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 a = i while n % i == 0: a = n // i i += 1 return int(__UpperCamelCase) if __name__ == "__main__": print(F'{solution() = }')
180
from manim import * class a__ ( UpperCamelCase__ ): def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = Rectangle(height=0.5 , width=0.5 ) a = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) a = Rectangle(height=0.2_5 , width=0.2_5 ) a = [mem.copy() for i in range(6 )] a = [mem.copy() for i in range(6 )] a = VGroup(*A ).arrange(A , buff=0 ) a = VGroup(*A ).arrange(A , buff=0 ) a = VGroup(A , A ).arrange(A , buff=0 ) a = Text("CPU" , font_size=24 ) a = Group(A , A ).arrange(A , buff=0.5 , aligned_edge=A ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A ) a = [mem.copy() for i in range(4 )] a = VGroup(*A ).arrange(A , buff=0 ) a = Text("GPU" , font_size=24 ) a = Group(A , A ).arrange(A , buff=0.5 , aligned_edge=A ) gpu.move_to([-1, -1, 0] ) self.add(A ) a = [mem.copy() for i in range(6 )] a = VGroup(*A ).arrange(A , buff=0 ) a = Text("Model" , font_size=24 ) a = Group(A , A ).arrange(A , buff=0.5 , aligned_edge=A ) model.move_to([3, -1.0, 0] ) self.add(A ) a = [] a = [] for i, rect in enumerate(A ): a = fill.copy().set_fill(A , opacity=0.8 ) target.move_to(A ) model_arr.append(A ) a = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(A , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A ) self.add(*A , *A ) a = [meta_mem.copy() for i in range(6 )] a = [meta_mem.copy() for i in range(6 )] a = VGroup(*A ).arrange(A , buff=0 ) a = VGroup(*A ).arrange(A , buff=0 ) a = VGroup(A , A ).arrange(A , buff=0 ) a = Text("Disk" , font_size=24 ) a = Group(A , A ).arrange(A , buff=0.5 , aligned_edge=A ) disk.move_to([-4, -1.2_5, 0] ) self.add(A , A ) a = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A , A ) a = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(A , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A ) a = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A ) ) a = Square(0.3 ) input.set_fill(A , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A , buff=0.5 ) self.play(Write(A ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A , buff=0.0_2 ) self.play(MoveToTarget(A ) ) self.play(FadeOut(A ) ) a = Arrow(start=A , end=A , color=A , buff=0.5 ) a.next_to(model_arr[0].get_left() , A , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) a = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A , run_time=3 ) ) a = {"run_time": 1, "fade_in": True, "fade_out": True, "buff": 0.0_2} self.play( Write(A ) , Circumscribe(model_arr[0] , color=A , **A ) , Circumscribe(model_cpu_arr[0] , color=A , **A ) , Circumscribe(gpu_rect[0] , color=A , **A ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) a = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.0_2 , A , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.0_2 ) a = AnimationGroup( FadeOut(A , run_time=0.5 ) , MoveToTarget(A , run_time=0.5 ) , FadeIn(A , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: a = 0.7 self.play( Circumscribe(model_arr[i] , **A ) , Circumscribe(cpu_left_col_base[i] , **A ) , Circumscribe(cpu_left_col_base[i + 1] , color=A , **A ) , Circumscribe(gpu_rect[0] , color=A , **A ) , Circumscribe(model_arr[i + 1] , color=A , **A ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.0_2 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A , **A ) , Circumscribe(cpu_left_col_base[-1] , color=A , **A ) , Circumscribe(gpu_rect[0] , color=A , **A ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) a = a_c a = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.0_2 , buff=0.5 ) self.play( FadeOut(A ) , FadeOut(A , run_time=0.5 ) , ) a = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A , run_time=3 ) , MoveToTarget(A ) ) self.wait()
180
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["torch", "transformers", "onnx"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["torch", "transformers", "onnx"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["torch", "transformers", "onnx"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["torch", "transformers", "onnx"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["torch", "transformers", "onnx"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["torch", "transformers", "onnx"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __A ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
254
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } _UpperCamelCase = { '''unc-nlp/lxmert-base-uncased''': 512, } _UpperCamelCase = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[str] = LxmertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Dict: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : Any = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : Optional[Any] = do_lower_case __UpperCAmelCase : Optional[Any] = strip_accents __UpperCAmelCase : str = tokenize_chinese_chars __UpperCAmelCase : str = normalizer_class(**__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = do_lower_case def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
254
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
351
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = 42 class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , UpperCAmelCase = 16 , UpperCAmelCase = 88 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = True , UpperCAmelCase = True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase_ = num_attention_heads lowercase_ = attention_head_dim lowercase_ = num_attention_heads * attention_head_dim lowercase_ = in_channels lowercase_ = torch.nn.GroupNorm(num_groups=UpperCAmelCase , num_channels=UpperCAmelCase , eps=1e-6 , affine=UpperCAmelCase ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) # 3. Define transformers blocks lowercase_ = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dropout=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , activation_fn=UpperCAmelCase , attention_bias=UpperCAmelCase , double_self_attention=UpperCAmelCase , norm_elementwise_affine=UpperCAmelCase , ) for d in range(UpperCAmelCase ) ] ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase = True , ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = hidden_states.shape lowercase_ = batch_frames // num_frames lowercase_ = hidden_states lowercase_ = hidden_states[None, :].reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowercase_ = self.norm(UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase , UpperCAmelCase ) lowercase_ = self.proj_in(UpperCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowercase_ = block( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , class_labels=UpperCAmelCase , ) # 3. Output lowercase_ = self.proj_out(UpperCAmelCase ) lowercase_ = ( hidden_states[None, None, :] .reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowercase_ = hidden_states.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase )
297
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _lowerCAmelCase = '''\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n''' class lowerCAmelCase_( A_ ): '''simple docstring''' @staticmethod def UpperCAmelCase_ ( __UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Optional[Any] = parser.add_parser( """convert""" ,help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" ,) train_parser.add_argument("""--model_type""" ,type=snake_case_ ,required=snake_case_ ,help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" ,type=snake_case_ ,required=snake_case_ ,help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" ,type=snake_case_ ,required=snake_case_ ,help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" ,type=snake_case_ ,default="""""" ,help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" ,type=snake_case_ ,default=snake_case_ ,help="""Optional fine-tuning task name if the TF model was a finetuned model.""" ,) train_parser.set_defaults(func=snake_case_ ) def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,*__UpperCAmelCase ,) -> List[str]: lowerCAmelCase__ : int = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(F"""Loading model {model_type}""" ) lowerCAmelCase__ : List[Any] = model_type lowerCAmelCase__ : List[Any] = tf_checkpoint lowerCAmelCase__ : Tuple = pytorch_dump_output lowerCAmelCase__ : Optional[Any] = config lowerCAmelCase__ : Tuple = finetuning_task_name def UpperCAmelCase_ ( self ) -> Optional[Any]: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(snake_case_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case_ ) if "ckpt" in self._tf_checkpoint.lower(): lowerCAmelCase__ : str = self._tf_checkpoint lowerCAmelCase__ : List[str] = """""" else: lowerCAmelCase__ : int = self._tf_checkpoint lowerCAmelCase__ : List[Any] = """""" convert_transfo_xl_checkpoint_to_pytorch( snake_case_ ,self._config ,self._pytorch_dump_output ,snake_case_ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case_ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case_ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint ,self._config ,self._pytorch_dump_output ,self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
37
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> List[Any]: A__ = bnb_quantization_config.load_in_abit A__ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed." ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed." ) A__ = [] # custom device map if isinstance(lowercase_ , lowercase_ ) and len(device_map.keys() ) > 1: A__ = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: A__ = get_keys_to_not_convert(lowercase_ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowercase_ ) A__ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: A__ = [] A__ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowercase_ ) # compatibility with peft A__ = load_in_abit A__ = load_in_abit A__ = get_parameter_device(lowercase_ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager." ) A__ = replace_with_bnb_layers(lowercase_ , lowercase_ , modules_to_not_convert=lowercase_ ) # convert param to the right dtype A__ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: A__ = name.replace(".weight" , "" ).replace(".bias" , "" ) A__ = getattr(lowercase_ , lowercase_ , lowercase_ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowercase_ ): param.to(lowercase_ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" "We move the model to cuda." ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): A__ = replace_with_bnb_layers( lowercase_ , lowercase_ , modules_to_not_convert=lowercase_ ) A__ = get_quantized_model_device_map( lowercase_ , lowercase_ , lowercase_ , max_memory=lowercase_ , no_split_module_classes=lowercase_ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): A__ = True A__ = any(x in list(device_map.values() ) for x in ["cpu", "disk"] ) load_checkpoint_in_model( lowercase_ , lowercase_ , lowercase_ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowercase_ , offload_state_dict=lowercase_ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowercase_ , device_map=lowercase_ , offload_dir=lowercase_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[str]: if device_map is None: if torch.cuda.is_available(): A__ = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." ) if isinstance(lowercase_ , lowercase_ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'." ) A__ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) A__ = {} A__ = special_dtypes A__ = no_split_module_classes A__ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": A__ = get_balanced_memory( lowercase_ , low_zero=(device_map == "balanced_low_0") , max_memory=lowercase_ , **lowercase_ , ) A__ = max_memory A__ = infer_auto_device_map(lowercase_ , **lowercase_ ) if isinstance(lowercase_ , lowercase_ ): # check if don't have any quantized module on the cpu A__ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules A__ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " ) else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" ) del device_map_without_some_modules return device_map def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ) -> Optional[int]: if modules_to_not_convert is None: A__ = [] A__, A__ = _replace_with_bnb_layers( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , ) -> Optional[int]: A__ = False for name, module in model.named_children(): if current_key_name is None: A__ = [] current_key_name.append(lowercase_ ) if isinstance(lowercase_ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` A__ = ".".join(lowercase_ ) A__ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: A__ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: A__ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowercase_ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: A__ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False" ) A__ = module.weight.data if module.bias is not None: A__ = module.bias.data bnb_module.requires_grad_(lowercase_ ) setattr(lowercase_ , lowercase_ , lowercase_ ) A__ = True if len(list(module.children() ) ) > 0: A__, A__ = _replace_with_bnb_layers( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) A__ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: # Create a copy of the model with init_empty_weights(): A__ = deepcopy(lowercase_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` A__ = find_tied_parameters(lowercase_ ) # For compatibility with Accelerate < 0.18 if isinstance(lowercase_ , lowercase_ ): A__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: A__ = sum(lowercase_ , [] ) A__ = len(lowercase_ ) > 0 # Check if it is a base model A__ = False if hasattr(lowercase_ , "base_model_prefix" ): A__ = not hasattr(lowercase_ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head A__ = list(model.named_children() ) A__ = [list_modules[-1][0]] # add last module together with tied weights A__ = set(lowercase_ ) - set(lowercase_ ) A__ = list(set(lowercase_ ) ) + list(lowercase_ ) # remove ".weight" from the keys A__ = [".weight", ".bias"] A__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: A__ = name.replace(lowercase_ , "" ) filtered_module_names.append(lowercase_ ) return filtered_module_names def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: for m in model.modules(): if isinstance(lowercase_ , bnb.nn.Linearabit ): return True return False def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]: return next(parameter.parameters() ).device def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(lowercase_ , lowercase_ , 0 , dtype=lowercase_ , value=lowercase_ ) A__ = param_name A__ = model if "." in tensor_name: A__ = tensor_name.split("." ) for split in splits[:-1]: A__ = getattr(lowercase_ , lowercase_ ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) A__ = new_module A__ = splits[-1] # offload weights A__ = False offload_weight(module._parameters[tensor_name] , lowercase_ , lowercase_ , index=lowercase_ ) if hasattr(module._parameters[tensor_name] , "SCB" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB" ) , lowercase_ , index=lowercase_ , ) else: offload_weight(lowercase_ , lowercase_ , lowercase_ , index=lowercase_ ) offload_weight(lowercase_ , param_name.replace("weight" , "SCB" ) , lowercase_ , index=lowercase_ ) set_module_tensor_to_device(lowercase_ , lowercase_ , "meta" , dtype=lowercase_ , value=torch.empty(*param.size() ) )
247
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "ctrl" _UpperCAmelCase :int = ["past_key_values"] _UpperCAmelCase :Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=246534 , _UpperCAmelCase=256 , _UpperCAmelCase=1280 , _UpperCAmelCase=8192 , _UpperCAmelCase=48 , _UpperCAmelCase=16 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , **_UpperCAmelCase , ): lowercase__: Union[str, Any] = vocab_size lowercase__: Optional[int] = n_positions lowercase__: Optional[int] = n_embd lowercase__: Any = n_layer lowercase__: Any = n_head lowercase__: int = dff lowercase__: Dict = resid_pdrop lowercase__: Any = embd_pdrop lowercase__: Any = layer_norm_epsilon lowercase__: Optional[int] = initializer_range lowercase__: Dict = use_cache super().__init__(**_UpperCAmelCase )
2
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "beit" def __init__( self , _UpperCAmelCase=8192 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=[3, 5, 7, 11] , _UpperCAmelCase=[1, 2, 3, 6] , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=256 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Union[str, Any] = vocab_size lowercase__: List[Any] = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: int = intermediate_size lowercase__: List[str] = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: List[str] = initializer_range lowercase__: Optional[int] = layer_norm_eps lowercase__: int = image_size lowercase__: Tuple = patch_size lowercase__: int = num_channels lowercase__: Optional[Any] = use_mask_token lowercase__: List[Any] = use_absolute_position_embeddings lowercase__: Optional[int] = use_relative_position_bias lowercase__: Optional[int] = use_shared_relative_position_bias lowercase__: Optional[Any] = layer_scale_init_value lowercase__: Union[str, Any] = drop_path_rate lowercase__: Tuple = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__: Tuple = out_indices lowercase__: Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__: List[str] = use_auxiliary_head lowercase__: Optional[Any] = auxiliary_loss_weight lowercase__: str = auxiliary_channels lowercase__: List[str] = auxiliary_num_convs lowercase__: Tuple = auxiliary_concat_input lowercase__: Dict = semantic_loss_ignore_index class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ): return 1e-4
2
1
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _snake_case = flax_key_tuple[:-1] + ("""weight""",) _snake_case = torch.permute(_SCREAMING_SNAKE_CASE , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_SCREAMING_SNAKE_CASE ): # linear layer _snake_case = flax_key_tuple[:-1] + ("""weight""",) _snake_case = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _snake_case = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if "metadata" in layer: _snake_case = layer.split("""metadata""" ) _snake_case = """""".join(split_layer[0] )[:-1] _snake_case = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: _snake_case = layer.split("""kvstore""" ) _snake_case = """""".join(split_layer[0] )[:-1] _snake_case = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: _snake_case = layer.split("""/""" ) _snake_case = """/""".join(split_layer[:-1] ) _snake_case = (split_layer[-1],) if "kvstore/path" in layer: _snake_case = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: _snake_case = """file""" else: _snake_case = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = rename_keys(_SCREAMING_SNAKE_CASE ) _snake_case = {} for k, v in current_block.items(): _snake_case = v _snake_case = new_current_block torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = WEIGHTS_NAME ): _snake_case = convert_file_size_to_int(_SCREAMING_SNAKE_CASE ) _snake_case = [] _snake_case = {} _snake_case = 0 _snake_case = 0 os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: _snake_case = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] _snake_case = flatten_dict(_SCREAMING_SNAKE_CASE , sep="""/""" ) _snake_case = {} for layer in checkpoint_info.keys(): _snake_case, _snake_case, _snake_case = get_key_and_tensorstore_dict( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if curr_real_layer_name in all_layers: _snake_case = content else: _snake_case = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _snake_case = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _snake_case = torch.tensor(_SCREAMING_SNAKE_CASE ) _snake_case = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _snake_case, _snake_case = rename_base_flax_keys(tuple(key.split("""/""" ) ) , _SCREAMING_SNAKE_CASE ) _snake_case = """/""".join(_SCREAMING_SNAKE_CASE ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _snake_case = os.path.join( _SCREAMING_SNAKE_CASE , weights_name.replace(""".bin""" , f"""-{len(_SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin""" ) ) rename_and_save_block(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(current_block.keys() ) del current_block _snake_case = {} _snake_case = 0 _snake_case = raw_weights.to(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) current_block_size += weight_size total_size += weight_size # Add the last block _snake_case = os.path.join(_SCREAMING_SNAKE_CASE , weights_name.replace(""".bin""" , f"""-{len(_SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin""" ) ) rename_and_save_block(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_SCREAMING_SNAKE_CASE ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _snake_case = {} _snake_case = {} for idx, shard in enumerate(_SCREAMING_SNAKE_CASE ): _snake_case = weights_name.replace( """.bin""" , f"""-{idx+1:05d}-of-{len(_SCREAMING_SNAKE_CASE ):05d}.bin""" ) # len(sharded_state_dicts):05d} _snake_case = os.path.join(_SCREAMING_SNAKE_CASE , weights_name.replace(""".bin""" , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _snake_case = shard for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {"""total_size""": total_size} _snake_case = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , """w""" , encoding="""utf-8""" ) as f: _snake_case = json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + """\n""" f.write(_SCREAMING_SNAKE_CASE ) return metadata, index if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) __lowerCAmelCase = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __SCREAMING_SNAKE_CASE ( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _snake_case = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) _snake_case = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) _snake_case = TaTokenizer.from_pretrained("""t5-small""" ) _snake_case = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" _snake_case = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).input_ids _snake_case = model.generate(_SCREAMING_SNAKE_CASE , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
341
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=10 , UpperCAmelCase=3 , UpperCAmelCase=32 * 4 , UpperCAmelCase=32 * 6 , UpperCAmelCase=4 , UpperCAmelCase=32 , ) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = mask_feature_size def lowercase (self ) -> str: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCAmelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase (self ) -> Tuple: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase (self ) -> Optional[Any]: _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.prepare_config_and_inputs() _snake_case = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , config.decoder_config.decoder_layers ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]: with torch.no_grad(): _snake_case = MaskFormerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase , output_hidden_states=UpperCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase , UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: _snake_case = MaskFormerForInstanceSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() def comm_check_on_output(UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) _snake_case = model( pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCAmelCase_ = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> int: _snake_case = MaskFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def lowercase (self ) -> int: self.config_tester.run_common_tests() def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def lowercase (self ) -> Optional[int]: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def lowercase (self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> Tuple: pass def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @slow def lowercase (self ) -> int: for model_name in ["facebook/maskformer-swin-small-coco"]: _snake_case = MaskFormerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { """pixel_values""": torch.randn((2, 3, *size) , device=UpperCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) , device=UpperCAmelCase ), """class_labels""": torch.zeros(2 , 10 , device=UpperCAmelCase ).long(), } _snake_case = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowercase (self ) -> Dict: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase (self ) -> Tuple: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ).loss loss.backward() def lowercase (self ) -> List[str]: # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase = 1E-4 def __SCREAMING_SNAKE_CASE ( ): _snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase (self ) -> Optional[int]: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def lowercase (self ) -> str: _snake_case = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(UpperCAmelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[str]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0], [3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0], [1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0], ] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[Any]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> Tuple: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) _snake_case = inputs["""pixel_values"""].to(UpperCAmelCase ) _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""mask_labels"""]] _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
341
1
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _A : Union[str, Any] = logging.getLogger(__name__) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: # save results if os.path.exists(__UpperCAmelCase ): if os.path.exists(os.path.join(__UpperCAmelCase , """config.json""" ) ) and os.path.isfile( os.path.join(__UpperCAmelCase , """config.json""" ) ): os.remove(os.path.join(__UpperCAmelCase , """config.json""" ) ) if os.path.exists(os.path.join(__UpperCAmelCase , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(__UpperCAmelCase , """pytorch_model.bin""" ) ): os.remove(os.path.join(__UpperCAmelCase , """pytorch_model.bin""" ) ) else: os.makedirs(__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: lowerCAmelCase__ : int = 2 if unlogit: lowerCAmelCase__ : Union[str, Any] = torch.pow(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : str = p * torch.log(__UpperCAmelCase ) lowerCAmelCase__ : Dict = 0 return -plogp.sum(dim=-1 ) def lowercase_ ( __UpperCAmelCase ) -> Optional[Any]: logger.info("""lv, h >\t""" + """\t""".join(f"""{x + 1}""" for x in range(len(__UpperCAmelCase ) ) ) ) for row in range(len(__UpperCAmelCase ) ): if tensor.dtype != torch.long: logger.info(f"""layer {row + 1}:\t""" + """\t""".join(f"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(f"""layer {row + 1}:\t""" + """\t""".join(f"""{x:d}""" for x in tensor[row].cpu().data ) ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> str: lowerCAmelCase__ : int = model.config.num_hidden_layers, model.config.num_attention_heads lowerCAmelCase__ : List[str] = torch.zeros(__UpperCAmelCase , __UpperCAmelCase ).to(args.device ) lowerCAmelCase__ : List[Any] = torch.zeros(__UpperCAmelCase , __UpperCAmelCase ).to(args.device ) if head_mask is None: lowerCAmelCase__ : Any = torch.ones(__UpperCAmelCase , __UpperCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__UpperCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowerCAmelCase__ : int = None lowerCAmelCase__ : Optional[int] = 0.0 lowerCAmelCase__ : Optional[Any] = 0.0 for step, inputs in enumerate(tqdm(__UpperCAmelCase , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): lowerCAmelCase__ : Tuple = tuple(t.to(args.device ) for t in inputs ) (lowerCAmelCase__ ) : List[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowerCAmelCase__ : List[Any] = model(__UpperCAmelCase , labels=__UpperCAmelCase , head_mask=__UpperCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowerCAmelCase__ : Optional[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__UpperCAmelCase ): lowerCAmelCase__ : int = entropy(attn.detach() , __UpperCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__UpperCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowerCAmelCase__ : Any = 2 lowerCAmelCase__ : Any = torch.pow(torch.pow(__UpperCAmelCase , __UpperCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: lowerCAmelCase__ : int = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(__UpperCAmelCase ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(__UpperCAmelCase ) logger.info("""Head ranked by importance scores""" ) lowerCAmelCase__ : Any = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowerCAmelCase__ : List[Any] = torch.arange( head_importance.numel() , device=args.device ) lowerCAmelCase__ : int = head_ranks.view_as(__UpperCAmelCase ) print_ad_tensor(__UpperCAmelCase ) return attn_entropy, head_importance, total_loss def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : List[Any] = compute_heads_importance(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , compute_entropy=__UpperCAmelCase ) lowerCAmelCase__ : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , __UpperCAmelCase , original_score * args.masking_threshold ) lowerCAmelCase__ : Union[str, Any] = torch.ones_like(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowerCAmelCase__ : Union[str, Any] = original_score while current_score >= original_score * args.masking_threshold: lowerCAmelCase__ : Dict = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowerCAmelCase__ : List[Any] = float("""Inf""" ) lowerCAmelCase__ : List[str] = head_importance.view(-1 ).sort()[1] if len(__UpperCAmelCase ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads lowerCAmelCase__ : Union[str, Any] = current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) lowerCAmelCase__ : Any = new_head_mask.view(-1 ) lowerCAmelCase__ : Optional[int] = 0.0 lowerCAmelCase__ : Optional[int] = new_head_mask.view_as(__UpperCAmelCase ) lowerCAmelCase__ : str = new_head_mask.clone().detach() print_ad_tensor(__UpperCAmelCase ) # Compute metric and head importance again lowerCAmelCase__ : Optional[Any] = compute_heads_importance( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , compute_entropy=__UpperCAmelCase , head_mask=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = 1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , __UpperCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("""Final head mask""" ) print_ad_tensor(__UpperCAmelCase ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: lowerCAmelCase__ : Any = datetime.now() lowerCAmelCase__ : int = compute_heads_importance( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , compute_entropy=__UpperCAmelCase , compute_importance=__UpperCAmelCase , head_mask=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = 1 / loss lowerCAmelCase__ : Optional[Any] = datetime.now() - before_time lowerCAmelCase__ : str = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__UpperCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : List[Any] = [ v, ] assert sum(len(__UpperCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__UpperCAmelCase ) lowerCAmelCase__ : Dict = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ : Any = datetime.now() lowerCAmelCase__ : Union[str, Any] = compute_heads_importance( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , compute_entropy=__UpperCAmelCase , compute_importance=__UpperCAmelCase , head_mask=__UpperCAmelCase , actually_pruned=__UpperCAmelCase , ) lowerCAmelCase__ : Dict = 1 / loss lowerCAmelCase__ : Dict = datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , __UpperCAmelCase , __UpperCAmelCase , pruned_num_params / original_num_params * 100 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , __UpperCAmelCase , __UpperCAmelCase ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 100 ) save_model(__UpperCAmelCase , args.output_dir ) def lowercase_ ( ) -> Optional[int]: lowerCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=__UpperCAmelCase , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=__UpperCAmelCase , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=__UpperCAmelCase , type=__UpperCAmelCase , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=__UpperCAmelCase , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=__UpperCAmelCase , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=__UpperCAmelCase , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=__UpperCAmelCase , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=__UpperCAmelCase , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=__UpperCAmelCase , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=__UpperCAmelCase , default=42 ) parser.add_argument("""--local_rank""" , type=__UpperCAmelCase , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=__UpperCAmelCase , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=__UpperCAmelCase , default="""""" , help="""Can be used for distant debugging.""" ) lowerCAmelCase__ : Union[str, Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__UpperCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowerCAmelCase__ : Tuple = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) lowerCAmelCase__ : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowerCAmelCase__ : Optional[Any] = torch.device("""cuda""" , args.local_rank ) lowerCAmelCase__ : Dict = 1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowerCAmelCase__ : Dict = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowerCAmelCase__ : List[str] = nn.parallel.DistributedDataParallel( __UpperCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__UpperCAmelCase ) elif args.n_gpu > 1: lowerCAmelCase__ : List[str] = nn.DataParallel(__UpperCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__UpperCAmelCase ) torch.save(__UpperCAmelCase , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , __UpperCAmelCase ) # Prepare dataset lowerCAmelCase__ : int = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowerCAmelCase__ : Any = (torch.from_numpy(__UpperCAmelCase ),) lowerCAmelCase__ : List[str] = TensorDataset(*__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = RandomSampler(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = DataLoader(__UpperCAmelCase , sampler=__UpperCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowerCAmelCase__ : Optional[int] = mask_heads(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) prune_heads(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": main()
370
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _A = """base_with_context""" def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) lowerCAmelCase__ : int = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): lowerCAmelCase__ : str = weights[f"""layers_{lyr_num}"""] lowerCAmelCase__ : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : str = ly_weight["""attention"""] lowerCAmelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowerCAmelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowerCAmelCase__ : int = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Dict = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[Any] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): lowerCAmelCase__ : int = weights[f"""layers_{lyr_num}"""] lowerCAmelCase__ : Any = ly_weight["""attention"""] lowerCAmelCase__ : int = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowerCAmelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowerCAmelCase__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowerCAmelCase__ : Any = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : Any = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) lowerCAmelCase__ : Any = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) lowerCAmelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCAmelCase ) lowerCAmelCase__ : Dict = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowerCAmelCase__ : List[Any] = weights[f"""layers_{lyr_num}"""] lowerCAmelCase__ : Tuple = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) lowerCAmelCase__ : Tuple = ly_weight["""self_attention"""] lowerCAmelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowerCAmelCase__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[Any] = ly_weight["""MultiHeadDotProductAttention_0"""] lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowerCAmelCase__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowerCAmelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : Dict = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) lowerCAmelCase__ : int = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) lowerCAmelCase__ : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) lowerCAmelCase__ : str = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def lowercase_ ( __UpperCAmelCase ) -> str: lowerCAmelCase__ : Optional[int] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowerCAmelCase__ : Optional[int] = jnp.tree_util.tree_map(onp.array , __UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] lowerCAmelCase__ : Dict = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) lowerCAmelCase__ : Tuple = inference.parse_training_gin_file(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : Any = inference.InferenceModel(args.checkpoint_path , __UpperCAmelCase ) lowerCAmelCase__ : List[Any] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) lowerCAmelCase__ : List[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) lowerCAmelCase__ : List[str] = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) lowerCAmelCase__ : Optional[int] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowerCAmelCase__ : Optional[Any] = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , __UpperCAmelCase ) lowerCAmelCase__ : List[str] = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , __UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , __UpperCAmelCase ) lowerCAmelCase__ : Any = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) lowerCAmelCase__ : Optional[Any] = SpectrogramDiffusionPipeline( notes_encoder=__UpperCAmelCase , continuous_encoder=__UpperCAmelCase , decoder=__UpperCAmelCase , scheduler=__UpperCAmelCase , melgan=__UpperCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=f"""{MODEL}/checkpoint_500000""", type=str, required=False, help="""Path to the original jax model checkpoint.""", ) _A = parser.parse_args() main(args)
212
0
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _SCREAMING_SNAKE_CASE = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def snake_case ( snake_case__ :int , snake_case__ :Union[str, Any]=None) -> int: require_version(deps[pkg] , snake_case__)
180
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: _A = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() _A = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } _A = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } _A = tempfile.mkdtemp() _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A = os.path.join(self.tmpdirname , lowerCAmelCase_ ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) # load decoder from hub _A = """hf-internal-testing/ngram-beam-search-decoder""" def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Tuple: _A = self.add_kwargs_tokens_map.copy() kwargs.update(lowerCAmelCase_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Any: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Any: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> Tuple: _A = self.get_tokenizer() _A = self.get_feature_extractor() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) _A = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _A = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCAmelCase ( self ) -> Optional[int]: _A = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(lowerCAmelCase_ , """include""" ): WavaVecaProcessorWithLM( tokenizer=lowerCAmelCase_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCAmelCase ( self ) -> Any: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = floats_list((3, 10_00) ) _A = feature_extractor(lowerCAmelCase_ , return_tensors="""np""" ) _A = processor(lowerCAmelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self ) -> Any: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = """This is a test string""" _A = processor(text=lowerCAmelCase_ ) _A = tokenizer(lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self , lowerCAmelCase_=(2, 10, 16) , lowerCAmelCase_=77 ) -> Tuple: np.random.seed(lowerCAmelCase_ ) return np.random.rand(*lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _A = processor.decode(lowerCAmelCase_ ) _A = decoder.decode_beams(lowerCAmelCase_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _A = processor.batch_decode(lowerCAmelCase_ ) else: with get_context(lowerCAmelCase_ ).Pool() as pool: _A = processor.batch_decode(lowerCAmelCase_ , lowerCAmelCase_ ) _A = list(lowerCAmelCase_ ) with get_context("""fork""" ).Pool() as p: _A = decoder.decode_beams_batch(lowerCAmelCase_ , lowerCAmelCase_ ) _A , _A , _A = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.logit_score ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.lm_score ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits() _A = 15 _A = -20.0 _A = -4.0 _A = processor.batch_decode( lowerCAmelCase_ , beam_width=lowerCAmelCase_ , beam_prune_logp=lowerCAmelCase_ , token_min_logp=lowerCAmelCase_ , ) _A = decoded_processor_out.text _A = list(lowerCAmelCase_ ) with get_context("""fork""" ).Pool() as pool: _A = decoder.decode_beams_batch( lowerCAmelCase_ , lowerCAmelCase_ , beam_width=lowerCAmelCase_ , beam_prune_logp=lowerCAmelCase_ , token_min_logp=lowerCAmelCase_ , ) _A = [d[0][0] for d in decoded_decoder_out] _A = [d[0][2] for d in decoded_decoder_out] _A = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , lowerCAmelCase_ ) self.assertTrue(np.array_equal(lowerCAmelCase_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , lowerCAmelCase_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(lowerCAmelCase_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , lowerCAmelCase_ , atol=1E-3 ) ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _A = self._get_dummy_logits() _A = 2.0 _A = 5.0 _A = -20.0 _A = True _A = processor.batch_decode( lowerCAmelCase_ , alpha=lowerCAmelCase_ , beta=lowerCAmelCase_ , unk_score_offset=lowerCAmelCase_ , lm_score_boundary=lowerCAmelCase_ , ) _A = decoded_processor_out.text _A = list(lowerCAmelCase_ ) decoder.reset_params( alpha=lowerCAmelCase_ , beta=lowerCAmelCase_ , unk_score_offset=lowerCAmelCase_ , lm_score_boundary=lowerCAmelCase_ , ) with get_context("""fork""" ).Pool() as pool: _A = decoder.decode_beams_batch( lowerCAmelCase_ , lowerCAmelCase_ , ) _A = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , lowerCAmelCase_ ) _A = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _A = os.listdir(lowerCAmelCase_ ) _A = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: _A = snapshot_download("""hf-internal-testing/processor_with_lm""" ) _A = WavaVecaProcessorWithLM.from_pretrained(lowerCAmelCase_ ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _A = os.listdir(lowerCAmelCase_ ) _A = os.listdir(lowerCAmelCase_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = floats_list((3, 10_00) ) _A = processor_wavaveca(lowerCAmelCase_ , return_tensors="""np""" ) _A = processor_auto(lowerCAmelCase_ , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _A = self._get_dummy_logits() _A = processor_wavaveca.batch_decode(lowerCAmelCase_ ) _A = processor_auto.batch_decode(lowerCAmelCase_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _A = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase ( self ) -> Any: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = self._get_dummy_logits()[0] _A = processor.decode(lowerCAmelCase_ , output_word_offsets=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def UpperCAmelCase ( self ) -> Any: _A = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _A = self._get_dummy_logits() _A = processor.batch_decode(lowerCAmelCase_ , output_word_offsets=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(lowerCAmelCase_ , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCAmelCase ( self ) -> Any: import torch _A = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=lowerCAmelCase_ ) _A = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) _A = iter(lowerCAmelCase_ ) _A = next(lowerCAmelCase_ ) _A = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) _A = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _A = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): _A = model(lowerCAmelCase_ ).logits.cpu().numpy() _A = processor.decode(logits[0] , output_word_offsets=lowerCAmelCase_ ) _A = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _A = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] _A = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(lowerCAmelCase_ , """word""" ) ) , lowerCAmelCase_ ) self.assertEqual(""" """.join(self.get_from_offsets(lowerCAmelCase_ , """word""" ) ) , output.text ) # output times _A = torch.tensor(self.get_from_offsets(lowerCAmelCase_ , """start_time""" ) ) _A = torch.tensor(self.get_from_offsets(lowerCAmelCase_ , """end_time""" ) ) # fmt: off _A = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _A = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=0.01 ) ) self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=0.01 ) )
180
1
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __UpperCAmelCase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = StableUnCLIPPipeline __lowerCAmelCase = TEXT_TO_IMAGE_PARAMS __lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS __lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __lowerCAmelCase = False def A (self : Optional[Any] ): A = 32 A = embedder_hidden_size # prior components torch.manual_seed(0 ) A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) A = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCAmelCase , projection_dim=_lowerCAmelCase , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) A = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowerCAmelCase , num_layers=1 , ) torch.manual_seed(0 ) A = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=_lowerCAmelCase , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) A = StableUnCLIPImageNormalizer(embedding_dim=_lowerCAmelCase ) A = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) A = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) A = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCAmelCase , layers_per_block=1 , upcast_attention=_lowerCAmelCase , use_linear_projection=_lowerCAmelCase , ) torch.manual_seed(0 ) A = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=_lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) A = AutoencoderKL() A = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def A (self : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : int=0 ): if str(_lowerCAmelCase ).startswith("""mps""" ): A = torch.manual_seed(_lowerCAmelCase ) else: A = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) A = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A (self : List[str] ): A = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=_lowerCAmelCase ) def A (self : List[Any] ): A = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=_lowerCAmelCase ) @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A (self : Tuple ): A = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) A = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A = torch.Generator(device="""cpu""" ).manual_seed(0 ) A = pipe("""anime turle""" , generator=_lowerCAmelCase , output_type="""np""" ) A = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) def A (self : Dict ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) A = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) A = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
337
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowerCamelCase : Dict = 'src/diffusers' _lowerCamelCase : Dict = '.' # This is to make sure the diffusers module imported is the one in the repo. _lowerCamelCase : List[str] = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) _lowerCamelCase : Tuple = spec.loader.load_module() def __a ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" return line.startswith(UpperCAmelCase ) or len(UpperCAmelCase ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , UpperCAmelCase ) is not None def __a ( UpperCAmelCase ) ->Dict: """simple docstring""" A = object_name.split(""".""" ) A = 0 # First let's find the module where our object lives. A = parts[i] while i < len(UpperCAmelCase ) and not os.path.isfile(os.path.join(UpperCAmelCase , f"""{module}.py""" ) ): i += 1 if i < len(UpperCAmelCase ): A = os.path.join(UpperCAmelCase , parts[i] ) if i >= len(UpperCAmelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(UpperCAmelCase , f"""{module}.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A = f.readlines() # Now let's find the class / func in the code! A = """""" A = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A = line_index while line_index < len(UpperCAmelCase ) and _should_continue(lines[line_index] , UpperCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A = lines[start_index:line_index] return "".join(UpperCAmelCase ) _lowerCamelCase : str = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') _lowerCamelCase : Any = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') _lowerCamelCase : str = re.compile(R'<FILL\s+[^>]*>') def __a ( UpperCAmelCase ) ->str: """simple docstring""" A = code.split("""\n""" ) A = 0 while idx < len(UpperCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def __a ( UpperCAmelCase ) ->Optional[int]: """simple docstring""" A = len(get_indent(UpperCAmelCase ) ) > 0 if has_indent: A = f"""class Bla:\n{code}""" A = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=UpperCAmelCase ) A = black.format_str(UpperCAmelCase , mode=UpperCAmelCase ) A , A = style_docstrings_in_code(UpperCAmelCase ) return result[len("""class Bla:\n""" ) :] if has_indent else result def __a ( UpperCAmelCase , UpperCAmelCase=False ) ->List[str]: """simple docstring""" with open(UpperCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A = f.readlines() A = [] A = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase ): A = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A , A , A = search.groups() A = find_code_in_diffusers(UpperCAmelCase ) A = get_indent(UpperCAmelCase ) A = line_index + 1 if indent == theoretical_indent else line_index + 2 A = theoretical_indent A = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A = True while line_index < len(UpperCAmelCase ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase ): break A = lines[line_index] A = _should_continue(UpperCAmelCase , UpperCAmelCase ) and re.search(f"""^{indent}# End copy""" , UpperCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A = lines[start_index:line_index] A = """""".join(UpperCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies A = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase ) is None] A = """\n""".join(UpperCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase ) > 0: A = replace_pattern.replace("""with""" , """""" ).split(""",""" ) A = [_re_replace_pattern.search(UpperCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue A , A , A = pattern.groups() A = re.sub(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if option.strip() == "all-casing": A = re.sub(obja.lower() , obja.lower() , UpperCAmelCase ) A = re.sub(obja.upper() , obja.upper() , UpperCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A = blackify(lines[start_index - 1] + theoretical_code ) A = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A = lines[:start_index] + [theoretical_code] + lines[line_index:] A = start_index + 1 if overwrite and len(UpperCAmelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(UpperCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(UpperCAmelCase ) return diffs def __a ( UpperCAmelCase = False ) ->int: """simple docstring""" A = glob.glob(os.path.join(UpperCAmelCase , """**/*.py""" ) , recursive=UpperCAmelCase ) A = [] for filename in all_files: A = is_copy_consistent(UpperCAmelCase , UpperCAmelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(UpperCAmelCase ) > 0: A = """\n""".join(UpperCAmelCase ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _lowerCamelCase : Any = parser.parse_args() check_copies(args.fix_and_overwrite)
337
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
104
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase: Dict = logging.get_logger(__name__) lowerCAmelCase: str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase: List[Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } lowerCAmelCase: str = { 'allenai/led-base-16384': 1_6_3_8_4, } class a__( lowerCamelCase__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = LEDTokenizer lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __snake_case : Optional[Any]=None , __snake_case : List[str]=None , __snake_case : Tuple=None , __snake_case : Dict="replace" , __snake_case : int="<s>" , __snake_case : Any="</s>" , __snake_case : Optional[Any]="</s>" , __snake_case : Optional[Any]="<s>" , __snake_case : Optional[Any]="<unk>" , __snake_case : List[str]="<pad>" , __snake_case : int="<mask>" , __snake_case : int=False , __snake_case : str=True , **__snake_case : Tuple , ): super().__init__( __snake_case , __snake_case , tokenizer_file=__snake_case , errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , trim_offsets=__snake_case , **__snake_case , ) a : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __snake_case ) != add_prefix_space: a : List[Any] = getattr(__snake_case , pre_tok_state.pop('type' ) ) a : Optional[Any] = add_prefix_space a : Optional[Any] = pre_tok_class(**__snake_case ) a : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a : Dict = 'post_processor' a : int = getattr(self.backend_tokenizer , __snake_case , __snake_case ) if tokenizer_component_instance: a : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a : Any = tuple(state['sep'] ) if "cls" in state: a : Any = tuple(state['cls'] ) a : Optional[Any] = False if state.get('add_prefix_space' , __snake_case ) != add_prefix_space: a : Any = add_prefix_space a : Optional[Any] = True if state.get('trim_offsets' , __snake_case ) != trim_offsets: a : List[Any] = trim_offsets a : Union[str, Any] = True if changes_to_apply: a : int = getattr(__snake_case , state.pop('type' ) ) a : List[Any] = component_class(**__snake_case ) setattr(self.backend_tokenizer , __snake_case , __snake_case ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowercase_ ( self : Dict ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowercase_ ( self : Dict , __snake_case : List[str] ): a : Tuple = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else value a : Optional[int] = value def lowercase_ ( self : Optional[Any] , *__snake_case : Any , **__snake_case : Union[str, Any] ): a : Dict = kwargs.get('is_split_into_words' , __snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*__snake_case , **__snake_case ) def lowercase_ ( self : Union[str, Any] , *__snake_case : Optional[int] , **__snake_case : List[str] ): a : Optional[int] = kwargs.get('is_split_into_words' , __snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*__snake_case , **__snake_case ) def lowercase_ ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): a : Union[str, Any] = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case ) def lowercase_ ( self : Union[str, Any] , __snake_case : str , __snake_case : int=None ): a : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): a : int = [self.sep_token_id] a : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self : List[str] , __snake_case : Union[Dict[str, EncodedInput], BatchEncoding] , __snake_case : Optional[int] = None , __snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ): a : Optional[Any] = super()._pad( encoded_inputs=__snake_case , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) # Load from model defaults if return_attention_mask is None: a : str = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a : Any = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a : Union[str, Any] = len(encoded_inputs['global_attention_mask'] ) != len(__snake_case ) if needs_to_be_padded: a : str = len(__snake_case ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a : Dict = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": a : Union[str, Any] = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
297
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase_ : int = logging.get_logger(__name__) if is_vision_available(): import PIL class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = ["""pixel_values"""] def __init__( self ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = 1 / 255 ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = True ,**_SCREAMING_SNAKE_CASE ,) -> None: super().__init__(**_SCREAMING_SNAKE_CASE ) _snake_case = size if size is not None else {"shortest_edge": 224} _snake_case = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ) _snake_case = crop_size if crop_size is not None else {"height": 224, "width": 224} _snake_case = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ,param_name="crop_size" ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _snake_case = image_std if image_std is not None else OPENAI_CLIP_STD _snake_case = do_convert_rgb def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: _snake_case = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _snake_case = get_resize_output_image_size(_SCREAMING_SNAKE_CASE ,size=size["shortest_edge"] ,default_to_square=_SCREAMING_SNAKE_CASE ) return resize(_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ,resample=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: _snake_case = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_SCREAMING_SNAKE_CASE ,size=(size["height"], size["width"]) ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> int: return rescale(_SCREAMING_SNAKE_CASE ,scale=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE ,mean=_SCREAMING_SNAKE_CASE ,std=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = ChannelDimension.FIRST ,**_SCREAMING_SNAKE_CASE ,) -> PIL.Image.Image: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = size if size is not None else self.size _snake_case = get_size_dict(_SCREAMING_SNAKE_CASE ,param_name="size" ,default_to_square=_SCREAMING_SNAKE_CASE ) _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(_SCREAMING_SNAKE_CASE ,param_name="crop_size" ,default_to_square=_SCREAMING_SNAKE_CASE ) _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _snake_case = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _snake_case = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. _snake_case = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: _snake_case = [self.resize(image=_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ,resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: _snake_case = [self.rescale(image=_SCREAMING_SNAKE_CASE ,scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: _snake_case = [self.normalize(image=_SCREAMING_SNAKE_CASE ,mean=_SCREAMING_SNAKE_CASE ,std=_SCREAMING_SNAKE_CASE ) for image in images] _snake_case = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) for image in images] _snake_case = {"pixel_values": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE ,tensor_type=_SCREAMING_SNAKE_CASE )
142
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __a ( _UpperCamelCase: Dict , _UpperCamelCase: Optional[int] , _UpperCamelCase: List[str] ) -> Optional[Any]: """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __a ( _UpperCamelCase: List[Any] , _UpperCamelCase: Optional[Any] , _UpperCamelCase: Dict , _UpperCamelCase: Optional[Any]="attention" ) -> Any: """simple docstring""" _snake_case = _snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _snake_case = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) _snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _snake_case = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) _snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _snake_case = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) _snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _snake_case = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __a ( _UpperCamelCase: Tuple , _UpperCamelCase: Optional[int] , _UpperCamelCase: Optional[int] , _UpperCamelCase: Optional[int]=False ) -> List[Any]: """simple docstring""" if split_mlp_wi: _snake_case = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _snake_case = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _snake_case = (wi_a, wi_a) else: _snake_case = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _snake_case = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __a ( _UpperCamelCase: Optional[int] , _UpperCamelCase: Dict , _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Union[str, Any] ) -> List[Any]: """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __a ( _UpperCamelCase: dict , *, _UpperCamelCase: int , _UpperCamelCase: bool , _UpperCamelCase: bool = False ) -> str: """simple docstring""" _snake_case = traverse_util.flatten_dict(variables["target"] ) _snake_case = {"/".join(_UpperCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _snake_case = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , _UpperCamelCase ) _snake_case = collections.OrderedDict() # Shared embeddings. _snake_case = old["token_embedder/embedding"] # Encoder. for i in range(_UpperCamelCase ): # Block i, layer 0 (Self Attention). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "pre_attention_layer_norm" ) _snake_case , _snake_case , _snake_case , _snake_case = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "attention" ) _snake_case = layer_norm _snake_case = k.T _snake_case = o.T _snake_case = q.T _snake_case = v.T # Block i, layer 1 (MLP). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "pre_mlp_layer_norm" ) _snake_case , _snake_case = tax_mlp_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , _UpperCamelCase ) _snake_case = layer_norm if split_mlp_wi: _snake_case = wi[0].T _snake_case = wi[1].T else: _snake_case = wi.T _snake_case = wo.T if scalable_attention: # convert the rel_embedding of each layer _snake_case = tax_relpos_bias_lookup( _UpperCamelCase , _UpperCamelCase , "encoder" ).T _snake_case = old["encoder/encoder_norm/scale"] if not scalable_attention: _snake_case = tax_relpos_bias_lookup( _UpperCamelCase , 0 , "encoder" ).T _snake_case = tax_relpos_bias_lookup( _UpperCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(_UpperCamelCase ): # Block i, layer 0 (Self Attention). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_self_attention_layer_norm" ) _snake_case , _snake_case , _snake_case , _snake_case = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "self_attention" ) _snake_case = layer_norm _snake_case = k.T _snake_case = o.T _snake_case = q.T _snake_case = v.T # Block i, layer 1 (Cross Attention). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) _snake_case , _snake_case , _snake_case , _snake_case = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "encoder_decoder_attention" ) _snake_case = layer_norm _snake_case = k.T _snake_case = o.T _snake_case = q.T _snake_case = v.T # Block i, layer 2 (MLP). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_mlp_layer_norm" ) _snake_case , _snake_case = tax_mlp_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , _UpperCamelCase ) _snake_case = layer_norm if split_mlp_wi: _snake_case = wi[0].T _snake_case = wi[1].T else: _snake_case = wi.T _snake_case = wo.T if scalable_attention: # convert the rel_embedding of each layer _snake_case = tax_relpos_bias_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" ).T _snake_case = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _snake_case = old["decoder/logits_dense/kernel"].T return new def __a ( _UpperCamelCase: Any , _UpperCamelCase: bool ) -> Dict: """simple docstring""" _snake_case = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _snake_case = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _snake_case = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) _snake_case = state_dict["shared.weight"] return state_dict def __a ( _UpperCamelCase: str , _UpperCamelCase: List[str] , _UpperCamelCase: Any , _UpperCamelCase: str , _UpperCamelCase: List[Any] ) -> Dict: """simple docstring""" _snake_case = checkpoints.load_tax_checkpoint(_UpperCamelCase ) _snake_case = convert_tax_to_pytorch( _UpperCamelCase , num_layers=config.num_layers , is_encoder_only=_UpperCamelCase , scalable_attention=_UpperCamelCase ) _snake_case = make_state_dict(_UpperCamelCase , _UpperCamelCase ) model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) def __a ( _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Optional[Any] , _UpperCamelCase: bool = False , _UpperCamelCase: bool = False , ) -> Dict: """simple docstring""" _snake_case = MTaConfig.from_json_file(_UpperCamelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _snake_case = UMTaEncoderModel(_UpperCamelCase ) else: _snake_case = UMTaForConditionalGeneration(_UpperCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_UpperCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_UpperCamelCase ) print("Done" ) if __name__ == "__main__": UpperCamelCase_ : Any = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) UpperCamelCase_ : Union[str, Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
142
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : int = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Dict = """ctrl""" lowerCAmelCase__ : List[Any] = ["""past_key_values"""] lowerCAmelCase__ : str = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__(self : Tuple , UpperCamelCase : Optional[Any]=246534 , UpperCamelCase : Union[str, Any]=256 , UpperCamelCase : Optional[int]=1280 , UpperCamelCase : Any=8192 , UpperCamelCase : List[str]=48 , UpperCamelCase : List[Any]=16 , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : str=1E-6 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Dict=True , **UpperCamelCase : Dict , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = n_positions lowercase__ = n_embd lowercase__ = n_layer lowercase__ = n_head lowercase__ = dff lowercase__ = resid_pdrop lowercase__ = embd_pdrop lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache super().__init__(**UpperCamelCase )
2
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCamelCase : Optional[Any] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowerCamelCase : Tuple = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowerCamelCase : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowerCamelCase : Any = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowerCamelCase : Tuple = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowerCamelCase : Optional[int] = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowerCamelCase : Dict = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ ,lowercase__ = randrange(len(A ) ), randrange(len(A ) ) lowercase__ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowercase__ ,lowercase__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE (A = 100 ) -> str: """simple docstring""" return (generate_random_hand() for _ in range(A )) @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]: """simple docstring""" assert PokerHand(A )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Any: """simple docstring""" lowercase__ = PokerHand(A ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple: """simple docstring""" assert PokerHand(A )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected def _SCREAMING_SNAKE_CASE () -> Tuple: """simple docstring""" lowercase__ = [PokerHand(A ) for hand in SORTED_HANDS] lowercase__ = poker_hands.copy() shuffle(A ) lowercase__ = chain(sorted(A ) ) for index, hand in enumerate(A ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE () -> List[Any]: """simple docstring""" lowercase__ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=A ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE () -> int: """simple docstring""" lowercase__ = PokerHand('''2C 4S AS 3D 5C''' ) lowercase__ = True lowercase__ = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ = 0 lowercase__ = os.path.abspath(os.path.dirname(A ) ) lowercase__ = os.path.join(A , '''poker_hands.txt''' ) with open(A ) as file_hand: for line in file_hand: lowercase__ = line[:14].strip() lowercase__ = line[15:].strip() lowercase__ ,lowercase__ = PokerHand(A ), PokerHand(A ) lowercase__ = player.compare_with(A ) if output == "Win": answer += 1 assert answer == 376
2
1
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ) -> Tuple: lowercase_ : Union[str, Any] = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) lowercase_ : Optional[Any] = MaskFormerConfig(backbone_config=__SCREAMING_SNAKE_CASE ) lowercase_ : Any = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok lowercase_ : List[Any] = 8_47 lowercase_ : str = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok lowercase_ : List[str] = 1_50 lowercase_ : int = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok lowercase_ : Any = 1_71 lowercase_ : int = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO lowercase_ : List[str] = 1_33 lowercase_ : List[str] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok lowercase_ : Optional[Any] = 19 lowercase_ : Optional[int] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok lowercase_ : Dict = 65 lowercase_ : Optional[Any] = '''mapillary-vistas-id2label.json''' lowercase_ : List[Any] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : List[Any] = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} return config def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: lowercase_ : int = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ) -> Any: lowercase_ : Tuple = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : str = val def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: lowercase_ : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowercase_ : Any = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase_ : str = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) lowercase_ : Any = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Union[str, Any] = in_proj_weight[:dim, :] lowercase_ : Optional[Any] = in_proj_bias[: dim] lowercase_ : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] lowercase_ : Any = in_proj_bias[ dim : dim * 2 ] lowercase_ : Union[str, Any] = in_proj_weight[ -dim :, : ] lowercase_ : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ) -> str: lowercase_ : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) lowercase_ : List[str] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) lowercase_ : Optional[Any] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ : int = in_proj_weight[: hidden_size, :] lowercase_ : List[str] = in_proj_bias[:config.hidden_size] lowercase_ : Optional[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] lowercase_ : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] lowercase_ : Tuple = in_proj_weight[-hidden_size :, :] lowercase_ : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) lowercase_ : int = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) lowercase_ : Any = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ : List[str] = in_proj_weight[: hidden_size, :] lowercase_ : List[Any] = in_proj_bias[:config.hidden_size] lowercase_ : Optional[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] lowercase_ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] lowercase_ : str = in_proj_weight[-hidden_size :, :] lowercase_ : List[str] = in_proj_bias[-hidden_size :] # fmt: on def lowercase__( ) -> Dict: lowercase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int = False ) -> Optional[int]: lowercase_ : Optional[int] = get_maskformer_config(__SCREAMING_SNAKE_CASE ) # load original state_dict with open(__SCREAMING_SNAKE_CASE , 'rb' ) as f: lowercase_ : Optional[int] = pickle.load(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys lowercase_ : Optional[int] = create_rename_keys(__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_swin_q_k_v(__SCREAMING_SNAKE_CASE , config.backbone_config ) read_in_decoder_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # update to torch tensors for key, value in state_dict.items(): lowercase_ : int = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # load 🤗 model lowercase_ : Union[str, Any] = MaskFormerForInstanceSegmentation(__SCREAMING_SNAKE_CASE ) model.eval() for name, param in model.named_parameters(): print(__SCREAMING_SNAKE_CASE , param.shape ) lowercase_ : List[str] = model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__SCREAMING_SNAKE_CASE ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results lowercase_ : Tuple = prepare_img() if "vistas" in model_name: lowercase_ : Dict = 65 elif "cityscapes" in model_name: lowercase_ : Dict = 6_55_35 else: lowercase_ : Tuple = 2_55 lowercase_ : str = True if '''ade''' in model_name else False lowercase_ : Dict = MaskFormerImageProcessor(ignore_index=__SCREAMING_SNAKE_CASE , reduce_labels=__SCREAMING_SNAKE_CASE ) lowercase_ : Any = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='pt' ) lowercase_ : List[Any] = model(**__SCREAMING_SNAKE_CASE ) print('Logits:' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": lowercase_ : List[str] = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you\'d like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
367
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]] lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 ) lowercase_ : str = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 ) lowercase_ : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 ) lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
321
0
'''simple docstring''' import math class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase=0 ) -> int: # a graph with Node 0,1,...,N-1 lowerCAmelCase__ : Union[str, Any] = n lowerCAmelCase__ : Optional[Any] = [ [math.inf for j in range(0 ,__UpperCAmelCase )] for i in range(0 ,__UpperCAmelCase ) ] # adjacency matrix for weight lowerCAmelCase__ : Union[str, Any] = [ [math.inf for j in range(0 ,__UpperCAmelCase )] for i in range(0 ,__UpperCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : Optional[int] = w def UpperCAmelCase_ ( self ) -> int: for k in range(0 ,self.n ): for i in range(0 ,self.n ): for j in range(0 ,self.n ): lowerCAmelCase__ : Optional[Any] = min(self.dp[i][j] ,self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
37
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> np.array: lowerCAmelCase__ : Dict = F'''{sampling_rate}''' lowerCAmelCase__ : Any = '1' lowerCAmelCase__ : Optional[Any] = 'f32le' lowerCAmelCase__ : Any = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(SCREAMING_SNAKE_CASE_ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowerCAmelCase__ : List[Any] = ffmpeg_process.communicate(SCREAMING_SNAKE_CASE_ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error lowerCAmelCase__ : List[str] = output_stream[0] lowerCAmelCase__ : str = np.frombuffer(SCREAMING_SNAKE_CASE_ , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "f32le" , ) -> Dict: lowerCAmelCase__ : Optional[Any] = F'''{sampling_rate}''' lowerCAmelCase__ : Any = '1' if format_for_conversion == "s16le": lowerCAmelCase__ : Dict = 2 elif format_for_conversion == "f32le": lowerCAmelCase__ : List[str] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) lowerCAmelCase__ : Tuple = platform.system() if system == "Linux": lowerCAmelCase__ : str = 'alsa' lowerCAmelCase__ : str = 'default' elif system == "Darwin": lowerCAmelCase__ : Any = 'avfoundation' lowerCAmelCase__ : Tuple = ':0' elif system == "Windows": lowerCAmelCase__ : Any = 'dshow' lowerCAmelCase__ : int = 'default' lowerCAmelCase__ : Any = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] lowerCAmelCase__ : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCAmelCase__ : str = _ffmpeg_stream(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for item in iterator: yield item def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "f32le" , ) -> str: if stream_chunk_s is not None: lowerCAmelCase__ : Union[str, Any] = stream_chunk_s else: lowerCAmelCase__ : Tuple = chunk_length_s lowerCAmelCase__ : Any = ffmpeg_microphone(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , format_for_conversion=SCREAMING_SNAKE_CASE_ ) if format_for_conversion == "s16le": lowerCAmelCase__ : Optional[Any] = np.intaa lowerCAmelCase__ : Optional[Any] = 2 elif format_for_conversion == "f32le": lowerCAmelCase__ : Optional[Any] = np.floataa lowerCAmelCase__ : Optional[Any] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: lowerCAmelCase__ : Dict = chunk_length_s / 6 lowerCAmelCase__ : int = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ): lowerCAmelCase__ : Dict = [stride_length_s, stride_length_s] lowerCAmelCase__ : Union[str, Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCAmelCase__ : List[Any] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCAmelCase__ : Any = datetime.datetime.now() lowerCAmelCase__ : Any = datetime.timedelta(seconds=SCREAMING_SNAKE_CASE_ ) for item in chunk_bytes_iter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=(stride_left, stride_right) , stream=SCREAMING_SNAKE_CASE_ ): # Put everything back in numpy scale lowerCAmelCase__ : Any = np.frombuffer(item['raw'] , dtype=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[Any] = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) lowerCAmelCase__ : Optional[int] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False ) -> Optional[int]: lowerCAmelCase__ : Union[str, Any] = b'' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) lowerCAmelCase__ : List[str] = 0 for raw in iterator: acc += raw if stream and len(SCREAMING_SNAKE_CASE_ ) < chunk_len: lowerCAmelCase__ : Tuple = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(SCREAMING_SNAKE_CASE_ ) >= chunk_len: # We are flushing the accumulator lowerCAmelCase__ : Dict = (_stride_left, stride_right) lowerCAmelCase__ : Any = {'raw': acc[:chunk_len], 'stride': stride} if stream: lowerCAmelCase__ : Optional[int] = False yield item lowerCAmelCase__ : Optional[int] = stride_left lowerCAmelCase__ : Optional[int] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(SCREAMING_SNAKE_CASE_ ) > stride_left: lowerCAmelCase__ : Tuple = {'raw': acc, 'stride': (_stride_left, 0)} if stream: lowerCAmelCase__ : Any = False yield item def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : int = 2**24 # 16Mo try: with subprocess.Popen(SCREAMING_SNAKE_CASE_ , stdout=subprocess.PIPE , bufsize=SCREAMING_SNAKE_CASE_ ) as ffmpeg_process: while True: lowerCAmelCase__ : List[str] = ffmpeg_process.stdout.read(SCREAMING_SNAKE_CASE_ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
212
0
'''simple docstring''' import logging from transformers import PretrainedConfig _lowercase = logging.getLogger(__name__) _lowercase = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[Any] = '''bertabs''' def __init__( self , _lowercase=30_522 , _lowercase=512 , _lowercase=6 , _lowercase=512 , _lowercase=8 , _lowercase=512 , _lowercase=0.2 , _lowercase=6 , _lowercase=768 , _lowercase=8 , _lowercase=2_048 , _lowercase=0.2 , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = max_pos _lowerCAmelCase = enc_layers _lowerCAmelCase = enc_hidden_size _lowerCAmelCase = enc_heads _lowerCAmelCase = enc_ff_size _lowerCAmelCase = enc_dropout _lowerCAmelCase = dec_layers _lowerCAmelCase = dec_hidden_size _lowerCAmelCase = dec_heads _lowerCAmelCase = dec_ff_size _lowerCAmelCase = dec_dropout
229
'''simple docstring''' from __future__ import annotations import math def A (__lowerCamelCase :list , __lowerCamelCase :list ): if len(__lowerCamelCase ) != 2 or len(a[0] ) != 2 or len(__lowerCamelCase ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) _lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def A (__lowerCamelCase :list , __lowerCamelCase :list ): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowerCamelCase ) ) ] def A (__lowerCamelCase :list , __lowerCamelCase :list ): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowerCamelCase ) ) ] def A (__lowerCamelCase :list ): if len(__lowerCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) _lowerCAmelCase = len(__lowerCamelCase ) _lowerCAmelCase = matrix_length // 2 _lowerCAmelCase = [[a[i][j] for j in range(__lowerCamelCase , __lowerCamelCase )] for i in range(__lowerCamelCase )] _lowerCAmelCase = [ [a[i][j] for j in range(__lowerCamelCase , __lowerCamelCase )] for i in range(__lowerCamelCase , __lowerCamelCase ) ] _lowerCAmelCase = [[a[i][j] for j in range(__lowerCamelCase )] for i in range(__lowerCamelCase )] _lowerCAmelCase = [[a[i][j] for j in range(__lowerCamelCase )] for i in range(__lowerCamelCase , __lowerCamelCase )] return top_left, top_right, bot_left, bot_right def A (__lowerCamelCase :list ): return len(__lowerCamelCase ), len(matrix[0] ) def A (__lowerCamelCase :list ): print("""\n""".join(str(__lowerCamelCase ) for line in matrix ) ) def A (__lowerCamelCase :list , __lowerCamelCase :list ): if matrix_dimensions(__lowerCamelCase ) == (2, 2): return default_matrix_multiplication(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = split_matrix(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = split_matrix(__lowerCamelCase ) _lowerCAmelCase = actual_strassen(__lowerCamelCase , matrix_subtraction(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = actual_strassen(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) _lowerCAmelCase = actual_strassen(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) _lowerCAmelCase = actual_strassen(__lowerCamelCase , matrix_subtraction(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = actual_strassen(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , matrix_addition(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = actual_strassen(matrix_subtraction(__lowerCamelCase , __lowerCamelCase ) , matrix_addition(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = actual_strassen(matrix_subtraction(__lowerCamelCase , __lowerCamelCase ) , matrix_addition(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) , __lowerCamelCase ) _lowerCAmelCase = matrix_addition(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = matrix_addition(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) , __lowerCamelCase ) # construct the new matrix from our 4 quadrants _lowerCAmelCase = [] for i in range(len(__lowerCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__lowerCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def A (__lowerCamelCase :list , __lowerCamelCase :list ): if matrix_dimensions(__lowerCamelCase )[1] != matrix_dimensions(__lowerCamelCase )[0]: _lowerCAmelCase = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'Matrix A: {matrixa}\n' f'Matrix B: {matrixa}' ) raise Exception(__lowerCamelCase ) _lowerCAmelCase = matrix_dimensions(__lowerCamelCase ) _lowerCAmelCase = matrix_dimensions(__lowerCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] _lowerCAmelCase = max(*__lowerCamelCase , *__lowerCamelCase ) _lowerCAmelCase = int(math.pow(2 , math.ceil(math.loga(__lowerCamelCase ) ) ) ) _lowerCAmelCase = matrixa _lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) _lowerCAmelCase = actual_strassen(__lowerCamelCase , __lowerCamelCase ) # Removing the additional zeros for i in range(0 , __lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _lowercase = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _lowercase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
229
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __SCREAMING_SNAKE_CASE ( A__ , A__ , A__ , unittest.TestCase ): A : Tuple = StableUnCLIPPipeline A : Dict = TEXT_TO_IMAGE_PARAMS A : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS A : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS A : int = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false A : Union[str, Any] = False def __lowerCamelCase ( self ): lowercase : Dict = 32 lowercase : List[str] = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) lowercase : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=SCREAMING_SNAKE_CASE__ , projection_dim=SCREAMING_SNAKE_CASE__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase : Optional[Any] = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=SCREAMING_SNAKE_CASE__ , num_layers=1 , ) torch.manual_seed(0 ) lowercase : Union[str, Any] = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) lowercase : List[Any] = StableUnCLIPImageNormalizer(embedding_dim=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) lowercase : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) lowercase : str = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=SCREAMING_SNAKE_CASE__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase : int = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=SCREAMING_SNAKE_CASE__ , layers_per_block=1 , upcast_attention=SCREAMING_SNAKE_CASE__ , use_linear_projection=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) lowercase : Union[str, Any] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase : Dict = AutoencoderKL() lowercase : int = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ): if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): lowercase : str = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: lowercase : Dict = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCamelCase ( self ): lowercase : Optional[int] = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Optional[int] = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=SCREAMING_SNAKE_CASE__ ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): lowercase : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) lowercase : Union[str, Any] = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase : List[Any] = pipe('''anime turle''' , generator=SCREAMING_SNAKE_CASE__ , output_type='''np''' ) lowercase : List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase : Tuple = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) lowercase : int = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase : Optional[int] = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) lowercase : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
337
from __future__ import annotations __a = [] def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->bool: """simple docstring""" for i in range(len(_UpperCamelCase ) ): if board[row][i] == 1: return False for i in range(len(_UpperCamelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(_UpperCamelCase, -1, -1 ), range(_UpperCamelCase, -1, -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(_UpperCamelCase, -1, -1 ), range(_UpperCamelCase, len(_UpperCamelCase ) ) ): if board[i][j] == 1: return False return True def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->bool: """simple docstring""" if row >= len(_UpperCamelCase ): solution.append(_UpperCamelCase ) printboard(_UpperCamelCase ) print() return True for i in range(len(_UpperCamelCase ) ): if is_safe(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ): lowercase : int = 1 solve(_UpperCamelCase, row + 1 ) lowercase : Tuple = 0 return False def __lowercase ( _UpperCamelCase ) ->None: """simple docstring""" for i in range(len(_UpperCamelCase ) ): for j in range(len(_UpperCamelCase ) ): if board[i][j] == 1: print('''Q''', end=''' ''' ) else: print('''.''', end=''' ''' ) print() # n=int(input("The no. of queens")) __a = 8 __a = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
337
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase_( snake_case : list , snake_case : int ): '''simple docstring''' if len(snake_case ) <= 1 or n <= 1: return insert_next(snake_case , n - 1 ) rec_insertion_sort(snake_case , n - 1 ) def UpperCamelCase_( snake_case : list , snake_case : int ): '''simple docstring''' if index >= len(snake_case ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order snake_case_ , snake_case_ = ( collection[index], collection[index - 1], ) insert_next(snake_case , index + 1 ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Union[str, Any] = input("Enter integers separated by spaces: ") _SCREAMING_SNAKE_CASE : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
92
'''simple docstring''' def UpperCamelCase_( snake_case : int = 1_0_0_0 ): '''simple docstring''' snake_case_ = 3 snake_case_ = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"{solution() = }")
92
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem _A : List[str] = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 _A : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def _a ( UpperCAmelCase ) -> str: """simple docstring""" if "://" in dataset_path: lowerCamelCase__ : Union[str, Any] = dataset_path.split('''://''' )[1] return dataset_path def _a ( UpperCAmelCase ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : List[str] = not is_remote_filesystem(UpperCAmelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(UpperCAmelCase ) , fs._strip_protocol(UpperCAmelCase ) ) else: fs.mv(UpperCAmelCase , UpperCAmelCase , recursive=UpperCAmelCase ) def _a ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowerCamelCase__ : Any = None lowerCamelCase__ : List[str] = None lowerCamelCase__ : Tuple = threading.Lock()
142
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = ["image_processor", "tokenizer"] _UpperCAmelCase : Dict = "BridgeTowerImageProcessor" _UpperCAmelCase : Dict = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self : Any , A : List[Any] , A : Tuple ) ->Dict: super().__init__(A , A ) def __call__( self : str , A : int , A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , A : bool = True , A : Union[bool, str, PaddingStrategy] = False , A : Union[bool, str, TruncationStrategy] = None , A : Optional[int] = None , A : int = 0 , A : Optional[int] = None , A : Optional[bool] = None , A : Optional[bool] = None , A : bool = False , A : bool = False , A : bool = False , A : bool = False , A : bool = True , A : Optional[Union[str, TensorType]] = None , **A : Union[str, Any] , ) ->BatchEncoding: lowerCamelCase__ : Optional[int] = self.tokenizer( text=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_token_type_ids=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_length=A , verbose=A , return_tensors=A , **A , ) # add pixel_values + pixel_mask lowerCamelCase__ : int = self.image_processor( A , return_tensors=A , do_normalize=A , do_center_crop=A , **A ) encoding.update(A ) return encoding def __lowerCamelCase ( self : str , *A : Dict , **A : List[str] ) ->List[Any]: return self.tokenizer.batch_decode(*A , **A ) def __lowerCamelCase ( self : List[str] , *A : Optional[Any] , **A : Tuple ) ->Dict: return self.tokenizer.decode(*A , **A ) @property def __lowerCamelCase ( self : str ) ->Optional[Any]: lowerCamelCase__ : Optional[int] = self.tokenizer.model_input_names lowerCamelCase__ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
142
1
"""simple docstring""" import requests _lowerCAmelCase : int = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Dict: '''simple docstring''' _UpperCAmelCase : List[Any] = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["articles"] , 1 ): print(f'{i}.) {article["title"]}' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
350
"""simple docstring""" from collections.abc import Callable class UpperCAmelCase_ : def __init__( self : Dict , A : Callable | None = None ): # Stores actual heap items. _UpperCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _UpperCAmelCase : dict = {} # Stores current size of heap. _UpperCAmelCase : Tuple = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _UpperCAmelCase : Any = key or (lambda A : x) def snake_case_ ( self : List[Any] , A : int ): return int((i - 1) / 2 ) if i > 0 else None def snake_case_ ( self : List[Any] , A : int ): _UpperCAmelCase : Tuple = int(2 * i + 1 ) return left if 0 < left < self.size else None def snake_case_ ( self : List[Any] , A : int ): _UpperCAmelCase : Tuple = int(2 * i + 2 ) return right if 0 < right < self.size else None def snake_case_ ( self : Optional[int] , A : int , A : int ): _UpperCAmelCase , _UpperCAmelCase : int = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _UpperCAmelCase , _UpperCAmelCase : Any = self.arr[j], self.arr[i] def snake_case_ ( self : List[str] , A : int , A : int ): return self.arr[i][1] < self.arr[j][1] def snake_case_ ( self : Dict , A : int ): _UpperCAmelCase : str = self._left(A ) _UpperCAmelCase : str = self._right(A ) _UpperCAmelCase : List[Any] = i if left is not None and not self._cmp(A , A ): _UpperCAmelCase : Optional[int] = left if right is not None and not self._cmp(A , A ): _UpperCAmelCase : Any = right return valid_parent def snake_case_ ( self : Tuple , A : int ): _UpperCAmelCase : Tuple = self._parent(A ) while parent is not None and not self._cmp(A , A ): self._swap(A , A ) _UpperCAmelCase , _UpperCAmelCase : Dict = parent, self._parent(A ) def snake_case_ ( self : Optional[int] , A : int ): _UpperCAmelCase : Tuple = self._get_valid_parent(A ) while valid_parent != index: self._swap(A , A ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = valid_parent, self._get_valid_parent(A ) def snake_case_ ( self : Dict , A : int , A : int ): if item not in self.pos_map: return _UpperCAmelCase : Any = self.pos_map[item] _UpperCAmelCase : Optional[int] = [item, self.key(A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(A ) self._heapify_down(A ) def snake_case_ ( self : List[str] , A : int ): if item not in self.pos_map: return _UpperCAmelCase : str = self.pos_map[item] del self.pos_map[item] _UpperCAmelCase : Tuple = self.arr[self.size - 1] _UpperCAmelCase : List[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(A ) self._heapify_down(A ) def snake_case_ ( self : Any , A : int , A : int ): _UpperCAmelCase : Any = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(A )] ) else: _UpperCAmelCase : Any = [item, self.key(A )] _UpperCAmelCase : List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def snake_case_ ( self : Tuple ): return self.arr[0] if self.size else None def snake_case_ ( self : Any ): _UpperCAmelCase : Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def __snake_case ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
202
0
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __snake_case = logging.get_logger(__name__) @add_end_docstrings(A__ ) class lowercase ( A__ ): """simple docstring""" def __init__( self , **UpperCamelCase_ ): '''simple docstring''' super().__init__(**UpperCamelCase_ ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , '''vision''' ) self.check_model_type(UpperCamelCase_ ) def __call__( self , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ): '''simple docstring''' if "text_queries" in kwargs: UpperCamelCase__ :str = kwargs.pop('''text_queries''' ) if isinstance(UpperCamelCase_ , (str, Image.Image) ): UpperCamelCase__ :List[Any] = {'''image''': image, '''candidate_labels''': candidate_labels} else: UpperCamelCase__ :Any = image UpperCamelCase__ :Optional[int] = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Any = {} if "threshold" in kwargs: UpperCamelCase__ :List[Any] = kwargs['''threshold'''] if "top_k" in kwargs: UpperCamelCase__ :Optional[Any] = kwargs['''top_k'''] return {}, {}, postprocess_params def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :str = load_image(inputs['''image'''] ) UpperCamelCase__ :Dict = inputs['''candidate_labels'''] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase__ :Optional[Any] = candidate_labels.split(''',''' ) UpperCamelCase__ :Union[str, Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCamelCase_ ): UpperCamelCase__ :List[str] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework ) UpperCamelCase__ :Optional[int] = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) yield { "is_last": i == len(UpperCamelCase_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :int = model_inputs.pop('''target_size''' ) UpperCamelCase__ :Optional[int] = model_inputs.pop('''candidate_label''' ) UpperCamelCase__ :List[Any] = model_inputs.pop('''is_last''' ) UpperCamelCase__ :str = self.model(**UpperCamelCase_ ) UpperCamelCase__ :str = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=0.1 , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ :str = [] for model_output in model_outputs: UpperCamelCase__ :Optional[int] = model_output['''candidate_label'''] UpperCamelCase__ :Union[str, Any] = BaseModelOutput(UpperCamelCase_ ) UpperCamelCase__ :Tuple = self.image_processor.post_process_object_detection( outputs=UpperCamelCase_ , threshold=UpperCamelCase_ , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): UpperCamelCase__ :Dict = outputs['''scores'''][index].item() UpperCamelCase__ :int = self._get_bounding_box(outputs['''boxes'''][index][0] ) UpperCamelCase__ :Optional[int] = {'''score''': score, '''label''': label, '''box''': box} results.append(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x["score"] , reverse=UpperCamelCase_ ) if top_k: UpperCamelCase__ :Tuple = results[:top_k] return results def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = box.int().tolist() UpperCamelCase__ :Union[str, Any] = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
97
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance == 0: return {"resistance": sqrt(pow(__UpperCamelCase , 2 ) - pow(__UpperCamelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__UpperCamelCase , 2 ) - pow(__UpperCamelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__UpperCamelCase , 2 ) + pow(__UpperCamelCase , 2 ) )} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
321
0
def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 )-> Any: """simple docstring""" snake_case_ = right or len(__a ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__a , __a , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
350
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> List[Any]: """simple docstring""" for char in word: snake_case_ = ord(SCREAMING_SNAKE_CASE ) if not _is_chinese_char(SCREAMING_SNAKE_CASE ): return 0 return 1 def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> str: """simple docstring""" snake_case_ = set() for token in tokens: snake_case_ = len(SCREAMING_SNAKE_CASE ) > 1 and is_chinese(SCREAMING_SNAKE_CASE ) if chinese_word: word_set.add(SCREAMING_SNAKE_CASE ) snake_case_ = list(SCREAMING_SNAKE_CASE ) return word_list def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> List[str]: """simple docstring""" if not chinese_word_set: return bert_tokens snake_case_ = max([len(SCREAMING_SNAKE_CASE ) for w in chinese_word_set] ) snake_case_ = bert_tokens snake_case_ , snake_case_ = 0, len(SCREAMING_SNAKE_CASE ) while start < end: snake_case_ = True if is_chinese(bert_word[start] ): snake_case_ = min(end - start , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , 1 , -1 ): snake_case_ = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case_ = '''##''' + bert_word[j] snake_case_ = start + i snake_case_ = False break if single_word: start += 1 return bert_word def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" snake_case_ = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 100 ): snake_case_ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['''cws'''] ).cws snake_case_ = [get_chinese_word(SCREAMING_SNAKE_CASE ) for r in res] ltp_res.extend(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) snake_case_ = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 100 ): snake_case_ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) snake_case_ = [] for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case_ = [] for id in input_ids: snake_case_ = bert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE ) input_tokens.append(SCREAMING_SNAKE_CASE ) snake_case_ = add_sub_symbol(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(SCREAMING_SNAKE_CASE ): if token[:2] == "##": snake_case_ = token[2:] # save chinese tokens' pos if len(SCREAMING_SNAKE_CASE ) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE ) ): ref_id.append(SCREAMING_SNAKE_CASE ) ref_ids.append(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) return ref_ids def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: snake_case_ = f.readlines() snake_case_ = [line.strip() for line in data if len(SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case_ = LTP(args.ltp ) # faster in GPU device snake_case_ = BertTokenizer.from_pretrained(args.bert ) snake_case_ = prepare_ref(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: snake_case_ = [json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' for ref in ref_ids] f.writelines(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) UpperCAmelCase = parser.parse_args() main(args)
267
0
'''simple docstring''' from __future__ import annotations _A : Dict = 10 def UpperCamelCase_ ( snake_case_ : list[int] ) -> list[int]: '''simple docstring''' __lowerCAmelCase = 1 __lowerCAmelCase = max(snake_case_ ) while placement <= max_digit: # declare and initialize empty buckets __lowerCAmelCase = [[] for _ in range(snake_case_ )] # split list_of_ints between the buckets for i in list_of_ints: __lowerCAmelCase = int((i / placement) % RADIX ) buckets[tmp].append(snake_case_ ) # put each buckets' contents into list_of_ints __lowerCAmelCase = 0 for b in range(snake_case_ ): for i in buckets[b]: __lowerCAmelCase = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
229
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' @staticmethod @abstractmethod def a ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Tuple: raise NotImplementedError() @abstractmethod def a ( self : int ) -> Union[str, Any]: raise NotImplementedError()
229
1
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _snake_case : Any = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _snake_case : Optional[int] = logging.get_logger(__name__) class _UpperCAmelCase ( __lowerCamelCase ): """simple docstring""" a_ = """maskformer""" a_ = {"""hidden_size""": """mask_feature_size"""} a_ = ["""resnet""", """swin"""] a_ = ["""detr"""] def __init__( self : str , lowerCAmelCase_ : int = 2_5_6 , lowerCAmelCase_ : int = 2_5_6 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[Dict] = None , lowerCAmelCase_ : Optional[Dict] = None , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : float = 20.0 , lowerCAmelCase_ : Optional[bool] = None , **lowerCAmelCase_ : Tuple , ) -> int: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __lowerCAmelCase = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(__lowercase , __lowercase ): __lowerCAmelCase = backbone_config.pop('model_type' ) __lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] __lowerCAmelCase = config_class.from_dict(__lowercase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __lowerCAmelCase = DetrConfig() else: # verify that the decoder is supported __lowerCAmelCase = ( decoder_config.pop('model_type' ) if isinstance(__lowercase , __lowercase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(__lowercase , __lowercase ): __lowerCAmelCase = CONFIG_MAPPING[decoder_type] __lowerCAmelCase = config_class.from_dict(__lowercase ) __lowerCAmelCase = backbone_config __lowerCAmelCase = decoder_config # main feature dimension for the model __lowerCAmelCase = fpn_feature_size __lowerCAmelCase = mask_feature_size # initializer __lowerCAmelCase = init_std __lowerCAmelCase = init_xavier_std # Hungarian matcher && loss __lowerCAmelCase = cross_entropy_weight __lowerCAmelCase = dice_weight __lowerCAmelCase = mask_weight __lowerCAmelCase = use_auxiliary_loss __lowerCAmelCase = no_object_weight __lowerCAmelCase = output_auxiliary_logits __lowerCAmelCase = self.decoder_config.encoder_attention_heads __lowerCAmelCase = self.decoder_config.num_hidden_layers super().__init__(**__lowercase ) @classmethod def lowercase ( cls : Optional[int] , lowerCAmelCase_ : PretrainedConfig , lowerCAmelCase_ : PretrainedConfig , **lowerCAmelCase_ : Optional[Any] ) -> Union[str, Any]: return cls( backbone_config=__lowercase , decoder_config=__lowercase , **__lowercase , ) def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = copy.deepcopy(self.__dict__ ) __lowerCAmelCase = self.backbone_config.to_dict() __lowerCAmelCase = self.decoder_config.to_dict() __lowerCAmelCase = self.__class__.model_type return output
350
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _snake_case : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def a_ ( lowerCAmelCase_ : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead', lowerCAmelCase_, ) if isinstance(lowerCAmelCase_, torch.Tensor ): return image elif isinstance(lowerCAmelCase_, PIL.Image.Image ): __lowerCAmelCase = [image] if isinstance(image[0], PIL.Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image[0].size __lowerCAmelCase , __lowerCAmelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 __lowerCAmelCase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] __lowerCAmelCase = np.concatenate(lowerCAmelCase_, axis=0 ) __lowerCAmelCase = np.array(lowerCAmelCase_ ).astype(np.floataa ) / 255.0 __lowerCAmelCase = image.transpose(0, 3, 1, 2 ) __lowerCAmelCase = 2.0 * image - 1.0 __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) elif isinstance(image[0], torch.Tensor ): __lowerCAmelCase = torch.cat(lowerCAmelCase_, dim=0 ) return image def a_ ( lowerCAmelCase_ : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(lowerCAmelCase_, torch.Tensor ): return mask elif isinstance(lowerCAmelCase_, PIL.Image.Image ): __lowerCAmelCase = [mask] if isinstance(mask[0], PIL.Image.Image ): __lowerCAmelCase , __lowerCAmelCase = mask[0].size __lowerCAmelCase , __lowerCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __lowerCAmelCase = [np.array(m.convert('L' ).resize((w, h), resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] __lowerCAmelCase = np.concatenate(lowerCAmelCase_, axis=0 ) __lowerCAmelCase = mask.astype(np.floataa ) / 255.0 __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) elif isinstance(mask[0], torch.Tensor ): __lowerCAmelCase = torch.cat(lowerCAmelCase_, dim=0 ) return mask class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 a_ = 42 def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ) -> Optional[int]: super().__init__() self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) @torch.no_grad() def __call__( self : Dict , lowerCAmelCase_ : Union[torch.Tensor, PIL.Image.Image] , lowerCAmelCase_ : Union[torch.Tensor, PIL.Image.Image] , lowerCAmelCase_ : int = 2_5_0 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 1_0 , lowerCAmelCase_ : int = 1_0 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: __lowerCAmelCase = image __lowerCAmelCase = _preprocess_image(lowerCAmelCase_ ) __lowerCAmelCase = original_image.to(device=self.device , dtype=self.unet.dtype ) __lowerCAmelCase = _preprocess_mask(lowerCAmelCase_ ) __lowerCAmelCase = mask_image.to(device=self.device , dtype=self.unet.dtype ) __lowerCAmelCase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowerCAmelCase_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __lowerCAmelCase = original_image.shape __lowerCAmelCase = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.device ) __lowerCAmelCase = eta __lowerCAmelCase = self.scheduler.timesteps[0] + 1 __lowerCAmelCase = generator[0] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual __lowerCAmelCase = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample # compute previous image: x_t -> x_t-1 __lowerCAmelCase = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t __lowerCAmelCase = self.scheduler.undo_step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = t __lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCAmelCase = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
207
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCamelCase__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a__ ( datasets.BuilderConfig ): _a : Optional[datasets.Features] = None def _a ( SCREAMING_SNAKE_CASE_ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE_ : List[int] , ): import pyspark def generate_fn(): __lowerCAmelCase = df.select("*" , pyspark.sql.functions.spark_partition_id().alias("part_id" ) ) for partition_id in partition_order: __lowerCAmelCase = df_with_partition_id.select("*" ).where(F"""part_id = {partition_id}""" ).drop("part_id" ) __lowerCAmelCase = partition_df.collect() __lowerCAmelCase = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class a__ ( _BaseExamplesIterable ): def __init__( self , _A , _A=None , ): """simple docstring""" __lowerCAmelCase = df __lowerCAmelCase = partition_order or range(self.df.rdd.getNumPartitions() ) __lowerCAmelCase = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ): """simple docstring""" yield from self.generate_examples_fn() def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(_A ) return SparkExamplesIterable(self.df , partition_order=_A ) def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = self.split_shard_indices_by_worker(_A , _A ) return SparkExamplesIterable(self.df , partition_order=_A ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return len(self.partition_order ) class a__ ( datasets.DatasetBuilder ): _a : Optional[Any] = SparkConfig def __init__( self , _A , _A = None , _A = None , **_A , ): """simple docstring""" import pyspark __lowerCAmelCase = pyspark.sql.SparkSession.builder.getOrCreate() __lowerCAmelCase = df __lowerCAmelCase = working_dir super().__init__( cache_dir=_A , config_name=str(self.df.semanticHash() ) , **_A , ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" def create_cache_and_write_probe(_A ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=_A ) __lowerCAmelCase = os.path.join(self._cache_dir , "fs_test" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(_A , "a" ) return [probe_file] if self._spark.conf.get("spark.master" , "" ).startswith("local" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __lowerCAmelCase = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(_A ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( "When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" import pyspark def get_arrow_batch_size(_A ): for batch in it: yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]} ) __lowerCAmelCase = self.df.count() __lowerCAmelCase = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __lowerCAmelCase = ( self.df.limit(_A ) .repartition(1 ) .mapInArrow(_A , "batch_bytes: long" ) .agg(pyspark.sql.functions.sum("batch_bytes" ).alias("sample_bytes" ) ) .collect()[0] .sample_bytes / sample_num_rows ) __lowerCAmelCase = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __lowerCAmelCase = min(_A , int(approx_total_size / max_shard_size ) ) __lowerCAmelCase = self.df.repartition(_A ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , ): """simple docstring""" import pyspark __lowerCAmelCase = ParquetWriter if file_format == "parquet" else ArrowWriter __lowerCAmelCase = os.path.join(self._working_dir , os.path.basename(_A ) ) if self._working_dir else fpath __lowerCAmelCase = file_format == "parquet" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __lowerCAmelCase = self.config.features __lowerCAmelCase = self._writer_batch_size __lowerCAmelCase = self._fs.storage_options def write_arrow(_A ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __lowerCAmelCase = pyspark.TaskContext().taskAttemptId() __lowerCAmelCase = next(_A , _A ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["task_id", "num_examples", "num_bytes"] , ) __lowerCAmelCase = 0 __lowerCAmelCase = writer_class( features=_A , path=working_fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , writer_batch_size=_A , storage_options=_A , embed_local_files=_A , ) __lowerCAmelCase = pa.Table.from_batches([first_batch] ) writer.write_table(_A ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __lowerCAmelCase , __lowerCAmelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) shard_id += 1 __lowerCAmelCase = writer_class( features=writer._features , path=working_fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , writer_batch_size=_A , storage_options=_A , embed_local_files=_A , ) __lowerCAmelCase = pa.Table.from_batches([batch] ) writer.write_table(_A ) if writer._num_bytes > 0: __lowerCAmelCase , __lowerCAmelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(_A ) ): __lowerCAmelCase = os.path.join(os.path.dirname(_A ) , os.path.basename(_A ) ) shutil.move(_A , _A ) __lowerCAmelCase = ( self.df.mapInArrow(_A , "task_id: long, num_examples: long, num_bytes: long" ) .groupBy("task_id" ) .agg( pyspark.sql.functions.sum("num_examples" ).alias("total_num_examples" ) , pyspark.sql.functions.sum("num_bytes" ).alias("total_num_bytes" ) , pyspark.sql.functions.count("num_bytes" ).alias("num_shards" ) , pyspark.sql.functions.collect_list("num_examples" ).alias("shard_lengths" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __SCREAMING_SNAKE_CASE( self , _A , _A = "arrow" , _A = None , _A = None , **_A , ): """simple docstring""" self._validate_cache_dir() __lowerCAmelCase = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(_A ) __lowerCAmelCase = not is_remote_filesystem(self._fs ) __lowerCAmelCase = os.path.join if is_local else posixpath.join __lowerCAmelCase = "-TTTTT-SSSSS-of-NNNNN" __lowerCAmelCase = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" __lowerCAmelCase = path_join(self._output_dir , _A ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] __lowerCAmelCase = [] for task_id, content in self._prepare_split_single(_A , _A , _A ): ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(_A ) __lowerCAmelCase = total_num_examples __lowerCAmelCase = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: __lowerCAmelCase = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __lowerCAmelCase = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( _A , _A , _A , ): rename( _A , fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , fpath.replace("TTTTT-SSSSS" , f"""{global_shard_id:05d}""" ).replace("NNNNN" , f"""{total_shards:05d}""" ) , ) __lowerCAmelCase = [] __lowerCAmelCase = 0 for i in range(len(_A ) ): __lowerCAmelCase , __lowerCAmelCase = task_id_and_num_shards[i] for shard_id in range(_A ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(_A , len(_A ) ).map(lambda _A : _rename_shard(*_A ) ).collect() else: # don't use any pattern __lowerCAmelCase = 0 __lowerCAmelCase = task_id_and_num_shards[0][0] self._rename( fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , fpath.replace(_A , "" ) , ) def __SCREAMING_SNAKE_CASE( self , _A , ): """simple docstring""" return SparkExamplesIterable(self.df )
92
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a__ : def __init__( self , _A , _A=1_3 , _A=3_0 , _A=2 , _A=3 , _A=True , _A=True , _A=3_2 , _A=5 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=1_0 , _A=0.02 , _A=3 , _A=None , _A=2 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = num_patches + 2 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = DeiTModel(config=_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = DeiTForMaskedImageModeling(config=_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(_A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = DeiTForMaskedImageModeling(_A ) model.to(_A ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = DeiTForImageClassification(_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = DeiTForImageClassification(_A ) model.to(_A ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : Optional[Any] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) _a : int = ( { """feature-extraction""": DeiTModel, """image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) _a : Optional[Any] = False _a : Tuple = False _a : Tuple = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = DeiTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A=False ): """simple docstring""" __lowerCAmelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if not self.model_tester.is_training: return __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_A ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue __lowerCAmelCase = model_class(_A ) model.to(_A ) model.train() __lowerCAmelCase = self._prepare_for_class(_A , _A , return_labels=_A ) __lowerCAmelCase = model(**_A ).loss loss.backward() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowerCAmelCase = False __lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(_A ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue __lowerCAmelCase = model_class(_A ) model.gradient_checkpointing_enable() model.to(_A ) model.train() __lowerCAmelCase = self._prepare_for_class(_A , _A , return_labels=_A ) __lowerCAmelCase = model(**_A ).loss loss.backward() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_A ), *get_values(_A ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type['title']}""" ): __lowerCAmelCase = problem_type["title"] __lowerCAmelCase = problem_type["num_labels"] __lowerCAmelCase = model_class(_A ) model.to(_A ) model.train() __lowerCAmelCase = self._prepare_for_class(_A , _A , return_labels=_A ) if problem_type["num_labels"] > 1: __lowerCAmelCase = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) __lowerCAmelCase = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_A ) as warning_list: __lowerCAmelCase = model(**_A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = DeiTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _a ( ): __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( _A ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_A , return_tensors="pt" ).to(_A ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**_A ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _A ) __lowerCAmelCase = torch.tensor([-1.02_66, 0.19_12, -1.28_61] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_A , return_tensors="pt" ) __lowerCAmelCase = inputs.pixel_values.to(_A ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __lowerCAmelCase = model(_A )
92
1
"""simple docstring""" def lowerCAmelCase__ ( _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Any: """simple docstring""" snake_case = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" snake_case = 0 while b > 0: if b & 1: snake_case = ((res % c) + (a % c)) % c a += a b >>= 1 return res
356
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_12 , lowerCAmelCase=16 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase="None" , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = relative_attention snake_case = position_biased_input snake_case = pos_att_type snake_case = scope def snake_case ( self ): """simple docstring""" snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=lowerCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = TFDebertaVaModel(config=lowerCAmelCase ) snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case = [input_ids, input_mask] snake_case = model(lowerCAmelCase ) snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = TFDebertaVaForMaskedLM(config=lowerCAmelCase ) snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = self.num_labels snake_case = TFDebertaVaForSequenceClassification(config=lowerCAmelCase ) snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = self.num_labels snake_case = TFDebertaVaForTokenClassification(config=lowerCAmelCase ) snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = TFDebertaVaForQuestionAnswering(config=lowerCAmelCase ) snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self ): """simple docstring""" snake_case = self.prepare_config_and_inputs() ( ( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) , ) = config_and_inputs snake_case = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Optional[int] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _lowerCAmelCase : Any = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : List[Any] = False def snake_case ( self ): """simple docstring""" snake_case = TFDebertaVaModelTester(self ) snake_case = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) @slow def snake_case ( self ): """simple docstring""" snake_case = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(lowerCAmelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def snake_case ( self ): """simple docstring""" pass @slow def snake_case ( self ): """simple docstring""" snake_case = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) snake_case = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) snake_case = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] snake_case = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , lowerCAmelCase , atol=1E-4 )
149
0
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
84
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _A : int = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class a__ ( a_, unittest.TestCase ): __lowerCAmelCase = DebertaVaTokenizer __lowerCAmelCase = DebertaVaTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def __magic_name__ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase : Any = DebertaVaTokenizer(_a , unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self , _a ): lowercase : int = "this is a test" lowercase : Tuple = "this is a test" return input_text, output_text def __magic_name__ ( self ): lowercase : List[Any] = "<pad>" lowercase : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __magic_name__ ( self ): lowercase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "[PAD]" ) self.assertEqual(len(_a ) , 30_001 ) def __magic_name__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def __magic_name__ ( self ): # fmt: off lowercase : List[str] = " \tHeLLo!how \n Are yoU? " lowercase : str = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on lowercase : Union[str, Any] = DebertaVaTokenizer(_a , do_lower_case=_a ) lowercase : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : str = DebertaVaTokenizerFast(_a , do_lower_case=_a ) lowercase : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def __magic_name__ ( self ): pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def __magic_name__ ( self ): pass def __magic_name__ ( self ): # fmt: off lowercase : Optional[Any] = "I was born in 92000, and this is falsé." lowercase : Tuple = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on lowercase : List[Any] = DebertaVaTokenizer(_a , split_by_punct=_a ) lowercase : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : Union[str, Any] = DebertaVaTokenizerFast(_a , split_by_punct=_a ) lowercase : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): # fmt: off lowercase : int = "I was born in 92000, and this is falsé." lowercase : Tuple = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on lowercase : List[str] = DebertaVaTokenizer(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : Union[str, Any] = DebertaVaTokenizerFast(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): # fmt: off lowercase : List[Any] = "I was born in 92000, and this is falsé." lowercase : Optional[int] = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on lowercase : List[Any] = DebertaVaTokenizer(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : Optional[int] = DebertaVaTokenizerFast(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): # fmt: off lowercase : int = "I was born in 92000, and this is falsé." lowercase : Dict = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on lowercase : Union[str, Any] = DebertaVaTokenizer(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : Union[str, Any] = DebertaVaTokenizerFast(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): # fmt: off lowercase : Dict = " \tHeLLo!how \n Are yoU? " lowercase : str = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on lowercase : Optional[int] = DebertaVaTokenizer(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : List[str] = DebertaVaTokenizerFast(_a , do_lower_case=_a , split_by_punct=_a ) lowercase : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : str = self.get_tokenizer() lowercase : Dict = self.get_rust_tokenizer() lowercase : str = "I was born in 92000, and this is falsé." lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_a , add_special_tokens=_a ) ) lowercase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_a , add_special_tokens=_a ) ) self.assertListEqual(_a , _a ) lowercase : str = tokenizer.encode(_a , add_special_tokens=_a ) lowercase : Dict = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : Optional[int] = self.get_rust_tokenizer() lowercase : Tuple = tokenizer.encode(_a ) lowercase : List[str] = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : str = "This is a test" lowercase : Tuple = [13, 1, 4_398, 25, 21, 1_289] lowercase : Optional[int] = ["▁", "T", "his", "▁is", "▁a", "▁test"] lowercase : Optional[Any] = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] lowercase : Any = DebertaVaTokenizer(_a , keep_accents=_a ) lowercase : Dict = DebertaVaTokenizerFast(_a , keep_accents=_a ) lowercase : str = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : str = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : str = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a , _a ) lowercase : int = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : Any = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a , _a ) # fmt: off lowercase : int = "I was born in 92000, and this is falsé." lowercase : Any = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] lowercase : List[str] = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] lowercase : str = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on lowercase : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : List[Any] = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : str = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a , _a ) lowercase : Optional[int] = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase : List[Any] = rust_tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : Optional[int] = DebertaVaTokenizer(_a ) lowercase : List[Any] = tokenizer.encode("sequence builders" ) lowercase : Dict = tokenizer.encode("multi-sequence build" ) lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(_a ) lowercase : Dict = tokenizer.build_inputs_with_special_tokens(_a , _a ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _a ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _a , ) @slow def __magic_name__ ( self ): # fmt: off lowercase : Dict = {"input_ids": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
202
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : str = logging.get_logger(__name__) _snake_case : List[str] = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class A ( _a ): lowercase_ = "roberta" def __init__( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any]=5_02_65 , lowerCAmelCase_ : Dict=7_68 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Tuple=30_72 , lowerCAmelCase_ : Union[str, Any]="gelu" , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Any=5_12 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : List[str]=0.0_2 , lowerCAmelCase_ : List[Any]=1e-12 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : List[str]=0 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : List[Any]="absolute" , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Dict=None , **lowerCAmelCase_ : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = position_embedding_type _a = use_cache _a = classifier_dropout class A ( _a ): @property def __lowerCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
353
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class A ( _a ): lowercase_ = 42 lowercase_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
179
0
from __future__ import annotations import math from collections.abc import Callable def UpperCAmelCase ( a_ , a_ , a_ , a_ = 1_0_0 , ) -> float: """simple docstring""" __A = x_start __A = fnc(a_ ) __A = 0.0 for _ in range(a_ ): # Approximates curve as a sequence of linear lines and sums their length __A = (x_end - x_start) / steps + xa __A = fnc(a_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __A = xa __A = fxa return length if __name__ == "__main__": def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" return math.sin(1_0 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') SCREAMING_SNAKE_CASE :Tuple = 10 while i <= 10_0000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
15
'''simple docstring''' def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) # Initialize Result __SCREAMING_SNAKE_CASE = [] # Traverse through all denomination for denomination in reversed(a__ ): # Find denominations while int(a__ ) >= int(a__ ): total_value -= int(a__ ) answer.append(a__ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase : Dict = [] UpperCAmelCase : List[str] = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): UpperCAmelCase : List[str] = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(f"""Denomination {i}: """).strip())) UpperCAmelCase : str = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase : int = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] UpperCAmelCase : Any = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(f"""Following is minimal change for {value}: """) UpperCAmelCase : Any = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
267
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , _a=True , _a=1 / 255 , _a=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __magic_name__ : Tuple = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333} __magic_name__ : Any = parent __magic_name__ : Tuple = batch_size __magic_name__ : List[str] = num_channels __magic_name__ : int = min_resolution __magic_name__ : Optional[Any] = max_resolution __magic_name__ : Any = do_resize __magic_name__ : Dict = size __magic_name__ : List[Any] = do_normalize __magic_name__ : List[str] = image_mean __magic_name__ : Tuple = image_std __magic_name__ : Union[str, Any] = do_rescale __magic_name__ : str = rescale_factor __magic_name__ : List[str] = do_pad def SCREAMING_SNAKE_CASE ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE ( self , _a , _a=False ): if not batched: __magic_name__ : Dict = image_inputs[0] if isinstance(_a , Image.Image ): __magic_name__ , __magic_name__ : Optional[int] = image.size else: __magic_name__ , __magic_name__ : str = image.shape[1], image.shape[2] if w < h: __magic_name__ : List[Any] = int(self.size["shortest_edge"] * h / w ) __magic_name__ : Dict = self.size["shortest_edge"] elif w > h: __magic_name__ : List[Any] = self.size["shortest_edge"] __magic_name__ : List[str] = int(self.size["shortest_edge"] * w / h ) else: __magic_name__ : Any = self.size["shortest_edge"] __magic_name__ : int = self.size["shortest_edge"] else: __magic_name__ : Optional[Any] = [] for image in image_inputs: __magic_name__ , __magic_name__ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : List[Any] = max(_a , key=lambda _a : item[0] )[0] __magic_name__ : Optional[int] = max(_a , key=lambda _a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _snake_case ( snake_case , unittest.TestCase ): UpperCamelCase__ = DetaImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = DetaImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , "image_mean" ) ) self.assertTrue(hasattr(_a , "image_std" ) ) self.assertTrue(hasattr(_a , "do_normalize" ) ) self.assertTrue(hasattr(_a , "do_resize" ) ) self.assertTrue(hasattr(_a , "do_rescale" ) ) self.assertTrue(hasattr(_a , "do_pad" ) ) self.assertTrue(hasattr(_a , "size" ) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1_333} ) self.assertEqual(image_processor.do_pad , _a ) def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self ): # Initialize image_processing __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input __magic_name__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __magic_name__ , __magic_name__ : Any = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ , __magic_name__ : Any = self.image_processor_tester.get_expected_values(_a , batched=_a ) __magic_name__ : int = image_processing(_a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self ): # Initialize image_processing __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input __magic_name__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __magic_name__ , __magic_name__ : str = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(_a , return_tensors="pt" ).pixel_values __magic_name__ , __magic_name__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_a , batched=_a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self ): # Initialize image_processing __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input __magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __magic_name__ , __magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : List[str] = image_processing(_a , return_tensors="pt" ).pixel_values __magic_name__ , __magic_name__ : int = self.image_processor_tester.get_expected_values(_a , batched=_a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE ( self ): # prepare image and target __magic_name__ : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: __magic_name__ : Tuple = json.loads(f.read() ) __magic_name__ : Any = {"image_id": 39_769, "annotations": target} # encode them __magic_name__ : Union[str, Any] = DetaImageProcessor() __magic_name__ : str = image_processing(images=_a , annotations=_a , return_tensors="pt" ) # verify pixel values __magic_name__ : List[Any] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , _a ) __magic_name__ : Tuple = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _a , atol=1e-4 ) ) # verify area __magic_name__ : int = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _a ) ) # verify boxes __magic_name__ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _a ) __magic_name__ : List[Any] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _a , atol=1e-3 ) ) # verify image_id __magic_name__ : Any = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _a ) ) # verify is_crowd __magic_name__ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _a ) ) # verify class_labels __magic_name__ : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _a ) ) # verify orig_size __magic_name__ : List[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _a ) ) # verify size __magic_name__ : Any = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _a ) ) @slow def SCREAMING_SNAKE_CASE ( self ): # prepare image, target and masks_path __magic_name__ : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: __magic_name__ : List[Any] = json.loads(f.read() ) __magic_name__ : Any = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target} __magic_name__ : Dict = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them __magic_name__ : List[Any] = DetaImageProcessor(format="coco_panoptic" ) __magic_name__ : Optional[int] = image_processing(images=_a , annotations=_a , masks_path=_a , return_tensors="pt" ) # verify pixel values __magic_name__ : Any = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , _a ) __magic_name__ : List[Any] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _a , atol=1e-4 ) ) # verify area __magic_name__ : Union[str, Any] = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _a ) ) # verify boxes __magic_name__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _a ) __magic_name__ : int = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _a , atol=1e-3 ) ) # verify image_id __magic_name__ : Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _a ) ) # verify is_crowd __magic_name__ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _a ) ) # verify class_labels __magic_name__ : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _a ) ) # verify masks __magic_name__ : List[Any] = 822_873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , _a ) # verify orig_size __magic_name__ : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _a ) ) # verify size __magic_name__ : Optional[int] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _a ) )
41
def lowerCAmelCase_ ( _snake_case : int ) -> bool: '''simple docstring''' if not isinstance(_snake_case , _snake_case ): __magic_name__ : Union[str, Any] = F'''Input value of [number={number}] must be an integer''' raise TypeError(_snake_case ) if number < 0: return False __magic_name__ : List[str] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
41
1
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin _a = logging.get_logger(__name__) enable_full_determinism() class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = UNetaDModel UpperCamelCase__ = "sample" @property def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = (32, 32) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) _UpperCAmelCase = torch.tensor([10] ).to(UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase ( self ): """simple docstring""" return (3, 32, 32) @property def UpperCamelCase ( self ): """simple docstring""" return (3, 32, 32) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = UNetaDModel UpperCamelCase__ = "sample" @property def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = 4 _UpperCAmelCase = 4 _UpperCAmelCase = (32, 32) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) _UpperCAmelCase = torch.tensor([10] ).to(UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase ( self ): """simple docstring""" return (4, 32, 32) @property def UpperCamelCase ( self ): """simple docstring""" return (4, 32, 32) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(UpperCAmelCase ) _UpperCAmelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=UpperCAmelCase ) model.to(UpperCAmelCase ) _UpperCAmelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=UpperCAmelCase ) model_accelerate.to(UpperCAmelCase ) model_accelerate.eval() _UpperCAmelCase = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) _UpperCAmelCase = noise.to(UpperCAmelCase ) _UpperCAmelCase = torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase ) _UpperCAmelCase = model_accelerate(UpperCAmelCase , UpperCAmelCase )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=UpperCAmelCase , low_cpu_mem_usage=UpperCAmelCase ) model_normal_load.to(UpperCAmelCase ) model_normal_load.eval() _UpperCAmelCase = model_normal_load(UpperCAmelCase , UpperCAmelCase )['sample'] assert torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1e-3 ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(UpperCAmelCase ) _UpperCAmelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _UpperCAmelCase = noise.to(UpperCAmelCase ) _UpperCAmelCase = torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase ) with torch.no_grad(): _UpperCAmelCase = model(UpperCAmelCase , UpperCAmelCase ).sample _UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1e-3 ) ) class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = UNetaDModel UpperCamelCase__ = "sample" @property def UpperCamelCase ( self , UpperCAmelCase=(32, 32) ): """simple docstring""" _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) _UpperCAmelCase = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase ( self ): """simple docstring""" return (3, 32, 32) @property def UpperCamelCase ( self ): """simple docstring""" return (3, 32, 32) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1e-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(UpperCAmelCase ) _UpperCAmelCase = self.dummy_input _UpperCAmelCase = floats_tensor((4, 3) + (256, 256) ).to(UpperCAmelCase ) _UpperCAmelCase = noise _UpperCAmelCase = model(**UpperCAmelCase ) assert image is not None, "Make sure output is not None" @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(UpperCAmelCase ) _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = (256, 256) _UpperCAmelCase = torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) _UpperCAmelCase = torch.tensor(batch_size * [1e-4] ).to(UpperCAmelCase ) with torch.no_grad(): _UpperCAmelCase = model(UpperCAmelCase , UpperCAmelCase ).sample _UpperCAmelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 5_67.76_08] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1e-2 ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(UpperCAmelCase ) _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = (32, 32) _UpperCAmelCase = torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) _UpperCAmelCase = torch.tensor(batch_size * [1e-4] ).to(UpperCAmelCase ) with torch.no_grad(): _UpperCAmelCase = model(UpperCAmelCase , UpperCAmelCase ).sample _UpperCAmelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-0.03_25, -0.09_00, -0.08_69, -0.03_32, -0.07_25, -0.02_70, -0.01_01, 0.02_27, 0.02_56] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1e-2 ) ) def UpperCamelCase ( self ): """simple docstring""" pass
39
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""image_processor""", """tokenizer"""] lowercase__ = """BlipImageProcessor""" lowercase__ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Dict, lowerCamelCase : Dict, lowerCamelCase : str ): '''simple docstring''' lowercase__ = False super().__init__(lowerCamelCase, lowerCamelCase ) lowercase__ = self.image_processor def __call__( self : int, lowerCamelCase : ImageInput = None, lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, lowerCamelCase : bool = True, lowerCamelCase : Union[bool, str, PaddingStrategy] = False, lowerCamelCase : Union[bool, str, TruncationStrategy] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : int = 0, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = True, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : Any, ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: lowercase__ = self.tokenizer lowercase__ = self.tokenizer( text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, ) return text_encoding # add pixel_values lowercase__ = self.image_processor(lowerCamelCase, return_tensors=lowerCamelCase ) if text is not None: lowercase__ = self.tokenizer( text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, ) else: lowercase__ = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase ) return encoding_image_processor def lowercase__ ( self : Tuple, *lowerCamelCase : Union[str, Any], **lowerCamelCase : Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : List[str], *lowerCamelCase : int, **lowerCamelCase : List[str] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase, **lowerCamelCase ) @property def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.tokenizer.model_input_names lowercase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
207
0
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : List[Any] = DistilBertTokenizer a__ : int = DistilBertTokenizerFast a__ : int = True @slow def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Any = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''') __UpperCamelCase :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase) __UpperCamelCase :Optional[int] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase) __UpperCamelCase :Optional[Any] = tokenizer.build_inputs_with_special_tokens(__lowercase) __UpperCamelCase :int = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
105
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __lowercase = logging.getLogger(__name__) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : str = """token-classification""" def __init__( self , __lowercase) -> str: if type(__lowercase) == dict: __UpperCamelCase :List[Any] = Namespace(**__lowercase) __UpperCamelCase :Dict = import_module('''tasks''') try: __UpperCamelCase :str = getattr(__lowercase , hparams.task_type) __UpperCamelCase :TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""") __UpperCamelCase :Tuple = self.token_classification_task.get_labels(hparams.labels) __UpperCamelCase :Tuple = CrossEntropyLoss().ignore_index super().__init__(__lowercase , len(self.labels) , self.mode) def UpperCamelCase__ ( self , **__lowercase) -> List[Any]: return self.model(**__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Any: __UpperCamelCase :str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": __UpperCamelCase :Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids __UpperCamelCase :Dict = self(**__lowercase) __UpperCamelCase :str = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :List[Any] = self.hparams for mode in ["train", "dev", "test"]: __UpperCamelCase :int = self._feature_file(__lowercase) if os.path.exists(__lowercase) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __lowercase) __UpperCamelCase :Any = torch.load(__lowercase) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir) __UpperCamelCase :Any = self.token_classification_task.read_examples_from_file(args.data_dir , __lowercase) __UpperCamelCase :Union[str, Any] = self.token_classification_task.convert_examples_to_features( __lowercase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet''']) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__lowercase , pad_on_left=bool(self.config.model_type in ['''xlnet''']) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __lowercase) torch.save(__lowercase , __lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = False) -> DataLoader: __UpperCamelCase :Tuple = self._feature_file(__lowercase) logger.info('''Loading features from cached file %s''' , __lowercase) __UpperCamelCase :str = torch.load(__lowercase) __UpperCamelCase :int = torch.tensor([f.input_ids for f in features] , dtype=torch.long) __UpperCamelCase :Optional[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) if features[0].token_type_ids is not None: __UpperCamelCase :str = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) else: __UpperCamelCase :Union[str, Any] = torch.tensor([0 for f in features] , dtype=torch.long) # HACK(we will not use this anymore soon) __UpperCamelCase :int = torch.tensor([f.label_ids for f in features] , dtype=torch.long) return DataLoader( TensorDataset(__lowercase , __lowercase , __lowercase , __lowercase) , batch_size=__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Dict: """Compute validation""" "" __UpperCamelCase :int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": __UpperCamelCase :Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids __UpperCamelCase :Any = self(**__lowercase) __UpperCamelCase , __UpperCamelCase :Tuple = outputs[:2] __UpperCamelCase :List[str] = logits.detach().cpu().numpy() __UpperCamelCase :List[str] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __lowercase) -> List[str]: __UpperCamelCase :Tuple = torch.stack([x['''val_loss'''] for x in outputs]).mean() __UpperCamelCase :str = np.concatenate([x['''pred'''] for x in outputs] , axis=0) __UpperCamelCase :Any = np.argmax(__lowercase , axis=2) __UpperCamelCase :str = np.concatenate([x['''target'''] for x in outputs] , axis=0) __UpperCamelCase :List[str] = dict(enumerate(self.labels)) __UpperCamelCase :Tuple = [[] for _ in range(out_label_ids.shape[0])] __UpperCamelCase :Any = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) __UpperCamelCase :Any = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__lowercase , __lowercase), '''precision''': precision_score(__lowercase , __lowercase), '''recall''': recall_score(__lowercase , __lowercase), '''f1''': fa_score(__lowercase , __lowercase), } __UpperCamelCase :Dict = dict(results.items()) __UpperCamelCase :List[str] = results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __lowercase) -> int: # when stable __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :List[Any] = self._eval_end(__lowercase) __UpperCamelCase :Tuple = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __lowercase) -> int: # updating to test_epoch_end instead of deprecated test_end __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[int] = self._eval_end(__lowercase) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __UpperCamelCase :Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __lowercase , __lowercase) -> Union[str, Any]: # Add NER specific options BaseTransformer.add_model_specific_args(__lowercase , __lowercase) parser.add_argument( '''--task_type''' , default='''NER''' , type=__lowercase , help='''Task type to fine tune in training (e.g. NER, POS, etc)''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__lowercase , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__lowercase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') return parser if __name__ == "__main__": __lowercase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __lowercase = NERTransformer.add_model_specific_args(parser, os.getcwd()) __lowercase = parser.parse_args() __lowercase = NERTransformer(args) __lowercase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __lowercase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) __lowercase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
105
1
'''simple docstring''' from __future__ import annotations import math def _lowerCAmelCase ( _UpperCamelCase : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( _UpperCamelCase : int ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =str(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[n] for i in range(1 , len(_UpperCamelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _lowerCAmelCase ( _UpperCamelCase : int ) -> bool: """simple docstring""" if len(str(_UpperCamelCase ) ) > 3: if not is_prime(int(str(_UpperCamelCase )[-3:] ) ) or not is_prime(int(str(_UpperCamelCase )[:3] ) ): return False return True def _lowerCAmelCase ( _UpperCamelCase : int = 11 ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =13 while len(_UpperCamelCase ) != count: if validate(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =list_truncated_nums(_UpperCamelCase ) if all(is_prime(_UpperCamelCase ) for i in list_nums ): list_truncated_primes.append(_UpperCamelCase ) num += 2 return list_truncated_primes def _lowerCAmelCase ( ) -> int: """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f'''{sum(compute_truncated_primes(1_1)) = }''')
47
from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Any = logging.get_logger(__name__) A__: List[str] = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """pegasus""" UpperCamelCase__ = ["""past_key_values"""] UpperCamelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self: List[str] , __lowerCamelCase: Dict=5_0265 , __lowerCamelCase: int=1024 , __lowerCamelCase: Dict=12 , __lowerCamelCase: Dict=4096 , __lowerCamelCase: str=16 , __lowerCamelCase: List[Any]=12 , __lowerCamelCase: int=4096 , __lowerCamelCase: Optional[Any]=16 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: int=0.0 , __lowerCamelCase: List[str]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: List[Any]="gelu" , __lowerCamelCase: List[Any]=1024 , __lowerCamelCase: int=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Any=0.02 , __lowerCamelCase: Union[str, Any]=0 , __lowerCamelCase: str=False , __lowerCamelCase: Optional[int]=0 , __lowerCamelCase: Optional[Any]=1 , __lowerCamelCase: Optional[int]=1 , **__lowerCamelCase: Union[str, Any] , ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = vocab_size UpperCamelCase__: List[Any] = max_position_embeddings UpperCamelCase__: Tuple = d_model UpperCamelCase__: str = encoder_ffn_dim UpperCamelCase__: Optional[int] = encoder_layers UpperCamelCase__: List[Any] = encoder_attention_heads UpperCamelCase__: Tuple = decoder_ffn_dim UpperCamelCase__: int = decoder_layers UpperCamelCase__: List[str] = decoder_attention_heads UpperCamelCase__: int = dropout UpperCamelCase__: List[str] = attention_dropout UpperCamelCase__: Tuple = activation_dropout UpperCamelCase__: Optional[int] = activation_function UpperCamelCase__: Dict = init_std UpperCamelCase__: Optional[Any] = encoder_layerdrop UpperCamelCase__: Any = decoder_layerdrop UpperCamelCase__: Optional[int] = use_cache UpperCamelCase__: Optional[int] = encoder_layers UpperCamelCase__: List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) @property def UpperCAmelCase_ ( self: Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' return self.d_model
149
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_speecht5""": [ """SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""", """SpeechT5Config""", """SpeechT5HifiGanConfig""", ], """feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""], """processing_speecht5""": ["""SpeechT5Processor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""SpeechT5Tokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """SpeechT5ForSpeechToText""", """SpeechT5ForSpeechToSpeech""", """SpeechT5ForTextToSpeech""", """SpeechT5Model""", """SpeechT5PreTrainedModel""", """SpeechT5HifiGan""", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
297
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" lowerCAmelCase__ = 1 @register_to_config def __init__( self , UpperCAmelCase = 1000 , UpperCAmelCase = None ) -> List[Any]: '''simple docstring''' self.set_timesteps(UpperCAmelCase ) # standard deviation of the initial noise distribution lowercase_ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase_ = 4 # running values lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[int]: '''simple docstring''' lowercase_ = num_inference_steps lowercase_ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase_ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase_ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase_ = torch.sin(steps * math.pi / 2 ) ** 2 lowercase_ = (1.0 - self.betas**2) ** 0.5 lowercase_ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase_ = timesteps.to(UpperCAmelCase ) lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) lowercase_ = (self.timesteps == timestep).nonzero().item() lowercase_ = timestep_index + 1 lowercase_ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCAmelCase ) if len(self.ets ) == 1: lowercase_ = self.ets[-1] elif len(self.ets ) == 2: lowercase_ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase_ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase_ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase_ = self._get_prev_sample(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> torch.FloatTensor: '''simple docstring''' return sample def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = self.alphas[timestep_index] lowercase_ = self.betas[timestep_index] lowercase_ = self.alphas[prev_timestep_index] lowercase_ = self.betas[prev_timestep_index] lowercase_ = (sample - sigma * ets) / max(UpperCAmelCase , 1e-8 ) lowercase_ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> List[str]: '''simple docstring''' return self.config.num_train_timesteps
297
1
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging UpperCamelCase = logging.get_logger(__name__) class snake_case_ : __A : str __A : str = None @staticmethod def __UpperCamelCase ( ) -> Union[str, Any]: raise NotImplementedError def __UpperCamelCase ( self : Optional[Any] , lowercase_ : List[str] , lowercase_ : int , lowercase_ : str , **lowercase_ : Dict ) -> int: raise NotImplementedError def __UpperCamelCase ( self : Any , lowercase_ : int ) -> List[str]: raise NotImplementedError def __UpperCamelCase ( self : str ) -> int: if not self.is_available(): raise RuntimeError( F'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def __UpperCamelCase ( cls : Optional[Any] ) -> Union[str, Any]: return F'''`pip install {cls.pip_package or cls.name}`''' class snake_case_ ( __A ): __A : List[str] = "optuna" @staticmethod def __UpperCamelCase ( ) -> int: return is_optuna_available() def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : int , lowercase_ : str , **lowercase_ : Optional[Any] ) -> Optional[int]: return run_hp_search_optuna(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[int] ) -> Any: return default_hp_space_optuna(lowercase_ ) class snake_case_ ( __A ): __A : Optional[Any] = "ray" __A : Dict = "'ray[tune]'" @staticmethod def __UpperCamelCase ( ) -> Tuple: return is_ray_available() def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : int , lowercase_ : str , **lowercase_ : Any ) -> Optional[int]: return run_hp_search_ray(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : List[Any] , lowercase_ : int ) -> Tuple: return default_hp_space_ray(lowercase_ ) class snake_case_ ( __A ): __A : List[Any] = "sigopt" @staticmethod def __UpperCamelCase ( ) -> Union[str, Any]: return is_sigopt_available() def __UpperCamelCase ( self : List[Any] , lowercase_ : str , lowercase_ : int , lowercase_ : str , **lowercase_ : Any ) -> Any: return run_hp_search_sigopt(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Optional[Any] ) -> Optional[Any]: return default_hp_space_sigopt(lowercase_ ) class snake_case_ ( __A ): __A : Any = "wandb" @staticmethod def __UpperCamelCase ( ) -> List[Any]: return is_wandb_available() def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : str , **lowercase_ : Dict ) -> Dict: return run_hp_search_wandb(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : List[str] , lowercase_ : Optional[Any] ) -> Dict: return default_hp_space_wandb(lowercase_ ) UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowercase_ ( ): lowercase__ : Dict = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_lowerCamelCase) > 0: lowercase__ : List[str] = available_backends[0].name if len(_lowerCamelCase) > 1: logger.info( f'''{len(_lowerCamelCase)} hyperparameter search backends available. Using {name} as the default.''') return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values()))
87
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __snake_case : """simple docstring""" _lowerCamelCase = 42 # setable values _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = None @classmethod def UpperCamelCase__( cls , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' return cls(common=__lowerCamelCase , init_noise_sigma=__lowerCamelCase , timesteps=__lowerCamelCase ) @dataclass class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 class __snake_case ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = [e.name for e in FlaxKarrasDiffusionSchedulers] _lowerCamelCase = 42 @property def UpperCamelCase__( self ): '''simple docstring''' return True @register_to_config def __init__( self , __lowerCamelCase = 1000 , __lowerCamelCase = 0.0_0_0_1 , __lowerCamelCase = 0.0_2 , __lowerCamelCase = "linear" , __lowerCamelCase = None , __lowerCamelCase = "fixed_small" , __lowerCamelCase = True , __lowerCamelCase = "epsilon" , __lowerCamelCase = jnp.floataa , ): '''simple docstring''' __A : Tuple = dtype def UpperCamelCase__( self , __lowerCamelCase = None ): '''simple docstring''' if common is None: __A : Tuple = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __A : Tuple = jnp.array(1.0 , dtype=self.dtype ) __A : Optional[int] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__lowerCamelCase , init_noise_sigma=__lowerCamelCase , timesteps=__lowerCamelCase , ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' return sample def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = () ): '''simple docstring''' __A : Optional[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __A : Optional[Any] = (jnp.arange(0 , __lowerCamelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__lowerCamelCase , timesteps=__lowerCamelCase , ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None ): '''simple docstring''' __A : int = state.common.alphas_cumprod[t] __A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __A : str = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __A : Dict = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __A : List[Any] = jnp.clip(__lowerCamelCase , a_min=1e-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __A : Optional[Any] = jnp.log(jnp.clip(__lowerCamelCase , a_min=1e-2_0 ) ) elif variance_type == "fixed_large": __A : Tuple = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __A : Union[str, Any] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __A : Optional[Any] = variance __A : Optional[Any] = state.common.betas[t] __A : Any = (predicted_variance + 1) / 2 __A : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True , ): '''simple docstring''' __A : Optional[int] = timestep if key is None: __A : List[Any] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __A , __A : Tuple = jnp.split(__lowerCamelCase , sample.shape[1] , axis=1 ) else: __A : List[str] = None # 1. compute alphas, betas __A : Dict = state.common.alphas_cumprod[t] __A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __A : Tuple = 1 - alpha_prod_t __A : Optional[int] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __A : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __A : Any = model_output elif self.config.prediction_type == "v_prediction": __A : str = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __A : str = jnp.clip(__lowerCamelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __A : Optional[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __A : Union[str, Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __A : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __A : List[Any] = jax.random.split(__lowerCamelCase , num=1 ) __A : List[str] = jax.random.normal(__lowerCamelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__lowerCamelCase , __lowerCamelCase , predicted_variance=__lowerCamelCase ) ** 0.5) * noise __A : Optional[Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __A : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__lowerCamelCase , state=__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): '''simple docstring''' return add_noise_common(state.common , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): '''simple docstring''' return get_velocity_common(state.common , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
179
0
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : Any = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } a : Any = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } a : str = { """vinai/phobert-base""": 2_5_6, """vinai/phobert-large""": 2_5_6, } def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : str = set() UpperCAmelCase : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase : int = char UpperCAmelCase : Any = set(_lowercase ) return pairs class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> Dict: super().__init__( bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Dict = vocab_file UpperCAmelCase : List[str] = merges_file UpperCAmelCase : Tuple = {} UpperCAmelCase : List[str] = 0 UpperCAmelCase : str = 1 UpperCAmelCase : Optional[Any] = 2 UpperCAmelCase : Tuple = 3 self.add_from_file(A ) UpperCAmelCase : Optional[int] = {v: k for k, v in self.encoder.items()} with open(A , encoding="""utf-8""" ) as merges_handle: UpperCAmelCase : Union[str, Any] = merges_handle.read().split("""\n""" )[:-1] UpperCAmelCase : int = [tuple(merge.split()[:-1] ) for merge in merges] UpperCAmelCase : Tuple = dict(zip(A , range(len(A ) ) ) ) UpperCAmelCase : Dict = {} def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Any = [self.cls_token_id] UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : List[Any] = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowercase( self ) -> Any: return len(self.encoder ) def _lowercase( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase( self , A ) -> Dict: if token in self.cache: return self.cache[token] UpperCAmelCase : Optional[Any] = tuple(A ) UpperCAmelCase : List[Any] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) UpperCAmelCase : List[Any] = get_pairs(A ) if not pairs: return token while True: UpperCAmelCase : List[Any] = min(A , key=lambda A : self.bpe_ranks.get(A , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase : Tuple = bigram UpperCAmelCase : Dict = [] UpperCAmelCase : Optional[Any] = 0 while i < len(A ): try: UpperCAmelCase : Optional[int] = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase : int = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase : Tuple = tuple(A ) UpperCAmelCase : Tuple = new_word if len(A ) == 1: break else: UpperCAmelCase : Optional[int] = get_pairs(A ) UpperCAmelCase : List[str] = """@@ """.join(A ) UpperCAmelCase : Any = word[:-4] UpperCAmelCase : Optional[Any] = word return word def _lowercase( self , A ) -> Any: UpperCAmelCase : Dict = [] UpperCAmelCase : int = re.findall(r"""\S+\n?""" , A ) for token in words: split_tokens.extend(list(self.bpe(A ).split(""" """ ) ) ) return split_tokens def _lowercase( self , A ) -> int: return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def _lowercase( self , A ) -> Union[str, Any]: return self.decoder.get(A , self.unk_token ) def _lowercase( self , A ) -> str: UpperCAmelCase : int = """ """.join(A ).replace("""@@ """ , """""" ).strip() return out_string def _lowercase( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : Dict = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) if os.path.abspath(self.merges_file ) != os.path.abspath(A ): copyfile(self.merges_file , A ) return out_vocab_file, out_merge_file def _lowercase( self , A ) -> str: if isinstance(A , A ): try: with open(A , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return UpperCAmelCase : Optional[Any] = f.readlines() for lineTmp in lines: UpperCAmelCase : Optional[int] = lineTmp.strip() UpperCAmelCase : List[str] = line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) UpperCAmelCase : Any = line[:idx] UpperCAmelCase : Optional[Any] = len(self.encoder )
338
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _A : List[Any] =logging.get_logger(__name__) _A : Tuple ={ '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _A : List[Any] ={ '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _A : List[Any] ={'''facebook/blenderbot-3B''': 128} class _lowercase ( _lowercase ): a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = ["""input_ids""", """attention_mask"""] a = BlenderbotTokenizer def __init__( self: Union[str, Any] , UpperCamelCase__: Union[str, Any]=None , UpperCamelCase__: List[str]=None , UpperCamelCase__: int=None , UpperCamelCase__: Dict="replace" , UpperCamelCase__: Any="<s>" , UpperCamelCase__: Dict="</s>" , UpperCamelCase__: Any="</s>" , UpperCamelCase__: Union[str, Any]="<s>" , UpperCamelCase__: Tuple="<unk>" , UpperCamelCase__: Union[str, Any]="<pad>" , UpperCamelCase__: Optional[Any]="<mask>" , UpperCamelCase__: Tuple=False , UpperCamelCase__: str=True , **UpperCamelCase__: Optional[Any] , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , **UpperCamelCase__ , ) lowerCamelCase__ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCamelCase__ ) != add_prefix_space: lowerCamelCase__ : List[str] = getattr(UpperCamelCase__ , pre_tok_state.pop("""type""" ) ) lowerCamelCase__ : Union[str, Any] = add_prefix_space lowerCamelCase__ : Optional[int] = pre_tok_class(**UpperCamelCase__ ) lowerCamelCase__ : Dict = add_prefix_space lowerCamelCase__ : Tuple = """post_processor""" lowerCamelCase__ : Tuple = getattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) if tokenizer_component_instance: lowerCamelCase__ : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCamelCase__ : str = tuple(state["""sep"""] ) if "cls" in state: lowerCamelCase__ : Optional[Any] = tuple(state["""cls"""] ) lowerCamelCase__ : Optional[int] = False if state.get("""add_prefix_space""" , UpperCamelCase__ ) != add_prefix_space: lowerCamelCase__ : Tuple = add_prefix_space lowerCamelCase__ : Optional[Any] = True if state.get("""trim_offsets""" , UpperCamelCase__ ) != trim_offsets: lowerCamelCase__ : int = trim_offsets lowerCamelCase__ : int = True if changes_to_apply: lowerCamelCase__ : List[Any] = getattr(UpperCamelCase__ , state.pop("""type""" ) ) lowerCamelCase__ : Any = component_class(**UpperCamelCase__ ) setattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self: str ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: str ): lowerCamelCase__ : Union[str, Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else value lowerCamelCase__ : int = value def lowerCamelCase_ ( self: Union[str, Any] , *UpperCamelCase__: Optional[Any] , **UpperCamelCase__: Any ): lowerCamelCase__ : List[str] = kwargs.get("""is_split_into_words""" , UpperCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] , *UpperCamelCase__: List[Any] , **UpperCamelCase__: int ): lowerCamelCase__ : List[str] = kwargs.get("""is_split_into_words""" , UpperCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: str , UpperCamelCase__: Optional[str] = None ): lowerCamelCase__ : Dict = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: List[int] , UpperCamelCase__: Optional[List[int]] = None ): lowerCamelCase__ : List[Any] = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: List[int] , UpperCamelCase__: Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self: Any , UpperCamelCase__: "Conversation" ): lowerCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(UpperCamelCase__ ) lowerCamelCase__ : str = """ """.join(UpperCamelCase__ ) lowerCamelCase__ : str = self.encode(UpperCamelCase__ ) if len(UpperCamelCase__ ) > self.model_max_length: lowerCamelCase__ : List[Any] = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
41
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class _lowercase ( unittest.TestCase ): def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : int = tempfile.mkdtemp() # fmt: off lowerCamelCase__ : int = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on lowerCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCamelCase__ : Tuple = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } lowerCamelCase__ : Tuple = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: str , **UpperCamelCase__: List[str] ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: int , **UpperCamelCase__: Tuple ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[Any] ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase__ : Tuple = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Optional[Any] = self.get_tokenizer() lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : int = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Dict = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : int = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCamelCase__ : List[Any] = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) lowerCamelCase__ : Tuple = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Optional[Any] = self.get_image_processor() lowerCamelCase__ : Union[str, Any] = self.get_tokenizer() lowerCamelCase__ : Any = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : List[Any] = self.prepare_image_inputs() lowerCamelCase__ : List[str] = image_processor(UpperCamelCase__ , return_tensors="""np""" ) lowerCamelCase__ : Optional[Any] = processor(images=UpperCamelCase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Any = self.get_image_processor() lowerCamelCase__ : List[str] = self.get_tokenizer() lowerCamelCase__ : List[Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : List[Any] = """lower newer""" lowerCamelCase__ : Union[str, Any] = processor(text=UpperCamelCase__ ) lowerCamelCase__ : Any = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Optional[Any] = self.get_image_processor() lowerCamelCase__ : List[Any] = self.get_tokenizer() lowerCamelCase__ : List[Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : Any = """lower newer""" lowerCamelCase__ : Dict = self.prepare_image_inputs() lowerCamelCase__ : Tuple = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(UpperCamelCase__ ): processor() def lowerCamelCase_ ( self: int ): lowerCamelCase__ : List[str] = self.get_image_processor() lowerCamelCase__ : List[str] = self.get_tokenizer() lowerCamelCase__ : int = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ : Union[str, Any] = processor.batch_decode(UpperCamelCase__ ) lowerCamelCase__ : Dict = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Any = self.get_image_processor() lowerCamelCase__ : Union[str, Any] = self.get_tokenizer() lowerCamelCase__ : int = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = """lower newer""" lowerCamelCase__ : str = self.prepare_image_inputs() lowerCamelCase__ : int = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
41
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _a : Dict= { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple= ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str= [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys _a : int= _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
95
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _a : int= False class UpperCamelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : Optional[Any]) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : int) -> Tuple: __snake_case : str = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa) pipe.to(_A) pipe.set_progress_bar_config(disable=_A) __snake_case : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg') __snake_case : List[Any] = torch.manual_seed(0) __snake_case : Optional[int] = pipe.dual_guided( prompt='first prompt' , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_A) __snake_case : Optional[Any] = VersatileDiffusionPipeline.from_pretrained(_A , torch_dtype=torch.floataa) pipe.to(_A) pipe.set_progress_bar_config(disable=_A) __snake_case : Tuple = generator.manual_seed(0) __snake_case : int = pipe.dual_guided( prompt='first prompt' , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image).sum() < 1E-5, "Models don't have the same forward pass" def _lowercase (self : Optional[Any]) -> Optional[int]: __snake_case : Optional[Any] = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa) pipe.to(_A) pipe.set_progress_bar_config(disable=_A) __snake_case : Tuple = 'cyberpunk 2077' __snake_case : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg') __snake_case : str = torch.manual_seed(0) __snake_case : Union[str, Any] = pipe.dual_guided( prompt=_A , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images __snake_case : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __snake_case : Tuple = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 __snake_case : List[str] = 'A painting of a squirrel eating a burger ' __snake_case : str = torch.manual_seed(0) __snake_case : str = pipe.text_to_image( prompt=_A , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy').images __snake_case : str = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __snake_case : Any = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 __snake_case : List[str] = pipe.image_variation(_A , generator=_A , output_type='numpy').images __snake_case : Dict = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __snake_case : List[Any] = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1
95
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _SCREAMING_SNAKE_CASE ( ) ->List[str]: '''simple docstring''' a : List[Any] = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=_lowercase , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=_lowercase , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=_lowercase ) return parser.parse_args() def _SCREAMING_SNAKE_CASE ( ) ->List[str]: '''simple docstring''' a : Optional[int] = parse_args() # Import training_script as a module. a : Dict = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) a : List[str] = script_fpath.stem a : Optional[Any] = importlib.import_module(_lowercase ) # Patch sys.argv a : Optional[int] = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
105
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __UpperCamelCase : @staticmethod def __a ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: pass def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple ) ->Dict: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. a : Optional[Any] = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): lowerCamelCase : Union[str, Any] =MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : Tuple = pipeline( "document-question-answering" , model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a : Optional[int] = INVOICE_URL a : str = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) a : Union[str, Any] = "What is the placebo?" a : Dict = [ { "image": load_image(lowerCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: a : Tuple = dqa_pipeline(lowerCAmelCase__ , top_k=2 ) self.assertEqual( lowerCAmelCase__ , [ [ {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ ), "start": ANY(lowerCAmelCase__ ), "end": ANY(lowerCAmelCase__ )}, {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ ), "start": ANY(lowerCAmelCase__ ), "end": ANY(lowerCAmelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> List[Any]: a : List[Any] = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) a : Dict = INVOICE_URL a : List[str] = "How many cats are there?" a : Tuple = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] a : Optional[int] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) a : Optional[int] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably a : List[Any] = "./tests/fixtures/tests_samples/COCO/000000039769.png" a : Any = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes a : Optional[int] = "./tests/fixtures/tests_samples/COCO/000000039769.png" a : Tuple = [] a : Optional[int] = [] a : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , words=lowerCAmelCase__ , boxes=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> Tuple: a : int = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) a : List[str] = INVOICE_URL a : List[Any] = "What is the invoice number?" a : int = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : str = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : Any = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> Optional[int]: a : List[str] = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) a : Optional[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : str = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : Tuple = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __a ( self ) -> str: a : Optional[int] = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase__ ) a : int = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase__ , revision="3dc6de3" , ) a : List[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) a : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) a : List[Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) a : Dict = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) # This model should also work if `image` is set to None a : Optional[Any] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __a ( self ) -> Tuple: a : int = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase__ ) a : Tuple = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase__ , revision="3dc6de3" , max_seq_len=50 , ) a : List[str] = INVOICE_URL a : Union[str, Any] = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : List[str] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) a : List[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) # This model should also work if `image` is set to None a : Any = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def __a ( self ) -> int: a : Tuple = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) a : Optional[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def __a ( self ) -> int: pass
105
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowerCamelCase_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1) lowerCamelCase_ : Optional[Any] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class a__ : A__ : int A__ : Node | None class a__ : def __init__( self , UpperCAmelCase ) -> None: __a = None for i in sorted(UpperCAmelCase , reverse=UpperCAmelCase ): __a = Node(UpperCAmelCase , self.head ) def __iter__( self ) -> Iterator[int]: __a = self.head while node: yield node.data __a = node.next_node def __len__( self ) -> int: return sum(1 for _ in self ) def __str__( self ) -> str: return " -> ".join([str(UpperCAmelCase ) for node in self] ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): return SortedLinkedList(list(__lowerCamelCase ) + list(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : Tuple = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
197
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class a__ ( __snake_case ): def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase ) -> List[Any]: __a = parent __a = config_class __a = has_text_modality __a = kwargs __a = common_properties def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = self.config_class(**self.inputs_dict ) __a = ( ['hidden_size', 'num_attention_heads', 'num_hidden_layers'] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['vocab_size'] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) , msg=f'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase ): try: setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.parent.assertEqual( getattr(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase , msg=f'''`{name} value {idx} expected, but was {getattr(UpperCAmelCase , UpperCAmelCase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase ): try: __a = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase , msg=f'''`{name} value {idx} expected, but was {getattr(UpperCAmelCase , UpperCAmelCase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.config_class(**self.inputs_dict ) __a = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a = os.path.join(UpperCAmelCase , 'config.json' ) config_first.to_json_file(UpperCAmelCase ) __a = self.config_class.from_json_file(UpperCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase ) __a = self.config_class.from_pretrained(UpperCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = self.config_class(**self.inputs_dict ) __a = 'test' with tempfile.TemporaryDirectory() as tmpdirname: __a = os.path.join(UpperCAmelCase , UpperCAmelCase ) config_first.save_pretrained(UpperCAmelCase ) __a = self.config_class.from_pretrained(UpperCAmelCase , subfolder=UpperCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) __a = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: if self.config_class.is_composition: return __a = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = copy.deepcopy(UpperCAmelCase ) __a = self.config_class(**UpperCAmelCase ) __a = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('torch_dtype', config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase , UpperCAmelCase ) != value: wrong_values.append((key, getattr(UpperCAmelCase , UpperCAmelCase ), value) ) if len(UpperCAmelCase ) > 0: __a = '\n'.join([f'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(f'''The following keys were not properly set in the config:\n{errors}''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
197
1
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCamelCase__ ( _A ): a : Dict = SwinConfig() a : Optional[Any] = swin_name.split('_' ) a : Dict = name_split[1] a : Any = int(name_split[4] ) a : List[Any] = int(name_split[3][-1] ) if model_size == "tiny": a : Optional[Any] = 96 a : int = (2, 2, 6, 2) a : int = (3, 6, 12, 24) elif model_size == "small": a : Union[str, Any] = 96 a : str = (2, 2, 18, 2) a : Optional[int] = (3, 6, 12, 24) elif model_size == "base": a : Dict = 128 a : Dict = (2, 2, 18, 2) a : Tuple = (4, 8, 16, 32) else: a : Optional[Any] = 192 a : List[str] = (2, 2, 18, 2) a : Tuple = (6, 12, 24, 48) if "in22k" in swin_name: a : int = 2_1841 else: a : Optional[Any] = 1000 a : Union[str, Any] = 'huggingface/label-files' a : List[Any] = 'imagenet-1k-id2label.json' a : Optional[Any] = json.load(open(hf_hub_download(_A , _A , repo_type='dataset' ) , 'r' ) ) a : int = {int(_A ): v for k, v in idalabel.items()} a : Optional[int] = idalabel a : Any = {v: k for k, v in idalabel.items()} a : Any = img_size a : Any = num_classes a : int = embed_dim a : Dict = depths a : str = num_heads a : Tuple = window_size return config def lowerCamelCase__ ( _A ): if "patch_embed.proj" in name: a : Union[str, Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a : Union[str, Any] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: a : Tuple = 'encoder.' + name if "attn.proj" in name: a : Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a : Union[str, Any] = name.replace('attn' , 'attention.self' ) if "norm1" in name: a : Optional[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a : Optional[int] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a : Optional[int] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a : Dict = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": a : Optional[Any] = 'layernorm.weight' if name == "norm.bias": a : Tuple = 'layernorm.bias' if "head" in name: a : str = name.replace('head' , 'classifier' ) else: a : Tuple = 'swin.' + name return name def lowerCamelCase__ ( _A , _A ): for key in orig_state_dict.copy().keys(): a : Union[str, Any] = orig_state_dict.pop(_A ) if "mask" in key: continue elif "qkv" in key: a : List[str] = key.split('.' ) a : Union[str, Any] = int(key_split[1] ) a : Union[str, Any] = int(key_split[3] ) a : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a : str = val[:dim, :] a : Dict = val[ dim : dim * 2, : ] a : Union[str, Any] = val[-dim:, :] else: a : Any = val[ :dim ] a : Dict = val[ dim : dim * 2 ] a : Optional[int] = val[ -dim: ] else: a : Dict = val return orig_state_dict def lowerCamelCase__ ( _A , _A ): a : List[str] = timm.create_model(_A , pretrained=_A ) timm_model.eval() a : Tuple = get_swin_config(_A ) a : Dict = SwinForImageClassification(_A ) model.eval() a : Any = convert_state_dict(timm_model.state_dict() , _A ) model.load_state_dict(_A ) a : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' a : Tuple = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) a : str = Image.open(requests.get(_A , stream=_A ).raw ) a : List[Any] = image_processor(images=_A , return_tensors='pt' ) a : List[Any] = timm_model(inputs['pixel_values'] ) a : Optional[int] = model(**_A ).logits assert torch.allclose(_A , _A , atol=1E-3 ) print(f"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_A ) if __name__ == "__main__": lowerCAmelCase: Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swin_name', default='swin_tiny_patch4_window7_224', type=str, help='Name of the Swin timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase: Dict = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
297
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase__ ( _A , _A ): assert isinstance(_A , _A ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase__ ( _A , _A , _A ): a : str = tmp_path / 'cache' a : Optional[int] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a : List[Any] = JsonDatasetReader(_A , cache_dir=_A , keep_in_memory=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def lowerCamelCase__ ( _A , _A , _A ): a : str = tmp_path / 'cache' a : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a : Dict = features.copy() if features else default_expected_features a : Union[str, Any] = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) a : Any = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def lowerCamelCase__ ( _A , _A , _A ): a : Tuple = tmp_path / 'cache' a : Optional[Any] = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} a : Optional[int] = features.copy() if features else default_expected_features a : Dict = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) a : Optional[int] = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowerCamelCase__ ( _A , _A ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} a : Dict = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} a : int = features.copy() a : List[Any] = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) a : Dict = tmp_path / 'cache' a : Any = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCamelCase__ ( _A , _A , _A ): a : Dict = tmp_path / 'cache' a : List[str] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a : List[Any] = JsonDatasetReader(_A , cache_dir=_A , split=_A ).read() _check_json_dataset(_A , _A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def lowerCamelCase__ ( _A , _A , _A ): if issubclass(_A , _A ): a : Optional[int] = jsonl_path elif issubclass(_A , _A ): a : Optional[int] = [jsonl_path] a : List[str] = tmp_path / 'cache' a : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a : Tuple = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) def lowerCamelCase__ ( _A , _A , _A=("train",) ): assert isinstance(_A , _A ) for split in splits: a : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase__ ( _A , _A , _A ): a : Dict = tmp_path / 'cache' a : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a : int = JsonDatasetReader({'train': jsonl_path} , cache_dir=_A , keep_in_memory=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def lowerCamelCase__ ( _A , _A , _A ): a : Dict = tmp_path / 'cache' a : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a : List[Any] = features.copy() if features else default_expected_features a : Any = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) a : List[str] = JsonDatasetReader({'train': jsonl_path} , features=_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCamelCase__ ( _A , _A , _A ): if split: a : Any = {split: jsonl_path} else: a : List[Any] = 'train' a : List[str] = {'train': jsonl_path, 'test': jsonl_path} a : List[Any] = tmp_path / 'cache' a : str = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a : Tuple = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase__ ( _A ): return json.load(_A ) def lowerCamelCase__ ( _A ): return [json.loads(_A ) for line in buffer] class a__: @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def lowercase_ ( self : Tuple , __snake_case : int , __snake_case : Optional[int] , __snake_case : Any ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case ).write() buffer.seek(0 ) a : List[str] = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def lowercase_ ( self : Tuple , __snake_case : Tuple , __snake_case : Any , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case ).write() buffer.seek(0 ) a : int = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def lowercase_ ( self : List[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , num_proc=2 ).write() buffer.seek(0 ) a : List[Any] = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def lowercase_ ( self : Optional[int] , __snake_case : Any , __snake_case : str , __snake_case : int , __snake_case : List[Any] , __snake_case : Dict ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case , num_proc=2 ).write() buffer.seek(0 ) a : int = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 def lowercase_ ( self : List[str] , __snake_case : str ): with pytest.raises(__snake_case ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def lowercase_ ( self : Tuple , __snake_case : Dict , __snake_case : List[Any] , __snake_case : int , __snake_case : List[str] , __snake_case : Optional[int] ): a : Tuple = tmp_path_factory.mktemp('data' ) / F"""test.json.{extension}""" a : List[Any] = str(shared_datadir / F"""test_file.json.{extension}""" ) JsonDatasetWriter(__snake_case , __snake_case , compression=__snake_case ).write() with fsspec.open(__snake_case , 'rb' , compression='infer' ) as f: a : Union[str, Any] = f.read() with fsspec.open(__snake_case , 'rb' , compression='infer' ) as f: a : Union[str, Any] = f.read() assert exported_content == original_content
297
1
def A_ ( _UpperCAmelCase ): if edge <= 0 or not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def A_ ( _UpperCAmelCase ): if edge <= 0 or not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
370
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCAmelCase : Union[str, Any] = get_tests_dir("""fixtures/dummy-config.json""") class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Dict = 0 def _SCREAMING_SNAKE_CASE ( self : Any): self.assertIsNotNone(transformers.models.auto.__spec__) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto")) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: List[Any] = AutoConfig.from_pretrained("bert-base-uncased") self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Optional[Any] = AutoConfig.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = AutoConfig.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[Any] = AutoConfig.for_model("roberta") self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. SCREAMING_SNAKE_CASE_: int = os.path.join(lowerCAmelCase__ , "fake-roberta") os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) with open(os.path.join(lowerCAmelCase__ , "config.json") , "w") as f: f.write(json.dumps({})) SCREAMING_SNAKE_CASE_: Any = AutoConfig.from_pretrained(lowerCAmelCase__) self.assertEqual(type(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): try: AutoConfig.register("custom" , lowerCAmelCase__) # Wrong model type will raise an error with self.assertRaises(lowerCAmelCase__): AutoConfig.register("model" , lowerCAmelCase__) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase__): AutoConfig.register("bert" , lowerCAmelCase__) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE_: List[Any] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = AutoConfig.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _SCREAMING_SNAKE_CASE ( self : List[str]): with self.assertRaisesRegex( lowerCAmelCase__ , "bert-base is not a local folder and is not a valid model identifier"): SCREAMING_SNAKE_CASE_: List[str] = AutoConfig.from_pretrained("bert-base") def _SCREAMING_SNAKE_CASE ( self : List[Any]): with self.assertRaisesRegex( lowerCAmelCase__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"): SCREAMING_SNAKE_CASE_: str = AutoConfig.from_pretrained(lowerCAmelCase__ , revision="aaaaaa") def _SCREAMING_SNAKE_CASE ( self : Optional[int]): with self.assertRaisesRegex( lowerCAmelCase__ , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): SCREAMING_SNAKE_CASE_: int = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo") def _SCREAMING_SNAKE_CASE ( self : List[str]): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model") # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__) self.assertEqual(config.__class__.__name__ , "NewModelConfig") # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = AutoConfig.from_pretrained(lowerCAmelCase__ , trust_remote_code=lowerCAmelCase__) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig") def _SCREAMING_SNAKE_CASE ( self : List[Any]): class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : int = '''new-model''' try: AutoConfig.register("new-model" , lowerCAmelCase__) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE_: int = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model") self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal") # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE_: Optional[int] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal") # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE_: int = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__) self.assertEqual(config.__class__.__name__ , "NewModelConfig") finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
127
0
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ : int = logging.get_logger(__name__) lowercase__ : Any = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } lowercase__ : str = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } lowercase__ : Tuple = { '''vinai/phobert-base''': 2_5_6, '''vinai/phobert-large''': 2_5_6, } def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Dict: lowerCAmelCase = set() lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase = char lowerCAmelCase = set(snake_case__ ) return pairs class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : Any = VOCAB_FILES_NAMES UpperCAmelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , **__SCREAMING_SNAKE_CASE , ) ->Tuple: super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) lowerCAmelCase = vocab_file lowerCAmelCase = merges_file lowerCAmelCase = {} lowerCAmelCase = 0 lowerCAmelCase = 1 lowerCAmelCase = 2 lowerCAmelCase = 3 self.add_from_file(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = {v: k for k, v in self.encoder.items()} with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as merges_handle: lowerCAmelCase = merges_handle.read().split('''\n''' )[:-1] lowerCAmelCase = [tuple(merge.split()[:-1] ) for merge in merges] lowerCAmelCase = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) lowerCAmelCase = {} def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: return len(self.encoder ) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[Any]: if token in self.cache: return self.cache[token] lowerCAmelCase = tuple(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowerCAmelCase = get_pairs(__SCREAMING_SNAKE_CASE ) if not pairs: return token while True: lowerCAmelCase = min(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : self.bpe_ranks.get(__SCREAMING_SNAKE_CASE , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase , lowerCAmelCase = bigram lowerCAmelCase = [] lowerCAmelCase = 0 while i < len(__SCREAMING_SNAKE_CASE ): try: lowerCAmelCase = word.index(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase = j if word[i] == first and i < len(__SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase = tuple(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = new_word if len(__SCREAMING_SNAKE_CASE ) == 1: break else: lowerCAmelCase = get_pairs(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = '''@@ '''.join(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = word[:-4] lowerCAmelCase = word return word def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Tuple: lowerCAmelCase = [] lowerCAmelCase = re.findall(R'''\S+\n?''' , __SCREAMING_SNAKE_CASE ) for token in words: split_tokens.extend(list(self.bpe(__SCREAMING_SNAKE_CASE ).split(''' ''' ) ) ) return split_tokens def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Dict: return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Tuple: return self.decoder.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[Any]: lowerCAmelCase = ''' '''.join(__SCREAMING_SNAKE_CASE ).replace('''@@ ''' , '''''' ).strip() return out_string def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) if os.path.abspath(self.merges_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.merges_file , __SCREAMING_SNAKE_CASE ) return out_vocab_file, out_merge_file def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Optional[int]: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): try: with open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F"Incorrect encoding detected in {f}, please rebuild the dataset" ) return lowerCAmelCase = f.readlines() for lineTmp in lines: lowerCAmelCase = lineTmp.strip() lowerCAmelCase = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) lowerCAmelCase = line[:idx] lowerCAmelCase = len(self.encoder )
338
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase__ : str = logging.get_logger(__name__) class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : Any = """AutoTokenizer""" UpperCAmelCase_ : Optional[int] = ["""tokenizer"""] UpperCAmelCase_ : str = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = speaker_embeddings @classmethod def SCREAMING_SNAKE_CASE_ ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , **__SCREAMING_SNAKE_CASE ) ->Tuple: if speaker_embeddings_dict_path is not None: lowerCAmelCase = get_file_from_repo( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , subfolder=kwargs.pop('''subfolder''' , __SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop('''cache_dir''' , __SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop('''force_download''' , __SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop('''proxies''' , __SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop('''resume_download''' , __SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop('''local_files_only''' , __SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop('''use_auth_token''' , __SCREAMING_SNAKE_CASE ) , revision=kwargs.pop('''revision''' , __SCREAMING_SNAKE_CASE ) , ) if speaker_embeddings_path is None: logger.warning( F"`{os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) lowerCAmelCase = None else: with open(__SCREAMING_SNAKE_CASE ) as speaker_embeddings_json: lowerCAmelCase = json.load(__SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = None lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return cls(tokenizer=__SCREAMING_SNAKE_CASE , speaker_embeddings=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , __SCREAMING_SNAKE_CASE="speaker_embeddings" , __SCREAMING_SNAKE_CASE = False , **__SCREAMING_SNAKE_CASE , ) ->int: if self.speaker_embeddings is not None: os.makedirs(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , '''v2''' ) , exist_ok=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = {} lowerCAmelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": lowerCAmelCase = self._load_voice_preset(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['''repo_or_path'''] , __SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=__SCREAMING_SNAKE_CASE , ) lowerCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}.npy" ) lowerCAmelCase = tmp_dict with open(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , '''w''' ) as fp: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE ) ->List[str]: lowerCAmelCase = self.speaker_embeddings[voice_preset] lowerCAmelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) lowerCAmelCase = get_file_from_repo( self.speaker_embeddings.get('''repo_or_path''' , '''/''' ) , voice_preset_paths[key] , subfolder=kwargs.pop('''subfolder''' , __SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop('''cache_dir''' , __SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop('''force_download''' , __SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop('''proxies''' , __SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop('''resume_download''' , __SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop('''local_files_only''' , __SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop('''use_auth_token''' , __SCREAMING_SNAKE_CASE ) , revision=kwargs.pop('''revision''' , __SCREAMING_SNAKE_CASE ) , ) if path is None: raise ValueError( F"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) lowerCAmelCase = np.load(__SCREAMING_SNAKE_CASE ) return voice_preset_dict def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE = None ) ->Tuple: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="pt" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ) ->int: if voice_preset is not None and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): lowerCAmelCase = self._load_voice_preset(__SCREAMING_SNAKE_CASE ) else: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not voice_preset.endswith('''.npz''' ): lowerCAmelCase = voice_preset + '''.npz''' lowerCAmelCase = np.load(__SCREAMING_SNAKE_CASE ) if voice_preset is not None: self._validate_voice_preset_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCAmelCase = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.tokenizer( __SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) if voice_preset is not None: lowerCAmelCase = voice_preset return encoded_text
338
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase__ : Union[str, Any] = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[Any] = ['OwlViTFeatureExtractor'] lowercase__ : List[str] = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowercase__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
287
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , ['''c'''] ) self.assertEqual(lowerCAmelCase__ , [2] ) # Out indices set to match out features _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(['''a''', '''c'''] , lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , ['''a''', '''c'''] ) self.assertEqual(lowerCAmelCase__ , [0, 2] ) # Out features set to match out indices _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(lowerCAmelCase__ , [0, 2] , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , ['''a''', '''c'''] ) self.assertEqual(lowerCAmelCase__ , [0, 2] ) # Out features selected from negative indices _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(lowerCAmelCase__ , [-3, -1] , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , ['''a''', '''c'''] ) self.assertEqual(lowerCAmelCase__ , [-3, -1] ) def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , lowerCAmelCase__ ) # Out features must be a list with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(lowerCAmelCase__ , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(lowerCAmelCase__ , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def snake_case__ ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase = BackboneMixin() _UpperCamelCase = ['''a''', '''b''', '''c'''] _UpperCamelCase = ['''a''', '''c'''] _UpperCamelCase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly _UpperCamelCase = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) _UpperCamelCase = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
287
1
from string import ascii_uppercase UpperCAmelCase : int = {char: i for i, char in enumerate(ascii_uppercase)} UpperCAmelCase : Optional[Any] = dict(enumerate(ascii_uppercase)) def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : List[str] =len(SCREAMING_SNAKE_CASE ) a__ : str =0 while True: if x == i: a__ : Union[str, Any] =0 if len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ): break key += key[i] i += 1 return key def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : Tuple ="" a__ : Tuple =0 for letter in message: if letter == " ": cipher_text += " " else: a__ : str =(dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : Any ="" a__ : Dict =0 for letter in cipher_text: if letter == " ": or_txt += " " else: a__ : Tuple =(dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def _A ( ): """simple docstring""" a__ : List[str] ="THE GERMAN ATTACK" a__ : List[str] ="SECRET" a__ : Tuple =generate_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : List[str] =cipher_text(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(f'''Encrypted Text = {s}''' ) print(f'''Original Text = {original_text(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
95
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Tuple = { """caidas/swin2sr-classicalsr-x2-64""": ( """https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json""" ), } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Any = """swin2sr""" _lowercase : Tuple = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , lowerCAmelCase__=6_4 , lowerCAmelCase__=1 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8_0 , lowerCAmelCase__=[6, 6, 6, 6, 6, 6] , lowerCAmelCase__=[6, 6, 6, 6, 6, 6] , lowerCAmelCase__=8 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__=2 , lowerCAmelCase__=1.0 , lowerCAmelCase__="1conv" , lowerCAmelCase__="pixelshuffle" , **lowerCAmelCase__ , ) -> int: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) a__ : Optional[Any] =image_size a__ : Dict =patch_size a__ : Tuple =num_channels a__ : Union[str, Any] =embed_dim a__ : Optional[Any] =depths a__ : List[str] =len(lowerCAmelCase__ ) a__ : Any =num_heads a__ : Any =window_size a__ : str =mlp_ratio a__ : List[str] =qkv_bias a__ : Dict =hidden_dropout_prob a__ : List[str] =attention_probs_dropout_prob a__ : Dict =drop_path_rate a__ : Optional[Any] =hidden_act a__ : Union[str, Any] =use_absolute_embeddings a__ : Optional[Any] =layer_norm_eps a__ : List[Any] =initializer_range a__ : int =upscale a__ : Optional[int] =img_range a__ : Any =resi_connection a__ : Optional[Any] =upsampler
95
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "facebook/bart-large-mnli" A_ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) A_ = "text_classifier" A_ = AutoTokenizer A_ = AutoModelForSequenceClassification A_ = ["text", ["text"]] A_ = ["text"] def __A ( self: int ) -> str: super().setup() _A = self.model.config _A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): _A = int(__A ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def __A ( self: Union[str, Any] , __A: Union[str, Any] , __A: List[str] ) -> int: _A = labels return self.pre_processor( [text] * len(__A ) , [f"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def __A ( self: str , __A: List[Any] ) -> Union[str, Any]: _A = outputs.logits _A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
75
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case ) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "rag" A_ = True def __init__( self: Optional[int] , __A: Optional[int]=None , __A: Dict=True , __A: Any=None , __A: Dict=None , __A: Optional[int]=None , __A: Optional[Any]=None , __A: Optional[Any]=None , __A: Optional[Any]=" / " , __A: int=" // " , __A: List[Any]=5 , __A: Dict=3_00 , __A: int=7_68 , __A: Tuple=8 , __A: List[Any]="wiki_dpr" , __A: List[str]="train" , __A: Optional[Any]="compressed" , __A: Optional[int]=None , __A: Union[str, Any]=None , __A: Dict=False , __A: Tuple=False , __A: Optional[int]=0.0 , __A: Optional[int]=True , __A: int=False , __A: int=False , __A: Optional[Any]=False , __A: Optional[int]=True , __A: Optional[int]=None , **__A: Optional[Any] , ) -> Union[str, Any]: super().__init__( bos_token_id=__A , pad_token_id=__A , eos_token_id=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , is_encoder_decoder=__A , prefix=__A , vocab_size=__A , **__A , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _A = kwargs.pop('''question_encoder''' ) _A = question_encoder_config.pop('''model_type''' ) _A = kwargs.pop('''generator''' ) _A = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig _A = AutoConfig.for_model(__A , **__A ) _A = AutoConfig.for_model(__A , **__A ) _A = reduce_loss _A = label_smoothing _A = exclude_bos_score _A = do_marginalize _A = title_sep _A = doc_sep _A = n_docs _A = max_combined_length _A = dataset _A = dataset_split _A = index_name _A = retrieval_vector_size _A = retrieval_batch_size _A = passages_path _A = index_path _A = use_dummy_dataset _A = output_retrieved _A = do_deduplication _A = use_cache if self.forced_eos_token_id is None: _A = getattr(self.generator , '''forced_eos_token_id''' , __A ) @classmethod def __A ( cls: List[Any] , __A: PretrainedConfig , __A: PretrainedConfig , **__A: Optional[int] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__A ) def __A ( self: Optional[Any] ) -> Dict: _A = copy.deepcopy(self.__dict__ ) _A = self.question_encoder.to_dict() _A = self.generator.to_dict() _A = self.__class__.model_type return output
75
1
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __lowerCAmelCase : str =logging.get_logger("""transformers.models.speecht5""") def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :int ) -> List[str]: '''simple docstring''' hf_model.apply_weight_norm() lowercase = checkpoint["""input_conv.weight_g"""] lowercase = checkpoint["""input_conv.weight_v"""] lowercase = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowercase = checkpoint[f'upsamples.{i}.1.weight_g'] lowercase = checkpoint[f'upsamples.{i}.1.weight_v'] lowercase = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowercase = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] lowercase = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] lowercase = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] lowercase = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] lowercase = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] lowercase = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] lowercase = checkpoint["""output_conv.1.weight_g"""] lowercase = checkpoint["""output_conv.1.weight_v"""] lowercase = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :str=None , lowerCAmelCase__ :Dict=None , ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: lowercase = SpeechTaHifiGanConfig.from_pretrained(lowerCAmelCase__ ) else: lowercase = SpeechTaHifiGanConfig() lowercase = SpeechTaHifiGan(lowerCAmelCase__ ) lowercase = torch.load(lowerCAmelCase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = np.load(lowerCAmelCase__ ) lowercase = stats[0].reshape(-1 ) lowercase = stats[1].reshape(-1 ) lowercase = torch.from_numpy(lowerCAmelCase__ ).float() lowercase = torch.from_numpy(lowerCAmelCase__ ).float() model.save_pretrained(lowerCAmelCase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[Any] =argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __lowerCAmelCase : Optional[Any] =parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
197
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowercase = len(__lowerCAmelCase ) - 1 def A__ ( self , __lowerCAmelCase ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__lowerCAmelCase ) , 5 ) == 1 return output_values def A__ ( self , __lowerCAmelCase ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase = self.basis_function(__lowerCAmelCase ) lowercase = 0.0 lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def A__ ( self , __lowerCAmelCase = 0.0_1 ): """simple docstring""" from matplotlib import pyplot as plt # type: ignore lowercase = [] # x coordinates of points to plot lowercase = [] # y coordinates of points to plot lowercase = 0.0 while t <= 1: lowercase = self.bezier_curve_function(__lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowercase = [i[0] for i in self.list_of_points] lowercase = [i[1] for i in self.list_of_points] plt.plot( __lowerCAmelCase , __lowerCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(__lowerCAmelCase , __lowerCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
197
1
"""simple docstring""" from __future__ import annotations lowercase__ : int = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __lowercase ( _a , _a , _a , _a , _a , ): snake_case_ : List[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(a__ ) ) ] # the reference grid snake_case_ : List[Any] = 1 snake_case_ : Tuple = [ [0 for col in range(len(grid[0] ) )] for row in range(len(a__ ) ) ] # the action grid snake_case_ : str = init[0] snake_case_ : Any = init[1] snake_case_ : Tuple = 0 snake_case_ : List[str] = g + heuristic[x][y] # cost from starting cell to destination cell snake_case_ : int = [[f, g, x, y]] snake_case_ : List[str] = False # flag that is set when search is complete snake_case_ : Any = False # flag set if we can't find expand while not found and not resign: if len(a__ ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() snake_case_ : Tuple = cell.pop() snake_case_ : int = next_cell[2] snake_case_ : int = next_cell[3] snake_case_ : str = next_cell[1] if x == goal[0] and y == goal[1]: snake_case_ : int = True else: for i in range(len(a__ ) ): # to try out different valid actions snake_case_ : Union[str, Any] = x + DIRECTIONS[i][0] snake_case_ : Union[str, Any] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(a__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: snake_case_ : Tuple = g + cost snake_case_ : List[str] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) snake_case_ : Union[str, Any] = 1 snake_case_ : Any = i snake_case_ : Dict = [] snake_case_ : Any = goal[0] snake_case_ : int = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: snake_case_ : Optional[int] = x - DIRECTIONS[action[x][y]][0] snake_case_ : Optional[int] = y - DIRECTIONS[action[x][y]][1] snake_case_ : Any = xa snake_case_ : str = ya invpath.append([x, y] ) snake_case_ : Optional[int] = [] for i in range(len(a__ ) ): path.append(invpath[len(a__ ) - 1 - i] ) return path, action if __name__ == "__main__": lowercase__ : Optional[Any] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowercase__ : Optional[Any] = [0, 0] # all coordinates are given in format [y,x] lowercase__ : Optional[int] = [len(grid) - 1, len(grid[0]) - 1] lowercase__ : Optional[int] = 1 # the cost map which pushes the path closer to the goal lowercase__ : Tuple = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowercase__ : Any = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowercase__ : Optional[int] = 99 lowercase__ ,lowercase__ : Optional[int] = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
360
"""simple docstring""" import math import sys def __lowercase ( _a ): if number != int(_a ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 snake_case_ : int = [-1] * (number + 1) snake_case_ : int = 0 for i in range(1 , number + 1 ): snake_case_ : Tuple = sys.maxsize snake_case_ : List[Any] = int(math.sqrt(_a ) ) for j in range(1 , root + 1 ): snake_case_ : Dict = 1 + answers[i - (j**2)] snake_case_ : int = min(_a , _a ) snake_case_ : Any = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
155
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : int = 50 ) ->int: '''simple docstring''' a : Optional[Any] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
105
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput _SCREAMING_SNAKE_CASE : List[str] = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A__ ( snake_case__ ): """simple docstring""" def __init__( self , *__snake_case , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case ): super().__init__(*__snake_case , **__snake_case ) snake_case = eval_examples snake_case = post_process_function snake_case = quant_trainer_args snake_case = 1_2_8 # default number of calibration samples def a_ ( self , __snake_case=None ): if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) snake_case = calib_dataset if calib_dataset is not None else self.calib_dataset snake_case = self._remove_unused_columns(__snake_case , description='''Calibration''' ) return DataLoader( __snake_case , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__snake_case , ) def a_ ( self , __snake_case=None ): snake_case = self.train_dataset if calib_dataset is None else calib_dataset snake_case = self.get_calib_dataloader(__snake_case ) snake_case = self.model quant_trainer.configure_model(__snake_case , self.quant_trainer_args , calib=__snake_case ) model.eval() quant_trainer.enable_calibration(__snake_case ) logger.info('''***** Running calibration *****''' ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(__snake_case ): # Prediction step snake_case , snake_case , snake_case = self.prediction_step(__snake_case , __snake_case , prediction_loss_only=__snake_case ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(__snake_case , self.quant_trainer_args ) snake_case = model def a_ ( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case = "eval" ): snake_case = self.eval_dataset if eval_dataset is None else eval_dataset snake_case = self.get_eval_dataloader(__snake_case ) snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. snake_case = self.compute_metrics snake_case = None snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case = eval_loop( __snake_case , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__snake_case , ) finally: snake_case = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: snake_case = self.post_process_function(__snake_case , __snake_case , output.predictions ) snake_case = self.compute_metrics(__snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): snake_case = metrics.pop(__snake_case ) self.log(__snake_case ) else: snake_case = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , __snake_case ) return metrics def a_ ( self , __snake_case , __snake_case , __snake_case=None , __snake_case = "test" ): snake_case = self.get_test_dataloader(__snake_case ) # Temporarily disable metric computation, we will do it in the loop here. snake_case = self.compute_metrics snake_case = None snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case = eval_loop( __snake_case , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__snake_case , ) finally: snake_case = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output snake_case = self.post_process_function(__snake_case , __snake_case , output.predictions , '''predict''' ) snake_case = self.compute_metrics(__snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): snake_case = metrics.pop(__snake_case ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__snake_case ) def a_ ( self , __snake_case="./" ): snake_case = self.eval_dataset snake_case = self.get_eval_dataloader(__snake_case ) snake_case = next(iter(__snake_case ) ) # saving device - to make it consistent snake_case = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple snake_case = tuple(v.to(__snake_case ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer snake_case = True snake_case = self.model.to(__snake_case ) model.eval() model.float() snake_case = model.module if hasattr(__snake_case , '''module''' ) else model quant_trainer.configure_model(__snake_case , self.quant_trainer_args ) snake_case = os.path.join(__snake_case , '''model.onnx''' ) logger.info(F'''exporting model to {output_model_file}''' ) snake_case = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( __snake_case , __snake_case , __snake_case , export_params=__snake_case , opset_version=1_3 , do_constant_folding=__snake_case , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=__snake_case , ) logger.info('''onnx export finished''' )
127
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __A = None __A = logging.get_logger(__name__) __A = '▁' __A = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __A = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } __A = { 'google/pegasus-xsum': 512, } class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = PegasusTokenizer lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<pad>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<mask_2>" , __UpperCAmelCase="<mask_1>" , __UpperCAmelCase=None , __UpperCAmelCase=1_03 , **__UpperCAmelCase , ) -> Any: _lowerCAmelCase =offset if additional_special_tokens is not None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(__UpperCAmelCase )}, but is''' f''' {type(__UpperCAmelCase )}''' ) _lowerCAmelCase =( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(__UpperCAmelCase ) , self.offset - 1 ) ] if len(set(__UpperCAmelCase ) ) != len(__UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) _lowerCAmelCase =additional_special_tokens_extended else: _lowerCAmelCase =[mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , pad_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , mask_token_sent=__UpperCAmelCase , offset=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) _lowerCAmelCase =vocab_file _lowerCAmelCase =False if not self.vocab_file else True def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: _lowerCAmelCase =set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(__UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(__UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
341
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''cvt''' def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 1_92, 3_84] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , **__UpperCAmelCase , ) -> Optional[Any]: super().__init__(**__UpperCAmelCase ) _lowerCAmelCase =num_channels _lowerCAmelCase =patch_sizes _lowerCAmelCase =patch_stride _lowerCAmelCase =patch_padding _lowerCAmelCase =embed_dim _lowerCAmelCase =num_heads _lowerCAmelCase =depth _lowerCAmelCase =mlp_ratio _lowerCAmelCase =attention_drop_rate _lowerCAmelCase =drop_rate _lowerCAmelCase =drop_path_rate _lowerCAmelCase =qkv_bias _lowerCAmelCase =cls_token _lowerCAmelCase =qkv_projection_method _lowerCAmelCase =kernel_qkv _lowerCAmelCase =padding_kv _lowerCAmelCase =stride_kv _lowerCAmelCase =padding_q _lowerCAmelCase =stride_q _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps
341
1
def _a ( lowerCamelCase, lowerCamelCase ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) lowerCamelCase : Dict = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" lowerCamelCase : List[Any] = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" lowerCamelCase : str = max(len(lowerCamelCase ), len(lowerCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase ), b_binary.zfill(lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
287
_lowerCamelCase ={ "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_0_2_1_7_6_6_3_4E-1_9, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355818, } def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCamelCase : Dict = ( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {", ".join(lowerCamelCase )}''' ) raise ValueError(lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
287
1
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) __snake_case :Dict = logging.getLogger(__name__) @dataclass(frozen=__UpperCAmelCase ) class _A : UpperCamelCase__ : Optional[int] = 42 UpperCamelCase__ : List[str] = 42 UpperCamelCase__ : Tuple = None UpperCamelCase__ : Union[str, Any] = None UpperCamelCase__ : Tuple = None @dataclass(frozen=__UpperCAmelCase ) class _A : UpperCamelCase__ : Optional[int] = 42 UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : Dict = None UpperCamelCase__ : Union[str, Any] = None if is_torch_available(): import torch from torch.utils.data import Dataset class _A ( __UpperCAmelCase ): UpperCamelCase__ : str = 42 def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : bool = False , ): '''simple docstring''' __a = hans_processors[task]() __a = os.path.join( __A , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(__A) , __A , ) , ) __a = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __a , __a = label_list[2], label_list[1] __a = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __a = cached_features_file + '''.lock''' with FileLock(__A): if os.path.exists(__A) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}') __a = torch.load(__A) else: logger.info(F'Creating features from dataset file at {data_dir}') __a = ( processor.get_dev_examples(__A) if evaluate else processor.get_train_examples(__A) ) logger.info('''Training examples: %s''' , len(__A)) __a = hans_convert_examples_to_features(__A , __A , __A , __A) logger.info('''Saving features into cached file %s''' , __A) torch.save(self.features , __A) def __len__( self : Tuple): '''simple docstring''' return len(self.features) def __getitem__( self : str , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' return self.features[i] def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class _A : UpperCamelCase__ : Tuple = 42 def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] = 128 , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : bool = False , ): '''simple docstring''' __a = hans_processors[task]() __a = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __a , __a = label_list[2], label_list[1] __a = label_list __a = processor.get_dev_examples(__A) if evaluate else processor.get_train_examples(__A) __a = hans_convert_examples_to_features(__A , __A , __A , __A) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features) , desc='''convert examples to features'''): if ex_index % 10_000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(__A))) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __a = tf.data.Dataset.from_generator( __A , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([]), '''input_ids''': tf.TensorShape([None, None]), '''attention_mask''': tf.TensorShape([None, None]), '''token_type_ids''': tf.TensorShape([None, None]), }, tf.TensorShape([]), ) , ) def _lowerCamelCase ( self : Dict): '''simple docstring''' return self.dataset def __len__( self : Dict): '''simple docstring''' return len(self.features) def __getitem__( self : List[str] , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' return self.features[i] def _lowerCamelCase ( self : Tuple): '''simple docstring''' return self.label_list class _A ( __UpperCAmelCase ): def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(__A , '''heuristics_train_set.txt''')) , '''train''') def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(__A , '''heuristics_evaluation_set.txt''')) , '''dev''') def _lowerCamelCase ( self : Any): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a = [] for i, line in enumerate(__A): if i == 0: continue __a = '''%s-%s''' % (set_type, line[0]) __a = line[5] __a = line[6] __a = line[7][2:] if line[7].startswith('''ex''') else line[7] __a = line[0] examples.append(InputExample(guid=__A , text_a=__A , text_b=__A , label=__A , pairID=__A)) return examples def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a = {label: i for i, label in enumerate(_lowercase )} __a = [] for ex_index, example in tqdm.tqdm(enumerate(_lowercase ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __a = tokenizer( example.text_a , example.text_b , add_special_tokens=_lowercase , max_length=_lowercase , padding='''max_length''' , truncation=_lowercase , return_overflowing_tokens=_lowercase , ) __a = label_map[example.label] if example.label in label_map else 0 __a = int(example.pairID ) features.append(InputFeatures(**_lowercase , label=_lowercase , pairID=_lowercase ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features __snake_case :List[Any] = { '''hans''': 3, } __snake_case :List[Any] = { '''hans''': HansProcessor, }
359
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case :Tuple = { '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Optional[int] = [ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys __snake_case :Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
131
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ : Optional[int] = 16 a_ : Union[str, Any] = 32 def a_ ( __snake_case : Accelerator , __snake_case : int = 16 ) -> Dict: """simple docstring""" lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCamelCase_ =load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__snake_case : List[Any] ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ =datasets.map( __snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__snake_case : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ =16 elif accelerator.mixed_precision != "no": lowerCamelCase_ =8 else: lowerCamelCase_ =None return tokenizer.pad( __snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCamelCase_ =DataLoader( tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) lowerCamelCase_ =DataLoader( tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ : Optional[int] = mocked_dataloaders # noqa: F811 def a_ ( __snake_case : Union[str, Any] , __snake_case : Optional[int] ) -> str: """simple docstring""" # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case ) == "1": lowerCamelCase_ =2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCamelCase_ =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: lowerCamelCase_ =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ =config['''lr'''] lowerCamelCase_ =int(config['''num_epochs'''] ) lowerCamelCase_ =int(config['''seed'''] ) lowerCamelCase_ =int(config['''batch_size'''] ) set_seed(__snake_case ) lowerCamelCase_, lowerCamelCase_ =get_dataloaders(__snake_case , __snake_case ) lowerCamelCase_ =evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation lowerCamelCase_ =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCamelCase_ =batch_size // MAX_GPU_BATCH_SIZE lowerCamelCase_ =MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ =model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ =AdamW(params=model.parameters() , lr=__snake_case ) # Instantiate scheduler lowerCamelCase_ =get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCamelCase_ =os.path.split(__snake_case )[-1].split('''.''' )[0] accelerator.init_trackers(__snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCamelCase_ =0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCamelCase_ =loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.logits.argmax(dim=-1 ) lowerCamelCase_, lowerCamelCase_ =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) lowerCamelCase_ =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(__snake_case ), '''epoch''': epoch, } , step=__snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def a_ ( ) -> int: """simple docstring""" lowerCamelCase_ =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=__snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) lowerCamelCase_ =parser.parse_args() lowerCamelCase_ ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
75
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =FunnelTokenizer lowercase : List[str] =FunnelTokenizerFast lowercase : Union[str, Any] =True lowercase : int =True def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCamelCase_ =[ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ='''UNwant\u00E9d,running''' lowerCamelCase_ ='''unwanted, running''' return input_text, output_text def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tokenizer_class(self.vocab_file ) lowerCamelCase_ =tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowerCAmelCase, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ), [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: lowerCamelCase_ =tokenizer('''UNwant\u00E9d,running''' ) lowerCamelCase_ =len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''], [2] + [0] * sentence_len ) lowerCamelCase_ =tokenizer('''UNwant\u00E9d,running''', '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''], [2] + [0] * sentence_len + [1] * sentence_len )
75
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore lowerCamelCase : Union[str, Any] = "\nHuman: <<task>>\n\nAssistant: " lowerCamelCase : Dict = "huggingface-tools/default-prompts" lowerCamelCase : int = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any]="run" ) -> List[Any]: """simple docstring""" if prompt_or_repo_id is None: _SCREAMING_SNAKE_CASE =DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , _UpperCamelCase ) is not None: return prompt_or_repo_id _SCREAMING_SNAKE_CASE =cached_file( _UpperCamelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(_UpperCamelCase , 'r' , encoding='utf-8' ) as f: return f.read()
114
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _lowerCAmelCase ( ) -> int: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _SCREAMING_SNAKE_CASE ='__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , _UpperCamelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" assert _test_patching.open is open _SCREAMING_SNAKE_CASE ='__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , _UpperCamelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _lowerCAmelCase ( ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE ='__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , _UpperCamelCase ): pass def _lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , _UpperCamelCase ) is None with patch_submodule(_test_patching , 'len' , _UpperCamelCase ): assert _test_patching.len is mock assert _test_patching.len is len def _lowerCAmelCase ( ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE ='__test_patch_submodule_start_and_stop_mock__' _SCREAMING_SNAKE_CASE =patch_submodule(_test_patching , 'open' , _UpperCamelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _SCREAMING_SNAKE_CASE ='__test_patch_submodule_successive_join__' _SCREAMING_SNAKE_CASE ='__test_patch_submodule_successive_dirname__' _SCREAMING_SNAKE_CASE ='__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , _UpperCamelCase ): with patch_submodule(_test_patching , 'os.rename' , _UpperCamelCase ): with patch_submodule(_test_patching , 'os.path.dirname' , _UpperCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , _UpperCamelCase ): with patch_submodule(_test_patching , 'os.path.join' , _UpperCamelCase ): with patch_submodule(_test_patching , 'os.path.dirname' , _UpperCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , _UpperCamelCase ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , _UpperCamelCase ): pass
114
1
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __snake_case ( a ): def lowerCamelCase ( self : Tuple): """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self._create_example_records() UpperCAmelCase_ = Dataset.from_list(_snake_case) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2''']) for i, r in enumerate(_snake_case): self.assertDictEqual(_snake_case , example_records[i]) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self._create_example_records() UpperCAmelCase_ = Dataset.from_list(_snake_case) UpperCAmelCase_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]}) self.assertEqual(dset.info , dset_from_dict.info) def lowerCamelCase ( self : Optional[Any]): # checks what happens with missing columns """simple docstring""" UpperCAmelCase_ = [{'''col_1''': 1}, {'''col_2''': '''x'''}] UpperCAmelCase_ = Dataset.from_list(_snake_case) self.assertDictEqual(dset[0] , {'''col_1''': 1}) self.assertDictEqual(dset[1] , {'''col_1''': None}) # NB: first record is used for columns def lowerCamelCase ( self : Any): # checks if the type can be inferred from the second record """simple docstring""" UpperCAmelCase_ = [{'''col_1''': []}, {'''col_1''': [1, 2]}] UpperCAmelCase_ = Dataset.from_list(_snake_case) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64'''))) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = Dataset.from_list([]) self.assertEqual(len(_snake_case) , 0) self.assertListEqual(dset.column_names , [])
51
"""simple docstring""" import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint a = { '169M': 1_2, '430M': 2_4, '1B5': 2_4, '3B': 3_2, '7B': 3_2, '14B': 4_0, } a = { '169M': 7_6_8, '430M': 1_0_2_4, '1B5': 2_0_4_8, '3B': 2_5_6_0, '7B': 4_0_9_6, '14B': 5_1_2_0, } def lowercase (snake_case__ : str ) -> List[Any]: '''simple docstring''' lowerCAmelCase = list(state_dict.keys() ) for name in state_dict_keys: lowerCAmelCase = state_dict.pop(snake_case__ ) # emb -> embedding if name.startswith("""emb.""" ): lowerCAmelCase = name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): lowerCAmelCase = name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention lowerCAmelCase = re.sub(R"""blocks\.(\d+)\.att""" , R"""blocks.\1.attention""" , snake_case__ ) # ffn -> feed_forward lowerCAmelCase = re.sub(R"""blocks\.(\d+)\.ffn""" , R"""blocks.\1.feed_forward""" , snake_case__ ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): lowerCAmelCase = name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): lowerCAmelCase = name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): lowerCAmelCase = name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": lowerCAmelCase = """rwkv.""" + name lowerCAmelCase = weight return state_dict def lowercase (snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : int=None , snake_case__ : Any=None , snake_case__ : Optional[int]=False , snake_case__ : List[str]=None ) -> Optional[Any]: '''simple docstring''' if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) lowerCAmelCase = 50_277 lowerCAmelCase = AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: lowerCAmelCase = PreTrainedTokenizerFast(tokenizer_file=snake_case__ ) lowerCAmelCase = len(snake_case__ ) tokenizer.save_pretrained(snake_case__ ) # 2. Build the config lowerCAmelCase = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: lowerCAmelCase = candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(f'''`size` should be one of {possible_sizes}, got {size}.''' ) lowerCAmelCase = RwkvConfig( vocab_size=snake_case__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(snake_case__ ) # 3. Download model file then convert state_dict lowerCAmelCase = hf_hub_download(snake_case__ , snake_case__ ) lowerCAmelCase = torch.load(snake_case__ , map_location="""cpu""" ) lowerCAmelCase = convert_state_dict(snake_case__ ) # 4. Split in shards and save lowerCAmelCase , lowerCAmelCase = shard_checkpoint(snake_case__ ) for shard_file, shard in shards.items(): torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) if index is not None: lowerCAmelCase = os.path.join(snake_case__ , snake_case__ ) # Save the index as well with open(snake_case__ , """w""" , encoding="""utf-8""" ) as f: lowerCAmelCase = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + """\n""" f.write(snake_case__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" ) lowerCAmelCase = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: lowerCAmelCase = torch.load(os.path.join(snake_case__ , snake_case__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(snake_case__ , snake_case__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) lowerCAmelCase = AutoModelForCausalLM.from_pretrained(snake_case__ ) model.push_to_hub(snake_case__ , max_shard_size="""2GB""" ) tokenizer.push_to_hub(snake_case__ ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) a = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
155
0
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _snake_case = "3" print("Python version:", sys.version) print("OS platform:", platform.platform()) print("OS architecture:", platform.machine()) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) except ImportError: print("Torch version:", None) try: import transformers print("transformers version:", transformers.__version__) except ImportError: print("transformers version:", None)
343
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case_,snake_case_ ): # Load checkpoint _A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" ) _A : Any = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository _A : Any = {} for k, v in state_dict.items(): if "pred_layer" in k: _A : Tuple = v else: _A : Dict = v _A : Optional[Any] = chkpt["""params"""] _A : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(snake_case_,(torch.FloatTensor, numpy.ndarray) )} _A : str = chkpt["""dico_word2id"""] _A : Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""","""""" ): i for s, i in vocab.items()} # Save pytorch-model _A : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME _A : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME _A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(snake_case_,snake_case_ ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,indent=2 ) + """\n""" ) print(f'''Save vocab file to {pytorch_config_dump_path}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,indent=2 ) + """\n""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
343
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __lowerCAmelCase = None __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = '▁' __lowerCAmelCase = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } __lowerCAmelCase = { 'google/pegasus-xsum': 512, } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PegasusTokenizer lowerCAmelCase_ = ["input_ids", "attention_mask"] def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<pad>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<mask_2>" , UpperCAmelCase="<mask_1>" , UpperCAmelCase=None , UpperCAmelCase=103 , **UpperCAmelCase , ) -> int: _snake_case = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise TypeError( f"""additional_special_tokens should be of type {type(UpperCAmelCase )}, but is""" f""" {type(UpperCAmelCase )}""" ) _snake_case = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(UpperCAmelCase ) , self.offset - 1 ) ] if len(set(UpperCAmelCase ) ) != len(UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) _snake_case = additional_special_tokens_extended else: _snake_case = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , pad_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , mask_token=UpperCAmelCase , mask_token_sent=UpperCAmelCase , offset=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) _snake_case = vocab_file _snake_case = False if not self.vocab_file else True def lowercase (self , UpperCAmelCase ) -> Any: _snake_case = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase (self , UpperCAmelCase , UpperCAmelCase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case = os.path.join( UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
341
'''simple docstring''' __lowerCAmelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # Make sure the supplied data is a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_SCREAMING_SNAKE_CASE ) _snake_case = """""".join(bin(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data ) _snake_case = len(_SCREAMING_SNAKE_CASE ) % 6 != 0 if padding_needed: # The padding that will be added later _snake_case = b"""=""" * ((6 - len(_SCREAMING_SNAKE_CASE ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_SCREAMING_SNAKE_CASE ) % 6) else: _snake_case = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 6 ) ).encode() + padding ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = ( """argument should be a bytes-like object or ASCII string, """ f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_SCREAMING_SNAKE_CASE ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): try: _snake_case = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) _snake_case = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _snake_case = encoded_data[:-padding] _snake_case = """""".join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _snake_case = """""".join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data ) _snake_case = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 8 ) ] return bytes(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
341
1
import numpy as np class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None ): """simple docstring""" self.set_matricies(red=__snake_case , green=__snake_case , blue=__snake_case , red_edge=__snake_case , nir=__snake_case ) def snake_case ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None ): """simple docstring""" if red is not None: snake_case = red if green is not None: snake_case = green if blue is not None: snake_case = blue if red_edge is not None: snake_case = red_edge if nir is not None: snake_case = nir return True def snake_case ( self , lowerCAmelCase="" , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None ): """simple docstring""" self.set_matricies(red=__snake_case , green=__snake_case , blue=__snake_case , red_edge=__snake_case , nir=__snake_case ) snake_case = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def snake_case ( self ): """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def snake_case ( self ): """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def snake_case ( self ): """simple docstring""" return self.nir * (self.red / (self.green**2)) def snake_case ( self ): """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def snake_case ( self ): """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def snake_case ( self ): """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def snake_case ( self ): """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def snake_case ( self ): """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def snake_case ( self ): """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def snake_case ( self ): """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def snake_case ( self ): """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def snake_case ( self ): """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def snake_case ( self , lowerCAmelCase=0.08 , lowerCAmelCase=1.22 , lowerCAmelCase=0.03 ): """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def snake_case ( self ): """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def snake_case ( self ): """simple docstring""" return (self.nir / self.green) - 1 def snake_case ( self ): """simple docstring""" return (self.nir / self.redEdge) - 1 def snake_case ( self ): """simple docstring""" return (self.red - self.blue) / self.red def snake_case ( self ): """simple docstring""" snake_case = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def snake_case ( self ): """simple docstring""" return self.nir - self.green def snake_case ( self ): """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def snake_case ( self ): """simple docstring""" snake_case = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def snake_case ( self , lowerCAmelCase=0.16 ): """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def snake_case ( self , lowerCAmelCase=0.5 ): """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def snake_case ( self ): """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def snake_case ( self , lowerCAmelCase=None , lowerCAmelCase=None ): """simple docstring""" return (self.nir - b) / (a * self.red) def snake_case ( self ): """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def snake_case ( self ): """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def snake_case ( self ): """simple docstring""" return self.nir / self.red def snake_case ( self ): """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def snake_case ( self ): """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def snake_case ( self ): """simple docstring""" return self.green / (self.nir + self.red + self.green) def snake_case ( self ): """simple docstring""" return self.nir / (self.nir + self.red + self.green) def snake_case ( self ): """simple docstring""" return self.red / (self.nir + self.red + self.green) def snake_case ( self ): """simple docstring""" return (self.green - self.red) / (self.green + self.red) def snake_case ( self ): """simple docstring""" return (self.red - self.green) / (self.red + self.green) def snake_case ( self ): """simple docstring""" snake_case = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) snake_case = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def snake_case ( self ): """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def snake_case ( self ): """simple docstring""" return self.nir / self.red def snake_case ( self ): """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def snake_case ( self ): """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
358
"""simple docstring""" SCREAMING_SNAKE_CASE__ = {str(digit): digit**5 for digit in range(10)} def lowerCAmelCase__ ( _UpperCamelCase : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_UpperCamelCase ) ) def lowerCAmelCase__ ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(_UpperCamelCase ) ) if __name__ == "__main__": print(solution())
149
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __snake_case : def __init__( self : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int=1_3 , __lowerCAmelCase : Dict=7 , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : str=9_9 , __lowerCAmelCase : List[Any]=3_2 , __lowerCAmelCase : Optional[int]=5 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : Tuple=3_7 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : Any=5_1_2 , __lowerCAmelCase : List[str]=1_6 , __lowerCAmelCase : int=2 , __lowerCAmelCase : Any=0.02 , __lowerCAmelCase : Union[str, Any]=3 , __lowerCAmelCase : int=4 , __lowerCAmelCase : List[str]=None , ): """simple docstring""" _lowerCamelCase : List[Any] = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : Optional[Any] = seq_length _lowerCamelCase : Optional[Any] = is_training _lowerCamelCase : Optional[int] = use_token_type_ids _lowerCamelCase : str = use_labels _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : int = hidden_size _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : List[Any] = num_attention_heads _lowerCamelCase : str = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Optional[int] = hidden_dropout_prob _lowerCamelCase : int = attention_probs_dropout_prob _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : Optional[int] = type_vocab_size _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : Union[str, Any] = num_labels _lowerCamelCase : Any = num_choices _lowerCamelCase : str = scope _lowerCamelCase : List[Any] = self.vocab_size - 1 def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : str = None if self.use_token_type_ids: _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : int = None _lowerCamelCase : List[str] = None _lowerCamelCase : Optional[int] = None if self.use_labels: _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : Any = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _lowerCamelCase : Union[str, Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , *__lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Tuple = OpenAIGPTModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _lowerCamelCase : Dict = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) _lowerCamelCase : int = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , *__lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Union[str, Any] = OpenAIGPTLMHeadModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , *__lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Any = OpenAIGPTDoubleHeadsModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : int = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] , *__lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.num_labels _lowerCamelCase : int = OpenAIGPTForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : Tuple = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : str = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : List[Any] = config_and_inputs _lowerCamelCase : str = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class __snake_case ( _lowercase , _lowercase , _lowercase , unittest.TestCase): snake_case__ : str = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ : str = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ : str = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict=False ): """simple docstring""" _lowerCamelCase : Union[str, Any] = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _lowerCamelCase : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCAmelCase , ) _lowerCamelCase : Any = inputs_dict['''labels'''] _lowerCamelCase : Optional[int] = inputs_dict['''labels'''] _lowerCamelCase : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCAmelCase , ) _lowerCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : int = OpenAIGPTModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self , config_class=__lowerCAmelCase , n_embd=3_7 ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Tuple = OpenAIGPTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_torch class __snake_case ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : List[str] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(__lowerCAmelCase ) _lowerCamelCase : Tuple = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=__lowerCAmelCase ) # the president is _lowerCamelCase : List[str] = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the _lowerCamelCase : int = model.generate(__lowerCAmelCase , do_sample=__lowerCAmelCase ) self.assertListEqual(output_ids[0].tolist() , __lowerCAmelCase )
72
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCamelCase = logging.get_logger(__name__) class _a ( _lowercase): def __init__( self : Optional[int] , *_SCREAMING_SNAKE_CASE : Optional[Any] , **_SCREAMING_SNAKE_CASE : Optional[Any] )-> None: warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
131
0
'''simple docstring''' import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowerCamelCase ( lowerCAmelCase : Dict ): """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" __magic_name__ : Any = create_tensor(lowerCAmelCase ) __magic_name__ : Any = gather(lowerCAmelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowerCamelCase ( lowerCAmelCase : Dict ): """simple docstring""" __magic_name__ : List[Any] = [state.process_index] __magic_name__ : Any = gather_object(lowerCAmelCase ) assert len(lowerCAmelCase ) == state.num_processes, f'{gathered_obj}, {len(lowerCAmelCase )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), f'{gathered_obj} != {list(range(state.num_processes ) )}' def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" __magic_name__ : Optional[int] = create_tensor(lowerCAmelCase ) __magic_name__ : Optional[Any] = broadcast(lowerCAmelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" if state.is_main_process: __magic_name__ : Optional[Any] = torch.arange(state.num_processes + 1 ).to(state.device ) else: __magic_name__ : Union[str, Any] = torch.arange(state.num_processes ).to(state.device ) __magic_name__ : List[Any] = pad_across_processes(lowerCAmelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowerCamelCase ( lowerCAmelCase : List[Any] ): """simple docstring""" if state.num_processes != 2: return __magic_name__ : Optional[Any] = create_tensor(lowerCAmelCase ) __magic_name__ : int = reduce(lowerCAmelCase , 'sum' ) __magic_name__ : Optional[Any] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowerCAmelCase , lowerCAmelCase ), f'{reduced_tensor} != {truth_tensor}' def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" if state.num_processes != 2: return __magic_name__ : List[str] = create_tensor(lowerCAmelCase ) __magic_name__ : int = reduce(lowerCAmelCase , 'mean' ) __magic_name__ : Optional[Any] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowerCAmelCase , lowerCAmelCase ), f'{reduced_tensor} != {truth_tensor}' def lowerCamelCase ( lowerCAmelCase : Any ): """simple docstring""" main() def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Tuple = PartialState() state.print(f'State: {state}' ) state.print('testing gather' ) test_gather(lowerCAmelCase ) state.print('testing gather_object' ) test_gather_object(lowerCAmelCase ) state.print('testing broadcast' ) test_broadcast(lowerCAmelCase ) state.print('testing pad_across_processes' ) test_pad_across_processes(lowerCAmelCase ) state.print('testing reduce_sum' ) test_reduce_sum(lowerCAmelCase ) state.print('testing reduce_mean' ) test_reduce_mean(lowerCAmelCase ) if __name__ == "__main__": main()
363
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : int = StableDiffusionXLImgaImgPipeline A_ : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} A_ : Optional[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} A_ : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS A_ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self : Dict ) -> Optional[int]: torch.manual_seed(0 ) __magic_name__ : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=_A , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __magic_name__ : str = EulerDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0 ) __magic_name__ : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __magic_name__ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=32 , ) __magic_name__ : Dict = CLIPTextModel(_A ) __magic_name__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=_A ) __magic_name__ : Optional[Any] = CLIPTextModelWithProjection(_A ) __magic_name__ : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=_A ) __magic_name__ : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def __lowerCAmelCase ( self : List[Any] , _A : List[str] , _A : Any=0 ) -> Union[str, Any]: __magic_name__ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Dict = image / 2 + 0.5 if str(_A ).startswith('mps' ): __magic_name__ : Any = torch.manual_seed(_A ) else: __magic_name__ : int = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: __magic_name__ : str = 'cpu' # ensure determinism for the device-dependent torch.Generator __magic_name__ : str = self.get_dummy_components() __magic_name__ : Any = StableDiffusionXLImgaImgPipeline(**_A ) __magic_name__ : List[Any] = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) __magic_name__ : Any = self.get_dummy_inputs(_A ) __magic_name__ : Optional[int] = sd_pipe(**_A ).images __magic_name__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __magic_name__ : Any = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def __lowerCAmelCase ( self : List[Any] ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: pass def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : Dict = self.get_dummy_components() __magic_name__ : Optional[Any] = StableDiffusionXLImgaImgPipeline(**_A ) __magic_name__ : List[Any] = sd_pipe.to(_A ) __magic_name__ : str = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) # forward without prompt embeds __magic_name__ : Union[str, Any] = self.get_dummy_inputs(_A ) __magic_name__ : Union[str, Any] = 3 * ['this is a negative prompt'] __magic_name__ : List[str] = negative_prompt __magic_name__ : int = 3 * [inputs['prompt']] __magic_name__ : Tuple = sd_pipe(**_A ) __magic_name__ : str = output.images[0, -3:, -3:, -1] # forward with prompt embeds __magic_name__ : Optional[Any] = self.get_dummy_inputs(_A ) __magic_name__ : Tuple = 3 * ['this is a negative prompt'] __magic_name__ : List[str] = 3 * [inputs.pop('prompt' )] ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : List[Any] = sd_pipe.encode_prompt(_A , negative_prompt=_A ) __magic_name__ : Tuple = sd_pipe( **_A , prompt_embeds=_A , negative_prompt_embeds=_A , pooled_prompt_embeds=_A , negative_pooled_prompt_embeds=_A , ) __magic_name__ : int = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[Any] ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : str , _A : Optional[int] , _A : Optional[Any]="cpu" , _A : List[str]=torch.floataa , _A : Any=0 ) -> str: __magic_name__ : List[str] = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : Optional[Any] = np.random.RandomState(_A ).standard_normal((1, 4, 64, 64) ) __magic_name__ : Union[str, Any] = torch.from_numpy(_A ).to(device=_A , dtype=_A ) __magic_name__ : Optional[int] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: __magic_name__ : str = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __magic_name__ : Optional[int] = self.get_inputs(_A ) __magic_name__ : Union[str, Any] = pipe(**_A ).images __magic_name__ : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __magic_name__ : List[Any] = np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
275
0
def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : float , __lowerCamelCase : float ): return round(float(moles / volume ) * nfactor ) def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ): return round(float((moles * 0.0_8_2_1 * temperature) / (volume) ) ) def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ): return round(float((moles * 0.0_8_2_1 * temperature) / (pressure) ) ) def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ): return round(float((pressure * volume) / (0.0_8_2_1 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
114
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig a : Optional[Any] = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } a : Optional[Any] = logging.get_logger(__name__) class a ( lowercase__ ): """simple docstring""" a : str = 'maskformer' a : Dict = {'hidden_size': 'mask_feature_size'} a : Optional[Any] = ['resnet', 'swin'] a : List[Any] = ['detr'] def __init__( self : Optional[int] , __lowercase : int = 256 , __lowercase : int = 256 , __lowercase : float = 0.1 , __lowercase : bool = False , __lowercase : Optional[Dict] = None , __lowercase : Optional[Dict] = None , __lowercase : float = 0.02 , __lowercase : float = 1.0 , __lowercase : float = 1.0 , __lowercase : float = 1.0 , __lowercase : float = 20.0 , __lowercase : Optional[bool] = None , **__lowercase : Tuple , ) -> str: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __UpperCAmelCase : List[str] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__lowercase , __lowercase ): __UpperCAmelCase : Dict = backbone_config.pop("""model_type""" ) __UpperCAmelCase : Tuple = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowercase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __UpperCAmelCase : List[Any] = DetrConfig() else: # verify that the decoder is supported __UpperCAmelCase : List[Any] = ( decoder_config.pop("""model_type""" ) if isinstance(__lowercase , __lowercase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(__lowercase , __lowercase ): __UpperCAmelCase : Dict = CONFIG_MAPPING[decoder_type] __UpperCAmelCase : Union[str, Any] = config_class.from_dict(__lowercase ) __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : List[str] = decoder_config # main feature dimension for the model __UpperCAmelCase : Union[str, Any] = fpn_feature_size __UpperCAmelCase : Optional[Any] = mask_feature_size # initializer __UpperCAmelCase : int = init_std __UpperCAmelCase : Any = init_xavier_std # Hungarian matcher && loss __UpperCAmelCase : Any = cross_entropy_weight __UpperCAmelCase : Optional[Any] = dice_weight __UpperCAmelCase : List[str] = mask_weight __UpperCAmelCase : Union[str, Any] = use_auxiliary_loss __UpperCAmelCase : int = no_object_weight __UpperCAmelCase : int = output_auxiliary_logits __UpperCAmelCase : Optional[Any] = self.decoder_config.encoder_attention_heads __UpperCAmelCase : Dict = self.decoder_config.num_hidden_layers super().__init__(**__lowercase ) @classmethod def UpperCAmelCase ( cls : int , __lowercase : PretrainedConfig , __lowercase : PretrainedConfig , **__lowercase : str ) -> Tuple: return cls( backbone_config=__lowercase , decoder_config=__lowercase , **__lowercase , ) def UpperCAmelCase ( self : List[Any] ) -> Dict[str, any]: __UpperCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Optional[int] = self.backbone_config.to_dict() __UpperCAmelCase : Any = self.decoder_config.to_dict() __UpperCAmelCase : Tuple = self.__class__.model_type return output
114
1
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger("""transformers.models.encodec""") __lowerCAmelCase = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } __lowerCAmelCase = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } __lowerCAmelCase = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } __lowerCAmelCase = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } __lowerCAmelCase = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } __lowerCAmelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __lowerCAmelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __lowerCAmelCase = [] __lowerCAmelCase = [] def UpperCAmelCase_ (__a : List[str] , __a : str , __a : Union[str, Any] , __a : List[str] , __a : Optional[Any] ): """simple docstring""" for attribute in key.split('.' ): _a : Any = getattr(__a , __a ) if weight_type is not None: _a : Optional[int] = getattr(__a , __a ).shape else: _a : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _a : int = value elif weight_type == "weight_g": _a : List[Any] = value elif weight_type == "weight_v": _a : str = value elif weight_type == "bias": _a : Optional[int] = value elif weight_type == "running_mean": _a : List[Any] = value elif weight_type == "running_var": _a : Dict = value elif weight_type == "num_batches_tracked": _a : Dict = value elif weight_type == "weight_ih_l0": _a : List[Any] = value elif weight_type == "weight_hh_l0": _a : List[Any] = value elif weight_type == "bias_ih_l0": _a : Optional[int] = value elif weight_type == "bias_hh_l0": _a : Optional[Any] = value elif weight_type == "weight_ih_l1": _a : Optional[int] = value elif weight_type == "weight_hh_l1": _a : Optional[Any] = value elif weight_type == "bias_ih_l1": _a : Dict = value elif weight_type == "bias_hh_l1": _a : Optional[Any] = value else: _a : int = value logger.info(f"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def UpperCAmelCase_ (__a : Tuple , __a : Any ): """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a, _a : Optional[Any] = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCAmelCase_ (__a : str , __a : Any , __a : Union[str, Any] ): """simple docstring""" _a : Dict = [] if model_name == "encodec_24khz" or "encodec_32khz": _a : Optional[Any] = MAPPING_24K elif model_name == "encodec_48khz": _a : Optional[int] = MAPPING_48K else: raise ValueError(f"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(__a , __a ): logger.info(f"""{name} was ignored""" ) continue _a : List[str] = False for key, mapped_key in MAPPING.items(): if "*" in key: _a, _a : List[Any] = key.split('.*.' ) if prefix in name and suffix in name: _a : Union[str, Any] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue _a : Optional[int] = True if "*" in mapped_key: _a : List[Any] = name.split(__a )[0].split('.' )[-2] _a : Dict = mapped_key.replace('*' , __a ) if "weight_g" in name: _a : int = 'weight_g' elif "weight_v" in name: _a : int = 'weight_v' elif "weight_ih_l0" in name: _a : List[Any] = 'weight_ih_l0' elif "weight_hh_l0" in name: _a : List[Any] = 'weight_hh_l0' elif "bias_ih_l0" in name: _a : Optional[Any] = 'bias_ih_l0' elif "bias_hh_l0" in name: _a : List[str] = 'bias_hh_l0' elif "weight_ih_l1" in name: _a : List[str] = 'weight_ih_l1' elif "weight_hh_l1" in name: _a : Union[str, Any] = 'weight_hh_l1' elif "bias_ih_l1" in name: _a : str = 'bias_ih_l1' elif "bias_hh_l1" in name: _a : Any = 'bias_hh_l1' elif "bias" in name: _a : Optional[int] = 'bias' elif "weight" in name: _a : Tuple = 'weight' elif "running_mean" in name: _a : Any = 'running_mean' elif "running_var" in name: _a : Optional[int] = 'running_var' elif "num_batches_tracked" in name: _a : Union[str, Any] = 'num_batches_tracked' else: _a : int = None set_recursively(__a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) @torch.no_grad() def UpperCAmelCase_ (__a : int , __a : Optional[Any] , __a : Tuple , __a : str=None , __a : Dict=None , ): """simple docstring""" if config_path is not None: _a : List[str] = EncodecConfig.from_pretrained(__a ) else: _a : Tuple = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _a : Optional[int] = [8, 5, 4, 4] _a : Any = [2.2] _a : Dict = 6_4 _a : Dict = 3_2_0_0_0 _a : Optional[int] = 2_0_4_8 _a : Tuple = False _a : Optional[int] = False _a : List[Any] = False elif model_name == "encodec_48khz": _a : int = [8, 5, 4, 2] _a : Any = [3.0, 6.0, 12.0, 24.0] _a : List[str] = 4_8_0_0_0 _a : str = 2 _a : List[str] = False _a : Optional[Any] = 'time_group_norm' _a : Optional[int] = True _a : Tuple = 1.0 _a : Optional[int] = 0.01 else: raise ValueError(f"""Unknown model name: {model_name}""" ) _a : Any = EncodecModel(__a ) _a : Optional[int] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__a ) _a : Dict = torch.load(__a ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _a : Tuple = original_checkpoint['best_state'] recursively_load_weights(__a , __a , __a ) model.save_pretrained(__a ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(__a ) model.push_to_hub(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __lowerCAmelCase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
5
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" _a : int = FileLock(str(tmpdir / 'foo.lock' ) ) _a : List[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) _a : Any = 0.01 with locka.acquire(): with pytest.raises(__a ): _a : int = time.time() locka.acquire(__a ) assert time.time() - _start > timeout def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Dict = 'a' * 1_0_0_0 + '.lock' _a : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__a ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _a : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__a ): locka.acquire(0 )
5
1
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _SCREAMING_SNAKE_CASE = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
343
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = ShapEPipeline __lowerCAmelCase = ["""prompt"""] __lowerCAmelCase = ["""prompt"""] __lowerCAmelCase = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] __lowerCAmelCase = False @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return 32 @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" return 32 @property def lowerCamelCase_ ( self : str ): """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase_ ( self : str ): """simple docstring""" return 8 @property def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowerCamelCase_ ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCamelCase_ ) @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } UpperCamelCase = PriorTransformer(**lowerCamelCase_ ) return model @property def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } UpperCamelCase = ShapERenderer(**lowerCamelCase_ ) return model def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.dummy_prior UpperCamelCase = self.dummy_text_encoder UpperCamelCase = self.dummy_tokenizer UpperCamelCase = self.dummy_renderer UpperCamelCase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=lowerCamelCase_ , clip_sample=lowerCamelCase_ , clip_sample_range=1.0 , ) UpperCamelCase = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any]=0 ): """simple docstring""" if str(lowerCamelCase_ ).startswith("""mps""" ): UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) UpperCamelCase = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = """cpu""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**lowerCamelCase_ ) UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) UpperCamelCase = output.images[0] UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCamelCase = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Tuple ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = torch_device == """cpu""" UpperCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCamelCase_ , relax_max_difference=lowerCamelCase_ , ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**lowerCamelCase_ ) UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = 1 UpperCamelCase = 2 UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: UpperCamelCase = batch_size * [inputs[key]] UpperCamelCase = pipe(**lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) UpperCamelCase = ShapEPipeline.from_pretrained("""openai/shap-e""" ) UpperCamelCase = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCamelCase = pipe( """a shark""" , generator=lowerCamelCase_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ )
343
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) _SCREAMING_SNAKE_CASE = logging.getLogger() def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : List[str] = {} snake_case_ : Optional[Any] = os.path.join(__a , 'all_results.json' ) if os.path.exists(__a ): with open(__a , 'r' ) as f: snake_case_ : Tuple = json.load(__a ) else: raise ValueError(f"""can't find {path}""" ) return results _SCREAMING_SNAKE_CASE = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def UpperCAmelCase_ ( self : Dict ) -> List[Any]: """simple docstring""" import xla_spawn snake_case_ : Tuple = self.get_auto_remove_tmp_dir() snake_case_ : Optional[Any] = F""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_A , 'argv' , _A ): snake_case_ : str = time() xla_spawn.main() snake_case_ : Tuple = time() snake_case_ : Any = get_results(_A ) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: """simple docstring""" import xla_spawn snake_case_ : Optional[Any] = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(_A , 'argv' , _A ): xla_spawn.main()
369
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Optional[int] = None if token is not None: snake_case_ : List[str] = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} snake_case_ : Union[str, Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" snake_case_ : Optional[int] = requests.get(__a , headers=__a ).json() snake_case_ : List[str] = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) snake_case_ : Dict = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(__a ): snake_case_ : Optional[Any] = requests.get(url + f"""&page={i + 2}""" , headers=__a ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Union[str, Any] = None if token is not None: snake_case_ : List[Any] = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} snake_case_ : Optional[Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" snake_case_ : Union[str, Any] = requests.get(__a , headers=__a ).json() snake_case_ : Any = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) snake_case_ : str = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(__a ): snake_case_ : int = requests.get(url + f"""&page={i + 2}""" , headers=__a ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a ): snake_case_ : Dict = None if token is not None: snake_case_ : List[Any] = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} snake_case_ : Optional[int] = requests.get(__a , headers=__a , allow_redirects=__a ) snake_case_ : str = result.headers['Location'] snake_case_ : List[str] = requests.get(__a , allow_redirects=__a ) snake_case_ : Optional[Any] = os.path.join(__a , f"""{artifact_name}.zip""" ) with open(__a , 'wb' ) as fp: fp.write(response.content ) def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Any = [] snake_case_ : Any = [] snake_case_ : Tuple = None with zipfile.ZipFile(__a ) as z: for filename in z.namelist(): if not os.path.isdir(__a ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__a ) as f: for line in f: snake_case_ : Tuple = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs snake_case_ : Tuple = line[: line.index(': ' )] snake_case_ : Union[str, Any] = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed snake_case_ : Any = line[len('FAILED ' ) :] failed_tests.append(__a ) elif filename == "job_name.txt": snake_case_ : Union[str, Any] = line if len(__a ) != len(__a ): raise ValueError( f"""`errors` and `failed_tests` should have the same number of elements. Got {len(__a )} for `errors` """ f"""and {len(__a )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" ' problem.' ) snake_case_ : List[str] = None if job_name and job_links: snake_case_ : Union[str, Any] = job_links.get(__a , __a ) # A list with elements of the form (line of error, error, failed test) snake_case_ : Optional[Any] = [x + [y] + [job_link] for x, y in zip(__a , __a )] return result def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Any = [] snake_case_ : Any = [os.path.join(__a , __a ) for p in os.listdir(__a ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(__a , job_links=__a ) ) return errors def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Optional[int] = Counter() counter.update([x[1] for x in logs] ) snake_case_ : str = counter.most_common() snake_case_ : Tuple = {} for error, count in counts: if error_filter is None or error not in error_filter: snake_case_ : int = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} snake_case_ : int = dict(sorted(r.items() , key=lambda __a : item[1]["count"] , reverse=__a ) ) return r def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Tuple = test.split('::' )[0] if test.startswith('tests/models/' ): snake_case_ : List[str] = test.split('/' )[2] else: snake_case_ : Union[str, Any] = None return test def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Optional[int] = [(x[0], x[1], get_model(x[2] )) for x in logs] snake_case_ : str = [x for x in logs if x[2] is not None] snake_case_ : int = {x[2] for x in logs} snake_case_ : Dict = {} for test in tests: snake_case_ : List[str] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) snake_case_ : Any = counter.most_common() snake_case_ : str = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} snake_case_ : Tuple = sum(error_counts.values() ) if n_errors > 0: snake_case_ : List[Any] = {'count': n_errors, 'errors': error_counts} snake_case_ : int = dict(sorted(r.items() , key=lambda __a : item[1]["count"] , reverse=__a ) ) return r def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Optional[Any] = '| no. | error | status |' snake_case_ : str = '|-:|:-|:-|' snake_case_ : Tuple = [header, sep] for error in reduced_by_error: snake_case_ : Dict = reduced_by_error[error]['count'] snake_case_ : List[str] = f"""| {count} | {error[:1_00]} | |""" lines.append(__a ) return "\n".join(__a ) def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Optional[Any] = '| model | no. of errors | major error | count |' snake_case_ : Union[str, Any] = '|-:|-:|-:|-:|' snake_case_ : Optional[int] = [header, sep] for model in reduced_by_model: snake_case_ : Any = reduced_by_model[model]['count'] snake_case_ ,snake_case_ : Dict = list(reduced_by_model[model]['errors'].items() )[0] snake_case_ : Any = f"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(__a ) return "\n".join(__a ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") _SCREAMING_SNAKE_CASE = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token) _SCREAMING_SNAKE_CASE = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _SCREAMING_SNAKE_CASE = k.find(""" / """) _SCREAMING_SNAKE_CASE = k[index + len(""" / """) :] _SCREAMING_SNAKE_CASE = v with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _SCREAMING_SNAKE_CASE = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _SCREAMING_SNAKE_CASE = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = reduce_by_error(errors) _SCREAMING_SNAKE_CASE = reduce_by_model(errors) _SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error) _SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa) with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa)
88
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): """simple docstring""" lowercase_ : str = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) lowercase_ : int = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) sd_pipe.set_scheduler('''sample_euler''' ) lowercase_ : int = '''A painting of a squirrel eating a burger''' lowercase_ : Optional[int] = torch.manual_seed(0 ) lowercase_ : Optional[Any] = sd_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) lowercase_ : str = output.images lowercase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowercase_ : str = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ): """simple docstring""" lowercase_ : Any = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowercase_ : Optional[int] = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) sd_pipe.set_scheduler('''sample_euler''' ) lowercase_ : Optional[int] = '''A painting of a squirrel eating a burger''' lowercase_ : List[Any] = torch.manual_seed(0 ) lowercase_ : Optional[int] = sd_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) lowercase_ : Any = output.images lowercase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowercase_ : str = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def _snake_case ( self ): """simple docstring""" lowercase_ : str = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowercase_ : Optional[Any] = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) lowercase_ : List[Any] = '''A painting of a squirrel eating a burger''' lowercase_ : int = torch.manual_seed(0 ) lowercase_ : Dict = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=__SCREAMING_SNAKE_CASE , ) lowercase_ : Union[str, Any] = output.images lowercase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowercase_ : Optional[int] = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
93
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib A__: Optional[int] = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } A__: int = logging.WARNING def lowerCAmelCase_ ( ): UpperCamelCase__: Optional[int] = os.getenv("DATASETS_VERBOSITY" ,A_) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"Unknown option DATASETS_VERBOSITY={env_level_str}, " F"has to be one of: { ', '.join(log_levels.keys()) }") return _default_log_level def lowerCAmelCase_ ( ): return __name__.split(".")[0] def lowerCAmelCase_ ( ): return logging.getLogger(_get_library_name()) def lowerCAmelCase_ ( ): # Apply our default configuration to the library root logger. UpperCamelCase__: Tuple = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level()) def lowerCAmelCase_ ( ): UpperCamelCase__: Tuple = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET) def lowerCAmelCase_ ( A_ = None): if name is None: UpperCamelCase__: Optional[Any] = _get_library_name() return logging.getLogger(A_) def lowerCAmelCase_ ( ): return _get_library_root_logger().getEffectiveLevel() def lowerCAmelCase_ ( A_): _get_library_root_logger().setLevel(A_) def lowerCAmelCase_ ( ): return set_verbosity(A_) def lowerCAmelCase_ ( ): return set_verbosity(A_) def lowerCAmelCase_ ( ): return set_verbosity(A_) def lowerCAmelCase_ ( ): return set_verbosity(A_) def lowerCAmelCase_ ( ): UpperCamelCase__: List[Any] = False def lowerCAmelCase_ ( ): UpperCamelCase__: List[str] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _a : """simple docstring""" def __init__( self: int , *__lowerCamelCase: Tuple , **__lowerCamelCase: str ): # pylint: disable=unused-argument '''simple docstring''' UpperCamelCase__: int = args[0] if args else None def __iter__( self: Optional[Any] ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self: Dict , __lowerCamelCase: Any ): '''simple docstring''' def empty_fn(*__lowerCamelCase: Any , **__lowerCamelCase: Optional[Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self: str ): '''simple docstring''' return self def __exit__( self: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: List[Any] ): '''simple docstring''' return A__: Tuple = True class _a : """simple docstring""" def __call__( self: Any , *__lowerCamelCase: List[str] , __lowerCamelCase: List[Any]=False , **__lowerCamelCase: Union[str, Any] ): '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*__lowerCamelCase , **__lowerCamelCase ) else: return EmptyTqdm(*__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase_ ( self: List[str] , *__lowerCamelCase: List[str] , **__lowerCamelCase: Tuple ): '''simple docstring''' UpperCamelCase__: Optional[int] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() A__: Optional[Any] = _tqdm_cls() def lowerCAmelCase_ ( ): global _tqdm_active return bool(_tqdm_active) def lowerCAmelCase_ ( ): global _tqdm_active UpperCamelCase__: int = True def lowerCAmelCase_ ( ): global _tqdm_active UpperCamelCase__: str = False
149
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": _lowerCamelCase : Dict = input("""Enter image url: """).strip() print(F'''Downloading image from {url} ...''') _lowerCamelCase : List[Any] = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image _lowerCamelCase : List[Any] = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] _lowerCamelCase : Dict = requests.get(image_url).content _lowerCamelCase : Tuple = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, """wb""") as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
231
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Union[str, Any] = """▁""" _lowerCamelCase : Optional[Any] = {"""vocab_file""": """spiece.model"""} _lowerCamelCase : str = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } _lowerCamelCase : List[str] = { """google/pegasus-xsum""": 512, } _lowerCamelCase : int = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str="<pad>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<unk>" , UpperCAmelCase__ : Union[str, Any]="<mask_2>" , UpperCAmelCase__ : List[str]="<mask_1>" , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[Any]=103 , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Dict , ) ->None: '''simple docstring''' A__ = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__): raise TypeError( f"""additional_special_tokens should be of type {type(UpperCAmelCase__)}, but is""" f""" {type(UpperCAmelCase__)}""") A__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(UpperCAmelCase__) , self.offset - 1) ] if len(set(UpperCAmelCase__)) != len(UpperCAmelCase__): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""") A__ = additional_special_tokens_extended else: A__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset)] A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token_sent=UpperCAmelCase__ , offset=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) A__ = mask_token_sent A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCAmelCase__) # add special tokens to encoder dict A__ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, }) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1)}) A__ = {v: k for k, v in self.encoder.items()} @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' return len(self.sp_model) + self.offset def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict[str, int]: '''simple docstring''' A__ = {self.convert_ids_to_tokens(UpperCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any) ->Union[str, Any]: '''simple docstring''' A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : int , UpperCAmelCase__ : Optional[int]) ->Optional[int]: '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str) ->List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str) ->int: '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] A__ = self.sp_model.piece_to_id(UpperCAmelCase__) return sp_id + self.offset def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : int) ->str: '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: A__ = self.sp_model.IdToPiece(index - self.offset) return token def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' A__ = [] A__ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase__) + token A__ = [] else: current_sub_tokens.append(UpperCAmelCase__) out_string += self.sp_model.decode(UpperCAmelCase__) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Optional[int]=False) ->Union[str, Any]: '''simple docstring''' return 1 def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Union[str, Any]) ->Optional[Any]: '''simple docstring''' A__ = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List , UpperCAmelCase__ : Optional[List] = None , UpperCAmelCase__ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase__) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase__) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str]=None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase__): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return A__ = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase__ , '''wb''') as fi: A__ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__) return (out_vocab_file,)
231
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""YolosFeatureExtractor"""] UpperCAmelCase = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
256
from ....configuration_utils import PretrainedConfig from ....utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """trajectory_transformer""" _UpperCamelCase = ["""past_key_values"""] _UpperCamelCase = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , A_=100 , A_=5 , A_=1 , A_=1 , A_=249 , A_=6 , A_=17 , A_=25 , A_=4 , A_=4 , A_=128 , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0_006 , A_=512 , A_=0.02 , A_=1e-12 , A_=1 , A_=True , A_=1 , A_=5_0256 , A_=5_0256 , **A_ , ) ->int: '''simple docstring''' __lowerCAmelCase : Any = vocab_size __lowerCAmelCase : Tuple = action_weight __lowerCAmelCase : Tuple = reward_weight __lowerCAmelCase : Union[str, Any] = value_weight __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : str = block_size __lowerCAmelCase : Optional[Any] = action_dim __lowerCAmelCase : Union[str, Any] = observation_dim __lowerCAmelCase : Union[str, Any] = transition_dim __lowerCAmelCase : Dict = learning_rate __lowerCAmelCase : Any = n_layer __lowerCAmelCase : Any = n_head __lowerCAmelCase : Optional[int] = n_embd __lowerCAmelCase : str = embd_pdrop __lowerCAmelCase : Dict = attn_pdrop __lowerCAmelCase : Optional[int] = resid_pdrop __lowerCAmelCase : Union[str, Any] = initializer_range __lowerCAmelCase : Optional[int] = layer_norm_eps __lowerCAmelCase : Any = kaiming_initializer_range __lowerCAmelCase : List[str] = use_cache super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ )
275
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> int: if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowercase__ : Any = grid[0] for row_n in range(1 , len(__lowerCamelCase ) ): lowercase__ : Optional[int] = grid[row_n] lowercase__ : Union[str, Any] = fill_row(__lowerCamelCase , __lowerCamelCase ) lowercase__ : str = grid[row_n] return grid[-1][-1] def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> list: current_row[0] += row_above[0] for cell_n in range(1 , len(__lowerCamelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
302
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default="NER" ,metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase : bool = field(default=A_ ,metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) @dataclass class __A : '''simple docstring''' lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) lowerCAmelCase : Optional[str] = field( default=A_ ,metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ,) lowerCAmelCase : int = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) lowerCAmelCase : bool = field( default=A_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) lowercase__ : str = import_module('''tasks''' ) try: lowercase__ : List[str] = getattr(__lowerCamelCase , model_args.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase__ : Dict[int, str] = dict(enumerate(__lowerCamelCase ) ) lowercase__ : Optional[int] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid={label: i for i, label in enumerate(__lowerCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ : str = ( TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCamelCase , __lowerCamelCase ) -> Tuple[List[int], List[int]]: lowercase__ : Tuple = np.argmax(__lowerCamelCase , axis=2 ) lowercase__ , lowercase__ : Tuple = preds.shape lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] lowercase__ : Tuple = [[] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCamelCase ) -> Dict: lowercase__ , lowercase__ : List[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ), "precision": precision_score(__lowerCamelCase , __lowerCamelCase ), "recall": recall_score(__lowerCamelCase , __lowerCamelCase ), "f1": fa_score(__lowerCamelCase , __lowerCamelCase ), } # Data collator lowercase__ : Tuple = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ : str = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCamelCase ) # Predict if training_args.do_predict: lowercase__ : Optional[int] = TokenClassificationDataset( token_classification_task=__lowerCamelCase , data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , labels=__lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = trainer.predict(__lowerCamelCase ) lowercase__ , lowercase__ : Tuple = align_predictions(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCamelCase , __lowerCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowercase__ : Dict = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return results def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
302
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger('''transformers.models.encodec''') UpperCAmelCase__ = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } UpperCAmelCase__ = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } UpperCAmelCase__ = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } UpperCAmelCase__ = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } UpperCAmelCase__ = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } UpperCAmelCase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } UpperCAmelCase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } UpperCAmelCase__ = [] UpperCAmelCase__ = [] def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Optional[int]: """simple docstring""" for attribute in key.split('''.''' ): _lowercase =getattr(__snake_case , __snake_case ) if weight_type is not None: _lowercase =getattr(__snake_case , __snake_case ).shape else: _lowercase =hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _lowercase =value elif weight_type == "weight_g": _lowercase =value elif weight_type == "weight_v": _lowercase =value elif weight_type == "bias": _lowercase =value elif weight_type == "running_mean": _lowercase =value elif weight_type == "running_var": _lowercase =value elif weight_type == "num_batches_tracked": _lowercase =value elif weight_type == "weight_ih_l0": _lowercase =value elif weight_type == "weight_hh_l0": _lowercase =value elif weight_type == "bias_ih_l0": _lowercase =value elif weight_type == "bias_hh_l0": _lowercase =value elif weight_type == "weight_ih_l1": _lowercase =value elif weight_type == "weight_hh_l1": _lowercase =value elif weight_type == "bias_ih_l1": _lowercase =value elif weight_type == "bias_hh_l1": _lowercase =value else: _lowercase =value logger.info(F"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> int: """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _lowercase , _lowercase =key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Optional[int]: """simple docstring""" _lowercase =[] if model_name == "encodec_24khz" or "encodec_32khz": _lowercase =MAPPING_24K elif model_name == "encodec_48khz": _lowercase =MAPPING_48K else: raise ValueError(F"Unsupported model: {model_name}" ) for name, value in orig_dict.items(): if should_ignore(__snake_case , __snake_case ): logger.info(F"{name} was ignored" ) continue _lowercase =False for key, mapped_key in MAPPING.items(): if "*" in key: _lowercase , _lowercase =key.split('''.*.''' ) if prefix in name and suffix in name: _lowercase =suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue _lowercase =True if "*" in mapped_key: _lowercase =name.split(__snake_case )[0].split('''.''' )[-2] _lowercase =mapped_key.replace('''*''' , __snake_case ) if "weight_g" in name: _lowercase ='''weight_g''' elif "weight_v" in name: _lowercase ='''weight_v''' elif "weight_ih_l0" in name: _lowercase ='''weight_ih_l0''' elif "weight_hh_l0" in name: _lowercase ='''weight_hh_l0''' elif "bias_ih_l0" in name: _lowercase ='''bias_ih_l0''' elif "bias_hh_l0" in name: _lowercase ='''bias_hh_l0''' elif "weight_ih_l1" in name: _lowercase ='''weight_ih_l1''' elif "weight_hh_l1" in name: _lowercase ='''weight_hh_l1''' elif "bias_ih_l1" in name: _lowercase ='''bias_ih_l1''' elif "bias_hh_l1" in name: _lowercase ='''bias_hh_l1''' elif "bias" in name: _lowercase ='''bias''' elif "weight" in name: _lowercase ='''weight''' elif "running_mean" in name: _lowercase ='''running_mean''' elif "running_var" in name: _lowercase ='''running_var''' elif "num_batches_tracked" in name: _lowercase ='''num_batches_tracked''' else: _lowercase =None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F"Unused weights: {unused_weights}" ) @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=None , __snake_case=None , ) -> Union[str, Any]: """simple docstring""" if config_path is not None: _lowercase =EncodecConfig.from_pretrained(__snake_case ) else: _lowercase =EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _lowercase =[8, 5, 4, 4] _lowercase =[2.2] _lowercase =64 _lowercase =32000 _lowercase =2048 _lowercase =False _lowercase =False _lowercase =False elif model_name == "encodec_48khz": _lowercase =[8, 5, 4, 2] _lowercase =[3.0, 6.0, 12.0, 24.0] _lowercase =48000 _lowercase =2 _lowercase =False _lowercase ='''time_group_norm''' _lowercase =True _lowercase =1.0 _lowercase =0.01 else: raise ValueError(F"Unknown model name: {model_name}" ) _lowercase =EncodecModel(__snake_case ) _lowercase =EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__snake_case ) _lowercase =torch.load(__snake_case ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _lowercase =original_checkpoint['''best_state'''] recursively_load_weights(__snake_case , __snake_case , __snake_case ) model.save_pretrained(__snake_case ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(__snake_case ) model.push_to_hub(__snake_case ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
5
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _a ( a :str=None ) -> Tuple: if subparsers is not None: a = subparsers.add_parser('''test''' ) else: a = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=a , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=a ) return parser def _a ( a :Optional[Any] ) -> Dict: a = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: a = script_name else: a = F"""--config_file={args.config_file} {script_name}""" a = ['''accelerate-launch'''] + test_args.split() a = execute_subprocess_async(a , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def _a ( ) -> Optional[int]: a = test_command_parser() a = parser.parse_args() test_command(a ) if __name__ == "__main__": main()
26
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : Optional[int] , ) ->List[str]: """simple docstring""" super().__init__() a = value_function a = unet a = scheduler a = env a = env.get_dataset() a = {} for key in self.data.keys(): try: a = self.data[key].mean() except: # noqa: E722 pass a = {} for key in self.data.keys(): try: a = self.data[key].std() except: # noqa: E722 pass a = env.observation_space.shape[0] a = env.action_space.shape[0] def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __lowerCAmelCase ( self : int , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" if type(__UpperCAmelCase ) is dict: return {k: self.to_torch(__UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(__UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(__UpperCAmelCase , device=self.unet.device ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ) ->int: """simple docstring""" for key, val in cond.items(): a = val.clone() return x_in def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = x.shape[0] a = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model a = torch.full((batch_size,) , __UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(__UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models a = self.value_function(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample a = torch.autograd.grad([y.sum()] , [x] )[0] a = self.scheduler._get_variance(__UpperCAmelCase ) a = torch.exp(0.5 * posterior_variance ) a = model_std * grad a = 0 a = x.detach() a = x + scale * grad a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.unet(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , predict_epsilon=__UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) return x, y def __call__( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=64 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : str=0.1 ) ->List[str]: """simple docstring""" a = self.normalize(__UpperCAmelCase , '''observations''' ) a = obs[None].repeat(__UpperCAmelCase , axis=0 ) a = {0: self.to_torch(__UpperCAmelCase )} a = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) a = randn_tensor(__UpperCAmelCase , device=self.unet.device ) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) # run the diffusion process a , a = self.run_diffusion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # sort output trajectories by value a = y.argsort(0 , descending=__UpperCAmelCase ).squeeze() a = x[sorted_idx] a = sorted_values[:, :, : self.action_dim] a = actions.detach().cpu().numpy() a = self.de_normalize(__UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: a = 0 else: # if we didn't run value guiding, select a random action a = np.random.randint(0 , __UpperCAmelCase ) a = denorm_actions[selected_index, 0] return denorm_actions
26
1
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _A : Dict =logging.getLogger(__name__) _A : List[str] =list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _A : Optional[Any] =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowercase : a = field( default=_A , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a = field( default=_A , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_A )} , ) a = field( default=_A , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowerCamelCase_ ( self: List[Any] ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class _lowercase : a = field( default=_A , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a = field( default=_A , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) a = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a = field( default=_A , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a = field( default=_A , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowerCamelCase_ ( self: Any ): if self.train_file is not None: lowerCamelCase__ : str = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowerCamelCase__ : Tuple = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Optional[Any]: with open(A_ , """r""" , encoding="""utf-8""" ) as f: lowerCamelCase__ : Tuple = [json.loads(A_ ) for line in f.read().splitlines() if (len(A_ ) > 0 and not line.isspace())] assert len(A_ ) == len(A_ ) lowerCamelCase__ : str = {c: dataset[c] for c in dataset.column_names} lowerCamelCase__ : int = refs return Dataset.from_dict(A_ ) def SCREAMING_SNAKE_CASE_ () -> Optional[Any]: lowerCamelCase__ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCamelCase__ : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , A_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase__ : List[str] = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowerCamelCase__ : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[:{data_args.validation_split_percentage}%]''' , ) lowerCamelCase__ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[{data_args.validation_split_percentage}%:]''' , ) else: lowerCamelCase__ : str = {} if data_args.train_file is not None: lowerCamelCase__ : List[Any] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase__ : Union[str, Any] = data_args.validation_file lowerCamelCase__ : Union[str, Any] = data_args.train_file.split(""".""" )[-1] if extension == "txt": lowerCamelCase__ : Union[str, Any] = """text""" lowerCamelCase__ : List[str] = load_dataset(A_ , data_files=A_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ : Tuple = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase__ : Any = AutoConfig.from_pretrained(model_args.config_name , **A_ ) elif model_args.model_name_or_path: lowerCamelCase__ : Any = AutoConfig.from_pretrained(model_args.model_name_or_path , **A_ ) else: lowerCamelCase__ : Tuple = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) lowerCamelCase__ : Union[str, Any] = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowerCamelCase__ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **A_ ) elif model_args.model_name_or_path: lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **A_ ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: lowerCamelCase__ : Tuple = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=A_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowerCamelCase__ : Union[str, Any] = AutoModelForMaskedLM.from_config(A_ ) model.resize_token_embeddings(len(A_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowerCamelCase__ : Optional[int] = datasets["""train"""].column_names else: lowerCamelCase__ : str = datasets["""validation"""].column_names lowerCamelCase__ : List[Any] = """text""" if """text""" in column_names else column_names[0] lowerCamelCase__ : List[Any] = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(UpperCamelCase ): # Remove empty lines lowerCamelCase__ : Optional[Any] = [line for line in examples["""text"""] if len(A_ ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=A_ , truncation=A_ , max_length=data_args.max_seq_length ) lowerCamelCase__ : Tuple = datasets.map( A_ , batched=A_ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowerCamelCase__ : Tuple = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowerCamelCase__ : List[Any] = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowerCamelCase__ : Any = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowerCamelCase__ : Dict = False # Data collator # This one will take care of randomly masking the tokens. lowerCamelCase__ : List[Any] = DataCollatorForWholeWordMask(tokenizer=A_ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCamelCase__ : Union[str, Any] = Trainer( model=A_ , args=A_ , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=A_ , data_collator=A_ , ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCamelCase__ : List[Any] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowerCamelCase__ : Tuple = model_args.model_name_or_path else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : Optional[int] = trainer.train(resume_from_checkpoint=A_ ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase__ : Tuple = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(A_ , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation lowerCamelCase__ : Any = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCamelCase__ : List[Any] = trainer.evaluate() lowerCamelCase__ : str = math.exp(eval_output["""eval_loss"""] ) lowerCamelCase__ : Dict = perplexity lowerCamelCase__ : Tuple = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(A_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) return results def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str: main() if __name__ == "__main__": main()
41
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __lowerCAmelCase : int = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') __lowerCAmelCase : Any = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode('utf-8').split() ) __lowerCAmelCase : str = '|'.join(sys.argv[1:]) __lowerCAmelCase : Tuple = re.compile(RF'''^({joined_dirs}).*?\.py$''') __lowerCAmelCase : Union[str, Any] = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
88
0
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a (_A , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = LxmertTokenizer __UpperCAmelCase : Optional[Any] = LxmertTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : str = True def __snake_case ( self : Any ) -> str: super().setUp() __snake_case : Optional[int] = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __snake_case ( self : Dict , lowerCamelCase : Tuple ) -> List[Any]: __snake_case : List[str] = "UNwant\u00E9d,running" __snake_case : Optional[int] = "unwanted, running" return input_text, output_text def __snake_case ( self : Tuple ) -> Optional[int]: __snake_case : List[Any] = self.tokenizer_class(self.vocab_file ) __snake_case : int = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [7, 4, 5, 10, 8, 9] ) def __snake_case ( self : Optional[Any] ) -> Dict: if not self.test_rust_tokenizer: return __snake_case : Optional[int] = self.get_tokenizer() __snake_case : Any = self.get_rust_tokenizer() __snake_case : Union[str, Any] = "I was born in 92000, and this is falsé." __snake_case : Optional[int] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : List[str] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __snake_case : List[str] = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = self.get_rust_tokenizer() __snake_case : Optional[Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __snake_case : List[str] = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
363
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Dict = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) __snake_case : List[Any] = MaskFormerConfig(backbone_config=__lowerCamelCase ) __snake_case : List[Any] = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok __snake_case : Any = 8_4_7 __snake_case : List[Any] = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok __snake_case : Optional[int] = 1_5_0 __snake_case : int = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok __snake_case : Optional[Any] = 1_7_1 __snake_case : List[str] = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO __snake_case : Optional[int] = 1_3_3 __snake_case : int = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok __snake_case : Union[str, Any] = 1_9 __snake_case : Dict = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok __snake_case : Any = 6_5 __snake_case : Any = "mapillary-vistas-id2label.json" __snake_case : str = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) , "r" ) ) __snake_case : Tuple = {int(__lowerCamelCase ): v for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Dict = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Dict = dct.pop(__lowerCamelCase ) __snake_case : Any = val def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __snake_case : Optional[int] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __snake_case : Tuple = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __snake_case : Tuple = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : Tuple = in_proj_weight[:dim, :] __snake_case : Tuple = in_proj_bias[: dim] __snake_case : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] __snake_case : Tuple = in_proj_bias[ dim : dim * 2 ] __snake_case : str = in_proj_weight[ -dim :, : ] __snake_case : Any = in_proj_bias[-dim :] # fmt: on def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): # fmt: off __snake_case : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __snake_case : List[str] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __snake_case : Union[str, Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : Any = in_proj_weight[: hidden_size, :] __snake_case : Optional[int] = in_proj_bias[:config.hidden_size] __snake_case : Any = in_proj_weight[hidden_size : hidden_size * 2, :] __snake_case : Any = in_proj_bias[hidden_size : hidden_size * 2] __snake_case : Tuple = in_proj_weight[-hidden_size :, :] __snake_case : Optional[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __snake_case : Optional[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __snake_case : Union[str, Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : int = in_proj_weight[: hidden_size, :] __snake_case : Tuple = in_proj_bias[:config.hidden_size] __snake_case : str = in_proj_weight[hidden_size : hidden_size * 2, :] __snake_case : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] __snake_case : Optional[Any] = in_proj_weight[-hidden_size :, :] __snake_case : Tuple = in_proj_bias[-hidden_size :] # fmt: on def lowerCAmelCase_ ( ): __snake_case : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : List[str] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = False ): __snake_case : Optional[int] = get_maskformer_config(__lowerCamelCase ) # load original state_dict with open(__lowerCamelCase , "rb" ) as f: __snake_case : int = pickle.load(__lowerCamelCase ) __snake_case : Optional[int] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __snake_case : Tuple = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_swin_q_k_v(__lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCamelCase , __lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __snake_case : int = torch.from_numpy(__lowerCamelCase ) # load 🤗 model __snake_case : List[str] = MaskFormerForInstanceSegmentation(__lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(__lowerCamelCase , param.shape ) __snake_case , __snake_case : List[str] = model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __snake_case : Union[str, Any] = prepare_img() if "vistas" in model_name: __snake_case : Optional[int] = 6_5 elif "cityscapes" in model_name: __snake_case : Optional[int] = 6_5_5_3_5 else: __snake_case : Union[str, Any] = 2_5_5 __snake_case : Union[str, Any] = True if "ade" in model_name else False __snake_case : str = MaskFormerImageProcessor(ignore_index=__lowerCamelCase , reduce_labels=__lowerCamelCase ) __snake_case : List[str] = image_processor(__lowerCamelCase , return_tensors="pt" ) __snake_case : Tuple = model(**__lowerCamelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __snake_case : Optional[Any] = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
134
0