code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import torch from torch import nn class A_ ( nn.Module ): '''simple docstring''' def __init__( self : str , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : int=1 , lowercase_ : str=False ) -> Union[str, Any]: super().__init__() UpperCAmelCase : Any = n_token UpperCAmelCase : Union[str, Any] = d_embed UpperCAmelCase : Union[str, Any] = d_proj UpperCAmelCase : List[Any] = cutoffs + [n_token] UpperCAmelCase : List[str] = [0] + self.cutoffs UpperCAmelCase : str = div_val UpperCAmelCase : Dict = self.cutoffs[0] UpperCAmelCase : str = len(self.cutoffs ) - 1 UpperCAmelCase : Dict = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) UpperCAmelCase : List[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCAmelCase : str = nn.ModuleList() UpperCAmelCase : Dict = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase_ , lowercase_ ) ) ) else: self.out_projs.append(lowercase_ ) self.out_layers.append(nn.Linear(lowercase_ , lowercase_ ) ) else: for i in range(len(self.cutoffs ) ): UpperCAmelCase , UpperCAmelCase : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase : Optional[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase_ , lowercase_ ) ) ) self.out_layers.append(nn.Linear(lowercase_ , r_idx - l_idx ) ) UpperCAmelCase : Optional[int] = keep_order def UpperCAmelCase_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str ) -> int: if proj is None: UpperCAmelCase : Any = nn.functional.linear(lowercase_ , lowercase_ , bias=lowercase_ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCAmelCase : Optional[int] = nn.functional.linear(lowercase_ , proj.t().contiguous() ) UpperCAmelCase : Dict = nn.functional.linear(lowercase_ , lowercase_ , bias=lowercase_ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : str , lowercase_ : List[str]=None , lowercase_ : str=False ) -> Dict: if labels is not None: # Shift so that tokens < n predict n UpperCAmelCase : Any = hidden[..., :-1, :].contiguous() UpperCAmelCase : int = labels[..., 1:].contiguous() UpperCAmelCase : Union[str, Any] = hidden.view(-1 , hidden.size(-1 ) ) UpperCAmelCase : Optional[Any] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: UpperCAmelCase : int = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: UpperCAmelCase : Union[str, Any] = self._compute_logit(lowercase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: UpperCAmelCase : Dict = labels != -100 UpperCAmelCase : Any = torch.zeros_like(lowercase_ , dtype=hidden.dtype , device=hidden.device ) UpperCAmelCase : Optional[Any] = ( -nn.functional.log_softmax(lowercase_ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCAmelCase : Dict = nn.functional.log_softmax(lowercase_ , dim=-1 ) else: # construct weights and biases UpperCAmelCase , UpperCAmelCase : List[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase , UpperCAmelCase : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase : Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase : List[str] = self.out_layers[i].weight UpperCAmelCase : int = self.out_layers[i].bias if i == 0: UpperCAmelCase : List[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCAmelCase : str = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowercase_ ) biases.append(lowercase_ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = weights[0], biases[0], self.out_projs[0] UpperCAmelCase : str = self._compute_logit(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = nn.functional.log_softmax(lowercase_ , dim=1 ) if labels is None: UpperCAmelCase : str = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCAmelCase : int = torch.zeros_like(lowercase_ , dtype=hidden.dtype , device=hidden.device ) UpperCAmelCase : Dict = 0 UpperCAmelCase : int = [0] + self.cutoffs for i in range(len(lowercase_ ) - 1 ): UpperCAmelCase , UpperCAmelCase : List[Any] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCAmelCase : Dict = (labels >= l_idx) & (labels < r_idx) UpperCAmelCase : Any = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCAmelCase : List[Any] = labels.index_select(0 , lowercase_ ) - l_idx UpperCAmelCase : Union[str, Any] = head_logprob.index_select(0 , lowercase_ ) UpperCAmelCase : List[str] = hidden.index_select(0 , lowercase_ ) else: UpperCAmelCase : Union[str, Any] = hidden if i == 0: if labels is not None: UpperCAmelCase : Optional[int] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase : Dict = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = weights[i], biases[i], self.out_projs[i] UpperCAmelCase : Dict = self._compute_logit(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : List[Any] = nn.functional.log_softmax(lowercase_ , dim=1 ) UpperCAmelCase : Any = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCAmelCase : Tuple = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase : str = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCAmelCase : Tuple = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , lowercase_ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def UpperCAmelCase_ ( self : int , lowercase_ : Optional[Any] ) -> List[str]: if self.n_clusters == 0: UpperCAmelCase : str = self._compute_logit(lowercase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(lowercase_ , dim=-1 ) else: # construct weights and biases UpperCAmelCase , UpperCAmelCase : List[str] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase : Union[str, Any] = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase : Dict = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase : int = self.out_layers[i].weight UpperCAmelCase : Optional[Any] = self.out_layers[i].bias if i == 0: UpperCAmelCase : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCAmelCase : int = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowercase_ ) biases.append(lowercase_ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = weights[0], biases[0], self.out_projs[0] UpperCAmelCase : List[str] = self._compute_logit(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCAmelCase : int = nn.functional.log_softmax(lowercase_ , dim=1 ) UpperCAmelCase : List[Any] = [0] + self.cutoffs for i in range(len(lowercase_ ) - 1 ): UpperCAmelCase , UpperCAmelCase : Dict = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCAmelCase : int = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = weights[i], biases[i], self.out_projs[i] UpperCAmelCase : List[Any] = self._compute_logit(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = nn.functional.log_softmax(lowercase_ , dim=1 ) UpperCAmelCase : int = head_logprob[:, -i] + tail_logprob_i UpperCAmelCase : Any = logprob_i return out
151
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase__ = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
151
1
from __future__ import annotations from collections import namedtuple def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> tuple: """simple docstring""" UpperCamelCase : Union[str, Any] = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
353
import math def A_ ( _lowerCAmelCase ) -> list: UpperCamelCase : str = [True] * n UpperCamelCase : Optional[int] = False UpperCamelCase : str = False UpperCamelCase : List[Any] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): UpperCamelCase : int = i * 2 while index < n: UpperCamelCase : Optional[Any] = False UpperCamelCase : Optional[Any] = index + i UpperCamelCase : Optional[Any] = [2] for i in range(3 , _lowerCAmelCase , 2 ): if is_prime[i]: primes.append(_lowerCAmelCase ) return primes def A_ ( _lowerCAmelCase = 9999_6666_3333 ) -> int: UpperCamelCase : Tuple = math.floor(math.sqrt(_lowerCAmelCase ) ) + 100 UpperCamelCase : Dict = prime_sieve(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = 0 UpperCamelCase : Tuple = 0 UpperCamelCase : List[str] = primes[prime_index] while (last_prime**2) <= limit: UpperCamelCase : Dict = primes[prime_index + 1] UpperCamelCase : Any = last_prime**2 UpperCamelCase : Union[str, Any] = next_prime**2 # Get numbers divisible by lps(current) UpperCamelCase : Dict = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) UpperCamelCase : List[str] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps UpperCamelCase : Dict = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair UpperCamelCase : str = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
140
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Optional[Any] =ViTImageProcessor if is_vision_available() else None @property def UpperCAmelCase ( self ) -> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : str = (3, 32, 128) __snake_case : Optional[int] = tempfile.mkdtemp() # fmt: off __snake_case : Optional[int] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on __snake_case : Optional[int] = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) __snake_case : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase ) + "\n" ) __snake_case : int = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 32, "width": 128}, } __snake_case : List[str] = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase ( self , **UpperCAmelCase ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __snake_case : int = Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) return image_input def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : List[str] = self.get_tokenizer() __snake_case : Any = self.get_image_processor() __snake_case : List[Any] = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __snake_case : Any = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : int = self.get_tokenizer() __snake_case : Optional[Any] = self.get_image_processor() __snake_case : Union[str, Any] = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __snake_case : int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __snake_case : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) __snake_case : List[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.get_image_processor() __snake_case : Optional[int] = self.get_tokenizer() __snake_case : Any = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __snake_case : Union[str, Any] = self.prepare_image_inputs() __snake_case : Union[str, Any] = image_processor(UpperCAmelCase , return_tensors="np" ) __snake_case : Union[str, Any] = processor(images=UpperCAmelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : List[str] = self.get_image_processor() __snake_case : List[Any] = self.get_tokenizer() __snake_case : Dict = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __snake_case : int = "test" __snake_case : Tuple = processor(text=UpperCAmelCase ) __snake_case : List[Any] = tokenizer(UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : List[Any] = self.get_image_processor() __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : List[str] = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __snake_case : Any = "test" __snake_case : Tuple = self.prepare_image_inputs() __snake_case : Union[str, Any] = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : Tuple = self.get_image_processor() __snake_case : Dict = self.get_tokenizer() __snake_case : Any = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __snake_case : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __snake_case : Optional[Any] = processor.char_decode(UpperCAmelCase ) __snake_case : Dict = tokenizer.batch_decode(UpperCAmelCase ) __snake_case : List[str] = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : Dict = self.get_image_processor() __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : Dict = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __snake_case : Union[str, Any] = None __snake_case : int = self.prepare_image_inputs() __snake_case : Optional[Any] = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : str = self.get_image_processor() __snake_case : int = self.get_tokenizer() __snake_case : int = MgpstrProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __snake_case : Dict = torch.randn(1 , 27 , 38 ) __snake_case : List[Any] = torch.randn(1 , 27 , 50257 ) __snake_case : List[str] = torch.randn(1 , 27 , 30522 ) __snake_case : Dict = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
326
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Any = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase__( lowercase : Dict ) -> Dict: __snake_case : Any = [1, 2] __snake_case : Dict = {"a": 1, "b": 2} __snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]} __snake_case : int = {"a": {"1": 1}, "b": 2} __snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case : Dict = [2, 3] __snake_case : Tuple = {"a": 2, "b": 3} __snake_case : int = {"a": [2, 3], "b": [4, 5]} __snake_case : Dict = {"a": {"1": 2}, "b": 3} __snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
326
1
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = '▁' __lowercase = {'vocab_file': 'prophetnet.tokenizer'} __lowercase = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } __lowercase = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } __lowercase = { 'microsoft/xprophetnet-large-wiki100-cased': 512, } def lowercase ( A_ )-> int: '''simple docstring''' a : int = collections.OrderedDict() with open(snake_case_ , "r" , encoding="utf-8" ) as reader: a : Optional[int] = reader.readlines() for index, token in enumerate(snake_case_ ): a : str = token.rstrip("\n" ) a : str = index return vocab class _A ( _lowerCAmelCase ): """simple docstring""" UpperCAmelCase : int = VOCAB_FILES_NAMES UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : str , __UpperCAmelCase : Any , __UpperCAmelCase : Dict="[SEP]" , __UpperCAmelCase : Optional[int]="[SEP]" , __UpperCAmelCase : Optional[int]="[SEP]" , __UpperCAmelCase : List[str]="[UNK]" , __UpperCAmelCase : Union[str, Any]="[PAD]" , __UpperCAmelCase : str="[CLS]" , __UpperCAmelCase : Optional[Any]="[MASK]" , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Tuple , ): a : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise a : str = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(_lowercase)) a : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab a : str = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10): a : Tuple = f'''[unused{i}]''' a : Dict = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab a : int = 12 a : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(_lowercase) def __getstate__( self : Dict): a : str = self.__dict__.copy() a : Any = None return state def __setstate__( self : List[Any] , __UpperCAmelCase : List[Any]): a : int = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise # for backward compatibility if not hasattr(self , "sp_model_kwargs"): a : str = {} a : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __snake_case ( self : Optional[int] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) if token_ids_a is None: return ([0] * len(_lowercase)) + [1] return ([0] * len(_lowercase)) + [1] + ([0] * len(_lowercase)) + [1] def __snake_case ( self : Optional[int] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None): a : Dict = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def __snake_case ( self : Optional[Any]): return len(self.sp_model) + self.fairseq_offset def __snake_case ( self : str): a : Any = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __snake_case ( self : str , __UpperCAmelCase : str): return self.sp_model.encode(_lowercase , out_type=_lowercase) def __snake_case ( self : Optional[Any] , __UpperCAmelCase : Optional[Any]): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a : Optional[int] = self.sp_model.PieceToId(_lowercase) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __snake_case ( self : Dict , __UpperCAmelCase : List[str]): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def __snake_case ( self : Optional[int] , __UpperCAmelCase : Any): a : List[str] = "".join(_lowercase).replace(_lowercase , " ").strip() return out_string def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None): if not os.path.isdir(_lowercase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return a : Any = os.path.join( _lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , "wb") as fi: a : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None): if token_ids_a is None: return token_ids_a + [self.sep_token_id] a : Optional[Any] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
370
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) def lowercase ( A_ , A_=False )-> int: '''simple docstring''' a : List[str] = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def lowercase ( A_ , A_ , A_=False )-> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: a : Tuple = "" else: a : Dict = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a : str = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) a : List[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a : Optional[int] = in_proj_weight[ : config.hidden_size, : ] a : Tuple = in_proj_bias[: config.hidden_size] a : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a : int = in_proj_weight[ -config.hidden_size :, : ] a : int = in_proj_bias[-config.hidden_size :] def lowercase ( A_ )-> Dict: '''simple docstring''' a : Dict = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(A_ , A_ ) def lowercase ( A_ , A_ , A_ )-> List[Any]: '''simple docstring''' a : List[Any] = dct.pop(A_ ) a : str = val def lowercase ( )-> List[Any]: '''simple docstring''' a : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" a : Tuple = Image.open(requests.get(A_ , stream=A_ ).raw ) return im @torch.no_grad() def lowercase ( A_ , A_ , A_=False )-> Union[str, Any]: '''simple docstring''' a : Optional[Any] = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=A_ , ) a : Union[str, Any] = ViTHybridConfig(backbone_config=A_ , image_size=384 , num_labels=1_000 ) a : Optional[Any] = False # load original model from timm a : Any = timm.create_model(A_ , pretrained=A_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys a : Optional[Any] = timm_model.state_dict() if base_model: remove_classification_head_(A_ ) a : int = create_rename_keys(A_ , A_ ) for src, dest in rename_keys: rename_key(A_ , A_ , A_ ) read_in_q_k_v(A_ , A_ , A_ ) a : Union[str, Any] = "huggingface/label-files" a : Optional[int] = "imagenet-1k-id2label.json" a : str = json.load(open(hf_hub_download(A_ , A_ , repo_type="dataset" ) , "r" ) ) a : Optional[Any] = {int(A_ ): v for k, v in idalabel.items()} a : str = idalabel a : Any = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": a : List[Any] = ViTHybridModel(A_ ).eval() else: a : Optional[int] = ViTHybridForImageClassification(A_ ).eval() model.load_state_dict(A_ ) # create image processor a : Tuple = create_transform(**resolve_data_config({} , model=A_ ) ) a : List[Any] = transform.transforms a : int = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } a : str = ViTHybridImageProcessor( do_resize=A_ , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=A_ , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=A_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) a : List[Any] = prepare_img() a : Optional[Any] = transform(A_ ).unsqueeze(0 ) a : str = processor(A_ , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(A_ , A_ ) # verify logits with torch.no_grad(): a : Dict = model(A_ ) a : Tuple = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: a : str = timm_model.forward_features(A_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(A_ , outputs.pooler_output , atol=1e-3 ) else: a : int = timm_model(A_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A_ , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(A_ ).mkdir(exist_ok=A_ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A_ ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) __lowercase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
226
0
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () _UpperCamelCase : Optional[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). _UpperCamelCase : Any = [0, 25, 50] _UpperCamelCase : List[Any] = [25, 50, 75] _UpperCamelCase : str = fuzz.membership.trimf(X, abca) _UpperCamelCase : str = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. _UpperCamelCase : List[str] = np.ones(75) _UpperCamelCase : Optional[Any] = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) _UpperCamelCase : Dict = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) _UpperCamelCase : Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) _UpperCamelCase : Tuple = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) _UpperCamelCase : int = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] _UpperCamelCase : Union[str, Any] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) _UpperCamelCase : Optional[Any] = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] _UpperCamelCase : int = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] _UpperCamelCase : Optional[int] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("Young") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("Middle aged") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("union") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("intersection") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("complement_a") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("difference a/b") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("alg_sum") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("alg_product") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("bdd_sum") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("bdd_difference") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
77
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : int = args.pruning_method lowercase__ : Tuple = args.threshold lowercase__ : str = args.model_name_or_path.rstrip('/' ) lowercase__ : List[Any] = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) lowercase__ : Optional[Any] = torch.load(os.path.join(_lowerCAmelCase , 'pytorch_model.bin' ) ) lowercase__ : List[str] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowercase__ : Tuple = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: lowercase__ : List[str] = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: lowercase__ : Optional[Any] = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": lowercase__ : Optional[Any] = MagnitudeBinarizer.apply(inputs=_lowerCAmelCase , threshold=_lowerCAmelCase ) lowercase__ : Optional[int] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue lowercase__ : Optional[Any] = name[:-6] lowercase__ : Optional[int] = model[f"""{prefix_}mask_scores"""] lowercase__ : Any = TopKBinarizer.apply(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : List[Any] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowercase__ : Any = name[:-6] lowercase__ : Optional[Any] = model[f"""{prefix_}mask_scores"""] lowercase__ : Tuple = ThresholdBinarizer.apply(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase__ : List[str] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue lowercase__ : Union[str, Any] = name[:-6] lowercase__ : Optional[int] = model[f"""{prefix_}mask_scores"""] lowercase__ , lowercase__ : Tuple = -0.1, 1.1 lowercase__ : Optional[Any] = torch.sigmoid(_lowerCAmelCase ) lowercase__ : Optional[Any] = s * (r - l) + l lowercase__ : Optional[Any] = s_bar.clamp(min=0.0 , max=1.0 ) lowercase__ : Union[str, Any] = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: lowercase__ : Union[str, Any] = os.path.join( os.path.dirname(_lowerCAmelCase ) , f"""bertarized_{os.path.basename(_lowerCAmelCase )}""" ) if not os.path.isdir(_lowerCAmelCase ): shutil.copytree(_lowerCAmelCase , _lowerCAmelCase ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) _UpperCamelCase : Dict = parser.parse_args() main(args)
77
1
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _snake_case : def __init__( self , _lowerCamelCase , ): a :List[str] = parent a :Dict = 13 a :Optional[int] = 7 a :Optional[Any] = 30 a :Optional[Any] = self.seq_length + self.mem_len a :Tuple = 15 a :List[str] = True a :List[Any] = True a :List[Any] = 99 a :Optional[Any] = [10, 50, 80] a :Optional[int] = 32 a :List[Any] = 32 a :Dict = 4 a :List[Any] = 8 a :Optional[Any] = 128 a :Dict = 2 a :List[Any] = 2 a :str = None a :str = 1 a :List[Any] = 0 a :List[str] = 3 a :str = self.vocab_size - 1 a :Optional[Any] = 0.01 def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a :Tuple = None if self.use_labels: a :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a :Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def SCREAMING_SNAKE_CASE__ ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :int = TFTransfoXLModel(_lowerCamelCase ) a , a :List[Any] = model(_lowerCamelCase ).to_tuple() a :List[str] = {'''input_ids''': input_ids_a, '''mems''': mems_a} a , a :Optional[int] = model(_lowerCamelCase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :str = TFTransfoXLLMHeadModel(_lowerCamelCase ) a , a :Tuple = model(_lowerCamelCase ).to_tuple() a :Any = {'''input_ids''': input_ids_a, '''labels''': lm_labels} a , a :Dict = model(_lowerCamelCase ).to_tuple() a , a :Dict = model([input_ids_a, mems_a] ).to_tuple() a :str = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} a , a :Any = model(_lowerCamelCase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Optional[Any] = TFTransfoXLForSequenceClassification(_lowerCamelCase ) a :Any = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ): a :str = self.prepare_config_and_inputs() ((a) , (a) , (a) , (a)) :Optional[int] = config_and_inputs a :Union[str, Any] = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class _snake_case ( _snake_case , _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ = () if is_tf_available() else () SCREAMING_SNAKE_CASE__ = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def SCREAMING_SNAKE_CASE__ ( self ): a :str = TFTransfoXLModelTester(self ) a :str = ConfigTester(self , config_class=_lowerCamelCase , d_embed=37 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): self.model_tester.set_seed() a :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): self.model_tester.set_seed() a :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a , a :Any = self.model_tester.prepare_config_and_inputs_for_common() a :int = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: a :Any = model_class(_lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: a :Dict = model.get_output_embeddings() assert isinstance(_lowerCamelCase , tf.keras.layers.Layer ) a :Dict = model.get_bias() assert name is None else: a :int = model.get_output_embeddings() assert x is None a :Optional[int] = model.get_bias() assert name is None def SCREAMING_SNAKE_CASE__ ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a :List[Any] = TFTransfoXLModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @require_tf class _snake_case ( unittest.TestCase ): @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def SCREAMING_SNAKE_CASE__ ( self ): a :Any = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off a :Union[str, Any] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off a :List[Any] = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> a :Optional[Any] = model.generate(_lowerCamelCase , max_length=200 , do_sample=_lowerCamelCase ) self.assertListEqual(output_ids[0].numpy().tolist() , _lowerCamelCase )
281
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case : Any = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Union[str, Any] = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys snake_case : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
281
1
from __future__ import annotations import numpy as np def _UpperCAmelCase (UpperCamelCase__ : list[float] ): return np.maximum(0 , UpperCamelCase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
11
"""simple docstring""" import os from collections.abc import Iterator def __SCREAMING_SNAKE_CASE ( A_ = "." ): for dir_path, dir_names, filenames in os.walk(A_ ): lowerCAmelCase__ : str = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(A_ )[1] in (".py", ".ipynb"): yield os.path.join(A_ , A_ ).lstrip('''./''' ) def __SCREAMING_SNAKE_CASE ( A_ ): return f'{i * " "}*' if i else "\n##" def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Optional[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(A_ ) or old_parts[i] != new_part) and new_part: print(f'{md_prefix(A_ )} {new_part.replace("_" , " " ).title()}' ) return new_path def __SCREAMING_SNAKE_CASE ( A_ = "." ): lowerCAmelCase__ : Any = '''''' for filepath in sorted(good_file_paths(A_ ) ): lowerCAmelCase__ ,lowerCAmelCase__ : str = os.path.split(A_ ) if filepath != old_path: lowerCAmelCase__ : str = print_path(A_ , A_ ) lowerCAmelCase__ : str = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase__ : Union[str, Any] = f'{filepath}/{filename}'.replace(''' ''' , '''%20''' ) lowerCAmelCase__ : List[str] = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(f'{md_prefix(A_ )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('''.''')
106
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = '''ZinengTang/tvlt-base''' UpperCAmelCase = tempfile.mkdtemp() def a__( self : Dict , **lowerCAmelCase : Dict )-> int: """simple docstring""" return TvltImageProcessor.from_pretrained(self.checkpoint , **_SCREAMING_SNAKE_CASE ) def a__( self : Optional[int] , **lowerCAmelCase : List[str] )-> Tuple: """simple docstring""" return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_SCREAMING_SNAKE_CASE ) def a__( self : List[str] )-> Any: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__( self : str )-> Any: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = TvltProcessor(image_processor=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def a__( self : List[str] )-> Tuple: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = TvltProcessor(image_processor=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase = np.ones([12000] ) UpperCAmelCase = feature_extractor(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) UpperCAmelCase = processor(audio=_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a__( self : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = TvltProcessor(image_processor=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase = np.ones([3, 224, 224] ) UpperCAmelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) UpperCAmelCase = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a__( self : Optional[int] )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = TvltProcessor(image_processor=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase = np.ones([12000] ) UpperCAmelCase = np.ones([3, 224, 224] ) UpperCAmelCase = processor(audio=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def a__( self : List[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = TvltProcessor(image_processor=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
355
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
91
0
from importlib import import_module from .logging import get_logger UpperCAmelCase__ = get_logger(__name__) class lowercase_ : '''simple docstring''' def __init__( self : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str=None ) ->int: """simple docstring""" a = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , __UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) a = module._original_module if isinstance(__UpperCAmelCase , _PatchedModuleObj ) else module class lowercase_ : '''simple docstring''' __snake_case = [] def __init__( self : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict=None ) ->Union[str, Any]: """simple docstring""" a = obj a = target a = new a = target.split('''.''' )[0] a = {} a = attrs or [] def __enter__( self : Tuple ) ->Union[str, Any]: """simple docstring""" *a , a = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(__UpperCAmelCase ) ): try: a = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a = getattr(self.obj , __UpperCAmelCase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(__UpperCAmelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): a = obj_attr # patch at top level setattr(self.obj , __UpperCAmelCase , _PatchedModuleObj(__UpperCAmelCase , attrs=self.attrs ) ) a = getattr(self.obj , __UpperCAmelCase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(__UpperCAmelCase , __UpperCAmelCase , _PatchedModuleObj(getattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , attrs=self.attrs ) ) a = getattr(__UpperCAmelCase , __UpperCAmelCase ) # finally set the target attribute setattr(__UpperCAmelCase , __UpperCAmelCase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a = getattr(import_module('''.'''.join(__UpperCAmelCase ) ) , __UpperCAmelCase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , __UpperCAmelCase ) is attr_value: a = getattr(self.obj , __UpperCAmelCase ) setattr(self.obj , __UpperCAmelCase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a = globals()['''__builtins__'''][target_attr] setattr(self.obj , __UpperCAmelCase , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : List[str] , *__UpperCAmelCase : Optional[int] ) ->Tuple: """simple docstring""" for attr in list(self.original ): setattr(self.obj , __UpperCAmelCase , self.original.pop(__UpperCAmelCase ) ) def __lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def __lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
0
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version _UpperCAmelCase = version.parse(importlib_metadata.version("""nltk""")) if NLTK_VERSION >= version.Version("""3.6.4"""): from nltk import word_tokenize _UpperCAmelCase = """\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } """ _UpperCAmelCase = """\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. """ _UpperCAmelCase = """ Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: 'meteor': meteor score. Examples: >>> meteor = datasets.load_metric('meteor') >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"] >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results[\"meteor\"], 4)) 0.6944 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase=0.9 , lowercase=3 , lowercase=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): A_ : List[Any] = [ meteor_score.single_meteor_score( word_tokenize(lowercase ) , word_tokenize(lowercase ) , alpha=lowercase , beta=lowercase , gamma=lowercase ) for ref, pred in zip(lowercase , lowercase ) ] else: A_ : Optional[Any] = [ meteor_score.single_meteor_score(lowercase , lowercase , alpha=lowercase , beta=lowercase , gamma=lowercase ) for ref, pred in zip(lowercase , lowercase ) ] return {"meteor": np.mean(lowercase )}
140
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class A ( __UpperCAmelCase ): __snake_case = 'trocr' __snake_case = ['past_key_values'] __snake_case = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self, UpperCamelCase__=5_0265, UpperCamelCase__=1024, UpperCamelCase__=12, UpperCamelCase__=16, UpperCamelCase__=4096, UpperCamelCase__="gelu", UpperCamelCase__=512, UpperCamelCase__=0.1, UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=2, UpperCamelCase__=0.02, UpperCamelCase__=0.0, UpperCamelCase__=True, UpperCamelCase__=False, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=1, UpperCamelCase__=0, UpperCamelCase__=2, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = vocab_size lowerCAmelCase_ = d_model lowerCAmelCase_ = decoder_layers lowerCAmelCase_ = decoder_attention_heads lowerCAmelCase_ = decoder_ffn_dim lowerCAmelCase_ = activation_function lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = activation_dropout lowerCAmelCase_ = init_std lowerCAmelCase_ = decoder_layerdrop lowerCAmelCase_ = use_cache lowerCAmelCase_ = scale_embedding lowerCAmelCase_ = use_learned_position_embeddings lowerCAmelCase_ = layernorm_embedding super().__init__( pad_token_id=UpperCamelCase__, bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, decoder_start_token_id=UpperCamelCase__, **UpperCamelCase__, )
167
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _A = logging.get_logger(__name__) class A ( __UpperCAmelCase ): __snake_case = ['pixel_values'] def __init__( self, UpperCamelCase__ = True, UpperCamelCase__ = 32, UpperCamelCase__=PILImageResampling.BILINEAR, UpperCamelCase__ = True, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = do_resize lowerCAmelCase_ = do_rescale lowerCAmelCase_ = size_divisor lowerCAmelCase_ = resample super().__init__(**UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = None, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(UpperCamelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor lowerCAmelCase_ = height // size_divisor * size_divisor lowerCAmelCase_ = width // size_divisor * size_divisor lowerCAmelCase_ = resize(UpperCamelCase__, (new_h, new_w), resample=UpperCamelCase__, data_format=UpperCamelCase__, **UpperCamelCase__ ) return image def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = None, **UpperCamelCase__ ): """simple docstring""" return rescale(image=UpperCamelCase__, scale=UpperCamelCase__, data_format=UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = None, UpperCamelCase__=None, UpperCamelCase__ = None, UpperCamelCase__ = None, UpperCamelCase__ = ChannelDimension.FIRST, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = size_divisor if size_divisor is not None else self.size_divisor lowerCAmelCase_ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) lowerCAmelCase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(UpperCamelCase__ ) for img in images] if do_resize: lowerCAmelCase_ = [self.resize(UpperCamelCase__, size_divisor=UpperCamelCase__, resample=UpperCamelCase__ ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(UpperCamelCase__, scale=1 / 255 ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(UpperCamelCase__, UpperCamelCase__ ) for image in images] lowerCAmelCase_ = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase__, tensor_type=UpperCamelCase__ )
167
1
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def _A ( lowercase , lowercase=() , lowercase=None , lowercase="no" , lowercase="29500" ): """simple docstring""" a =False a =False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): a =True elif "IPython" in sys.modules: a ='''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: a =PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , lowercase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: a =8 a =PrepareForLaunch(lowercase , distributed_type='''TPU''' ) print(f'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(lowercase , args=lowercase , nprocs=lowercase , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*lowercase ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowercase , master_addr='''127.0.01''' , master_port=lowercase , mixed_precision=lowercase ): a =PrepareForLaunch(lowercase , distributed_type='''MULTI_GPU''' ) print(f'''Launching training on {num_processes} GPUs.''' ) try: start_processes(lowercase , args=lowercase , nprocs=lowercase , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): a ='''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*lowercase ) def _A ( lowercase , lowercase=() , lowercase=2 ): """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowercase , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): a =PrepareForLaunch(lowercase , debug=lowercase ) start_processes(lowercase , args=lowercase , nprocs=lowercase , start_method='''fork''' )
81
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A =logging.get_logger(__name__) def a ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict ): '''simple docstring''' __UpperCAmelCase : List[str] = b.T __UpperCAmelCase : Any = np.sum(np.square(_UpperCAmelCase ) , axis=1 ) __UpperCAmelCase : int = np.sum(np.square(_UpperCAmelCase ) , axis=0 ) __UpperCAmelCase : Optional[int] = np.matmul(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : List[str] = aa[:, None] - 2 * ab + ba[None, :] return d def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : str = x.reshape(-1 , 3 ) __UpperCAmelCase : Optional[int] = squared_euclidean_distance(_UpperCAmelCase , _UpperCAmelCase ) return np.argmin(_UpperCAmelCase , axis=1 ) class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = ["""pixel_values"""] def __init__( self : str , a_ : Optional[Union[List[List[int]], np.ndarray]] = None , a_ : bool = True , a_ : Dict[str, int] = None , a_ : PILImageResampling = PILImageResampling.BILINEAR , a_ : bool = True , a_ : bool = True , **a_ : List[str] , ): '''simple docstring''' super().__init__(**a_ ) __UpperCAmelCase : Optional[int] = size if size is not None else {'''height''': 2_56, '''width''': 2_56} __UpperCAmelCase : List[str] = get_size_dict(a_ ) __UpperCAmelCase : str = np.array(a_ ) if clusters is not None else None __UpperCAmelCase : Dict = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = resample __UpperCAmelCase : Tuple = do_normalize __UpperCAmelCase : Optional[int] = do_color_quantize def snake_case__ ( self : Optional[Any] , a_ : np.ndarray , a_ : Dict[str, int] , a_ : PILImageResampling = PILImageResampling.BILINEAR , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Dict , ): '''simple docstring''' __UpperCAmelCase : Tuple = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(F'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( a_ , size=(size['''height'''], size['''width''']) , resample=a_ , data_format=a_ , **a_ ) def snake_case__ ( self : Tuple , a_ : np.ndarray , a_ : Optional[Union[str, ChannelDimension]] = None , ): '''simple docstring''' __UpperCAmelCase : Dict = rescale(image=a_ , scale=1 / 1_2_7.5 , data_format=a_ ) __UpperCAmelCase : Union[str, Any] = image - 1 return image def snake_case__ ( self : int , a_ : ImageInput , a_ : bool = None , a_ : Dict[str, int] = None , a_ : PILImageResampling = None , a_ : bool = None , a_ : Optional[bool] = None , a_ : Optional[Union[List[List[int]], np.ndarray]] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **a_ : Any , ): '''simple docstring''' __UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : List[str] = size if size is not None else self.size __UpperCAmelCase : Any = get_size_dict(a_ ) __UpperCAmelCase : Optional[int] = resample if resample is not None else self.resample __UpperCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : int = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase : Optional[int] = clusters if clusters is not None else self.clusters __UpperCAmelCase : Any = np.array(a_ ) __UpperCAmelCase : Optional[int] = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase : List[Any] = [to_numpy_array(a_ ) for image in images] if do_resize: __UpperCAmelCase : List[str] = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_normalize: __UpperCAmelCase : Dict = [self.normalize(image=a_ ) for image in images] if do_color_quantize: __UpperCAmelCase : int = [to_channel_dimension_format(a_ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase : List[str] = np.array(a_ ) __UpperCAmelCase : Dict = color_quantize(a_ , a_ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase : Any = images.shape[0] __UpperCAmelCase : Any = images.reshape(a_ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase : List[Any] = list(a_ ) else: __UpperCAmelCase : int = [to_channel_dimension_format(a_ , a_ ) for image in images] __UpperCAmelCase : int = {'''input_ids''': images} return BatchFeature(data=a_ , tensor_type=a_ )
226
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def a ( lowerCamelCase__ ): '''simple docstring''' if "img_encoder.pos_embed" in name: A_ : List[str] = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: A_ : List[Any] = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: A_ : List[str] = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: A_ : int = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: A_ : Dict = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: A_ : Union[str, Any] = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: A_ : Dict = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: A_ : Optional[Any] = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: A_ : Dict = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: A_ : Any = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: A_ : Union[str, Any] = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: A_ : Optional[int] = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: A_ : List[Any] = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: A_ : str = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: A_ : Tuple = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: A_ : List[Any] = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: A_ : Union[str, Any] = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: A_ : Optional[int] = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: A_ : Union[str, Any] = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: A_ : Union[str, Any] = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: A_ : List[str] = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: A_ : Any = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: A_ : Any = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: A_ : Optional[int] = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): A_ : Tuple = orig_state_dict.pop(__SCREAMING_SNAKE_CASE ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors A_ : List[Any] = key.split(""".""" ) A_ : Union[str, Any] = int(key_split[2] ), int(key_split[4] ) A_ : Dict = config.vision_config.hidden_size if "weight" in key: A_ : Union[str, Any] = val[:dim, :] A_ : Tuple = val[dim : dim * 2, :] A_ : Union[str, Any] = val[-dim:, :] else: A_ : Union[str, Any] = val[:dim] A_ : str = val[dim : dim * 2] A_ : Optional[int] = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors A_ : str = key.split(""".""" ) A_ : Optional[Any] = int(key_split[3] ) A_ : str = config.text_config.hidden_size if "weight" in key: A_ : Optional[Any] = val[:dim, :] A_ : Dict = val[ dim : dim * 2, : ] A_ : Optional[int] = val[-dim:, :] else: A_ : Optional[int] = val[:dim] A_ : Optional[Any] = val[dim : dim * 2] A_ : Tuple = val[-dim:] else: A_ : List[Any] = rename_key(__SCREAMING_SNAKE_CASE ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): A_ : int = val.squeeze_() else: A_ : List[Any] = val return orig_state_dict def a ( ): '''simple docstring''' A_ : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ : Union[str, Any] = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="groupvit-gcc-yfcc" , lowerCamelCase__=False ): '''simple docstring''' A_ : Optional[Any] = GroupViTConfig() A_ : List[str] = GroupViTModel(__SCREAMING_SNAKE_CASE ).eval() A_ : int = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" )["model"] A_ : Optional[int] = convert_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) A_ : Any = model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__SCREAMING_SNAKE_CASE ) == 0) # verify result A_ : List[Any] = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) A_ : Union[str, Any] = prepare_img() A_ : Dict = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) with torch.no_grad(): A_ : Dict = model(**__SCREAMING_SNAKE_CASE ) if model_name == "groupvit-gcc-yfcc": A_ : Any = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": A_ : List[str] = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , __SCREAMING_SNAKE_CASE , atol=1E-3 ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print("""Successfully saved processor and model to""" , __SCREAMING_SNAKE_CASE ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(__SCREAMING_SNAKE_CASE , organization="""nielsr""" ) model.push_to_hub(__SCREAMING_SNAKE_CASE , organization="""nielsr""" ) if __name__ == "__main__": lowerCamelCase :Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) lowerCamelCase :Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
370
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _lowerCAmelCase : @property def _a (self ): return self.get_dummy_input() @property def _a (self ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' ) def _a (self , lowercase=True , lowercase=False , lowercase=False , lowercase=False , ): A_ : List[str] = 4 A_ : int = 32 A_ : Optional[int] = (32, 32) A_ : Optional[Any] = torch.manual_seed(0 ) A_ : int = torch.device(lowercase ) A_ : int = (batch_size, num_channels) + sizes A_ : Optional[int] = randn_tensor(lowercase , generator=lowercase , device=lowercase ) A_ : Union[str, Any] = {"""hidden_states""": hidden_states} if include_temb: A_ : str = 128 A_ : List[Any] = randn_tensor((batch_size, temb_channels) , generator=lowercase , device=lowercase ) if include_res_hidden_states_tuple: A_ : List[str] = torch.manual_seed(1 ) A_ : int = (randn_tensor(lowercase , generator=lowercase , device=lowercase ),) if include_encoder_hidden_states: A_ : List[str] = floats_tensor((batch_size, 32, 32) ).to(lowercase ) if include_skip_sample: A_ : Dict = randn_tensor(((batch_size, 3) + sizes) , generator=lowercase , device=lowercase ) return dummy_input def _a (self ): A_ : Tuple = { """in_channels""": 32, """out_channels""": 32, """temb_channels""": 128, } if self.block_type == "up": A_ : Any = 32 if self.block_type == "mid": init_dict.pop("""out_channels""" ) A_ : Optional[int] = self.dummy_input return init_dict, inputs_dict def _a (self , lowercase ): A_, A_ : Optional[Any] = self.prepare_init_args_and_inputs_for_common() A_ : int = self.block_class(**lowercase ) unet_block.to(lowercase ) unet_block.eval() with torch.no_grad(): A_ : List[str] = unet_block(**lowercase ) if isinstance(lowercase , lowercase ): A_ : Union[str, Any] = output[0] self.assertEqual(output.shape , self.output_shape ) A_ : int = output[0, -1, -3:, -3:] A_ : List[Any] = torch.tensor(lowercase ).to(lowercase ) assert torch_all_close(output_slice.flatten() , lowercase , atol=5E-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def _a (self ): A_, A_ : Tuple = self.prepare_init_args_and_inputs_for_common() A_ : List[str] = self.block_class(**lowercase ) model.to(lowercase ) model.train() A_ : Any = model(**lowercase ) if isinstance(lowercase , lowercase ): A_ : str = output[0] A_ : Union[str, Any] = torch.device(lowercase ) A_ : Tuple = randn_tensor(output.shape , device=lowercase ) A_ : List[str] = torch.nn.functional.mse_loss(lowercase , lowercase ) loss.backward()
135
0
def lowerCAmelCase_ ( _snake_case : str ) -> list: '''simple docstring''' if n_term == "": return [] __magic_name__ : list = [] for temp in range(int(_snake_case ) ): series.append(F'''1/{temp + 1}''' if series else "1" ) return series if __name__ == "__main__": snake_case : Tuple = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
281
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case : int = logging.get_logger(__name__) snake_case : List[str] = {"vocab_file": "spiece.model"} snake_case : List[str] = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } snake_case : Tuple = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } snake_case : List[str] = "▁" class _snake_case ( snake_case ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _a , _a=True , _a=True , _a=False , _a="[CLS]" , _a="[SEP]" , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , _a = None , **_a , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __magic_name__ : str = ( AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a ) if isinstance(_a , _a ) else mask_token ) __magic_name__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) __magic_name__ : Dict = do_lower_case __magic_name__ : Tuple = remove_space __magic_name__ : Union[str, Any] = keep_accents __magic_name__ : Tuple = vocab_file __magic_name__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def SCREAMING_SNAKE_CASE ( self ): return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __magic_name__ : List[str] = self.__dict__.copy() __magic_name__ : Any = None return state def __setstate__( self , _a ): __magic_name__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __magic_name__ : str = {} __magic_name__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self , _a ): if self.remove_space: __magic_name__ : List[Any] = " ".join(inputs.strip().split() ) else: __magic_name__ : str = inputs __magic_name__ : int = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: __magic_name__ : str = unicodedata.normalize("NFKD" , _a ) __magic_name__ : Tuple = "".join([c for c in outputs if not unicodedata.combining(_a )] ) if self.do_lower_case: __magic_name__ : int = outputs.lower() return outputs def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Optional[Any] = self.preprocess_text(_a ) __magic_name__ : Dict = self.sp_model.encode(_a , out_type=_a ) __magic_name__ : Any = [] for piece in pieces: if len(_a ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): __magic_name__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_a , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __magic_name__ : List[str] = cur_pieces[1:] else: __magic_name__ : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_a ) else: new_pieces.append(_a ) return new_pieces def SCREAMING_SNAKE_CASE ( self , _a ): return self.sp_model.PieceToId(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return self.sp_model.IdToPiece(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Any = [] __magic_name__ : Union[str, Any] = "" __magic_name__ : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token __magic_name__ : List[Any] = True __magic_name__ : Optional[int] = [] else: current_sub_tokens.append(_a ) __magic_name__ : Optional[Any] = False out_string += self.sp_model.decode(_a ) return out_string.strip() def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): __magic_name__ : List[str] = [self.sep_token_id] __magic_name__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _a , _a = None , _a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is not None: return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): __magic_name__ : Optional[int] = [self.sep_token_id] __magic_name__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __magic_name__ : List[str] = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , "wb" ) as fi: __magic_name__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
281
1
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase=99 , lowerCamelCase=13 , lowerCamelCase=16 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=2 , lowerCamelCase=32 , lowerCamelCase=4 , lowerCamelCase=4 , lowerCamelCase=30 , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=2 , lowerCamelCase=None , ): __a = parent __a = batch_size __a = decoder_seq_length # For common tests __a = self.decoder_seq_length __a = is_training __a = use_attention_mask __a = use_labels __a = vocab_size __a = d_model __a = d_model __a = decoder_layers __a = decoder_layers __a = decoder_ffn_dim __a = decoder_attention_heads __a = decoder_attention_heads __a = eos_token_id __a = bos_token_id __a = pad_token_id __a = decoder_start_token_id __a = use_cache __a = max_position_embeddings __a = None __a = decoder_seq_length __a = 2 __a = 1 def a__ ( self ): __a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __a = None if self.use_attention_mask: __a = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __a = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): __a = True __a = TrOCRDecoder(config=lowerCamelCase ).to(lowerCamelCase ).eval() __a = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __a = model(lowerCamelCase , use_cache=lowerCamelCase ) __a = model(lowerCamelCase ) __a = model(lowerCamelCase , use_cache=lowerCamelCase ) self.parent.assertTrue(len(lowerCamelCase ) == len(lowerCamelCase ) ) self.parent.assertTrue(len(lowerCamelCase ) == len(lowerCamelCase ) + 1 ) __a = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids __a = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __a = torch.cat([input_ids, next_tokens] , dim=-1 ) __a = model(lowerCamelCase )["last_hidden_state"] __a = model(lowerCamelCase , past_key_values=lowerCamelCase )["last_hidden_state"] # select random slice __a = ids_tensor((1,) , output_from_past.shape[-1] ).item() __a = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) def a__ ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class snake_case__ ( snake_case_, snake_case_, snake_case_, unittest.TestCase ): _snake_case : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () _snake_case : Optional[int] = (TrOCRForCausalLM,) if is_torch_available() else () _snake_case : str = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} _snake_case : Optional[Any] = True _snake_case : Any = False def a__ ( self ): __a = TrOCRStandaloneDecoderModelTester(self , is_training=lowerCamelCase ) __a = ConfigTester(self , config_class=lowerCamelCase ) def a__ ( self ): pass def a__ ( self ): pass def a__ ( self ): pass def a__ ( self ): self.config_tester.run_common_tests() def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*lowerCamelCase ) def a__ ( self ): return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def a__ ( self ): pass
355
"""simple docstring""" def _lowerCamelCase( a , a , a , a ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: __a = mf_knapsack(i - 1 , a , a , a ) else: __a = max( mf_knapsack(i - 1 , a , a , a ) , mf_knapsack(i - 1 , a , a , j - wt[i - 1] ) + val[i - 1] , ) __a = val return f[i][j] def _lowerCamelCase( a , a , a , a ): __a = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: __a = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: __a = dp[i - 1][w_] return dp[n][w_], dp def _lowerCamelCase( a , a , a ): if not (isinstance(a , (list, tuple) ) and isinstance(a , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) __a = len(a ) if num_items != len(a ): __a = ( "The number of weights must be the same as the number of values.\n" F"But got {num_items} weights and {len(a )} values" ) raise ValueError(a ) for i in range(a ): if not isinstance(wt[i] , a ): __a = ( "All weights must be integers but got weight of " F"type {type(wt[i] )} at index {i}" ) raise TypeError(a ) __a , __a = knapsack(a , a , a , a ) __a = set() _construct_solution(a , a , a , a , a ) return optimal_val, example_optional_set def _lowerCamelCase( a , a , a , a , a ): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(a , a , i - 1 , a , a ) else: optimal_set.add(a ) _construct_solution(a , a , i - 1 , j - wt[i - 1] , a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:Tuple = [3, 2, 4, 4] SCREAMING_SNAKE_CASE__:List[str] = [4, 3, 2, 3] SCREAMING_SNAKE_CASE__:List[str] = 4 SCREAMING_SNAKE_CASE__:List[str] = 6 SCREAMING_SNAKE_CASE__:Optional[Any] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__:Optional[int] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__:Optional[Any] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
268
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : List[str] = "▁" lowerCamelCase : Union[str, Any] = {"vocab_file": "sentencepiece.bpe.model"} lowerCamelCase : Tuple = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } lowerCamelCase : str = { "facebook/mbart-large-50-one-to-many-mmt": 1_0_2_4, } # fmt: off lowerCamelCase : Dict = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class A__ ( A__ ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = ['input_ids', 'attention_mask'] A__ = [] A__ = [] def __init__( self : int , _a : Tuple , _a : Optional[int]=None , _a : str=None , _a : Tuple="</s>" , _a : List[str]="</s>" , _a : Any="<s>" , _a : Dict="<unk>" , _a : Optional[Any]="<pad>" , _a : Optional[int]="<mask>" , _a : Optional[Dict[str, Any]] = None , **_a : List[Any] , ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token _SCREAMING_SNAKE_CASE ={} if sp_model_kwargs is None else sp_model_kwargs _SCREAMING_SNAKE_CASE =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_a , tgt_lang=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) _SCREAMING_SNAKE_CASE =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) _SCREAMING_SNAKE_CASE =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _SCREAMING_SNAKE_CASE ={'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =len(self.sp_model ) _SCREAMING_SNAKE_CASE ={ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_a ) } _SCREAMING_SNAKE_CASE ={v: k for k, v in self.lang_code_to_id.items()} _SCREAMING_SNAKE_CASE =len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _SCREAMING_SNAKE_CASE ={v: k for k, v in self.fairseq_tokens_to_ids.items()} _SCREAMING_SNAKE_CASE =src_lang if src_lang is not None else 'en_XX' _SCREAMING_SNAKE_CASE =self.lang_code_to_id[self._src_lang] _SCREAMING_SNAKE_CASE =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A ( self : Dict ) -> int: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def A ( self : List[Any] ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def A ( self : Optional[Any] , _a : str ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.__dict__.copy() _SCREAMING_SNAKE_CASE =None return state def __setstate__( self : Dict , _a : Dict ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : List[Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE ={self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : Dict , _a : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_a , out_type=_a ) def A ( self : str , _a : str ) -> int: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _SCREAMING_SNAKE_CASE =self.sp_model.PieceToId(_a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A ( self : Optional[int] , _a : int ) -> str: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A ( self : List[Any] , _a : str ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE ='' _SCREAMING_SNAKE_CASE =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =[] else: current_sub_tokens.append(_a ) _SCREAMING_SNAKE_CASE =False out_string += self.sp_model.decode(_a ) return out_string.strip() def A ( self : Optional[int] , _a : str , _a : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_a ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _SCREAMING_SNAKE_CASE =os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , 'wb' ) as fi: _SCREAMING_SNAKE_CASE =self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,) def A ( self : str , _a : List[int] , _a : Optional[List[int]] = None , _a : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) _SCREAMING_SNAKE_CASE =[1] * len(self.prefix_tokens ) _SCREAMING_SNAKE_CASE =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_a )) + suffix_ones return prefix_ones + ([0] * len(_a )) + ([0] * len(_a )) + suffix_ones def A ( self : List[str] , _a : List[int] , _a : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A ( self : Union[str, Any] , _a : Union[str, Any] , _a : str , _a : Optional[str] , _a : Optional[str] , **_a : Optional[Any] ) -> int: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _SCREAMING_SNAKE_CASE =src_lang _SCREAMING_SNAKE_CASE =self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) _SCREAMING_SNAKE_CASE =self.convert_tokens_to_ids(_a ) _SCREAMING_SNAKE_CASE =tgt_lang_id return inputs def A ( self : Optional[Any] , _a : List[str] , _a : str = "en_XX" , _a : Optional[List[str]] = None , _a : str = "ro_RO" , **_a : Optional[Any] , ) -> BatchEncoding: '''simple docstring''' _SCREAMING_SNAKE_CASE =src_lang _SCREAMING_SNAKE_CASE =tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def A ( self : int ) -> List[Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def A ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A ( self : Tuple , _a : str ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.lang_code_to_id[src_lang] _SCREAMING_SNAKE_CASE =[self.cur_lang_code_id] _SCREAMING_SNAKE_CASE =[self.eos_token_id] def A ( self : Optional[int] , _a : str ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.lang_code_to_id[tgt_lang] _SCREAMING_SNAKE_CASE =[self.cur_lang_code_id] _SCREAMING_SNAKE_CASE =[self.eos_token_id]
47
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ('''foo.json''',)]) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50) self.assertEqual(loaded_config.max_length , 20) self.assertEqual(loaded_config.max_time , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoConfig.from_pretrained('''gpt2''') SCREAMING_SNAKE_CASE_ : int = GenerationConfig.from_model_config(lowercase_) SCREAMING_SNAKE_CASE_ : int = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = GenerationConfig() SCREAMING_SNAKE_CASE_ : Any = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } SCREAMING_SNAKE_CASE_ : str = copy.deepcopy(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = generation_config.update(**lowercase_) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {'''foo''': '''bar'''}) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = GenerationConfig() SCREAMING_SNAKE_CASE_ : List[str] = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''') as tmp_dir: generation_config.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = GenerationConfig.from_pretrained(lowercase_) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''') SCREAMING_SNAKE_CASE_ : Optional[Any] = GenerationConfig.from_model_config(lowercase_) assert not hasattr(lowercase_ , '''foo''') # no new kwargs should be initialized if from config def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , lowercase_) self.assertEqual(default_config.num_beams , 1) SCREAMING_SNAKE_CASE_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , lowercase_) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , lowercase_) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = TOKEN HfFolder.save_token(lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str]): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-generation-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''') except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : int = GenerationConfig.from_pretrained(F'{USER}/test-generation-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id='''test-generation-config''' , push_to_hub=lowercase_ , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Optional[int] = GenerationConfig.from_pretrained(F'{USER}/test-generation-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Any = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=lowercase_ , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Any = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_))
91
0
'''simple docstring''' from jiwer import compute_measures import datasets lowerCAmelCase__ : List[str] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" lowerCAmelCase__ : List[str] = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" lowerCAmelCase__ : Optional[Any] = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase_ ( self : int ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ] , ) def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Dict=False ): """simple docstring""" if concatenate_texts: return compute_measures(UpperCAmelCase_ , UpperCAmelCase_ )["wer"] else: __UpperCAmelCase : str = 0 __UpperCAmelCase : Union[str, Any] = 0 for prediction, reference in zip(UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = compute_measures(UpperCAmelCase_ , UpperCAmelCase_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
37
'''simple docstring''' from datetime import datetime as dt import os from github import Github lowerCAmelCase__ : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def __UpperCamelCase ( ): __UpperCAmelCase : Optional[int] = Github(os.environ["GITHUB_TOKEN"] ) __UpperCAmelCase : Union[str, Any] = g.get_repo("huggingface/transformers" ) __UpperCAmelCase : Union[str, Any] = repo.get_issues(state="open" ) for issue in open_issues: __UpperCAmelCase : int = sorted([comment for comment in issue.get_comments()], key=lambda _UpperCAmelCase : i.created_at, reverse=_UpperCAmelCase ) __UpperCAmelCase : Any = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
37
1
"""simple docstring""" def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : Any = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : List[str] = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key A_ : Optional[Any] = remove_duplicates(key.upper() ) A_ : List[Any] = len(_UpperCAmelCase ) # First fill cipher with key characters A_ : int = {alphabet[i]: char for i, char in enumerate(_UpperCAmelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_UpperCAmelCase ) , 26 ): A_ : int = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 A_ : str = alphabet[i - offset] A_ : int = char return cipher_alphabet def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" return "".join(cipher_map.get(_UpperCAmelCase , _UpperCAmelCase ) for ch in message.upper() ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Dict = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_UpperCAmelCase , _UpperCAmelCase ) for ch in message.upper() ) def lowercase_ ( ): """simple docstring""" A_ : str = input('''Enter message to encode or decode: ''' ).strip() A_ : Dict = input('''Enter keyword: ''' ).strip() A_ : List[Any] = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: A_ : Dict = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) A_ : Tuple = create_cipher_map(_UpperCAmelCase ) print(func(_UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
167
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowercase ( unittest.TestCase): def a_ ( self : List[str] ): """simple docstring""" A_ : Tuple = tempfile.mkdtemp() # fmt: off A_ : List[Any] = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on A_ : Tuple = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) A_ : Optional[int] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] A_ : Tuple = {'''unk_token''': '''<unk>'''} A_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) A_ : str = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } A_ : str = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def a_ ( self : Any , **_lowerCamelCase : Dict ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def a_ ( self : Dict , **_lowerCamelCase : Optional[int] ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def a_ ( self : List[str] , **_lowerCamelCase : List[Any] ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def a_ ( self : int ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def a_ ( self : List[str] ): """simple docstring""" A_ : Dict = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A_ : Dict = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a_ ( self : List[str] ): """simple docstring""" A_ : int = self.get_tokenizer() A_ : int = self.get_rust_tokenizer() A_ : Optional[Any] = self.get_image_processor() A_ : Union[str, Any] = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : List[Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A_ : Optional[Any] = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def a_ ( self : str ): """simple docstring""" A_ : Tuple = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Tuple = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Dict = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A_ : List[Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def a_ ( self : int ): """simple docstring""" A_ : List[str] = self.get_image_processor() A_ : Union[str, Any] = self.get_tokenizer() A_ : Union[str, Any] = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Tuple = self.prepare_image_inputs() A_ : Dict = image_processor(_lowerCamelCase , return_tensors='''np''' ) A_ : Optional[int] = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a_ ( self : str ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : int = self.get_tokenizer() A_ : int = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Union[str, Any] = '''lower newer''' A_ : int = processor(text=_lowerCamelCase ) A_ : Any = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a_ ( self : str ): """simple docstring""" A_ : str = self.get_image_processor() A_ : List[Any] = self.get_tokenizer() A_ : Tuple = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Union[str, Any] = '''lower newer''' A_ : Optional[Any] = self.prepare_image_inputs() A_ : Dict = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def a_ ( self : List[Any] ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : int = self.get_tokenizer() A_ : Any = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Tuple = self.prepare_image_inputs() A_ : Tuple = self.prepare_image_inputs() A_ : Optional[int] = processor(images=_lowerCamelCase , visual_prompt=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def a_ ( self : List[Any] ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : Union[str, Any] = self.get_tokenizer() A_ : Optional[Any] = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : List[str] = processor.batch_decode(_lowerCamelCase ) A_ : str = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
167
1
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=None ) -> List[str]: """simple docstring""" a = None if token is not None: a = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""} a = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" a = requests.get(snake_case_, headers=snake_case_ ).json() a = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) a = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(snake_case_ ): a = requests.get(url + f"""&page={i + 2}""", headers=snake_case_ ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=None ) -> Union[str, Any]: """simple docstring""" a = None if token is not None: a = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""} a = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" a = requests.get(snake_case_, headers=snake_case_ ).json() a = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) a = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(snake_case_ ): a = requests.get(url + f"""&page={i + 2}""", headers=snake_case_ ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[str]: """simple docstring""" a = None if token is not None: a = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""} a = requests.get(snake_case_, headers=snake_case_, allow_redirects=snake_case_ ) a = result.headers['''Location'''] a = requests.get(snake_case_, allow_redirects=snake_case_ ) a = os.path.join(snake_case_, f"""{artifact_name}.zip""" ) with open(snake_case_, '''wb''' ) as fp: fp.write(response.content ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=None ) -> int: """simple docstring""" a = [] a = [] a = None with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(snake_case_ ) as f: for line in f: a = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs a = line[: line.index(''': ''' )] a = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed a = line[len('''FAILED ''' ) :] failed_tests.append(snake_case_ ) elif filename == "job_name.txt": a = line if len(snake_case_ ) != len(snake_case_ ): raise ValueError( f"""`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` """ f"""and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" ''' problem.''' ) a = None if job_name and job_links: a = job_links.get(snake_case_, snake_case_ ) # A list with elements of the form (line of error, error, failed test) a = [x + [y] + [job_link] for x, y in zip(snake_case_, snake_case_ )] return result def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=None ) -> Optional[int]: """simple docstring""" a = [] a = [os.path.join(snake_case_, snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(snake_case_, job_links=snake_case_ ) ) return errors def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=None ) -> str: """simple docstring""" a = Counter() counter.update([x[1] for x in logs] ) a = counter.most_common() a = {} for error, count in counts: if error_filter is None or error not in error_filter: a = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} a = dict(sorted(r.items(), key=lambda snake_case_ : item[1]["count"], reverse=snake_case_ ) ) return r def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" a = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): a = test.split('''/''' )[2] else: a = None return test def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=None ) -> Any: """simple docstring""" a = [(x[0], x[1], get_model(x[2] )) for x in logs] a = [x for x in logs if x[2] is not None] a = {x[2] for x in logs} a = {} for test in tests: a = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) a = counter.most_common() a = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} a = sum(error_counts.values() ) if n_errors > 0: a = {'''count''': n_errors, '''errors''': error_counts} a = dict(sorted(r.items(), key=lambda snake_case_ : item[1]["count"], reverse=snake_case_ ) ) return r def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" a = '''| no. | error | status |''' a = '''|-:|:-|:-|''' a = [header, sep] for error in reduced_by_error: a = reduced_by_error[error]['''count'''] a = f"""| {count} | {error[:1_0_0]} | |""" lines.append(snake_case_ ) return "\n".join(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict: """simple docstring""" a = '''| model | no. of errors | major error | count |''' a = '''|-:|-:|-:|-:|''' a = [header, sep] for model in reduced_by_model: a = reduced_by_model[model]['''count'''] a , a = list(reduced_by_model[model]['''errors'''].items() )[0] a = f"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(snake_case_ ) return "\n".join(snake_case_ ) if __name__ == "__main__": UpperCamelCase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") UpperCamelCase__ : int = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) UpperCamelCase__ : Union[str, Any] = get_job_links(args.workflow_run_id, token=args.token) UpperCamelCase__ : str = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: UpperCamelCase__ : Tuple = k.find(""" / """) UpperCamelCase__ : Tuple = k[index + len(""" / """) :] UpperCamelCase__ : Dict = v with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) UpperCamelCase__ : str = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) UpperCamelCase__ : List[str] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error UpperCamelCase__ : List[Any] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors UpperCamelCase__ : Tuple = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) UpperCamelCase__ : Union[str, Any] = reduce_by_error(errors) UpperCamelCase__ : Any = reduce_by_model(errors) UpperCamelCase__ : Dict = make_github_table(reduced_by_error) UpperCamelCase__ : Any = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa) with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa)
330
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": UpperCamelCase__ : Optional[int] = pd.read_csv("""sample_data.csv""", header=None) UpperCamelCase__ : Tuple = df.shape[:1][0] # If you're using some other dataset input the target column UpperCamelCase__ : List[Any] = df.iloc[:, 1:2] UpperCamelCase__ : Union[str, Any] = actual_data.values.reshape(len_data, 1) UpperCamelCase__ : List[Any] = MinMaxScaler().fit_transform(actual_data) UpperCamelCase__ : Optional[Any] = 10 UpperCamelCase__ : int = 5 UpperCamelCase__ : List[str] = 20 UpperCamelCase__ : Optional[int] = len_data - periods * look_back UpperCamelCase__ : Union[str, Any] = actual_data[:division] UpperCamelCase__ : str = actual_data[division - look_back :] UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = [], [] UpperCamelCase__ , UpperCamelCase__ : str = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) UpperCamelCase__ : List[str] = np.array(train_x) UpperCamelCase__ : Optional[Any] = np.array(test_x) UpperCamelCase__ : Tuple = np.array([list(i.ravel()) for i in train_y]) UpperCamelCase__ : Optional[Any] = np.array([list(i.ravel()) for i in test_y]) UpperCamelCase__ : Union[str, Any] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") UpperCamelCase__ : Tuple = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) UpperCamelCase__ : Tuple = model.predict(x_test)
330
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
105
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
135
0
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): a :Any = mock.Mock() a :int = 500 a :Optional[int] = {} a :Tuple = HTTPError a :Dict = {} # Download this model to make sure it's in the cache. a :Optional[Any] = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=a_ ) as mock_head: a :List[str] = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = mock.Mock() a :Optional[Any] = 500 a :str = {} a :Tuple = HTTPError a :str = {} # Download this model to make sure it's in the cache. a :int = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=a_ ) as mock_head: a :Union[str, Any] = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ ( self ): try: a :str = tempfile.mktemp() with open(a_ , '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , a_ ) a :Union[str, Any] = AlbertTokenizer.from_pretrained(a_ ) finally: os.remove(a_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , a_ ) a :Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def SCREAMING_SNAKE_CASE__ ( self ): a :str = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class _snake_case ( unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): a :Optional[Any] = TOKEN HfFolder.save_token(a_ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): try: delete_repo(token=cls._token , repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: a :List[str] = os.path.join(a_ , '''vocab.txt''' ) with open(a_ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) a :Any = BertTokenizer(a_ ) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token ) a :Union[str, Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(a_ , repo_id='''test-tokenizer''' , push_to_hub=a_ , use_auth_token=self._token ) a :List[str] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def SCREAMING_SNAKE_CASE__ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: a :Dict = os.path.join(a_ , '''vocab.txt''' ) with open(a_ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) a :Dict = BertTokenizer(a_ ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token ) a :Dict = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( a_ , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=a_ , use_auth_token=self._token ) a :Optional[int] = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def SCREAMING_SNAKE_CASE__ ( self ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: a :Tuple = os.path.join(a_ , '''vocab.txt''' ) with open(a_ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) a :Any = CustomTokenizer(a_ ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) a :Union[str, Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=a_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: a :Dict = os.path.join(a_ , '''vocab.txt''' ) with open(a_ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) a :List[Any] = BertTokenizerFast.from_pretrained(a_ ) bert_tokenizer.save_pretrained(a_ ) a :Tuple = CustomTokenizerFast.from_pretrained(a_ ) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) a :List[Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=a_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''' ) a :Any = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' , use_fast=a_ , trust_remote_code=a_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): a :int = Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def SCREAMING_SNAKE_CASE__ ( self ): a :str = Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ) , ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ) , ['''BC''', '''A'''] ) def SCREAMING_SNAKE_CASE__ ( self ): a :Any = Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ) , ['''AB''', '''C'''] ) def SCREAMING_SNAKE_CASE__ ( self ): a :str = Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ) , ['''ABC''', '''D'''] ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = Trie() a :Optional[Any] = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(a_ , ['''AB''', '''C'''] )
359
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'microsoft/speecht5_tts' SCREAMING_SNAKE_CASE__ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) SCREAMING_SNAKE_CASE__ = 'text_reader' SCREAMING_SNAKE_CASE__ = SpeechTaProcessor SCREAMING_SNAKE_CASE__ = SpeechTaForTextToSpeech SCREAMING_SNAKE_CASE__ = SpeechTaHifiGan SCREAMING_SNAKE_CASE__ = ['text'] SCREAMING_SNAKE_CASE__ = ['audio'] def SCREAMING_SNAKE_CASE__ ( self ): if self.post_processor is None: a :List[Any] = '''microsoft/speecht5_hifigan''' super().setup() def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=None ): a :Tuple = self.pre_processor(text=_lowerCamelCase , return_tensors='''pt''' , truncation=_lowerCamelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) a :List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) a :int = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): with torch.no_grad(): return self.model.generate_speech(**_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): with torch.no_grad(): return self.post_processor(_lowerCamelCase ).cpu().detach()
281
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
173
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ (__A ): __magic_name__ = '''detr''' __magic_name__ = ['''past_key_values'''] __magic_name__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Dict , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=100 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : Union[str, Any]=2_048 , lowerCAmelCase_ : int=8 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : Union[str, Any]=2_048 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[Any]="relu" , lowerCAmelCase_ : List[Any]=256 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Optional[Any]=0.0 , lowerCAmelCase_ : List[Any]=0.0 , lowerCAmelCase_ : List[Any]=0.0_2 , lowerCAmelCase_ : Optional[int]=1.0 , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Tuple="sine" , lowerCAmelCase_ : str="resnet50" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Union[str, Any]=0.1 , **lowerCAmelCase_ : Dict , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Tuple = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : Dict = backbone_config.get("model_type" ) UpperCAmelCase_ : Dict = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Tuple = config_class.from_dict(lowerCAmelCase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None UpperCAmelCase_ : str = use_timm_backbone UpperCAmelCase_ : Optional[Any] = backbone_config UpperCAmelCase_ : Tuple = num_channels UpperCAmelCase_ : Dict = num_queries UpperCAmelCase_ : str = d_model UpperCAmelCase_ : Any = encoder_ffn_dim UpperCAmelCase_ : Union[str, Any] = encoder_layers UpperCAmelCase_ : Optional[int] = encoder_attention_heads UpperCAmelCase_ : List[str] = decoder_ffn_dim UpperCAmelCase_ : Tuple = decoder_layers UpperCAmelCase_ : Optional[int] = decoder_attention_heads UpperCAmelCase_ : List[Any] = dropout UpperCAmelCase_ : Union[str, Any] = attention_dropout UpperCAmelCase_ : int = activation_dropout UpperCAmelCase_ : List[str] = activation_function UpperCAmelCase_ : Optional[int] = init_std UpperCAmelCase_ : Union[str, Any] = init_xavier_std UpperCAmelCase_ : List[str] = encoder_layerdrop UpperCAmelCase_ : Tuple = decoder_layerdrop UpperCAmelCase_ : str = encoder_layers UpperCAmelCase_ : Any = auxiliary_loss UpperCAmelCase_ : Optional[int] = position_embedding_type UpperCAmelCase_ : List[str] = backbone UpperCAmelCase_ : int = use_pretrained_backbone UpperCAmelCase_ : Any = dilation # Hungarian matcher UpperCAmelCase_ : str = class_cost UpperCAmelCase_ : Any = bbox_cost UpperCAmelCase_ : int = giou_cost # Loss coefficients UpperCAmelCase_ : List[str] = mask_loss_coefficient UpperCAmelCase_ : Dict = dice_loss_coefficient UpperCAmelCase_ : Any = bbox_loss_coefficient UpperCAmelCase_ : Union[str, Any] = giou_loss_coefficient UpperCAmelCase_ : int = eos_coefficient super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self : int ) -> int: return self.d_model @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , lowerCAmelCase_ : PretrainedConfig , **lowerCAmelCase_ : Tuple ) -> List[Any]: return cls(backbone_config=lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict[str, any]: UpperCAmelCase_ : Tuple = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase_ : Any = self.__class__.model_type return output class UpperCamelCase_ (__A ): __magic_name__ = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> float: return 1e-5 @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return 12
268
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( __A : list[int] ) -> int: if not numbers: return 0 if not isinstance(__A , (list, tuple) ) or not all( isinstance(__A , __A ) for number in numbers ): raise ValueError("numbers must be an iterable of integers" ) _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = numbers[0] for i in range(1 , len(__A ) ): # update the maximum and minimum subarray products _SCREAMING_SNAKE_CASE = numbers[i] if number < 0: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = min_till_now, max_till_now _SCREAMING_SNAKE_CASE = max(__A , max_till_now * number ) _SCREAMING_SNAKE_CASE = min(__A , min_till_now * number ) # update the maximum product found till now _SCREAMING_SNAKE_CASE = max(__A , __A ) return max_prod
111
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowerCamelCase_ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : int ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE = torchvision.models.resnetaaa(pretrained=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = list(model.children() )[:-2] _SCREAMING_SNAKE_CASE = nn.Sequential(*__lowerCamelCase ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCamelCase : Optional[Any] ): """simple docstring""" # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 _SCREAMING_SNAKE_CASE = self.pool(self.model(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = torch.flatten(__lowerCamelCase , start_dim=2 ) _SCREAMING_SNAKE_CASE = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowercase_ ( A ): """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = [json.loads(__lowerCamelCase ) for l in open(__lowerCamelCase )] _SCREAMING_SNAKE_CASE = os.path.dirname(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer _SCREAMING_SNAKE_CASE = labels _SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = max_seq_length _SCREAMING_SNAKE_CASE = transforms def __len__( self : int ): """simple docstring""" return len(self.data ) def __getitem__( self : str , __lowerCamelCase : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = sentence[0], sentence[1:-1], sentence[-1] _SCREAMING_SNAKE_CASE = sentence[: self.max_seq_length] _SCREAMING_SNAKE_CASE = torch.zeros(self.n_classes ) _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = Image.open(os.path.join(self.data_dir , self.data[index]["img"] ) ).convert("RGB" ) _SCREAMING_SNAKE_CASE = self.transforms(__lowerCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _SCREAMING_SNAKE_CASE = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] ) -> Dict: _SCREAMING_SNAKE_CASE = [len(row["sentence"] ) for row in batch] _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = len(__A ), max(__A ) _SCREAMING_SNAKE_CASE = torch.zeros(__A , __A , dtype=torch.long ) _SCREAMING_SNAKE_CASE = torch.zeros(__A , __A , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__A , __A ) ): _SCREAMING_SNAKE_CASE = input_row["sentence"] _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = torch.stack([row["image"] for row in batch] ) _SCREAMING_SNAKE_CASE = torch.stack([row["label"] for row in batch] ) _SCREAMING_SNAKE_CASE = torch.stack([row["image_start_token"] for row in batch] ) _SCREAMING_SNAKE_CASE = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4_6_7_7_7_0_4_4, 0.4_4_5_3_1_4_2_9, 0.4_0_6_6_1_0_1_7] , std=[0.1_2_2_2_1_9_9_4, 0.1_2_1_4_5_8_3_5, 0.1_4_3_8_0_4_6_9] , ), ] )
111
1
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if not nums: raise ValueError("""List is empty""" ) return sum(UpperCamelCase ) / len(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
37
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _lowerCAmelCase = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' _lowerCAmelCase = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' _lowerCAmelCase = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" return float((preds == labels).mean() ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase="binary" ): """simple docstring""" lowerCAmelCase__ : Any = simple_accuracy(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Tuple = float(fa_score(y_true=UpperCamelCase , y_pred=UpperCamelCase , average=UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = {} for id_pred, label in zip(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : str = f"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" lowerCAmelCase__ : Dict = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase__ : Optional[int] = [(pred, label)] lowerCAmelCase__ , lowerCAmelCase__ : int = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = zip(*UpperCamelCase ) lowerCAmelCase__ : List[Any] = fa_score(y_true=UpperCamelCase , y_pred=UpperCamelCase , average="""macro""" ) fas.append(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase ) ) ems.append(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = float(sum(UpperCamelCase ) / len(UpperCamelCase ) ) lowerCAmelCase__ : List[Any] = sum(UpperCamelCase ) / len(UpperCamelCase ) lowerCAmelCase__ : Dict = float(fa_score(y_true=UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None ,) def UpperCAmelCase_ ( self ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__UpperCAmelCase ,__UpperCAmelCase )} elif self.config_name == "cb": return acc_and_fa(__UpperCAmelCase ,__UpperCAmelCase ,fa_avg="""macro""" ) elif self.config_name == "record": lowerCAmelCase__ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] lowerCAmelCase__ : Union[str, Any] = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(__UpperCAmelCase ,__UpperCAmelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(__UpperCAmelCase ,__UpperCAmelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__UpperCAmelCase ,__UpperCAmelCase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
37
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = "▁" _lowerCamelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} _lowerCamelCase : Any = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _lowerCamelCase : List[Any] = { "xlm-roberta-base": 5_1_2, "xlm-roberta-large": 5_1_2, "xlm-roberta-large-finetuned-conll02-dutch": 5_1_2, "xlm-roberta-large-finetuned-conll02-spanish": 5_1_2, "xlm-roberta-large-finetuned-conll03-english": 5_1_2, "xlm-roberta-large-finetuned-conll03-german": 5_1_2, } class __snake_case (lowercase__ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Any="<s>" , _UpperCAmelCase : Optional[Any]="</s>" , _UpperCAmelCase : Union[str, Any]="</s>" , _UpperCAmelCase : Union[str, Any]="<s>" , _UpperCAmelCase : Optional[int]="<unk>" , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="<mask>" , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : int , ) -> Tuple: '''simple docstring''' _lowerCAmelCase : Optional[int] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token _lowerCAmelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) _lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) _lowerCAmelCase : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase : List[str] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Tuple = len(self.sp_model ) + self.fairseq_offset _lowerCAmelCase : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Dict ) -> List[str]: '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Dict = self.sp_model.serialized_model_proto() return state def __setstate__( self : Any , _UpperCAmelCase : int ) -> int: '''simple docstring''' _lowerCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : str = {} _lowerCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> Optional[Any]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : List[str] = [self.cls_token_id] _lowerCAmelCase : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> Dict: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> Dict: '''simple docstring''' _lowerCAmelCase : List[Any] = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def SCREAMING_SNAKE_CASE ( self : int ) -> str: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : str ) -> str: '''simple docstring''' return self.sp_model.encode(_a , out_type=_a ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCAmelCase : Dict ) -> Union[str, Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase : Optional[Any] = self.sp_model.PieceToId(_a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Dict = ''.join(_a ).replace(_a , """ """ ).strip() return out_string def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> List[Any]: '''simple docstring''' if not os.path.isdir(_a ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase : Any = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , """wb""" ) as fi: _lowerCAmelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
355
_lowerCamelCase : List[Any] = tuple[float, float, float] _lowerCamelCase : Tuple = tuple[float, float, float] def _UpperCAmelCase (UpperCamelCase_ : Pointad , UpperCamelCase_ : Pointad ): '''simple docstring''' _lowerCAmelCase : Tuple = end_pointa[0] - end_pointa[0] _lowerCAmelCase : str = end_pointa[1] - end_pointa[1] _lowerCAmelCase : List[Any] = end_pointa[2] - end_pointa[2] return (x, y, z) def _UpperCAmelCase (UpperCamelCase_ : Vectorad , UpperCamelCase_ : Vectorad ): '''simple docstring''' _lowerCAmelCase : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i _lowerCAmelCase : int = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _lowerCAmelCase : List[Any] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _UpperCAmelCase (UpperCamelCase_ : Vectorad , UpperCamelCase_ : int ): '''simple docstring''' return tuple(round(UpperCamelCase_ , UpperCamelCase_ ) for x in vector ) == (0, 0, 0) def _UpperCAmelCase (UpperCamelCase_ : Pointad , UpperCamelCase_ : Pointad , UpperCamelCase_ : Pointad , UpperCamelCase_ : int = 10 ): '''simple docstring''' _lowerCAmelCase : Any = create_vector(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : Optional[Any] = create_vector(UpperCamelCase_ , UpperCamelCase_ ) return is_zero_vector(get_ad_vectors_cross(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
159
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration a_ = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] a_ = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] a_ = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) a_ = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) a_ = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : Optional[Any] ): for tf_name, hf_name in patterns: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = BigBirdPegasusConfig(**_UpperCamelCase ) __lowerCamelCase = BigBirdPegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() __lowerCamelCase = {} # separating decoder weights __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = DECODER_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = REMAINING_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" __lowerCamelCase = mapping['''model.embed_positions.weight'''] __lowerCamelCase = mapping.pop('''model.embed_positions.weight''' ) __lowerCamelCase ,__lowerCamelCase = torch_model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : int ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ,_UpperCamelCase : dict ): __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = convert_bigbird_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() a_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
330
1
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel A__ : List[str] = HfApi() A__ : List[str] = {} # fmt: off A__ : Optional[int] = torch.tensor([ -0.75_15, -1.68_83, 0.24_20, 0.03_00, 0.63_47, 1.34_33, -1.17_43, -3.74_67, 1.23_42, -2.24_85, 0.46_36, 0.80_76, -0.79_91, 0.39_69, 0.84_98, 0.91_89, -1.88_87, -3.35_22, 0.76_39, 0.20_40, 0.62_71, -2.71_48, -1.63_16, 3.08_39, 0.31_86, 0.27_21, -0.97_59, -1.24_61, 2.62_57, 1.35_57 ]) A__ : Dict = torch.tensor([ -2.36_39, -2.53_44, 0.00_54, -0.66_74, 1.59_90, 1.01_58, 0.31_24, -2.14_36, 1.87_95, -2.54_29, -0.15_66, -0.39_73, 1.24_90, 2.64_47, 1.22_83, -0.52_08, -2.81_54, -3.51_19, 2.38_38, 1.20_33, 1.72_01, -2.12_56, -1.45_76, 2.79_48, 2.42_04, -0.97_52, -1.25_46, 0.80_27, 3.27_58, 3.13_65 ]) A__ : Optional[Any] = torch.tensor([ -0.65_31, -0.68_91, -0.31_72, -0.53_75, -0.91_40, -0.53_67, -0.11_75, -0.78_69, -0.38_08, -0.45_13, -0.20_98, -0.00_83, 0.31_83, 0.51_40, 0.22_47, -0.13_04, -0.13_02, -0.28_02, -0.20_84, -0.20_25, -0.49_67, -0.48_73, -0.08_61, 0.69_25, 0.02_50, 0.12_90, -0.15_43, 0.63_16, 1.04_60, 1.49_43 ]) A__ : Tuple = torch.tensor([ 0.09_11, 0.11_07, 0.01_82, 0.04_35, -0.08_05, -0.06_08, 0.03_81, 0.21_72, -0.02_80, 0.13_27, -0.02_99, -0.02_55, -0.00_50, -0.11_70, -0.10_46, 0.03_09, 0.13_67, 0.17_28, -0.05_33, -0.07_48, -0.05_34, 0.16_24, 0.03_84, -0.18_05, -0.07_07, 0.06_42, 0.02_20, -0.01_34, -0.13_33, -0.15_05 ]) A__ : Optional[int] = torch.tensor([ 0.13_21, 0.13_37, 0.04_40, 0.06_22, -0.05_91, -0.03_70, 0.05_03, 0.21_33, -0.01_77, 0.14_15, -0.01_16, -0.01_12, 0.00_44, -0.09_80, -0.07_89, 0.03_95, 0.15_02, 0.17_85, -0.04_88, -0.05_14, -0.04_04, 0.15_39, 0.04_54, -0.15_59, -0.06_65, 0.06_59, 0.03_83, -0.00_05, -0.12_66, -0.13_86 ]) A__ : List[Any] = torch.tensor([ 0.11_54, 0.12_18, 0.03_07, 0.05_26, -0.07_11, -0.05_41, 0.03_66, 0.20_78, -0.02_67, 0.13_17, -0.02_26, -0.01_93, -0.00_14, -0.10_55, -0.09_02, 0.03_30, 0.13_91, 0.17_09, -0.05_62, -0.06_93, -0.05_60, 0.14_82, 0.03_81, -0.16_83, -0.06_81, 0.06_61, 0.03_31, -0.00_46, -0.12_68, -0.14_31 ]) A__ : List[Any] = torch.tensor([ 0.11_92, 0.12_40, 0.04_14, 0.06_06, -0.05_57, -0.04_12, 0.04_30, 0.20_42, -0.02_00, 0.13_85, -0.01_15, -0.01_32, 0.00_17, -0.09_65, -0.08_02, 0.03_98, 0.14_33, 0.17_47, -0.04_58, -0.05_33, -0.04_07, 0.15_45, 0.04_19, -0.15_74, -0.06_45, 0.06_26, 0.03_41, -0.00_10, -0.11_99, -0.13_90 ]) A__ : List[Any] = torch.tensor([ 0.10_75, 0.10_74, 0.02_05, 0.04_31, -0.07_74, -0.06_07, 0.02_98, 0.20_42, -0.03_20, 0.12_67, -0.02_81, -0.02_50, -0.00_64, -0.10_91, -0.09_46, 0.02_90, 0.13_28, 0.16_50, -0.05_80, -0.07_38, -0.05_86, 0.14_40, 0.03_37, -0.17_46, -0.07_12, 0.06_05, 0.02_50, -0.00_99, -0.13_16, -0.14_73 ]) A__ : Union[str, Any] = torch.tensor([ -1.45_72, -2.04_81, -0.04_14, -0.60_05, 1.41_36, 0.58_48, 0.40_28, -2.73_30, 1.22_12, -2.12_28, 0.21_55, 0.40_39, 0.76_62, 2.05_35, 0.74_77, -0.32_43, -2.17_58, -2.76_48, 1.69_47, 0.70_26, 1.23_38, -1.60_78, -0.86_82, 2.28_10, 1.85_74, -0.57_18, -0.55_86, -0.01_86, 2.34_15, 2.12_51]) A__ : str = torch.tensor([ -1.36_90, -1.97_20, -0.40_90, -0.69_66, 1.46_60, 0.99_38, -0.13_85, -2.73_24, 0.77_36, -1.89_17, 0.29_23, 0.42_93, 0.16_93, 1.41_12, 1.18_87, -0.31_81, -2.21_60, -2.63_81, 1.31_70, 0.81_63, 0.92_40, -1.65_44, -0.60_99, 2.52_59, 1.64_30, -0.90_90, -0.93_92, -0.01_26, 2.42_68, 2.32_66 ]) A__ : Any = torch.tensor([ -1.35_25, -1.96_28, -0.39_56, -0.68_60, 1.46_64, 1.00_14, -0.12_59, -2.72_12, 0.77_72, -1.88_11, 0.29_96, 0.43_88, 0.17_04, 1.40_29, 1.17_01, -0.30_27, -2.20_53, -2.62_87, 1.33_50, 0.81_31, 0.92_74, -1.62_92, -0.60_98, 2.51_31, 1.65_05, -0.89_58, -0.92_98, -0.01_51, 2.42_57, 2.33_55 ]) A__ : List[Any] = torch.tensor([ -2.05_85, -2.78_97, -0.28_50, -0.89_40, 1.90_52, 0.57_02, 0.63_45, -3.89_59, 1.59_32, -3.23_19, 0.19_74, 0.02_87, 1.75_66, 2.65_43, 0.83_87, -0.53_51, -3.27_36, -4.33_75, 2.90_29, 1.63_90, 1.46_40, -2.17_01, -1.90_13, 2.93_41, 3.49_81, -0.62_55, -1.16_44, -0.15_91, 3.70_97, 3.20_66 ]) A__ : Optional[int] = torch.tensor([ -2.31_39, -2.55_94, -0.01_97, -0.67_85, 1.70_01, 1.16_06, 0.30_75, -2.17_40, 1.80_71, -2.56_30, -0.09_26, -0.38_11, 1.21_16, 2.62_46, 1.27_31, -0.53_98, -2.81_53, -3.61_40, 2.38_93, 1.32_62, 1.62_58, -2.18_56, -1.32_67, 2.83_95, 2.37_79, -1.06_23, -1.24_68, 0.89_59, 3.33_67, 3.22_43 ]) A__ : str = torch.tensor([ -2.06_28, -2.76_67, -0.20_89, -0.82_63, 2.05_39, 0.59_92, 0.64_95, -3.83_36, 1.60_25, -3.28_17, 0.17_21, -0.06_33, 1.75_16, 2.70_39, 0.81_00, -0.59_08, -3.21_13, -4.43_43, 2.92_57, 1.36_32, 1.55_62, -2.14_89, -1.98_94, 3.05_60, 3.33_96, -0.73_28, -1.04_17, 0.03_83, 3.70_93, 3.23_43 ]) A__ : List[str] = torch.tensor([ -1.45_74, -2.05_69, -0.04_73, -0.61_17, 1.40_18, 0.57_69, 0.41_29, -2.73_44, 1.22_41, -2.13_97, 0.20_00, 0.39_37, 0.76_16, 2.04_53, 0.73_24, -0.33_91, -2.17_46, -2.77_44, 1.69_63, 0.69_21, 1.21_87, -1.61_72, -0.88_77, 2.24_39, 1.84_71, -0.58_39, -0.56_05, -0.04_64, 2.32_50, 2.12_19 ]) # fmt: on A__ : List[str] = api.list_models(filter='''diffusers''') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": A__ : Optional[int] = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1] print(F"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('''CompVis'''): A__ : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''') else: A__ : int = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) A__ : Optional[int] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) A__ : Union[str, Any] = torch.tensor([1_0] * noise.shape[0]) with torch.no_grad(): A__ : int = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :3_0], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1E-3 ) print(F"""{mod.modelId} has passed successfully!!!""")
0
'''simple docstring''' from __future__ import annotations A__ : List[Any] = list[list[int]] # assigning initial values to the grid A__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution A__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a_ ( _UpperCAmelCase : Matrix ,_UpperCAmelCase : int ,_UpperCAmelCase : int ,_UpperCAmelCase : int ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a_ ( _UpperCAmelCase : Matrix ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a_ ( _UpperCAmelCase : Matrix ) -> Matrix | None: if location := find_empty_location(_UpperCAmelCase ): __snake_case , __snake_case : Optional[int] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 ,10 ): if is_safe(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ): __snake_case : Union[str, Any] = digit if sudoku(_UpperCAmelCase ) is not None: return grid __snake_case : Optional[Any] = 0 return None def a_ ( _UpperCAmelCase : Matrix ) -> None: for row in grid: for cell in row: print(_UpperCAmelCase ,end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 2_0) print_solution(example_grid) print('''\nExample grid solution:''') A__ : List[str] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Any = 'lxmert' A_ : List[Any] = {} def __init__(self : int , a__ : Any=3_0522 , a__ : Optional[int]=768 , a__ : Dict=12 , a__ : int=9500 , a__ : Dict=1600 , a__ : Any=400 , a__ : List[str]=3072 , a__ : List[str]="gelu" , a__ : int=0.1 , a__ : Dict=0.1 , a__ : str=512 , a__ : Any=2 , a__ : Any=0.0_2 , a__ : Union[str, Any]=1E-12 , a__ : str=9 , a__ : Optional[Any]=5 , a__ : int=5 , a__ : Optional[int]=2048 , a__ : Union[str, Any]=4 , a__ : Any=6.6_7 , a__ : List[Any]=True , a__ : str=True , a__ : Optional[Any]=True , a__ : Dict=True , a__ : Dict=True , a__ : int=True , a__ : Union[str, Any]=True , **a__ : List[Any] , ): """simple docstring""" __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = num_qa_labels __snake_case = num_object_labels __snake_case = num_attr_labels __snake_case = l_layers __snake_case = x_layers __snake_case = r_layers __snake_case = visual_feat_dim __snake_case = visual_pos_dim __snake_case = visual_loss_normalizer __snake_case = task_matched __snake_case = task_mask_lm __snake_case = task_obj_predict __snake_case = task_qa __snake_case = visual_obj_loss __snake_case = visual_attr_loss __snake_case = visual_feat_loss __snake_case = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**a__ )
24
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class _snake_case : UpperCamelCase__ = LEDConfig UpperCamelCase__ = {} UpperCamelCase__ = 'gelu' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a=0.1 , _a=0.1 , _a=20 , _a=2 , _a=1 , _a=0 , _a=4 , ): __magic_name__ : int = parent __magic_name__ : Optional[int] = batch_size __magic_name__ : Tuple = seq_length __magic_name__ : List[Any] = is_training __magic_name__ : Dict = use_labels __magic_name__ : Optional[Any] = vocab_size __magic_name__ : int = hidden_size __magic_name__ : Optional[int] = num_hidden_layers __magic_name__ : Optional[int] = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Any = hidden_dropout_prob __magic_name__ : Optional[int] = attention_probs_dropout_prob __magic_name__ : List[str] = max_position_embeddings __magic_name__ : Any = eos_token_id __magic_name__ : str = pad_token_id __magic_name__ : int = bos_token_id __magic_name__ : Optional[int] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __magic_name__ : Tuple = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __magic_name__ : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __magic_name__ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __magic_name__ : int = tf.concat([input_ids, eos_tensor] , axis=1 ) __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __magic_name__ : List[str] = prepare_led_inputs_dict(_a , _a , _a ) __magic_name__ : Union[str, Any] = tf.concat( [tf.zeros_like(_a )[:, :-1], tf.ones_like(_a )[:, -1:]] , axis=-1 , ) __magic_name__ : List[Any] = global_attention_mask return config, inputs_dict def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : Dict = TFLEDModel(config=_a ).get_decoder() __magic_name__ : Optional[int] = inputs_dict["input_ids"] __magic_name__ : Union[str, Any] = input_ids[:1, :] __magic_name__ : str = inputs_dict["attention_mask"][:1, :] __magic_name__ : int = 1 # first forward pass __magic_name__ : Tuple = model(_a , attention_mask=_a , use_cache=_a ) __magic_name__ , __magic_name__ : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __magic_name__ : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __magic_name__ : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __magic_name__ : Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) __magic_name__ : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __magic_name__ : List[str] = model(_a , attention_mask=_a )[0] __magic_name__ : Dict = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __magic_name__ : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __magic_name__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] __magic_name__ : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def lowerCAmelCase_ ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Any , _snake_case : str=None , _snake_case : List[str]=None , _snake_case : int=None , _snake_case : Any=None , ) -> int: '''simple docstring''' if attention_mask is None: __magic_name__ : str = tf.cast(tf.math.not_equal(_snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __magic_name__ : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __magic_name__ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __magic_name__ : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class _snake_case ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCamelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCamelCase__ = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = TFLEDModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : List[str] = tf.zeros_like(inputs_dict["attention_mask"] ) __magic_name__ : Optional[Any] = 2 __magic_name__ : Tuple = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) __magic_name__ : Any = True __magic_name__ : str = self.model_tester.seq_length __magic_name__ : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_a ): __magic_name__ : str = outputs.decoder_attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_a ): __magic_name__ : Any = [t.numpy() for t in outputs.encoder_attentions] __magic_name__ : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : List[str] = False __magic_name__ : Tuple = False __magic_name__ : Optional[int] = model_class(_a ) __magic_name__ : str = model(self._prepare_for_class(_a , _a ) ) __magic_name__ : Any = len(_a ) self.assertEqual(config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) if self.is_encoder_decoder: __magic_name__ : Tuple = model_class(_a ) __magic_name__ : Optional[Any] = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(config.output_hidden_states , _a ) check_decoder_attentions_output(_a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ : Dict = True __magic_name__ : str = model_class(_a ) __magic_name__ : Any = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) # Check attention is always last and order is fine __magic_name__ : Union[str, Any] = True __magic_name__ : Union[str, Any] = True __magic_name__ : List[str] = model_class(_a ) __magic_name__ : Any = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_a ) ) self.assertEqual(model.config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self ): # TODO: Head-masking not yet implement pass def lowerCAmelCase_ ( _snake_case : int ) -> Optional[int]: '''simple docstring''' return tf.constant(_snake_case , dtype=tf.intaa ) snake_case : Optional[int] = 1E-4 @slow @require_tf class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here __magic_name__ : Optional[int] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __magic_name__ : str = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __magic_name__ : Any = prepare_led_inputs_dict(model.config , _a , _a ) __magic_name__ : List[Any] = model(**_a )[0] __magic_name__ : List[str] = (1, 1_024, 768) self.assertEqual(output.shape , _a ) # change to expected output here __magic_name__ : int = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1e-3 ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here __magic_name__ : int = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __magic_name__ : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __magic_name__ : Optional[Any] = prepare_led_inputs_dict(model.config , _a , _a ) __magic_name__ : Union[str, Any] = model(**_a )[0] __magic_name__ : Optional[int] = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , _a ) # change to expected output here __magic_name__ : str = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1e-3 , rtol=1e-3 )
281
0
import functools def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # Validation if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not all(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(SCREAMING_SNAKE_CASE_ ) != 3 or not all(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return 0 if min(SCREAMING_SNAKE_CASE_ ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(SCREAMING_SNAKE_CASE_ ) >= 366: raise ValueError("All days elements should be less than 366" ) lowercase__ = set(SCREAMING_SNAKE_CASE_ ) @functools.cache def dynamic_programming(SCREAMING_SNAKE_CASE_ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
224
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowercase__ = n - k # Calculate C(n,k) for i in range(SCREAMING_SNAKE_CASE_ ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return binomial_coefficient(2 * node_count , SCREAMING_SNAKE_CASE_ ) // (node_count + 1) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): if n < 0: raise ValueError("factorial() not defined for negative values" ) lowercase__ = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return catalan_number(SCREAMING_SNAKE_CASE_ ) * factorial(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowercase_ = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( F'Given {node_count} nodes, there are {binary_tree_count(node_count)} ' F'binary trees and {catalan_number(node_count)} binary search trees.' )
224
1
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": __UpperCAmelCase : Dict = argparse.ArgumentParser( description=( "Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="roberta", choices=["roberta", "gpt2"]) parser.add_argument("--model_name", default="roberta-large", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_roberta_048131723.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") __UpperCAmelCase : Dict = parser.parse_args() if args.model_type == "roberta": __UpperCAmelCase : str = RobertaForMaskedLM.from_pretrained(args.model_name) __UpperCAmelCase : Tuple = "roberta" elif args.model_type == "gpt2": __UpperCAmelCase : Dict = GPTaLMHeadModel.from_pretrained(args.model_name) __UpperCAmelCase : Optional[int] = "transformer" __UpperCAmelCase : Dict = model.state_dict() __UpperCAmelCase : Any = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: __UpperCAmelCase : Optional[int] = state_dict[f'{prefix}.{param_name}'] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: __UpperCAmelCase : List[str] = f'{prefix}.embeddings.{w}.weight' __UpperCAmelCase : List[Any] = state_dict[param_name] for w in ["weight", "bias"]: __UpperCAmelCase : List[str] = f'{prefix}.embeddings.LayerNorm.{w}' __UpperCAmelCase : Optional[int] = state_dict[param_name] # Transformer Blocks # __UpperCAmelCase : str = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: __UpperCAmelCase : Any = state_dict[ f'{prefix}.h.{teacher_idx}.{layer}.{w}' ] __UpperCAmelCase : Optional[Any] = state_dict[f'{prefix}.h.{teacher_idx}.attn.bias'] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: __UpperCAmelCase : int = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: __UpperCAmelCase : List[Any] = state_dict[f'{layer}'] if args.vocab_transform: for w in ["weight", "bias"]: __UpperCAmelCase : int = state_dict[f'lm_head.dense.{w}'] __UpperCAmelCase : List[Any] = state_dict[f'lm_head.layer_norm.{w}'] elif args.model_type == "gpt2": for w in ["weight", "bias"]: __UpperCAmelCase : str = state_dict[f'{prefix}.ln_f.{w}'] __UpperCAmelCase : Tuple = state_dict["lm_head.weight"] print(f'N layers selected for distillation: {std_idx}') print(f'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(f'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
111
def A__ ( SCREAMING_SNAKE_CASE__ = 200) -> int: __snake_case: Optional[int] = [1, 2, 5, 10, 20, 50, 100, 200] __snake_case: List[Any] = [0] * (pence + 1) __snake_case: int = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(SCREAMING_SNAKE_CASE__ , pence + 1 , 1): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73_682
111
1
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = 42 class lowercase_ ( nn.Module ): '''simple docstring''' def __init__( self : str , __UpperCAmelCase : Any=3 , __UpperCAmelCase : Any=3 , __UpperCAmelCase : int=("DownEncoderBlock2D",) , __UpperCAmelCase : Tuple=(64,) , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : List[str]=32 , __UpperCAmelCase : Optional[Any]="silu" , __UpperCAmelCase : Union[str, Any]=True , ) ->str: """simple docstring""" super().__init__() a = layers_per_block a = torch.nn.Convad( __UpperCAmelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) a = None a = nn.ModuleList([] ) # down a = block_out_channels[0] for i, down_block_type in enumerate(__UpperCAmelCase ): a = output_channel a = block_out_channels[i] a = i == len(__UpperCAmelCase ) - 1 a = get_down_block( __UpperCAmelCase , num_layers=self.layers_per_block , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__UpperCAmelCase , resnet_groups=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) self.down_blocks.append(__UpperCAmelCase ) # mid a = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) # out a = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__UpperCAmelCase , eps=1e-6 ) a = nn.SiLU() a = 2 * out_channels if double_z else out_channels a = nn.Convad(block_out_channels[-1] , __UpperCAmelCase , 3 , padding=1 ) a = False def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str ) ->Tuple: """simple docstring""" a = x a = self.conv_in(__UpperCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase : Union[str, Any] ): def custom_forward(*__UpperCAmelCase : str ): return module(*__UpperCAmelCase ) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0''' ): for down_block in self.down_blocks: a = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) # middle a = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) else: for down_block in self.down_blocks: a = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase ) # middle a = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __UpperCAmelCase ) else: # down for down_block in self.down_blocks: a = down_block(__UpperCAmelCase ) # middle a = self.mid_block(__UpperCAmelCase ) # post-process a = self.conv_norm_out(__UpperCAmelCase ) a = self.conv_act(__UpperCAmelCase ) a = self.conv_out(__UpperCAmelCase ) return sample class lowercase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Optional[int]=("UpDecoderBlock2D",) , __UpperCAmelCase : List[Any]=(64,) , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : List[Any]=32 , __UpperCAmelCase : Any="silu" , __UpperCAmelCase : Union[str, Any]="group" , ) ->List[str]: """simple docstring""" super().__init__() a = layers_per_block a = nn.Convad( __UpperCAmelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) a = None a = nn.ModuleList([] ) a = in_channels if norm_type == '''spatial''' else None # mid a = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) # up a = list(reversed(__UpperCAmelCase ) ) a = reversed_block_out_channels[0] for i, up_block_type in enumerate(__UpperCAmelCase ): a = output_channel a = reversed_block_out_channels[i] a = i == len(__UpperCAmelCase ) - 1 a = get_up_block( __UpperCAmelCase , num_layers=self.layers_per_block + 1 , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , prev_output_channel=__UpperCAmelCase , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__UpperCAmelCase , resnet_groups=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , temb_channels=__UpperCAmelCase , resnet_time_scale_shift=__UpperCAmelCase , ) self.up_blocks.append(__UpperCAmelCase ) a = output_channel # out if norm_type == "spatial": a = SpatialNorm(block_out_channels[0] , __UpperCAmelCase ) else: a = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__UpperCAmelCase , eps=1e-6 ) a = nn.SiLU() a = nn.Convad(block_out_channels[0] , __UpperCAmelCase , 3 , padding=1 ) a = False def __lowerCAmelCase ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple=None ) ->Optional[Any]: """simple docstring""" a = z a = self.conv_in(__UpperCAmelCase ) a = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase : str ): def custom_forward(*__UpperCAmelCase : Optional[int] ): return module(*__UpperCAmelCase ) return custom_forward if is_torch_version('''>=''' , '''1.11.0''' ): # middle a = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) a = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: a = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) else: # middle a = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , __UpperCAmelCase ) a = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: a = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) else: # middle a = self.mid_block(__UpperCAmelCase , __UpperCAmelCase ) a = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: a = up_block(__UpperCAmelCase , __UpperCAmelCase ) # post-process if latent_embeds is None: a = self.conv_norm_out(__UpperCAmelCase ) else: a = self.conv_norm_out(__UpperCAmelCase , __UpperCAmelCase ) a = self.conv_act(__UpperCAmelCase ) a = self.conv_out(__UpperCAmelCase ) return sample class lowercase_ ( nn.Module ): '''simple docstring''' def __init__( self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]="random" , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Optional[int]=True ) ->Optional[Any]: """simple docstring""" super().__init__() a = n_e a = vq_embed_dim a = beta a = legacy a = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) a = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) ) a = self.used.shape[0] a = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": a = self.re_embed a = self.re_embed + 1 print( F"""Remapping {self.n_e} indices to {self.re_embed} indices. """ F"""Using {self.unknown_index} for unknown indices.""" ) else: a = n_e a = sane_index_shape def __lowerCAmelCase ( self : str , __UpperCAmelCase : int ) ->Tuple: """simple docstring""" a = inds.shape assert len(__UpperCAmelCase ) > 1 a = inds.reshape(ishape[0] , -1 ) a = self.used.to(__UpperCAmelCase ) a = (inds[:, :, None] == used[None, None, ...]).long() a = match.argmax(-1 ) a = match.sum(2 ) < 1 if self.unknown_index == "random": a = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: a = self.unknown_index return new.reshape(__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Optional[int] ) ->Optional[Any]: """simple docstring""" a = inds.shape assert len(__UpperCAmelCase ) > 1 a = inds.reshape(ishape[0] , -1 ) a = self.used.to(__UpperCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token a = 0 # simply set to zero a = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __UpperCAmelCase ) return back.reshape(__UpperCAmelCase ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : Any ) ->Any: """simple docstring""" a = z.permute(0 , 2 , 3 , 1 ).contiguous() a = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z a = torch.argmin(torch.cdist(__UpperCAmelCase , self.embedding.weight ) , dim=1 ) a = self.embedding(__UpperCAmelCase ).view(z.shape ) a = None a = None # compute loss for embedding if not self.legacy: a = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: a = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients a = z + (z_q - z).detach() # reshape back to match original input shape a = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: a = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis a = self.remap_to_used(__UpperCAmelCase ) a = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: a = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] ) ->List[str]: """simple docstring""" if self.remap is not None: a = indices.reshape(shape[0] , -1 ) # add batch axis a = self.unmap_to_all(__UpperCAmelCase ) a = indices.reshape(-1 ) # flatten again # get quantized latent vectors a = self.embedding(__UpperCAmelCase ) if shape is not None: a = z_q.view(__UpperCAmelCase ) # reshape back to match original input shape a = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : str , __UpperCAmelCase : Any , __UpperCAmelCase : List[str]=False ) ->Optional[int]: """simple docstring""" a = parameters a , a = torch.chunk(__UpperCAmelCase , 2 , dim=1 ) a = torch.clamp(self.logvar , -30.0 , 20.0 ) a = deterministic a = torch.exp(0.5 * self.logvar ) a = torch.exp(self.logvar ) if self.deterministic: a = a = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[torch.Generator] = None ) ->torch.FloatTensor: """simple docstring""" a = randn_tensor( self.mean.shape , generator=__UpperCAmelCase , device=self.parameters.device , dtype=self.parameters.dtype ) a = self.mean + self.std * sample return x def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Any=None ) ->int: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple=[1, 2, 3] ) ->List[Any]: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) a = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" return self.mean
352
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = "▁" UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BertGenerationTokenizer __snake_case = False __snake_case = True def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" super().setUp() a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = '''<s>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__UpperCAmelCase ) , 1_002 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def __lowerCAmelCase ( self : Any ) ->str: """simple docstring""" a = '''Hello World!''' a = [18_536, 2_260, 101] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) a = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence a = list(self.big_tokenizer.get_vocab().keys() )[:10] a = ''' '''.join(__UpperCAmelCase ) a = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = BertGenerationConfig() a = BertGenerationEncoder(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def __lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" a = {'''input_ids''': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
26
0
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _SCREAMING_SNAKE_CASE (A , A , A , A ) -> Optional[int]: """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def _SCREAMING_SNAKE_CASE (A , A , A , A , A=True ) -> Any: """simple docstring""" model.train() lowercase__ = model(A ) lowercase__ = F.mse_loss(A , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(A ) def _SCREAMING_SNAKE_CASE (A , A=False ) -> Optional[int]: """simple docstring""" set_seed(42 ) lowercase__ = RegressionModel() lowercase__ = deepcopy(A ) lowercase__ = RegressionDataset(length=80 ) lowercase__ = DataLoader(A , batch_size=16 ) model.to(accelerator.device ) if sched: lowercase__ = AdamW(params=model.parameters() , lr=1E-3 ) lowercase__ = AdamW(params=ddp_model.parameters() , lr=1E-3 ) lowercase__ = LambdaLR(A , lr_lambda=lambda A : epoch**0.65 ) lowercase__ = LambdaLR(A , lr_lambda=lambda A : epoch**0.65 ) # Make a copy of `model` if sched: lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = accelerator.prepare(A , A , A , A ) else: lowercase__ ,lowercase__ = accelerator.prepare(A , A ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" lowercase__ ,lowercase__ ,lowercase__ = get_training_setup(A ) # Use a single batch lowercase__ ,lowercase__ = next(iter(A ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowercase__ ,lowercase__ = accelerator.gather((ddp_input, ddp_target) ) lowercase__ ,lowercase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(A , A , A , A ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(A ): step_model(A , A , A , A ) else: # Sync grads step_model(A , A , A , A ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(A , A , A , A ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) lowercase__ = ddp_input[torch.randperm(len(A ) )] def _SCREAMING_SNAKE_CASE (A ) -> Optional[Any]: """simple docstring""" lowercase__ ,lowercase__ ,lowercase__ = get_training_setup(A ) # Use a single batch lowercase__ ,lowercase__ = next(iter(A ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowercase__ ,lowercase__ = accelerator.gather((ddp_input, ddp_target) ) lowercase__ ,lowercase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(A , A , A , A ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(A ): step_model(A , A , A , A ) else: # Sync grads step_model(A , A , A , A ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) lowercase__ = ddp_input[torch.randperm(len(A ) )] def _SCREAMING_SNAKE_CASE (A=False , A=False ) -> Tuple: """simple docstring""" lowercase__ = Accelerator( split_batches=A , dispatch_batches=A , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowercase__ ,lowercase__ ,lowercase__ = get_training_setup(A ) for iteration, batch in enumerate(A ): lowercase__ ,lowercase__ = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ ,lowercase__ = accelerator.gather((ddp_input, ddp_target) ) lowercase__ ,lowercase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(A , A , A , A , A ) # Do "gradient accumulation" (noop) with accelerator.accumulate(A ): step_model(A , A , A , A ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(A ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) lowercase__ = ddp_input[torch.randperm(len(A ) )] GradientState._reset_state() def _SCREAMING_SNAKE_CASE (A=False , A=False ) -> str: """simple docstring""" lowercase__ = Accelerator( split_batches=A , dispatch_batches=A , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = get_training_setup(A , A ) for iteration, batch in enumerate(A ): lowercase__ ,lowercase__ = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ ,lowercase__ = accelerator.gather((ddp_input, ddp_target) ) lowercase__ ,lowercase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(A , A , A , A , A ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(A )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(A ): step_model(A , A , A , A ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" lowercase__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(A )) if accelerator.num_processes > 1: check_model_parameters(A , A , A , A ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def _SCREAMING_SNAKE_CASE () -> str: """simple docstring""" lowercase__ = Accelerator() lowercase__ = RegressionDataset(length=80 ) lowercase__ = DataLoader(A , batch_size=16 ) lowercase__ = RegressionDataset(length=96 ) lowercase__ = DataLoader(A , batch_size=16 ) lowercase__ ,lowercase__ = accelerator.prepare(A , A ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(A ): assert id(accelerator.gradient_state.active_dataloader ) == id(A ) if iteration < len(A ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(A ): assert id(accelerator.gradient_state.active_dataloader ) == id(A ) if batch_num < len(A ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ = Accelerator() lowercase__ = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(A ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(A ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(A , A ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(A , A ) def _SCREAMING_SNAKE_CASE (A ) -> List[str]: """simple docstring""" main() if __name__ == "__main__": main()
2
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
159
0
"""simple docstring""" import torch from torch import nn class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 , lowerCAmelCase__=False): super().__init__() __SCREAMING_SNAKE_CASE = n_token __SCREAMING_SNAKE_CASE = d_embed __SCREAMING_SNAKE_CASE = d_proj __SCREAMING_SNAKE_CASE = cutoffs + [n_token] __SCREAMING_SNAKE_CASE = [0] + self.cutoffs __SCREAMING_SNAKE_CASE = div_val __SCREAMING_SNAKE_CASE = self.cutoffs[0] __SCREAMING_SNAKE_CASE = len(self.cutoffs) - 1 __SCREAMING_SNAKE_CASE = self.shortlist_size + self.n_clusters if self.n_clusters > 0: __SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) __SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(self.n_clusters)) __SCREAMING_SNAKE_CASE = nn.ModuleList() __SCREAMING_SNAKE_CASE = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase__ , lowerCAmelCase__))) else: self.out_projs.append(lowerCAmelCase__) self.out_layers.append(nn.Linear(lowerCAmelCase__ , lowerCAmelCase__)) else: for i in range(len(self.cutoffs)): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.cutoff_ends[i], self.cutoff_ends[i + 1] __SCREAMING_SNAKE_CASE = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase__ , lowerCAmelCase__))) self.out_layers.append(nn.Linear(lowerCAmelCase__ , r_idx - l_idx)) __SCREAMING_SNAKE_CASE = keep_order def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): if proj is None: __SCREAMING_SNAKE_CASE = nn.functional.linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: __SCREAMING_SNAKE_CASE = nn.functional.linear(lowerCAmelCase__ , proj.t().contiguous()) __SCREAMING_SNAKE_CASE = nn.functional.linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=False): if labels is not None: # Shift so that tokens < n predict n __SCREAMING_SNAKE_CASE = hidden[..., :-1, :].contiguous() __SCREAMING_SNAKE_CASE = labels[..., 1:].contiguous() __SCREAMING_SNAKE_CASE = hidden.view(-1 , hidden.size(-1)) __SCREAMING_SNAKE_CASE = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: __SCREAMING_SNAKE_CASE = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: __SCREAMING_SNAKE_CASE = self._compute_logit(lowerCAmelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: __SCREAMING_SNAKE_CASE = labels != -1_0_0 __SCREAMING_SNAKE_CASE = torch.zeros_like(lowerCAmelCase__ , dtype=hidden.dtype , device=hidden.device) __SCREAMING_SNAKE_CASE = ( -nn.functional.log_softmax(lowerCAmelCase__ , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: __SCREAMING_SNAKE_CASE = nn.functional.log_softmax(lowerCAmelCase__ , dim=-1) else: # construct weights and biases __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.cutoff_ends[i], self.cutoff_ends[i + 1] __SCREAMING_SNAKE_CASE = self.out_layers[0].weight[l_idx:r_idx] __SCREAMING_SNAKE_CASE = self.out_layers[0].bias[l_idx:r_idx] else: __SCREAMING_SNAKE_CASE = self.out_layers[i].weight __SCREAMING_SNAKE_CASE = self.out_layers[i].bias if i == 0: __SCREAMING_SNAKE_CASE = torch.cat([weight_i, self.cluster_weight] , dim=0) __SCREAMING_SNAKE_CASE = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase__) biases.append(lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = weights[0], biases[0], self.out_projs[0] __SCREAMING_SNAKE_CASE = self._compute_logit(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = nn.functional.log_softmax(lowerCAmelCase__ , dim=1) if labels is None: __SCREAMING_SNAKE_CASE = hidden.new_empty((head_logit.size(0), self.n_token)) else: __SCREAMING_SNAKE_CASE = torch.zeros_like(lowerCAmelCase__ , dtype=hidden.dtype , device=hidden.device) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = [0] + self.cutoffs for i in range(len(lowerCAmelCase__) - 1): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cutoff_values[i], cutoff_values[i + 1] if labels is not None: __SCREAMING_SNAKE_CASE = (labels >= l_idx) & (labels < r_idx) __SCREAMING_SNAKE_CASE = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue __SCREAMING_SNAKE_CASE = labels.index_select(0 , lowerCAmelCase__) - l_idx __SCREAMING_SNAKE_CASE = head_logprob.index_select(0 , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = hidden.index_select(0 , lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = hidden if i == 0: if labels is not None: __SCREAMING_SNAKE_CASE = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: __SCREAMING_SNAKE_CASE = head_logprob[:, : self.cutoffs[0]] else: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = weights[i], biases[i], self.out_projs[i] __SCREAMING_SNAKE_CASE = self._compute_logit(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = nn.functional.log_softmax(lowerCAmelCase__ , dim=1) __SCREAMING_SNAKE_CASE = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: __SCREAMING_SNAKE_CASE = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: __SCREAMING_SNAKE_CASE = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i __SCREAMING_SNAKE_CASE = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase__ , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def snake_case_ ( self , lowerCAmelCase__): if self.n_clusters == 0: __SCREAMING_SNAKE_CASE = self._compute_logit(lowerCAmelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase__ , dim=-1) else: # construct weights and biases __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.cutoff_ends[i], self.cutoff_ends[i + 1] __SCREAMING_SNAKE_CASE = self.out_layers[0].weight[l_idx:r_idx] __SCREAMING_SNAKE_CASE = self.out_layers[0].bias[l_idx:r_idx] else: __SCREAMING_SNAKE_CASE = self.out_layers[i].weight __SCREAMING_SNAKE_CASE = self.out_layers[i].bias if i == 0: __SCREAMING_SNAKE_CASE = torch.cat([weight_i, self.cluster_weight] , dim=0) __SCREAMING_SNAKE_CASE = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase__) biases.append(lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = weights[0], biases[0], self.out_projs[0] __SCREAMING_SNAKE_CASE = self._compute_logit(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = hidden.new_empty((head_logit.size(0), self.n_token)) __SCREAMING_SNAKE_CASE = nn.functional.log_softmax(lowerCAmelCase__ , dim=1) __SCREAMING_SNAKE_CASE = [0] + self.cutoffs for i in range(len(lowerCAmelCase__) - 1): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = cutoff_values[i], cutoff_values[i + 1] if i == 0: __SCREAMING_SNAKE_CASE = head_logprob[:, : self.cutoffs[0]] else: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = weights[i], biases[i], self.out_projs[i] __SCREAMING_SNAKE_CASE = self._compute_logit(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = nn.functional.log_softmax(lowerCAmelCase__ , dim=1) __SCREAMING_SNAKE_CASE = head_logprob[:, -i] + tail_logprob_i __SCREAMING_SNAKE_CASE = logprob_i return out
255
"""simple docstring""" import inspect import unittest class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): try: import diffusers # noqa: F401 except ImportError: assert False def snake_case_ ( self): import diffusers from diffusers.dependency_versions_table import deps __SCREAMING_SNAKE_CASE = inspect.getmembers(lowerCAmelCase__ , inspect.isclass) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": __SCREAMING_SNAKE_CASE = """k-diffusion""" elif backend == "invisible_watermark": __SCREAMING_SNAKE_CASE = """invisible-watermark""" assert backend in deps, f"{backend} is not in the deps table!"
255
1
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel UpperCAmelCase__ = HfApi() UpperCAmelCase__ = {} # fmt: off UpperCAmelCase__ = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) UpperCAmelCase__ = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) UpperCAmelCase__ = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) UpperCAmelCase__ = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) UpperCAmelCase__ = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) UpperCAmelCase__ = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) UpperCAmelCase__ = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) UpperCAmelCase__ = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) UpperCAmelCase__ = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) UpperCAmelCase__ = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) UpperCAmelCase__ = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) UpperCAmelCase__ = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) UpperCAmelCase__ = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) UpperCAmelCase__ = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) UpperCAmelCase__ = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on UpperCAmelCase__ = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": UpperCAmelCase__ = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): UpperCAmelCase__ = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: UpperCAmelCase__ = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) UpperCAmelCase__ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) UpperCAmelCase__ = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): UpperCAmelCase__ = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
0
from __future__ import annotations UpperCAmelCase__ = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _a ( a :Matrix , a :int , a :int , a :int ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _a ( a :Matrix ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _a ( a :Matrix ) -> Matrix | None: if location := find_empty_location(a ): a , a = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): a = digit if sudoku(a ) is not None: return grid a = 0 return None def _a ( a :Matrix ) -> None: for row in grid: for cell in row: print(a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") UpperCAmelCase__ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
0
1
"""simple docstring""" from __future__ import annotations def a__ ( __lowercase ) -> list[int]: return [ord(__lowercase ) - 96 for elem in plain] def a__ ( __lowercase ) -> str: return "".join(chr(elem + 96 ) for elem in encoded ) def a__ ( ) -> None: _A = encode(input("-> " ).strip().lower() ) print("Encoded: " , __lowercase ) print("Decoded:" , decode(__lowercase ) ) if __name__ == "__main__": main()
163
"""simple docstring""" def a__ ( __lowercase , __lowercase ) -> float: _validate_point(__lowercase ) _validate_point(__lowercase ) if len(__lowercase ) != len(__lowercase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(__lowercase , __lowercase ) ) ) def a__ ( __lowercase ) -> None: if point: if isinstance(__lowercase , __lowercase ): for item in point: if not isinstance(__lowercase , (int, float) ): _A = ( "Expected a list of numbers as input, found " f"""{type(__lowercase ).__name__}""" ) raise TypeError(__lowercase ) else: _A = f"""Expected a list of numbers as input, found {type(__lowercase ).__name__}""" raise TypeError(__lowercase ) else: raise ValueError("Missing an input" ) def a__ ( __lowercase , __lowercase ) -> float: _validate_point(__lowercase ) _validate_point(__lowercase ) if len(__lowercase ) != len(__lowercase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(__lowercase , __lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
163
1
"""simple docstring""" import math class UpperCamelCase__ : """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : list[list[float]] , SCREAMING_SNAKE_CASE_ : list[int] ): lowerCAmelCase_ : Optional[Any] = 0.0 lowerCAmelCase_ : Optional[Any] = 0.0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : list[list[int | float]] , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float ): for i in range(len(SCREAMING_SNAKE_CASE_ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def UpperCamelCase_ ( ) -> None: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) lowerCAmelCase_ : int = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training lowerCAmelCase_ : Optional[Any] = SelfOrganizingMap() lowerCAmelCase_ : Tuple = 3 lowerCAmelCase_ : Union[str, Any] = 0.5 for _ in range(lowerCAmelCase__ ): for j in range(len(lowerCAmelCase__ ) ): # training sample lowerCAmelCase_ : List[Any] = training_samples[j] # Compute the winning vector lowerCAmelCase_ : Union[str, Any] = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # Update the winning vector lowerCAmelCase_ : str = self_organizing_map.update(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # classify test sample lowerCAmelCase_ : List[Any] = [0, 0, 0, 1] lowerCAmelCase_ : Any = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # results print(f"Clusters that the test sample belongs to : {winner}" ) print(f"Weights that have been trained : {weights}" ) # running the main() function if __name__ == "__main__": main()
224
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : int = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Any = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowercase__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
224
1
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , a_ : str , a_ : Dict=14 , a_ : List[Any]=7 , a_ : int=True , a_ : int=True , a_ : int=False , a_ : Optional[int]=True , a_ : int=99 , a_ : Optional[Any]=32 , a_ : List[str]=4 , a_ : Dict=4 , a_ : Optional[Any]=4 , a_ : Union[str, Any]=37 , a_ : Union[str, Any]="gelu" , a_ : str=0.1 , a_ : Tuple=0.1 , a_ : Any=5_12 , a_ : Optional[Any]=0.02 , ): lowerCAmelCase_ : List[str] = parent lowerCAmelCase_ : Tuple = batch_size lowerCAmelCase_ : Union[str, Any] = seq_length lowerCAmelCase_ : Optional[int] = is_training lowerCAmelCase_ : Optional[Any] = use_input_mask lowerCAmelCase_ : int = use_token_type_ids lowerCAmelCase_ : str = use_labels lowerCAmelCase_ : List[Any] = vocab_size lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : Optional[Any] = rotary_dim lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : str = num_attention_heads lowerCAmelCase_ : List[str] = intermediate_size lowerCAmelCase_ : Optional[int] = hidden_act lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Tuple = initializer_range lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Dict = vocab_size - 1 lowerCAmelCase_ : List[str] = vocab_size - 1 lowerCAmelCase_ : Union[str, Any] = vocab_size - 1 def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Optional[int] = None if self.use_input_mask: lowerCAmelCase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Any = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=a_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : int = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase ( self : List[str] , a_ : Dict , a_ : Optional[int] , a_ : int , a_ : Optional[Any] ): lowerCAmelCase_ : List[str] = 20 lowerCAmelCase_ : Optional[int] = model_class_name(a_ ) lowerCAmelCase_ : Any = model.init_cache(input_ids.shape[0] , a_ ) lowerCAmelCase_ : Union[str, Any] = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" ) lowerCAmelCase_ : List[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : str = model( input_ids[:, :-1] , attention_mask=a_ , past_key_values=a_ , position_ids=a_ , ) lowerCAmelCase_ : str = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCAmelCase_ : Dict = model( input_ids[:, -1:] , attention_mask=a_ , past_key_values=outputs_cache.past_key_values , position_ids=a_ , ) lowerCAmelCase_ : List[str] = model(a_ ) lowerCAmelCase_ : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase ( self : Dict , a_ : List[str] , a_ : int , a_ : Tuple , a_ : Tuple ): lowerCAmelCase_ : Any = 20 lowerCAmelCase_ : List[Any] = model_class_name(a_ ) lowerCAmelCase_ : List[Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCAmelCase_ : int = model.init_cache(input_ids.shape[0] , a_ ) lowerCAmelCase_ : List[str] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : List[Any] = model( input_ids[:, :-1] , attention_mask=a_ , past_key_values=a_ , position_ids=a_ , ) lowerCAmelCase_ : Optional[Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCAmelCase_ : List[Any] = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=a_ , position_ids=a_ , ) lowerCAmelCase_ : int = model(a_ , attention_mask=a_ ) lowerCAmelCase_ : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class __lowerCamelCase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' a_ : Optional[Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () a_ : Union[str, Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Tuple = FlaxGPTJModelTester(self ) def lowerCamelCase ( self : Dict ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(a_ , a_ , a_ , a_ ) def lowerCamelCase ( self : Dict ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( a_ , a_ , a_ , a_ ) @tooslow def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : List[Any] = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" ) lowerCAmelCase_ : Tuple = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=a_ , truncation=a_ ) lowerCAmelCase_ : List[str] = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" ) lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : List[Any] = model.config.eos_token_id lowerCAmelCase_ : Any = jax.jit(model.generate ) lowerCAmelCase_ : Union[str, Any] = jit_generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCAmelCase_ : List[Any] = tokenizer.batch_decode(a_ , skip_special_tokens=a_ ) lowerCAmelCase_ : List[Any] = [ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(a_ , a_ ) @is_pt_flax_cross_test def lowerCamelCase ( self : str ): lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : Optional[int] = self._prepare_for_class(a_ , a_ ) lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Any = getattr(a_ , a_ ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["input_ids"].shape lowerCAmelCase_ : Any = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(a_ ): lowerCAmelCase_ : int = 0 lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : str = 0 lowerCAmelCase_ : Dict = 1 lowerCAmelCase_ : List[Any] = pt_model_class(a_ ).eval() lowerCAmelCase_ : Union[str, Any] = model_class(a_ , dtype=jnp.floataa ) lowerCAmelCase_ : Union[str, Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , a_ ) lowerCAmelCase_ : Tuple = fx_state with torch.no_grad(): lowerCAmelCase_ : int = pt_model(**a_ ).to_tuple() lowerCAmelCase_ : Tuple = fx_model(**a_ ).to_tuple() self.assertEqual(len(a_ ) , len(a_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(a_ , a_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(a_ ) lowerCAmelCase_ : Optional[Any] = model_class.from_pretrained(a_ , from_pt=a_ ) lowerCAmelCase_ : Tuple = fx_model_loaded(**a_ ).to_tuple() self.assertEqual( len(a_ ) , len(a_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(a_ , a_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : Dict = self._prepare_for_class(a_ , a_ ) lowerCAmelCase_ : Dict = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : int = getattr(a_ , a_ ) lowerCAmelCase_ : Optional[Any] = pt_model_class(a_ ).eval() lowerCAmelCase_ : List[Any] = model_class(a_ , dtype=jnp.floataa ) lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(a_ , fx_model.params ) lowerCAmelCase_ , lowerCAmelCase_ : List[str] = pt_inputs["input_ids"].shape lowerCAmelCase_ : Dict = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(a_ ): lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : List[Any] = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**a_ ).to_tuple() lowerCAmelCase_ : Dict = fx_model(**a_ ).to_tuple() self.assertEqual(len(a_ ) , len(a_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(a_ , a_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(a_ ) lowerCAmelCase_ : Dict = pt_model_class.from_pretrained(a_ , from_flax=a_ ) with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = pt_model_loaded(**a_ ).to_tuple() self.assertEqual( len(a_ ) , len(a_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(a_ , a_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowerCamelCase ( self : Any ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Dict = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" ) lowerCAmelCase_ : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(a_ )
161
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowercase__ = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } lowercase__ = {"""facebook/blenderbot-3B""": 128} class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Dict = VOCAB_FILES_NAMES a_ : Tuple = PRETRAINED_VOCAB_FILES_MAP a_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[int] = ["""input_ids""", """attention_mask"""] a_ : int = BlenderbotTokenizer def __init__( self : Optional[Any] , a_ : Union[str, Any]=None , a_ : Any=None , a_ : int=None , a_ : str="replace" , a_ : Tuple="<s>" , a_ : Optional[int]="</s>" , a_ : Union[str, Any]="</s>" , a_ : Union[str, Any]="<s>" , a_ : Optional[Any]="<unk>" , a_ : str="<pad>" , a_ : List[Any]="<mask>" , a_ : Tuple=False , a_ : Dict=True , **a_ : str , ): super().__init__( a_ , a_ , tokenizer_file=a_ , errors=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , add_prefix_space=a_ , trim_offsets=a_ , **a_ , ) lowerCAmelCase_ : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , a_ ) != add_prefix_space: lowerCAmelCase_ : str = getattr(a_ , pre_tok_state.pop("type" ) ) lowerCAmelCase_ : int = add_prefix_space lowerCAmelCase_ : List[Any] = pre_tok_class(**a_ ) lowerCAmelCase_ : Any = add_prefix_space lowerCAmelCase_ : str = "post_processor" lowerCAmelCase_ : str = getattr(self.backend_tokenizer , a_ , a_ ) if tokenizer_component_instance: lowerCAmelCase_ : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase_ : Dict = tuple(state["sep"] ) if "cls" in state: lowerCAmelCase_ : Optional[int] = tuple(state["cls"] ) lowerCAmelCase_ : Optional[int] = False if state.get("add_prefix_space" , a_ ) != add_prefix_space: lowerCAmelCase_ : List[str] = add_prefix_space lowerCAmelCase_ : Any = True if state.get("trim_offsets" , a_ ) != trim_offsets: lowerCAmelCase_ : int = trim_offsets lowerCAmelCase_ : List[str] = True if changes_to_apply: lowerCAmelCase_ : Optional[Any] = getattr(a_ , state.pop("type" ) ) lowerCAmelCase_ : Tuple = component_class(**a_ ) setattr(self.backend_tokenizer , a_ , a_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase ( self : int ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase ( self : int , a_ : List[Any] ): lowerCAmelCase_ : Optional[Any] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else value lowerCAmelCase_ : Tuple = value def lowerCamelCase ( self : int , *a_ : List[str] , **a_ : Optional[int] ): lowerCAmelCase_ : Tuple = kwargs.get("is_split_into_words" , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_ , **a_ ) def lowerCamelCase ( self : str , *a_ : Union[str, Any] , **a_ : List[str] ): lowerCAmelCase_ : Tuple = kwargs.get("is_split_into_words" , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*a_ , **a_ ) def lowerCamelCase ( self : int , a_ : str , a_ : Optional[str] = None ): lowerCAmelCase_ : str = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ ) def lowerCamelCase ( self : int , a_ : List[int] , a_ : Optional[List[int]] = None ): lowerCAmelCase_ : Optional[int] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase ( self : List[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase ( self : Union[str, Any] , a_ : "Conversation" ): lowerCAmelCase_ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(a_ ) lowerCAmelCase_ : Tuple = " ".join(a_ ) lowerCAmelCase_ : Any = self.encode(a_ ) if len(a_ ) > self.model_max_length: lowerCAmelCase_ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
161
1
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib a_ :List[Any] = threading.Lock() a_ :str = None a_ :Optional[Any] = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } a_ :List[str] = logging.WARNING a_ :str = True def lowercase_ (): snake_case__ : str = os.getenv('TRANSFORMERS_VERBOSITY' , snake_case_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def lowercase_ (): return __name__.split('.' )[0] def lowercase_ (): return logging.getLogger(_get_library_name() ) def lowercase_ (): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return snake_case__ : Union[str, Any] = logging.StreamHandler() # Set sys.stderr as stream. snake_case__ : Tuple = sys.stderr.flush # Apply our default configuration to the library root logger. snake_case__ : int = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) snake_case__ : List[str] = False def lowercase_ (): global _default_handler with _lock: if not _default_handler: return snake_case__ : List[str] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) snake_case__ : Tuple = None def lowercase_ (): return log_levels def lowercase_ (A : Union[str, Any] = None ): if name is None: snake_case__ : Optional[int] = _get_library_name() _configure_library_root_logger() return logging.getLogger(snake_case_ ) def lowercase_ (): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def lowercase_ (A : Union[str, Any] ): _configure_library_root_logger() _get_library_root_logger().setLevel(snake_case_ ) def lowercase_ (): return set_verbosity(snake_case_ ) def lowercase_ (): return set_verbosity(snake_case_ ) def lowercase_ (): return set_verbosity(snake_case_ ) def lowercase_ (): return set_verbosity(snake_case_ ) def lowercase_ (): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def lowercase_ (): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def lowercase_ (A : Dict ): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(snake_case_ ) def lowercase_ (A : Dict ): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(snake_case_ ) def lowercase_ (): _configure_library_root_logger() snake_case__ : Union[str, Any] = False def lowercase_ (): _configure_library_root_logger() snake_case__ : List[Any] = True def lowercase_ (): snake_case__ : Union[str, Any] = _get_library_root_logger().handlers for handler in handlers: snake_case__ : str = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(snake_case_ ) def lowercase_ (): snake_case__ : Any = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(snake_case_ ) def lowercase_ (self : str , *A : Any , **A : Union[str, Any] ): snake_case__ : str = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , snake_case_ ) if no_advisory_warnings: return self.warning(*snake_case_ , **snake_case_ ) a_ :Optional[Any] = warning_advice @functools.lru_cache(snake_case_ ) def lowercase_ (self : str , *A : int , **A : int ): self.warning(*snake_case_ , **snake_case_ ) a_ :str = warning_once class snake_case__ : """simple docstring""" def __init__( self : Optional[int], *_snake_case : List[Any], **_snake_case : Tuple ) ->List[Any]: # pylint: disable=unused-argument snake_case__ : List[str] = args[0] if args else None def __iter__( self : List[str] ) ->Optional[Any]: return iter(self._iterator ) def __getattr__( self : List[str], _snake_case : List[Any] ) ->Union[str, Any]: def empty_fn(*_snake_case : Optional[Any], **_snake_case : Tuple ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Union[str, Any] ) ->Tuple: return self def __exit__( self : int, _snake_case : str, _snake_case : List[str], _snake_case : Optional[Any] ) ->List[str]: return class snake_case__ : """simple docstring""" def __call__( self : List[str], *_snake_case : Any, **_snake_case : List[Any] ) ->Union[str, Any]: if _tqdm_active: return tqdm_lib.tqdm(*_a, **_a ) else: return EmptyTqdm(*_a, **_a ) def lowercase_ ( self : List[str], *_snake_case : List[str], **_snake_case : List[str] ) ->Dict: snake_case__ : Optional[Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_a, **_a ) def lowercase_ ( self : Tuple ) ->Union[str, Any]: if _tqdm_active: return tqdm_lib.tqdm.get_lock() a_ :str = _tqdm_cls() def lowercase_ (): global _tqdm_active return bool(_tqdm_active ) def lowercase_ (): global _tqdm_active snake_case__ : Optional[int] = True hf_hub_utils.enable_progress_bars() def lowercase_ (): global _tqdm_active snake_case__ : List[str] = False hf_hub_utils.disable_progress_bars()
277
from math import asin, atan, cos, radians, sin, sqrt, tan _snake_case = 6_3_7_8_1_3_7.0 _snake_case = 6_3_5_6_7_5_2.3_1_4_2_4_5 _snake_case = 6378137 def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Any = (AXIS_A - AXIS_B) / AXIS_A _A : Optional[int] = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) _A : List[str] = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) _A : Optional[Any] = radians(snake_case_ ) _A : str = radians(snake_case_ ) # Equation _A : Dict = sin((phi_a - phi_a) / 2 ) _A : List[str] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _A : Optional[int] = sqrt(sin_sq_phi + (cos(snake_case_ ) * cos(snake_case_ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
26
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCAmelCase__ ( ): snake_case_ : str = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=_a , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=_a , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=_a ) return parser.parse_args() def lowerCAmelCase__ ( ): snake_case_ : str = parse_args() # Import training_script as a module. snake_case_ : Any = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case_ : Tuple = script_fpath.stem snake_case_ : str = importlib.import_module(_a ) # Patch sys.argv snake_case_ : Optional[int] = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
359
import argparse import copy def lowerCAmelCase__ ( _a : List[Any] ): snake_case_ : List[Any] = {} with open(_a ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Dict = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : Dict = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : int = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowerCAmelCase__ ( _a : Optional[Any] , _a : Optional[int] ): with open(_a ) as f: snake_case_ : List[str] = f.read(1 ) snake_case_ : Optional[Any] = start_node snake_case_ : Optional[Any] = [] snake_case_ : Optional[int] = start_node snake_case_ : int = 0 while visiting not in first_solution: snake_case_ : List[str] = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_a ) and k[0] not in first_solution: snake_case_ : List[str] = k[1] snake_case_ : Dict = k[0] first_solution.append(_a ) snake_case_ : Dict = distance_of_first_solution + int(_a ) snake_case_ : Optional[int] = best_node first_solution.append(_a ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : str = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def lowerCAmelCase__ ( _a : Optional[int] , _a : List[str] ): snake_case_ : Optional[Any] = [] for n in solution[1:-1]: snake_case_ : Any = solution.index(_a ) for kn in solution[1:-1]: snake_case_ : Any = solution.index(_a ) if n == kn: continue snake_case_ : Optional[int] = copy.deepcopy(_a ) snake_case_ : int = kn snake_case_ : Any = n snake_case_ : List[Any] = 0 for k in _tmp[:-1]: snake_case_ : str = _tmp[_tmp.index(_a ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Any = distance + int(i[1] ) _tmp.append(_a ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : List[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _a : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowerCAmelCase__ ( _a : Dict , _a : Optional[int] , _a : Optional[Any] , _a : Union[str, Any] , _a : int ): snake_case_ : str = 1 snake_case_ : List[str] = first_solution snake_case_ : int = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : int = solution while count <= iters: snake_case_ : Optional[Any] = find_neighborhood(_a , _a ) snake_case_ : Union[str, Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Dict = len(_a ) - 1 snake_case_ : List[Any] = False while not found: snake_case_ : int = 0 while i < len(_a ): if best_solution[i] != solution[i]: snake_case_ : str = best_solution[i] snake_case_ : Any = solution[i] break snake_case_ : Dict = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Optional[Any] = True snake_case_ : Optional[int] = best_solution[:-1] snake_case_ : List[Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Union[str, Any] = cost snake_case_ : Optional[int] = solution else: snake_case_ : Union[str, Any] = index_of_best_solution + 1 snake_case_ : int = neighborhood[index_of_best_solution] if len(_a ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def lowerCAmelCase__ ( _a : str=None ): snake_case_ : Optional[Any] = generate_neighbours(args.File ) snake_case_ , snake_case_ : List[Any] = generate_first_solution( args.File , _a ) snake_case_ , snake_case_ : int = tabu_search( _a , _a , _a , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
36
0
"""simple docstring""" def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase = False ) -> bool: '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_31_70_44_06_46_79_88_73_85_96_19_81 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis lowercase : Tuple = [ 20_47, 1_37_36_53, 25_32_60_01, 32_15_03_17_51, 2_15_23_02_89_87_47, 3_47_47_49_66_03_83, 3_41_55_00_71_72_83_21, 1, 3_82_51_23_05_65_46_41_30_51, 1, 1, 31_86_65_85_78_34_03_11_51_16_74_61, 3_31_70_44_06_46_79_88_73_85_96_19_81, ] lowercase : int = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_UpperCAmelCase , 1 ): if n < _p: # then we have our last prime to check lowercase : Optional[Any] = primes[:idx] break lowercase , lowercase : Any = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowercase : Tuple = False for r in range(_UpperCAmelCase ): lowercase : Dict = pow(_UpperCAmelCase , d * 2**r , _UpperCAmelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowercase : Any = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowercase__ ( ) -> None: '''simple docstring''' assert not miller_rabin(5_61 ) assert miller_rabin(5_63 ) # 2047 assert not miller_rabin(83_82_01 ) assert miller_rabin(83_82_07 ) # 1_373_653 assert not miller_rabin(17_31_60_01 ) assert miller_rabin(17_31_60_17 ) # 25_326_001 assert not miller_rabin(30_78_38_66_41 ) assert miller_rabin(30_78_38_66_53 ) # 3_215_031_751 assert not miller_rabin(1_71_30_45_57_48_01 ) assert miller_rabin(1_71_30_45_57_48_19 ) # 2_152_302_898_747 assert not miller_rabin(2_77_97_99_72_83_07 ) assert miller_rabin(2_77_97_99_72_83_27 ) # 3_474_749_660_383 assert not miller_rabin(1_13_85_00_23_90_94_41 ) assert miller_rabin(1_13_85_00_23_90_95_27 ) # 341_550_071_728_321 assert not miller_rabin(1_27_50_41_01_88_48_80_43_51 ) assert miller_rabin(1_27_50_41_01_88_48_80_43_91 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_96_66_46_44_58_50_77_87_79_18_67 ) assert miller_rabin(7_96_66_46_44_58_50_77_87_79_19_51 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(55_28_40_67_74_46_64_78_97_66_03_33 ) assert miller_rabin(55_28_40_67_74_46_64_78_97_66_03_59 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
255
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): @slow def lowercase ( self : List[Any] ) -> List[Any]: lowercase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) lowercase : Dict = AutoTokenizer.from_pretrained('google/mt5-small' ) lowercase : List[Any] = tokenizer('Hello there', return_tensors='tf' ).input_ids lowercase : Any = tokenizer('Hi I am', return_tensors='tf' ).input_ids lowercase : Dict = model(lowerCAmelCase, labels=lowerCAmelCase ).loss lowercase : Optional[int] = -tf.math.reduce_mean(lowerCAmelCase ).numpy() lowercase : Tuple = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
255
1
"""simple docstring""" UpperCAmelCase : Optional[Any] = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
320
"""simple docstring""" UpperCAmelCase : Dict = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def lowerCamelCase ( _UpperCamelCase : bytes ) -> bytes: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : Any = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_UpperCamelCase ) __UpperCAmelCase : str = """""".join(bin(_UpperCamelCase )[2:].zfill(8 ) for byte in data ) __UpperCAmelCase : int = len(_UpperCamelCase ) % 6 != 0 if padding_needed: # The padding that will be added later __UpperCAmelCase : Dict = b"""=""" * ((6 - len(_UpperCamelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_UpperCamelCase ) % 6) else: __UpperCAmelCase : List[str] = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_UpperCamelCase ) , 6 ) ).encode() + padding ) def lowerCamelCase ( _UpperCamelCase : str ) -> bytes: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : Tuple = ( """argument should be a bytes-like object or ASCII string, """ f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_UpperCamelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_UpperCamelCase , _UpperCamelCase ): try: __UpperCAmelCase : Optional[Any] = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) __UpperCAmelCase : str = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __UpperCAmelCase : List[str] = encoded_data[:-padding] __UpperCAmelCase : int = """""".join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __UpperCAmelCase : Optional[Any] = """""".join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data ) __UpperCAmelCase : List[Any] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_UpperCamelCase ) , 8 ) ] return bytes(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
320
1
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class _snake_case ( unittest.TestCase ): @parameterized.expand([(None,), ("""foo.json""",)]) def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : List[Any] = GenerationConfig( do_sample=_lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowerCamelCase , config_name=_lowerCamelCase) UpperCAmelCase__ : str = GenerationConfig.from_pretrained(_lowerCamelCase , config_name=_lowerCamelCase) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _lowerCamelCase) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50) self.assertEqual(loaded_config.max_length , 20) self.assertEqual(loaded_config.max_time , _lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Tuple = AutoConfig.from_pretrained("""gpt2""") UpperCAmelCase__ : Dict = GenerationConfig.from_model_config(_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_lowerCamelCase , _lowerCamelCase) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def snake_case__ ( self): UpperCAmelCase__ : List[str] = GenerationConfig() UpperCAmelCase__ : List[Any] = { """max_new_tokens""": 1024, """foo""": """bar""", } UpperCAmelCase__ : List[Any] = copy.deepcopy(_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = generation_config.update(**_lowerCamelCase) # update_kwargs was not modified (no side effects) self.assertEqual(_lowerCamelCase , _lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_lowerCamelCase , {"""foo""": """bar"""}) def snake_case__ ( self): UpperCAmelCase__ : Tuple = GenerationConfig() UpperCAmelCase__ : Optional[Any] = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""") as tmp_dir: generation_config.save_pretrained(_lowerCamelCase) UpperCAmelCase__ : Any = GenerationConfig.from_pretrained(_lowerCamelCase) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""") UpperCAmelCase__ : int = GenerationConfig.from_model_config(_lowerCamelCase) assert not hasattr(_lowerCamelCase , """foo""") # no new kwargs should be initialized if from config def snake_case__ ( self): UpperCAmelCase__ : int = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , _lowerCamelCase) self.assertEqual(default_config.num_beams , 1) UpperCAmelCase__ : int = GenerationConfig( do_sample=_lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , _lowerCamelCase) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = GenerationConfig.from_pretrained(_lowerCamelCase , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , _lowerCamelCase) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class _snake_case ( unittest.TestCase ): @classmethod def snake_case__ ( cls): UpperCAmelCase__ : List[str] = TOKEN HfFolder.save_token(_lowerCamelCase) @classmethod def snake_case__ ( cls): try: delete_repo(token=cls._token , repo_id="""test-generation-config""") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""") except HTTPError: pass def snake_case__ ( self): UpperCAmelCase__ : Any = GenerationConfig( do_sample=_lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token) UpperCAmelCase__ : Any = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _lowerCamelCase , repo_id="""test-generation-config""" , push_to_hub=_lowerCamelCase , use_auth_token=self._token) UpperCAmelCase__ : Dict = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = GenerationConfig( do_sample=_lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token) UpperCAmelCase__ : Dict = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _lowerCamelCase , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=_lowerCamelCase , use_auth_token=self._token) UpperCAmelCase__ : int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase))
163
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def _UpperCamelCase ( UpperCamelCase__ ): if hor == 1_2_8: UpperCAmelCase__ : int = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") UpperCAmelCase__ : Tuple = (3_2, 1_2_8, 2_5_6) UpperCAmelCase__ : Union[str, Any] = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 3_2: UpperCAmelCase__ : Dict = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") UpperCAmelCase__ : Union[str, Any] = (3_2, 6_4, 1_2_8, 2_5_6) UpperCAmelCase__ : str = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") UpperCAmelCase__ : Any = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) UpperCAmelCase__ : Tuple = model.state_dict() UpperCAmelCase__ : Union[str, Any] = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 1_4, """out_channels""": 1_4, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_5_5_3_6, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } UpperCAmelCase__ : List[Any] = UNetaDModel(**UpperCamelCase__ ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) UpperCAmelCase__ : Optional[Any] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCAmelCase__ : Union[str, Any] = state_dict.pop(UpperCamelCase__ ) hf_value_function.load_state_dict(UpperCamelCase__ ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def _UpperCamelCase ( ): UpperCAmelCase__ : Any = { """in_channels""": 1_4, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (3_2, 6_4, 1_2_8, 2_5_6), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_5_5_3_6, """out_channels""": 1_4, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } UpperCAmelCase__ : Tuple = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) UpperCAmelCase__ : Optional[Any] = model UpperCAmelCase__ : Dict = UNetaDModel(**UpperCamelCase__ ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) UpperCAmelCase__ : Dict = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCAmelCase__ : str = state_dict.pop(UpperCamelCase__ ) hf_value_function.load_state_dict(UpperCamelCase__ ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
163
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""", """funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""", """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""", """funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""", } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''funnel''' lowerCamelCase_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self , lowercase=3_0_5_2_2 , lowercase=[4, 4, 4] , lowercase=None , lowercase=2 , lowercase=7_6_8 , lowercase=1_2 , lowercase=6_4 , lowercase=3_0_7_2 , lowercase="gelu_new" , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=None , lowercase=1E-9 , lowercase="mean" , lowercase="relative_shift" , lowercase=True , lowercase=True , lowercase=True , **lowercase , ): """simple docstring""" A_ : Dict = vocab_size A_ : Union[str, Any] = block_sizes A_ : Union[str, Any] = [1] * len(lowercase ) if block_repeats is None else block_repeats assert len(lowercase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." A_ : Optional[Any] = num_decoder_layers A_ : Optional[int] = d_model A_ : Union[str, Any] = n_head A_ : Tuple = d_head A_ : Optional[Any] = d_inner A_ : List[Any] = hidden_act A_ : List[str] = hidden_dropout A_ : Optional[Any] = attention_dropout A_ : str = activation_dropout A_ : Union[str, Any] = initializer_range A_ : Optional[int] = initializer_std A_ : Dict = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' A_ : List[Any] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' A_ : str = attention_type A_ : Optional[int] = separate_cls A_ : List[Any] = truncate_seq A_ : Dict = pool_q_only super().__init__(**lowercase ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
192
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): """simple docstring""" warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase )
192
1
'''simple docstring''' import os import string import sys a__ : int = 1 << 8 a__ : Optional[Any] = { "tab": ord("\t"), "newline": ord("\r"), "esc": 2_7, "up": 6_5 + ARROW_KEY_FLAG, "down": 6_6 + ARROW_KEY_FLAG, "right": 6_7 + ARROW_KEY_FLAG, "left": 6_8 + ARROW_KEY_FLAG, "mod_int": 9_1, "undefined": sys.maxsize, "interrupt": 3, "insert": 5_0, "delete": 5_1, "pg_up": 5_3, "pg_down": 5_4, } a__ : Dict = KEYMAP["up"] a__ : Optional[Any] = KEYMAP["left"] if sys.platform == "win32": a__ : List[Any] = [] a__ : Optional[int] = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(1_0): a__ : Optional[int] = ord(str(i)) def snake_case ( )-> List[Any]: """simple docstring""" if os.name == "nt": import msvcrt __A = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(UpperCAmelCase ) == 0: # Read the keystroke __A = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __A = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __A = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(UpperCAmelCase ) if ord(UpperCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) __A = chr(KEYMAP['esc'] ) except KeyError: __A = cha[1] else: __A = ch.decode(UpperCAmelCase ) else: __A = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __A = sys.stdin.fileno() __A = termios.tcgetattr(UpperCAmelCase ) try: tty.setraw(UpperCAmelCase ) __A = sys.stdin.read(1 ) finally: termios.tcsetattr(UpperCAmelCase , termios.TCSADRAIN , UpperCAmelCase ) return ch def snake_case ( )-> List[Any]: """simple docstring""" __A = get_raw_chars() if ord(UpperCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(UpperCAmelCase ) == KEYMAP["esc"]: __A = get_raw_chars() if ord(UpperCAmelCase ) == KEYMAP["mod_int"]: __A = get_raw_chars() if ord(UpperCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(UpperCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(UpperCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
161
'''simple docstring''' from __future__ import annotations def snake_case ( UpperCAmelCase )-> list[int]: """simple docstring""" __A = 2 __A = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(UpperCAmelCase ) if n > 1: factors.append(UpperCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
161
1
"""simple docstring""" import os from distutils.util import strtobool def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Optional[Any] ) ->List[str]: for e in env_keys: A__ : List[Any] = int(os.environ.get(UpperCAmelCase__, -1 ) ) if val >= 0: return val return default def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : str=False ) ->List[str]: A__ : List[Any] = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) ) return strtobool(UpperCAmelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]="no" ) ->int: A__ : str = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) ) return value
296
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets A_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' A_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' A_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def _UpperCamelCase ( self : Dict ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _UpperCamelCase ( self : List[str] , snake_case : Dict , snake_case : List[Any] , snake_case : List[str]=None , snake_case : List[Any]="uniform_average" , snake_case : int=True ): '''simple docstring''' A__ : Optional[int] = mean_squared_error( snake_case , snake_case , sample_weight=snake_case , multioutput=snake_case , squared=snake_case ) return {"mse": mse}
296
1
import math def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] ) -> List[Any]: """simple docstring""" if ( not isinstance(_lowerCamelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int ) -> int: """simple docstring""" if ( not isinstance(_lowerCamelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
340
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'vision-encoder-decoder' lowerCamelCase__ = True def __init__( self, **__a): '''simple docstring''' super().__init__(**__a) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"A configuraton of type {self.model_type} cannot be instantiated because " f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}") _lowerCAmelCase : str = kwargs.pop("encoder") _lowerCAmelCase : Any = encoder_config.pop("model_type") _lowerCAmelCase : str = kwargs.pop("decoder") _lowerCAmelCase : List[str] = decoder_config.pop("model_type") _lowerCAmelCase : Optional[Any] = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Optional[Any] = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Optional[int] = True @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config") _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : str = True return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[str] = self.encoder.to_dict() _lowerCAmelCase : List[str] = self.decoder.to_dict() _lowerCAmelCase : Any = self.__class__.model_type return output class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4 @property def snake_case__ ( self): '''simple docstring''' return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}}) class UpperCAmelCase_ ( a): @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = OrderedDict() _lowerCAmelCase : Any = {0: "batch", 1: "past_decoder_sequence + sequence"} _lowerCAmelCase : List[str] = {0: "batch", 1: "past_decoder_sequence + sequence"} _lowerCAmelCase : Optional[Any] = {0: "batch", 1: "encoder_sequence"} return common_inputs def snake_case__ ( self, __a, __a = -1, __a = -1, __a = False, __a = None, ): '''simple docstring''' import torch _lowerCAmelCase : Optional[Any] = OrderedDict() _lowerCAmelCase : List[str] = super().generate_dummy_inputs( __a, batch_size=__a, seq_length=__a, is_pair=__a, framework=__a) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = dummy_input["input_ids"].shape _lowerCAmelCase : str = (batch, encoder_sequence, self._config.encoder_hidden_size) _lowerCAmelCase : List[str] = dummy_input.pop("input_ids") _lowerCAmelCase : List[str] = dummy_input.pop("attention_mask") _lowerCAmelCase : Optional[int] = torch.zeros(__a) return common_inputs class UpperCAmelCase_ ( a): @property def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self, __a): '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(__a) def snake_case__ ( self, __a, __a, __a = "default"): '''simple docstring''' _lowerCAmelCase : Dict = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__a, __a)
36
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCamelCase :Dict = get_tests_dir('''fixtures''') class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): # A mock response for an HTTP head request to emulate server down A_ : Optional[Any] = mock.Mock() A_ : Dict = 500 A_ : List[str] = {} A_ : Any = HTTPError A_ : Any = {} # Download this model to make sure it's in the cache. A_ : Union[str, Any] = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=lowercase ) as mock_head: A_ : Optional[Any] = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def _a (self ): # This test is for deprecated behavior and can be removed in v5 A_ : int = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def _a (self ): with self.assertRaises(lowercase ): # config is in subfolder, the following should not work without specifying the subfolder A_ : Optional[Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) A_ : Any = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(lowercase ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): @classmethod def _a (cls ): A_ : Optional[Any] = TOKEN HfFolder.save_token(lowercase ) @classmethod def _a (cls ): try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def _a (self ): A_ : Union[str, Any] = ViTImageProcessor.from_pretrained(lowercase ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) A_ : List[Any] = ViTImageProcessor.from_pretrained(F'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( lowercase , repo_id="""test-image-processor""" , push_to_hub=lowercase , use_auth_token=self._token ) A_ : List[str] = ViTImageProcessor.from_pretrained(F'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) def _a (self ): A_ : Optional[int] = ViTImageProcessor.from_pretrained(lowercase ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) A_ : Any = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( lowercase , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=lowercase , use_auth_token=self._token ) A_ : int = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) def _a (self ): CustomImageProcessor.register_for_auto_class() A_ : Tuple = CustomImageProcessor.from_pretrained(lowercase ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) A_ : Any = AutoImageProcessor.from_pretrained( F'{USER}/test-dynamic-image-processor' , trust_remote_code=lowercase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
135
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase :Union[str, Any] = logging.get_logger(__name__) lowerCamelCase :Union[str, Any] = {'''vocab_file''': '''spiece.model'''} lowerCamelCase :Tuple = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase=False , lowercase=True , lowercase=False , lowercase="<s>" , lowercase="</s>" , lowercase="<unk>" , lowercase="<sep>" , lowercase="<pad>" , lowercase="<cls>" , lowercase="<mask>" , lowercase=["<eop>", "<eod>"] , lowercase = None , **lowercase , ): A_ : Optional[int] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token A_ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase , remove_space=lowercase , keep_accents=lowercase , bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) A_ : List[str] = 3 A_ : List[str] = do_lower_case A_ : Tuple = remove_space A_ : Tuple = keep_accents A_ : Tuple = vocab_file A_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) A_ : Tuple = jieba A_ : int = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _a (self ): return len(self.sp_model ) def _a (self ): A_ : str = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): A_ : Optional[Any] = self.__dict__.copy() A_ : Tuple = None return state def __setstate__(self , lowercase ): A_ : Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A_ : List[Any] = {} A_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a (self , lowercase ): if self.remove_space: A_ : Union[str, Any] = """ """.join(inputs.strip().split() ) else: A_ : Optional[int] = inputs A_ : List[str] = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: A_ : str = unicodedata.normalize("""NFKD""" , lowercase ) A_ : Union[str, Any] = """""".join([c for c in outputs if not unicodedata.combining(lowercase )] ) if self.do_lower_case: A_ : int = outputs.lower() return outputs def _a (self , lowercase ): A_ : Optional[int] = self.preprocess_text(lowercase ) A_ : Dict = self.sp_model.encode(lowercase , out_type=lowercase ) A_ : List[Any] = [] for piece in pieces: if len(lowercase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): A_ : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A_ : Dict = cur_pieces[1:] else: A_ : str = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowercase ) else: new_pieces.append(lowercase ) return new_pieces def _a (self , lowercase ): return self.sp_model.PieceToId(lowercase ) def _a (self , lowercase ): return self.sp_model.IdToPiece(lowercase ) def _a (self , lowercase ): A_ : int = """""".join(lowercase ).replace(lowercase , """ """ ).strip() return out_string def _a (self , lowercase , lowercase = None ): A_ : List[str] = [self.sep_token_id] A_ : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _a (self , lowercase , lowercase = None , lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) if token_ids_a is not None: return ([0] * len(lowercase )) + [1] + ([0] * len(lowercase )) + [1, 1] return ([0] * len(lowercase )) + [1, 1] def _a (self , lowercase , lowercase = None ): A_ : str = [self.sep_token_id] A_ : str = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _a (self , lowercase , lowercase = None ): if not os.path.isdir(lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A_ : Tuple = os.path.join( lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , """wb""" ) as fi: A_ : Dict = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,) def _a (self , *lowercase , **lowercase ): A_ : Any = super()._decode(*lowercase , **lowercase ) A_ : int = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
135
1
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __snake_case = logging.get_logger(__name__) __snake_case = {} __snake_case = {} __snake_case = {} def A_ ( _lowerCAmelCase : type, _lowerCAmelCase : Optional[str], _lowerCAmelCase : Optional[List[str]] = None, ): """simple docstring""" _a = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) _a = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) _a = format_type def A_ ( _lowerCAmelCase : Exception, _lowerCAmelCase : Optional[str], _lowerCAmelCase : Optional[List[str]] = None ): """simple docstring""" _a = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _a = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: __snake_case = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: __snake_case = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: __snake_case = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def A_ ( _lowerCAmelCase : Optional[str] ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def A_ ( _lowerCAmelCase : Optional[str], **_lowerCAmelCase : Dict ): """simple docstring""" _a = get_format_type_from_alias(_lowerCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_lowerCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
320
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) _a = size if size is not None else {'''shortest_edge''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: _a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: _a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
320
1
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput lowercase__ = 8 def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=BITS ) -> List[str]: """simple docstring""" lowerCAmelCase_ : Optional[int] = x.device lowerCAmelCase_ : str = (x * 255).int().clamp(0 , 255 ) lowerCAmelCase_ : List[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case_ ) lowerCAmelCase_ : Optional[int] = rearrange(snake_case_ , "d -> d 1 1" ) lowerCAmelCase_ : Any = rearrange(snake_case_ , "b c h w -> b c 1 h w" ) lowerCAmelCase_ : str = ((x & mask) != 0).float() lowerCAmelCase_ : List[str] = rearrange(snake_case_ , "b c d h w -> b (c d) h w" ) lowerCAmelCase_ : Optional[Any] = bits * 2 - 1 return bits def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=BITS ) -> Tuple: """simple docstring""" lowerCAmelCase_ : List[str] = x.device lowerCAmelCase_ : Optional[int] = (x > 0).int() lowerCAmelCase_ : int = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case_ , dtype=torch.intaa ) lowerCAmelCase_ : int = rearrange(snake_case_ , "d -> d 1 1" ) lowerCAmelCase_ : List[Any] = rearrange(snake_case_ , "b (c d) h w -> b c d h w" , d=8 ) lowerCAmelCase_ : Tuple = reduce(x * mask , "b c d h w -> b c h w" , "sum" ) return (dec / 255).clamp(0.0 , 1.0 ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0.0 , __UpperCamelCase = True , __UpperCamelCase=None , __UpperCamelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowerCAmelCase_ : str = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowerCAmelCase_ : List[Any] = self.alphas_cumprod[timestep] lowerCAmelCase_ : Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowerCAmelCase_ : Any = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCAmelCase_ : Tuple = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowerCAmelCase_ : str = self.bit_scale if self.config.clip_sample: lowerCAmelCase_ : Union[str, Any] = torch.clamp(snake_case_ , -scale , snake_case_ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowerCAmelCase_ : Union[str, Any] = self._get_variance(snake_case_ , snake_case_ ) lowerCAmelCase_ : int = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowerCAmelCase_ : Tuple = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCAmelCase_ : Optional[int] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCAmelCase_ : Any = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowerCAmelCase_ : int = model_output.device if torch.is_tensor(snake_case_ ) else "cpu" lowerCAmelCase_ : Any = torch.randn(model_output.shape , dtype=model_output.dtype , generator=snake_case_ ).to(snake_case_ ) lowerCAmelCase_ : Union[str, Any] = self._get_variance(snake_case_ , snake_case_ ) ** 0.5 * eta * noise lowerCAmelCase_ : Optional[int] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=snake_case_ , pred_original_sample=snake_case_ ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="epsilon" , __UpperCamelCase=None , __UpperCamelCase = True , ) -> Union[DDPMSchedulerOutput, Tuple]: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowerCAmelCase_ , lowerCAmelCase_ : int = torch.split(snake_case_ , sample.shape[1] , dim=1 ) else: lowerCAmelCase_ : List[Any] = None # 1. compute alphas, betas lowerCAmelCase_ : Tuple = self.alphas_cumprod[t] lowerCAmelCase_ : Tuple = self.alphas_cumprod[t - 1] if t > 0 else self.one lowerCAmelCase_ : Union[str, Any] = 1 - alpha_prod_t lowerCAmelCase_ : Tuple = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowerCAmelCase_ : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowerCAmelCase_ : Optional[Any] = model_output else: raise ValueError(f'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" lowerCAmelCase_ : List[Any] = self.bit_scale if self.config.clip_sample: lowerCAmelCase_ : str = torch.clamp(snake_case_ , -scale , snake_case_ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase_ : str = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowerCAmelCase_ : Optional[Any] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase_ : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCAmelCase_ : Tuple = 0 if t > 0: lowerCAmelCase_ : List[Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=snake_case_ ).to(model_output.device ) lowerCAmelCase_ : int = (self._get_variance(snake_case_ , predicted_variance=snake_case_ ) ** 0.5) * noise lowerCAmelCase_ : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=snake_case_ , pred_original_sample=snake_case_ ) class __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : List[str] , a_ : UNetaDConditionModel , a_ : Union[DDIMScheduler, DDPMScheduler] , a_ : Optional[float] = 1.0 , ): super().__init__() lowerCAmelCase_ : List[str] = bit_scale lowerCAmelCase_ : Any = ( ddim_bit_scheduler_step if isinstance(__a , __a ) else ddpm_bit_scheduler_step ) self.register_modules(unet=__a , scheduler=__a ) @torch.no_grad() def __call__( self : List[Any] , a_ : Optional[int] = 2_56 , a_ : Optional[int] = 2_56 , a_ : Optional[int] = 50 , a_ : Optional[torch.Generator] = None , a_ : Optional[int] = 1 , a_ : Optional[str] = "pil" , a_ : bool = True , **a_ : Union[str, Any] , ): lowerCAmelCase_ : str = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=__a , ) lowerCAmelCase_ : str = decimal_to_bits(__a ) * self.bit_scale lowerCAmelCase_ : Any = latents.to(self.device ) self.scheduler.set_timesteps(__a ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowerCAmelCase_ : List[Any] = self.unet(__a , __a ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase_ : List[Any] = self.scheduler.step(__a , __a , __a ).prev_sample lowerCAmelCase_ : Optional[Any] = bits_to_decimal(__a ) if output_type == "pil": lowerCAmelCase_ : int = self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a )
368
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowercase__ = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } lowercase__ = {"""facebook/blenderbot-3B""": 128} class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Dict = VOCAB_FILES_NAMES a_ : Tuple = PRETRAINED_VOCAB_FILES_MAP a_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[int] = ["""input_ids""", """attention_mask"""] a_ : int = BlenderbotTokenizer def __init__( self : Optional[Any] , a_ : Union[str, Any]=None , a_ : Any=None , a_ : int=None , a_ : str="replace" , a_ : Tuple="<s>" , a_ : Optional[int]="</s>" , a_ : Union[str, Any]="</s>" , a_ : Union[str, Any]="<s>" , a_ : Optional[Any]="<unk>" , a_ : str="<pad>" , a_ : List[Any]="<mask>" , a_ : Tuple=False , a_ : Dict=True , **a_ : str , ): super().__init__( a_ , a_ , tokenizer_file=a_ , errors=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , add_prefix_space=a_ , trim_offsets=a_ , **a_ , ) lowerCAmelCase_ : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , a_ ) != add_prefix_space: lowerCAmelCase_ : str = getattr(a_ , pre_tok_state.pop("type" ) ) lowerCAmelCase_ : int = add_prefix_space lowerCAmelCase_ : List[Any] = pre_tok_class(**a_ ) lowerCAmelCase_ : Any = add_prefix_space lowerCAmelCase_ : str = "post_processor" lowerCAmelCase_ : str = getattr(self.backend_tokenizer , a_ , a_ ) if tokenizer_component_instance: lowerCAmelCase_ : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase_ : Dict = tuple(state["sep"] ) if "cls" in state: lowerCAmelCase_ : Optional[int] = tuple(state["cls"] ) lowerCAmelCase_ : Optional[int] = False if state.get("add_prefix_space" , a_ ) != add_prefix_space: lowerCAmelCase_ : List[str] = add_prefix_space lowerCAmelCase_ : Any = True if state.get("trim_offsets" , a_ ) != trim_offsets: lowerCAmelCase_ : int = trim_offsets lowerCAmelCase_ : List[str] = True if changes_to_apply: lowerCAmelCase_ : Optional[Any] = getattr(a_ , state.pop("type" ) ) lowerCAmelCase_ : Tuple = component_class(**a_ ) setattr(self.backend_tokenizer , a_ , a_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase ( self : int ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase ( self : int , a_ : List[Any] ): lowerCAmelCase_ : Optional[Any] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else value lowerCAmelCase_ : Tuple = value def lowerCamelCase ( self : int , *a_ : List[str] , **a_ : Optional[int] ): lowerCAmelCase_ : Tuple = kwargs.get("is_split_into_words" , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_ , **a_ ) def lowerCamelCase ( self : str , *a_ : Union[str, Any] , **a_ : List[str] ): lowerCAmelCase_ : Tuple = kwargs.get("is_split_into_words" , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*a_ , **a_ ) def lowerCamelCase ( self : int , a_ : str , a_ : Optional[str] = None ): lowerCAmelCase_ : str = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ ) def lowerCamelCase ( self : int , a_ : List[int] , a_ : Optional[List[int]] = None ): lowerCAmelCase_ : Optional[int] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase ( self : List[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase ( self : Union[str, Any] , a_ : "Conversation" ): lowerCAmelCase_ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(a_ ) lowerCAmelCase_ : Tuple = " ".join(a_ ) lowerCAmelCase_ : Any = self.encode(a_ ) if len(a_ ) > self.model_max_length: lowerCAmelCase_ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
161
0
def UpperCamelCase (lowercase_: str = "The quick brown fox jumps over the lazy dog" , ) -> bool: A__ : str = set() # Replace all the whitespace in our sentence A__ : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(lowercase_ ) == 26 def UpperCamelCase (lowercase_: str = "The quick brown fox jumps over the lazy dog" , ) -> bool: A__ : Union[str, Any] = [False] * 26 for char in input_str: if char.islower(): A__ : Optional[int] = True elif char.isupper(): A__ : Optional[Any] = True return all(lowercase_ ) def UpperCamelCase (lowercase_: str = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCamelCase () -> None: from timeit import timeit A__ : Dict = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=lowercase_ ) ) print(timeit("""is_pangram_faster()""" , setup=lowercase_ ) ) print(timeit("""is_pangram_fastest()""" , setup=lowercase_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
192
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def UpperCamelCase (lowercase_: List[str] , lowercase_: Optional[int] ) -> List[str]: A__ : Tuple = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) A__ : List[Any] = DatasetInfosDict.from_directory(lowercase_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ), ] , ) def UpperCamelCase (lowercase_: str , lowercase_: DatasetInfo ) -> List[Any]: A__ : Union[str, Any] = str(lowercase_ ) dataset_info.write_to_directory(lowercase_ ) A__ : List[Any] = DatasetInfo.from_directory(lowercase_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowercase_ , """dataset_info.json""" ) ) def UpperCamelCase () -> List[Any]: A__ : Union[str, Any] = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) A__ : Dict = dataset_info._to_yaml_dict() assert sorted(lowercase_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) A__ : Union[str, Any] = yaml.safe_dump(lowercase_ ) A__ : List[Any] = yaml.safe_load(lowercase_ ) assert dataset_info_yaml_dict == reloaded def UpperCamelCase () -> List[str]: A__ : Optional[int] = DatasetInfo() A__ : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=42 ), """v2""": DatasetInfo(dataset_size=1337 ), } ), ] , ) def UpperCamelCase (lowercase_: Tuple , lowercase_: DatasetInfosDict ) -> Optional[Any]: A__ : List[Any] = str(lowercase_ ) dataset_infos_dict.write_to_directory(lowercase_ ) A__ : Dict = DatasetInfosDict.from_directory(lowercase_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): A__ : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml A__ : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowercase_ , """README.md""" ) )
192
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
360
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase__ = logging.get_logger(__name__) class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = ['pixel_values'] def __init__( self : Tuple , lowercase__ : bool = True , lowercase__ : Dict[str, int] = None , lowercase__ : PILImageResampling = PILImageResampling.BICUBIC , lowercase__ : bool = True , lowercase__ : Union[int, float] = 1 / 255 , lowercase__ : bool = True , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : bool = True , **lowercase__ : List[Any] , ): '''simple docstring''' super().__init__(**lowercase__) lowerCAmelCase__ = size if size is not None else {'height': 384, 'width': 384} lowerCAmelCase__ = get_size_dict(lowercase__ , default_to_square=lowercase__) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase__ = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase__ = do_convert_rgb def __snake_case ( self : List[str] , lowercase__ : np.ndarray , lowercase__ : Dict[str, int] , lowercase__ : PILImageResampling = PILImageResampling.BICUBIC , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Dict , ): '''simple docstring''' lowerCAmelCase__ = get_size_dict(lowercase__ , default_to_square=lowercase__) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""") lowerCAmelCase__ = (size['height'], size['width']) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__) def __snake_case ( self : List[str] , lowercase__ : np.ndarray , lowercase__ : Union[int, float] , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Union[str, Any] , ): '''simple docstring''' return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__) def __snake_case ( self : Optional[Any] , lowercase__ : np.ndarray , lowercase__ : Union[float, List[float]] , lowercase__ : Union[float, List[float]] , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Any , ): '''simple docstring''' return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__) def __snake_case ( self : Any , lowercase__ : ImageInput , lowercase__ : Optional[bool] = None , lowercase__ : Optional[Dict[str, int]] = None , lowercase__ : PILImageResampling = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[float] = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[str, TensorType]] = None , lowercase__ : bool = None , lowercase__ : ChannelDimension = ChannelDimension.FIRST , **lowercase__ : Dict , ): '''simple docstring''' lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(lowercase__ , default_to_square=lowercase__) lowerCAmelCase__ = make_list_of_images(lowercase__) if not valid_images(lowercase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase__ = [convert_to_rgb(lowercase__) for image in images] # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(lowercase__) for image in images] if do_resize: lowerCAmelCase__ = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=lowercase__ , scale=lowercase__) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(lowercase__ , lowercase__) for image in images] lowerCAmelCase__ = BatchFeature(data={'pixel_values': images} , tensor_type=lowercase__) return encoded_outputs
119
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off SCREAMING_SNAKE_CASE_ = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] SCREAMING_SNAKE_CASE_ = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Tuple = "whisper" __snake_case : str = ["past_key_values"] __snake_case : List[str] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Union[str, Any] ,lowerCamelCase__ : Union[str, Any]=51865 ,lowerCamelCase__ : int=80 ,lowerCamelCase__ : List[str]=6 ,lowerCamelCase__ : Dict=4 ,lowerCamelCase__ : Optional[Any]=6 ,lowerCamelCase__ : Dict=4 ,lowerCamelCase__ : Tuple=1536 ,lowerCamelCase__ : Optional[int]=1536 ,lowerCamelCase__ : List[str]=0.0 ,lowerCamelCase__ : int=0.0 ,lowerCamelCase__ : List[str]=50257 ,lowerCamelCase__ : str=True ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : Any="gelu" ,lowerCamelCase__ : str=256 ,lowerCamelCase__ : str=0.0 ,lowerCamelCase__ : int=0.0 ,lowerCamelCase__ : Optional[Any]=0.0 ,lowerCamelCase__ : Dict=0.02 ,lowerCamelCase__ : Union[str, Any]=False ,lowerCamelCase__ : str=1500 ,lowerCamelCase__ : List[Any]=448 ,lowerCamelCase__ : Any=50256 ,lowerCamelCase__ : Union[str, Any]=50256 ,lowerCamelCase__ : List[Any]=50256 ,lowerCamelCase__ : int=None ,lowerCamelCase__ : List[str]=[220, 50256] ,lowerCamelCase__ : Optional[Any]=False ,lowerCamelCase__ : Tuple=256 ,lowerCamelCase__ : List[Any]=False ,lowerCamelCase__ : int=0.05 ,lowerCamelCase__ : Optional[int]=10 ,lowerCamelCase__ : str=2 ,lowerCamelCase__ : Tuple=0.0 ,lowerCamelCase__ : Optional[Any]=10 ,lowerCamelCase__ : int=0 ,lowerCamelCase__ : List[str]=7 ,**lowerCamelCase__ : List[str] ,) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = num_mel_bins SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = encoder_attention_heads SCREAMING_SNAKE_CASE = decoder_layers SCREAMING_SNAKE_CASE = decoder_attention_heads SCREAMING_SNAKE_CASE = decoder_ffn_dim SCREAMING_SNAKE_CASE = encoder_ffn_dim SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = init_std SCREAMING_SNAKE_CASE = encoder_layerdrop SCREAMING_SNAKE_CASE = decoder_layerdrop SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE = max_source_positions SCREAMING_SNAKE_CASE = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE = classifier_proj_size SCREAMING_SNAKE_CASE = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE = apply_spec_augment SCREAMING_SNAKE_CASE = mask_time_prob SCREAMING_SNAKE_CASE = mask_time_length SCREAMING_SNAKE_CASE = mask_time_min_masks SCREAMING_SNAKE_CASE = mask_feature_prob SCREAMING_SNAKE_CASE = mask_feature_length SCREAMING_SNAKE_CASE = mask_feature_min_masks SCREAMING_SNAKE_CASE = median_filter_width super().__init__( pad_token_id=lowerCamelCase__ ,bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,is_encoder_decoder=lowerCamelCase__ ,decoder_start_token_id=lowerCamelCase__ ,suppress_tokens=lowerCamelCase__ ,begin_suppress_tokens=lowerCamelCase__ ,**lowerCamelCase__ ,) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' SCREAMING_SNAKE_CASE = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: SCREAMING_SNAKE_CASE = {0: """batch"""} else: SCREAMING_SNAKE_CASE = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ ,direction="""inputs""" ) return common_inputs def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,lowerCamelCase__ : int = -1 ,lowerCamelCase__ : int = -1 ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : Optional["TensorType"] = None ,lowerCamelCase__ : int = 22050 ,lowerCamelCase__ : float = 5.0 ,lowerCamelCase__ : int = 220 ,) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = OrderedDict() SCREAMING_SNAKE_CASE = OnnxConfig.generate_dummy_inputs( self ,preprocessor=preprocessor.feature_extractor ,batch_size=lowerCamelCase__ ,framework=lowerCamelCase__ ,sampling_rate=lowerCamelCase__ ,time_duration=lowerCamelCase__ ,frequency=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = encoder_inputs["""input_features"""].shape[2] SCREAMING_SNAKE_CASE = encoder_sequence_length // 2 if self.use_past else seq_length SCREAMING_SNAKE_CASE = super().generate_dummy_inputs( preprocessor.tokenizer ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = encoder_inputs.pop("""input_features""" ) SCREAMING_SNAKE_CASE = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: SCREAMING_SNAKE_CASE = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> float: '''simple docstring''' return 1e-3
296
from collections import defaultdict from math import gcd def __lowercase ( _SCREAMING_SNAKE_CASE = 1_50_00_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = defaultdict(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , _SCREAMING_SNAKE_CASE , 2 ): if gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) > 1: continue SCREAMING_SNAKE_CASE = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_SCREAMING_SNAKE_CASE , limit + 1 , _SCREAMING_SNAKE_CASE ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'''{solution() = }''')
296
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowerCamelCase__ = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') lowerCamelCase__ = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode('''utf-8''').split() lowerCamelCase__ = '''|'''.join(sys.argv[1:]) lowerCamelCase__ = re.compile(RF'''^({joined_dirs}).*?\.py$''') lowerCamelCase__ = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
357
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def A(__a: Any , __a: Union[str, Any] , __a: List[str] ): lowerCAmelCase_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase_ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowerCAmelCase_ = F"{src_lang}-{tgt_lang}" lowerCAmelCase_ = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(__a , exist_ok=__a ) lowerCAmelCase_ = os.path.join(__a , "README.md" ) print(F"Generating {path}" ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(__a ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model_name.split('''-''') lowerCamelCase__ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
22
0
"""simple docstring""" import numpy as np def lowercase_ ( _lowerCamelCase: np.array ) -> np.array: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowercase_ ( _lowerCamelCase: np.array ) -> np.array: '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
135
"""simple docstring""" __A = [0, 2, 4, 6, 8] __A = [1, 3, 5, 7, 9] def lowercase_ ( _lowerCamelCase: int , _lowerCamelCase: int , _lowerCamelCase: list[int] , _lowerCamelCase: int ) -> int: '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __lowerCamelCase : Union[str, Any] = 0 for digit in range(10 ): __lowerCamelCase : Tuple = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , _lowerCamelCase , _lowerCamelCase ) return result __lowerCamelCase : List[str] = 0 for digita in range(10 ): __lowerCamelCase : Optional[Any] = digita if (remainder + digita) % 2 == 0: __lowerCamelCase : Any = ODD_DIGITS else: __lowerCamelCase : Dict = EVEN_DIGITS for digita in other_parity_digits: __lowerCamelCase : int = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , _lowerCamelCase , _lowerCamelCase , ) return result def lowercase_ ( _lowerCamelCase: int = 9 ) -> int: '''simple docstring''' __lowerCamelCase : List[Any] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(_lowerCamelCase , 0 , [0] * length , _lowerCamelCase ) return result if __name__ == "__main__": print(F"""{solution() = }""")
135
1
from __future__ import annotations from collections import deque class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ ): lowercase_ :list[dict] = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(UpperCamelCase_ ) self.set_fail_transitions() def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :Optional[int] = 0 for character in keyword: lowercase_ :Optional[Any] = self.find_next_state(UpperCamelCase_ , UpperCamelCase_ ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowercase_ :List[str] = len(self.adlist ) - 1 else: lowercase_ :Dict = next_state self.adlist[current_state]["output"].append(UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :deque = deque() for node in self.adlist[0]["next_states"]: q.append(UpperCamelCase_ ) lowercase_ :List[Any] = 0 while q: lowercase_ :int = q.popleft() for child in self.adlist[r]["next_states"]: q.append(UpperCamelCase_ ) lowercase_ :Optional[int] = self.adlist[r]['''fail_state'''] while ( self.find_next_state(UpperCamelCase_ , self.adlist[child]['''value'''] ) is None and state != 0 ): lowercase_ :Dict = self.adlist[state]['''fail_state'''] lowercase_ :str = self.find_next_state( UpperCamelCase_ , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: lowercase_ :str = 0 lowercase_ :Any = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :dict = {} # returns a dict with keywords and list of its occurrences lowercase_ :List[str] = 0 for i in range(len(UpperCamelCase_ ) ): while ( self.find_next_state(UpperCamelCase_ , string[i] ) is None and current_state != 0 ): lowercase_ :Tuple = self.adlist[current_state]['''fail_state'''] lowercase_ :Tuple = self.find_next_state(UpperCamelCase_ , string[i] ) if next_state is None: lowercase_ :Optional[Any] = 0 else: lowercase_ :int = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowercase_ :Optional[Any] = [] result[key].append(i - len(UpperCamelCase_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
369
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class UpperCamelCase : '''simple docstring''' lowercase : Optional[str] =field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """The column name of the images in the files."""} ) lowercase : Optional[str] =field(default=lowercase__ , metadata={"""help""": """A folder containing the training data."""} ) lowercase : Optional[str] =field(default=lowercase__ , metadata={"""help""": """A folder containing the validation data."""} ) lowercase : Optional[float] =field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) lowercase : Optional[int] =field( default=lowercase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowercase : Optional[int] =field( default=lowercase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def UpperCamelCase ( self ): lowercase_ :int = {} if self.train_dir is not None: lowercase_ :Union[str, Any] = self.train_dir if self.validation_dir is not None: lowercase_ :int = self.validation_dir lowercase_ :str = data_files if data_files else None @dataclass class UpperCamelCase : '''simple docstring''' lowercase : str =field( default=lowercase__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) lowercase : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowercase : str =field(default=lowercase__ , metadata={"""help""": """Name or path of preprocessor config."""} ) lowercase : bool =field( default=lowercase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) lowercase : float =field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) lowercase : bool =field( default=lowercase__ , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : float =field( default=1E-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def UpperCamelCase ( _a ) -> int: '''simple docstring''' lowercase_ :Tuple = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def UpperCamelCase ( ) -> Optional[int]: '''simple docstring''' lowercase_ :str = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ :int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ :Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , _a , _a ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ :Dict = training_args.get_process_log_level() logger.setLevel(_a ) transformers.utils.logging.set_verbosity(_a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowercase_ :Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ :List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. lowercase_ :Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ :Dict = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _a ) and data_args.train_val_split > 0.0: lowercase_ :int = ds['''train'''].train_test_split(data_args.train_val_split ) lowercase_ :Tuple = split['''train'''] lowercase_ :Optional[int] = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ :int = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: lowercase_ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.config_name , **_a ) elif model_args.model_name_or_path: lowercase_ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_a ) else: lowercase_ :str = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowercase_ :int = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_a ) elif model_args.model_name_or_path: lowercase_ :Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_a ) else: lowercase_ :Optional[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: lowercase_ :Dict = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowercase_ :str = ViTMAEForPreTraining(_a ) if training_args.do_train: lowercase_ :str = ds['''train'''].column_names else: lowercase_ :Tuple = ds['''validation'''].column_names if data_args.image_column_name is not None: lowercase_ :Optional[Any] = data_args.image_column_name elif "image" in column_names: lowercase_ :str = '''image''' elif "img" in column_names: lowercase_ :Any = '''img''' else: lowercase_ :Optional[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowercase_ :int = image_processor.size['''shortest_edge'''] else: lowercase_ :Union[str, Any] = (image_processor.size['''height'''], image_processor.size['''width''']) lowercase_ :List[str] = Compose( [ Lambda(lambda _a : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(_a , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_a ): lowercase_ :List[Any] = [transforms(_a ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowercase_ :Tuple = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_a ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowercase_ :str = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_a ) # Compute absolute learning rate lowercase_ :Any = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowercase_ :str = training_args.base_learning_rate * total_train_batch_size / 2_5_6 # Initialize our trainer lowercase_ :Any = Trainer( model=_a , args=_a , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=_a , data_collator=_a , ) # Training if training_args.do_train: lowercase_ :Any = None if training_args.resume_from_checkpoint is not None: lowercase_ :Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ :Tuple = last_checkpoint lowercase_ :List[Any] = trainer.train(resume_from_checkpoint=_a ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ :str = trainer.evaluate() trainer.log_metrics('''eval''' , _a ) trainer.save_metrics('''eval''' , _a ) # Write model card and (optionally) push to hub lowercase_ :List[Any] = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**_a ) else: trainer.create_model_card(**_a ) def UpperCamelCase ( _a ) -> str: '''simple docstring''' main() if __name__ == "__main__": main()
252
0
import re def UpperCamelCase( __UpperCamelCase : str ): lowerCAmelCase_ : str = re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__UpperCamelCase ,__UpperCamelCase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('''+918827897895'''))
103
'''simple docstring''' from __future__ import annotations def snake_case ( UpperCAmelCase )-> list[int]: """simple docstring""" __A = 2 __A = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(UpperCAmelCase ) if n > 1: factors.append(UpperCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
161
0
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 snake_case__ : int = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class snake_case_: def __init__( self : str , UpperCamelCase_ : int = 1_4 ): if group not in primes: raise ValueError('''Unsupported Group''' ) lowerCAmelCase : str = primes[group]['''prime'''] lowerCAmelCase : Tuple = primes[group]['''generator'''] lowerCAmelCase : Optional[Any] = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def lowerCamelCase__ ( self : Optional[int] ): return hex(self.__private_key )[2:] def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[str] = pow(self.generator , self.__private_key , self.prime ) return hex(UpperCamelCase_ )[2:] def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(UpperCamelCase_ , (self.prime - 1) // 2 , self.prime ) == 1 ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str ): lowerCAmelCase : List[str] = int(UpperCamelCase_ , base=1_6 ) if not self.is_valid_public_key(UpperCamelCase_ ): raise ValueError('''Invalid public key''' ) lowerCAmelCase : List[Any] = pow(UpperCamelCase_ , self.__private_key , self.prime ) return shaaaa(str(UpperCamelCase_ ).encode() ).hexdigest() @staticmethod def lowerCamelCase__ ( UpperCamelCase_ : int , UpperCamelCase_ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(UpperCamelCase_ , (prime - 1) // 2 , UpperCamelCase_ ) == 1 ) @staticmethod def lowerCamelCase__ ( UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : int = 1_4 ): lowerCAmelCase : Optional[Any] = int(UpperCamelCase_ , base=1_6 ) lowerCAmelCase : int = int(UpperCamelCase_ , base=1_6 ) lowerCAmelCase : Tuple = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError('''Invalid public key''' ) lowerCAmelCase : Any = pow(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return shaaaa(str(UpperCamelCase_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
314
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) class snake_case_( a__ ): __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ): super().__init__(UpperCamelCase_ ) lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config ) lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ): lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0] lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ ) lowerCAmelCase : Any = nsfw_detected.flatten() lowerCAmelCase : Dict = nsfw_detected > p_threshold lowerCAmelCase : int = nsfw_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ): if nsfw_detected_: lowerCAmelCase : List[Any] = np.zeros(images[idx].shape ) lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = watermark_detected.flatten() lowerCAmelCase : Optional[int] = watermark_detected > w_threshold lowerCAmelCase : Union[str, Any] = watermark_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCamelCase_ ): if watermark_detected_: lowerCAmelCase : List[str] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
314
1
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
28
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging __UpperCAmelCase = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] __UpperCAmelCase = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = ''' Hello world! cécé herlolip''' __UpperCAmelCase = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> List[str]: UpperCamelCase : int = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def UpperCamelCase ( snake_case__ : int , snake_case__ : List[str] , snake_case__ : int ) -> Any: UpperCamelCase : Dict = dct.pop(snake_case__ ) UpperCamelCase : Optional[Any] = val def UpperCamelCase ( snake_case__ : Dict ) -> Tuple: UpperCamelCase : int = torch.load(snake_case__ , map_location='cpu' ) UpperCamelCase : Dict = torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def UpperCamelCase ( snake_case__ : List[str] ) -> Dict: UpperCamelCase , UpperCamelCase : str = emb.weight.shape UpperCamelCase : Optional[int] = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) UpperCamelCase : List[str] = emb.weight.data return lin_layer @torch.no_grad() def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : str=None ) -> Optional[Any]: if not os.path.exists(snake_case__ ): UpperCamelCase : List[str] = torch.hub.load('pytorch/fairseq' , snake_case__ ).eval() else: UpperCamelCase : int = load_xsum_checkpoint(snake_case__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: UpperCamelCase : Tuple = checkpoint_path.replace('.' , '-' ) UpperCamelCase : Optional[int] = BartConfig.from_pretrained(snake_case__ ) UpperCamelCase : Optional[Any] = bart.encode(snake_case__ ).unsqueeze(0 ) UpperCamelCase : Any = BartTokenizer.from_pretrained(snake_case__ ).encode(snake_case__ , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(snake_case__ , snake_case__ ).all(): raise ValueError( F"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": UpperCamelCase : Union[str, Any] = bart.state_dict() remove_ignore_keys_(snake_case__ ) UpperCamelCase : int = state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase : Any = BartForSequenceClassification(snake_case__ ).eval() model.load_state_dict(snake_case__ ) UpperCamelCase : Any = bart.predict('mnli' , snake_case__ , return_logits=snake_case__ ) UpperCamelCase : Tuple = model(snake_case__ )[0] # logits else: # no classification heads to worry about UpperCamelCase : List[str] = bart.model.state_dict() remove_ignore_keys_(snake_case__ ) UpperCamelCase : List[str] = state_dict['decoder.embed_tokens.weight'] UpperCamelCase : Union[str, Any] = bart.extract_features(snake_case__ ) if hf_checkpoint_name == "facebook/bart-large": UpperCamelCase : List[str] = BartModel(snake_case__ ).eval() model.load_state_dict(snake_case__ ) UpperCamelCase : Optional[int] = model(snake_case__ ).model[0] else: UpperCamelCase : Union[str, Any] = BartForConditionalGeneration(snake_case__ ).eval() # an existing summarization ckpt model.model.load_state_dict(snake_case__ ) if hasattr(snake_case__ , 'lm_head' ): UpperCamelCase : Optional[int] = make_linear_from_emb(model.model.shared ) UpperCamelCase : Dict = model.model(snake_case__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) __UpperCAmelCase = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
119
0
"""simple docstring""" from numpy import exp, pi, sqrt def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = 0.0 , UpperCAmelCase = 1.0 ) ->int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
303
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=24 , __UpperCAmelCase=2 , __UpperCAmelCase=6 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=10_00 , ) ->List[str]: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = scope a_ = range_bbox def UpperCAmelCase__ ( self) ->int: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: a_ = bbox[i, j, 3] a_ = bbox[i, j, 1] a_ = t if bbox[i, j, 2] < bbox[i, j, 0]: a_ = bbox[i, j, 2] a_ = bbox[i, j, 0] a_ = t a_ = None if self.use_input_mask: a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self) ->List[str]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Any: a_ = LiltModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Union[str, Any]: a_ = self.num_labels a_ = LiltForTokenClassification(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Dict: a_ = LiltForQuestionAnswering(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self) ->str: a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) a_ : List[str] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) a_ : Any = False a_ : Dict = False def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: return True def UpperCAmelCase__ ( self) ->str: a_ = LiltModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ = type self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->List[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = LiltModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) @require_torch @slow class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->List[Any]: a_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(__UpperCAmelCase) a_ = torch.tensor([[1, 2]] , device=__UpperCAmelCase) a_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(input_ids=__UpperCAmelCase , bbox=__UpperCAmelCase) a_ = torch.Size([1, 2, 7_68]) a_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , __UpperCAmelCase) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __UpperCAmelCase , atol=1E-3))
303
1
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( lowercase__ : float, lowercase__ : float, lowercase__ : float ): '''simple docstring''' if days_between_payments <= 0: raise ValueError('days_between_payments must be > 0' ) if daily_interest_rate < 0: raise ValueError('daily_interest_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * daily_interest_rate * days_between_payments def __UpperCamelCase ( lowercase__ : float, lowercase__ : float, lowercase__ : float, ): '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError('number_of_compounding_periods must be > 0' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __UpperCamelCase ( lowercase__ : float, lowercase__ : float, lowercase__ : float, ): '''simple docstring''' if number_of_years <= 0: raise ValueError('number_of_years must be > 0' ) if nominal_annual_percentage_rate < 0: raise ValueError('nominal_annual_percentage_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return compound_interest( __lowercase, nominal_annual_percentage_rate / 3_65, number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
141
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE :int = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class A_ ( lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : List[str] = PegasusTokenizer _lowerCamelCase : int = PegasusTokenizerFast _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : List[str] = True def lowercase ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = PegasusTokenizer(snake_case_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self : Tuple ): return PegasusTokenizer.from_pretrained("google/pegasus-large" ) def lowercase ( self : Union[str, Any] , **snake_case_ : Union[str, Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowercase ( self : Tuple , snake_case_ : Any ): return ("This is a test", "This is a test") def lowercase ( self : Optional[int] ): _UpperCAmelCase = "</s>" _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "</s>" ) self.assertEqual(vocab_keys[-1] , "v" ) self.assertEqual(len(snake_case_ ) , 1_1_0_3 ) def lowercase ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def lowercase ( self : List[Any] ): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase = ( "Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important" " </s> <pad> <pad> <pad>" ) _UpperCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=snake_case_ , add_special_tokens=snake_case_ ).input_ids[0] _UpperCAmelCase = py_tokenizer([raw_input_str] , return_tensors=snake_case_ , add_special_tokens=snake_case_ ).input_ids[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowercase ( self : Tuple ): _UpperCAmelCase = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _UpperCAmelCase = "<mask_1> To ensure a <mask_2> flow of bank resolutions." _UpperCAmelCase = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] _UpperCAmelCase = tokenizer([raw_input_str] , return_tensors=snake_case_ ).input_ids[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 _UpperCAmelCase = "To ensure a smooth flow of bank resolutions." _UpperCAmelCase = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] _UpperCAmelCase = tokenizer([raw_input_str] , return_tensors=snake_case_ ).input_ids[0] self.assertListEqual(snake_case_ , snake_case_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self : int ): _UpperCAmelCase = ["This is going to be way too long." * 1_5_0, "short example"] _UpperCAmelCase = ["not super long but more than 5 tokens", "tiny"] _UpperCAmelCase = self._large_tokenizer(snake_case_ , padding=snake_case_ , truncation=snake_case_ , return_tensors="pt" ) _UpperCAmelCase = self._large_tokenizer( text_target=snake_case_ , max_length=5 , padding=snake_case_ , truncation=snake_case_ , return_tensors="pt" ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(snake_case_ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self : Dict ): # fmt: off _UpperCAmelCase = {"input_ids": [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , ) @require_sentencepiece @require_tokenizers class A_ ( lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : List[str] = PegasusTokenizer _lowerCamelCase : List[Any] = PegasusTokenizerFast _lowerCamelCase : int = True _lowerCamelCase : Union[str, Any] = True def lowercase ( self : Any ): super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = PegasusTokenizer(snake_case_ , offset=0 , mask_token_sent=snake_case_ , mask_token="[MASK]" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self : Tuple ): return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" ) def lowercase ( self : Optional[Any] , **snake_case_ : Dict ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowercase ( self : Union[str, Any] , snake_case_ : str ): return ("This is a test", "This is a test") def lowercase ( self : List[str] ): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase = ( "Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>" " <pad> <pad> <pad>" ) _UpperCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=snake_case_ , add_special_tokens=snake_case_ ).input_ids[0] _UpperCAmelCase = py_tokenizer([raw_input_str] , return_tensors=snake_case_ , add_special_tokens=snake_case_ ).input_ids[0] self.assertListEqual(snake_case_ , snake_case_ ) @require_torch def lowercase ( self : Tuple ): _UpperCAmelCase = ["This is going to be way too long." * 1_0_0_0, "short example"] _UpperCAmelCase = ["not super long but more than 5 tokens", "tiny"] _UpperCAmelCase = self._large_tokenizer(snake_case_ , padding=snake_case_ , truncation=snake_case_ , return_tensors="pt" ) _UpperCAmelCase = self._large_tokenizer( text_target=snake_case_ , max_length=5 , padding=snake_case_ , truncation=snake_case_ , return_tensors="pt" ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(snake_case_ ) == 2 # input_ids, attention_mask. def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = ( "This is an example string that is used to test the original TF implementation against the HF" " implementation" ) _UpperCAmelCase = self._large_tokenizer(snake_case_ ).input_ids self.assertListEqual( snake_case_ , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
22
0
'''simple docstring''' def __a ( UpperCAmelCase ) ->int: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ): A = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCAmelCase ) if number < 1: A = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCAmelCase ) A = 1 for i in range(1 , UpperCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
337
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Optional[Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowerCAmelCase ) try: pickle.loads(pickle.dumps(_lowerCAmelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
337
1
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness a_ : Optional[int] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" a_ : Tuple = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" a_ : Any = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" a_ : Tuple = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" a_ : Optional[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def snake_case ( self ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase=[1, 10, 100] , UpperCamelCase=4 , UpperCamelCase=3.0 ): """simple docstring""" if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=UpperCamelCase ) as executor: lowerCamelCase_ = [] lowerCamelCase_ = Counter() lowerCamelCase_ = 0 lowerCamelCase_ = defaultdict(UpperCamelCase ) for task_id, (candidates, test_case) in enumerate(zip(UpperCamelCase , UpperCamelCase ) ): for candidate in candidates: lowerCamelCase_ = candidate + "\n" + test_case lowerCamelCase_ = (test_program, timeout, task_id, completion_id[task_id]) lowerCamelCase_ = executor.submit(UpperCamelCase , *UpperCamelCase ) futures.append(UpperCamelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(UpperCamelCase ): lowerCamelCase_ = future.result() results[result["task_id"]].append((result["completion_id"], result) ) lowerCamelCase_ ,lowerCamelCase_ = [], [] for result in results.values(): result.sort() lowerCamelCase_ = [r[1]["passed"] for r in result] total.append(len(UpperCamelCase ) ) correct.append(sum(UpperCamelCase ) ) lowerCamelCase_ = np.array(UpperCamelCase ) lowerCamelCase_ = np.array(UpperCamelCase ) lowerCamelCase_ = k lowerCamelCase_ = {f'''pass@{k}''': estimate_pass_at_k(UpperCamelCase , UpperCamelCase , UpperCamelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def __snake_case ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ): def estimator(UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = itertools.repeat(lowerCamelCase__ , len(lowerCamelCase__ ) ) else: assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) lowerCamelCase_ = iter(lowerCamelCase__ ) return np.array([estimator(int(lowerCamelCase__ ) , int(lowerCamelCase__ ) , lowerCamelCase__ ) for n, c in zip(lowerCamelCase__ , lowerCamelCase__ )] )
55
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : int = { "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys UpperCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
0
# Lint as: python3 import itertools import os import re A_ : Dict = re.compile(r'([A-Z]+)([A-Z][a-z])') A_ : List[str] = re.compile(r'([a-z\d])([A-Z])') A_ : Optional[int] = re.compile(r'(?<!_)_(?!_)') A_ : Tuple = re.compile(r'(_{2,})') A_ : Tuple = r'^\w+(\.\w+)*$' A_ : List[str] = r'<>:/\|?*' def snake_case (UpperCAmelCase__ ) -> Dict: UpperCamelCase_: List[Any] = _uppercase_uppercase_re.sub(R'\1_\2' , UpperCAmelCase__ ) UpperCamelCase_: int = _lowercase_uppercase_re.sub(R'\1_\2' , UpperCAmelCase__ ) return name.lower() def snake_case (UpperCAmelCase__ ) -> Optional[int]: UpperCamelCase_: int = _single_underscore_re.split(UpperCAmelCase__ ) UpperCamelCase_: Dict = [_multiple_underscores_re.split(UpperCAmelCase__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(UpperCAmelCase__ ) if n != '' ) def snake_case (UpperCAmelCase__ ) -> Dict: if os.path.basename(UpperCAmelCase__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: if os.path.basename(UpperCAmelCase__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , UpperCAmelCase__ ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(UpperCAmelCase__ )}-{split}''' def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Union[str, Any]: UpperCamelCase_: List[Any] = filename_prefix_for_split(UpperCAmelCase__ , UpperCAmelCase__ ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' UpperCamelCase_: Optional[int] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) return F'''{filepath}*''' def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> List[Any]: UpperCamelCase_: Dict = filename_prefix_for_split(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Dict = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) if shard_lengths: UpperCamelCase_: str = len(UpperCAmelCase__ ) UpperCamelCase_: Dict = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(UpperCAmelCase__ )] if filetype_suffix: UpperCamelCase_: List[str] = [filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: UpperCamelCase_: Optional[Any] = prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
361
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def snake_case (UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: int = [False] * len(UpperCAmelCase__ ) UpperCamelCase_: Any = [-1] * len(UpperCAmelCase__ ) def dfs(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Tuple = True UpperCamelCase_: Optional[int] = c for u in graph[v]: if not visited[u]: dfs(UpperCAmelCase__ , 1 - c ) for i in range(len(UpperCAmelCase__ ) ): if not visited[i]: dfs(UpperCAmelCase__ , 0 ) for i in range(len(UpperCAmelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph A_ : Dict = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
292
0
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker __UpperCAmelCase = '''CompVis/stable-diffusion-v1-1''' __UpperCAmelCase = '''CompVis/stable-diffusion-v1-2''' __UpperCAmelCase = '''CompVis/stable-diffusion-v1-3''' __UpperCAmelCase = '''CompVis/stable-diffusion-v1-4''' class UpperCamelCase__ ( a__ ): """simple docstring""" def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A = True , ) -> str: super()._init_() SCREAMING_SNAKE_CASE_ = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = StableDiffusionPipeline( vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , unet=_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , requires_safety_checker=_lowerCamelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def _UpperCamelCase ( self ) -> Dict[str, Any]: return {k: getattr(self , _lowerCamelCase ) for k in self.config.keys() if not k.startswith('''_''' )} def _UpperCamelCase ( self , _A = "auto" ) -> Optional[int]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCamelCase ) def _UpperCamelCase ( self ) -> List[str]: self.enable_attention_slicing(_lowerCamelCase ) @torch.no_grad() def _UpperCamelCase ( self , _A , _A = 512 , _A = 512 , _A = 50 , _A = 7.5 , _A = None , _A = 1 , _A = 0.0 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , **_A , ) -> str: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def _UpperCamelCase ( self , _A , _A = 512 , _A = 512 , _A = 50 , _A = 7.5 , _A = None , _A = 1 , _A = 0.0 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , **_A , ) -> Tuple: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def _UpperCamelCase ( self , _A , _A = 512 , _A = 512 , _A = 50 , _A = 7.5 , _A = None , _A = 1 , _A = 0.0 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , **_A , ) -> Dict: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def _UpperCamelCase ( self , _A , _A = 512 , _A = 512 , _A = 50 , _A = 7.5 , _A = None , _A = 1 , _A = 0.0 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , **_A , ) -> Optional[Any]: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def _UpperCamelCase ( self , _A , _A = 512 , _A = 512 , _A = 50 , _A = 7.5 , _A = None , _A = 1 , _A = 0.0 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , **_A , ) -> Dict: SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(_lowerCamelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE_ = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE_ = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE_ = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE_ = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
299
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'ibert' def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=False , _lowerCamelCase="none" , **_lowerCamelCase , ) ->Any: super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : Optional[int] = quant_mode SCREAMING_SNAKE_CASE : Dict = force_dequant class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
313
0
import argparse import os import re UpperCAmelCase__ = 'src/transformers' # Pattern that looks at the indentation in a line. UpperCAmelCase__ = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. UpperCAmelCase__ = re.compile(r'^\s*\"([^\"]+)\":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCAmelCase__ = re.compile(r'^\s*_import_structure\[\"([^\"]+)\"\]') # Pattern that matches `"key",` and puts `key` in group 0. UpperCAmelCase__ = re.compile(r'^\s*\"([^\"]+)\",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCAmelCase__ = re.compile(r'\[([^\]]+)\]') def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] ) -> Optional[int]: _snake_case = _re_indent.search(lowerCAmelCase__ ) return "" if search is None else search.groups()[0] def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any="" , __lowerCamelCase : Tuple=None , __lowerCamelCase : Union[str, Any]=None ) -> Optional[Any]: _snake_case = 0 _snake_case = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCAmelCase__ ): index += 1 _snake_case = ['''\n'''.join(lines[:index] )] else: _snake_case = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _snake_case = [lines[index]] index += 1 while index < len(lowerCAmelCase__ ) and (end_prompt is None or not lines[index].startswith(lowerCAmelCase__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCAmelCase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCAmelCase__ ) ) if index < len(lowerCAmelCase__ ) - 1: _snake_case = [lines[index + 1]] index += 1 else: _snake_case = [] else: blocks.append('''\n'''.join(lowerCAmelCase__ ) ) _snake_case = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCAmelCase__ ) > 0: blocks.append('''\n'''.join(lowerCAmelCase__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCAmelCase__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _UpperCAmelCase ( __lowerCamelCase : str ) -> Dict: def _inner(__lowerCamelCase : List[str] ): return key(lowerCAmelCase__ ).lower().replace('''_''' , '''''' ) return _inner def _UpperCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : str=None ) -> int: # If no key is provided, we use a noop. def noop(__lowerCamelCase : int ): return x if key is None: _snake_case = noop # Constants are all uppercase, they go first. _snake_case = [obj for obj in objects if key(lowerCAmelCase__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _snake_case = [obj for obj in objects if key(lowerCAmelCase__ )[0].isupper() and not key(lowerCAmelCase__ ).isupper()] # Functions begin with a lowercase, they go last. _snake_case = [obj for obj in objects if not key(lowerCAmelCase__ )[0].isupper()] _snake_case = ignore_underscore(lowerCAmelCase__ ) return sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) def _UpperCAmelCase ( __lowerCamelCase : List[str] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(__lowerCamelCase : Union[str, Any] ): _snake_case = match.groups()[0] if "," not in imports: return f'''[{imports}]''' _snake_case = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _snake_case = keys[:-1] return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(lowerCAmelCase__ )] ) + "]" _snake_case = import_statement.split('''\n''' ) if len(lowerCAmelCase__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _snake_case = 2 if lines[1].strip() == '''[''' else 1 _snake_case = [(i, _re_strip_line.search(lowerCAmelCase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _snake_case = sort_objects(lowerCAmelCase__ , key=lambda __lowerCamelCase : x[1] ) _snake_case = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCAmelCase__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _snake_case = _re_bracket_content.sub(_replace , lines[1] ) else: _snake_case = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _snake_case = keys[:-1] _snake_case = get_indent(lines[1] ) + ''', '''.join([f'''"{k}"''' for k in sort_objects(lowerCAmelCase__ )] ) return "\n".join(lowerCAmelCase__ ) else: # Finally we have to deal with imports fitting on one line _snake_case = _re_bracket_content.sub(_replace , lowerCAmelCase__ ) return import_statement def _UpperCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : Tuple=True ) -> str: with open(lowerCAmelCase__ , encoding='''utf-8''' ) as f: _snake_case = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _snake_case = split_code_in_indented_blocks( lowerCAmelCase__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCAmelCase__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _snake_case = main_blocks[block_idx] _snake_case = block.split('''\n''' ) # Get to the start of the imports. _snake_case = 0 while line_idx < len(lowerCAmelCase__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _snake_case = len(lowerCAmelCase__ ) else: line_idx += 1 if line_idx >= len(lowerCAmelCase__ ): continue # Ignore beginning and last line: they don't contain anything. _snake_case = '''\n'''.join(block_lines[line_idx:-1] ) _snake_case = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _snake_case = split_code_in_indented_blocks(lowerCAmelCase__ , indent_level=lowerCAmelCase__ ) # We have two categories of import key: list or _import_structure[key].append/extend _snake_case = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _snake_case = [(pattern.search(lowerCAmelCase__ ).groups()[0] if pattern.search(lowerCAmelCase__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _snake_case = [(i, key) for i, key in enumerate(lowerCAmelCase__ ) if key is not None] _snake_case = [x[0] for x in sorted(lowerCAmelCase__ , key=lambda __lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _snake_case = 0 _snake_case = [] for i in range(len(lowerCAmelCase__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _snake_case = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCAmelCase__ ) count += 1 # And we put our main block back together with its first and last line. _snake_case = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCAmelCase__ ): if check_only: return True else: print(f'''Overwriting {file}.''' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCAmelCase__ ) ) def _UpperCAmelCase ( __lowerCamelCase : Optional[int]=True ) -> Optional[int]: _snake_case = [] for root, _, files in os.walk(lowerCAmelCase__ ): if "__init__.py" in files: _snake_case = sort_imports(os.path.join(lowerCAmelCase__ , '''__init__.py''' ) , check_only=lowerCAmelCase__ ) if result: _snake_case = [os.path.join(lowerCAmelCase__ , '''__init__.py''' )] if len(lowerCAmelCase__ ) > 0: raise ValueError(f'''Would overwrite {len(lowerCAmelCase__ )} files, run `make style`.''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') UpperCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
361
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCAmelCase__ = parser.parse_args() if args.model_type == "bert": UpperCAmelCase__ = BertForMaskedLM.from_pretrained(args.model_name) UpperCAmelCase__ = 'bert' else: raise ValueError('args.model_type should be "bert".') UpperCAmelCase__ = model.state_dict() UpperCAmelCase__ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCAmelCase__ = state_dict[F"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: UpperCAmelCase__ = state_dict[F"{prefix}.embeddings.LayerNorm.{w}"] UpperCAmelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] UpperCAmelCase__ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 UpperCAmelCase__ = state_dict['cls.predictions.decoder.weight'] UpperCAmelCase__ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: UpperCAmelCase__ = state_dict[F"cls.predictions.transform.dense.{w}"] UpperCAmelCase__ = state_dict[F"cls.predictions.transform.LayerNorm.{w}"] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
40
0
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __UpperCamelCase : """simple docstring""" def UpperCAmelCase__ ( self : Any , _A : Any ): """simple docstring""" raise NotImplementedError() def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" raise NotImplementedError() class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[str] , _A : "AutoTokenizer" , _A : bool = False , **_A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer __SCREAMING_SNAKE_CASE : Any = skip_prompt __SCREAMING_SNAKE_CASE : Union[str, Any] = decode_kwargs # variables used in the streaming process __SCREAMING_SNAKE_CASE : Optional[int] = [] __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : str = True def UpperCAmelCase__ ( self : Optional[int] , _A : Dict ): """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: __SCREAMING_SNAKE_CASE : Any = value[0] if self.skip_prompt and self.next_tokens_are_prompt: __SCREAMING_SNAKE_CASE : str = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) __SCREAMING_SNAKE_CASE : int = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): __SCREAMING_SNAKE_CASE : Dict = text[self.print_len :] __SCREAMING_SNAKE_CASE : Optional[int] = [] __SCREAMING_SNAKE_CASE : List[str] = 0 # If the last token is a CJK character, we print the characters. elif len(_A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): __SCREAMING_SNAKE_CASE : Optional[int] = text[self.print_len :] self.print_len += len(_A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: __SCREAMING_SNAKE_CASE : int = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(_A ) self.on_finalized_text(_A ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" if len(self.token_cache ) > 0: __SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) __SCREAMING_SNAKE_CASE : List[str] = text[self.print_len :] __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Any = 0 else: __SCREAMING_SNAKE_CASE : Tuple = '''''' __SCREAMING_SNAKE_CASE : str = True self.on_finalized_text(_A , stream_end=_A ) def UpperCAmelCase__ ( self : Union[str, Any] , _A : str , _A : bool = False ): """simple docstring""" print(_A , flush=_A , end='''''' if not stream_end else None ) def UpperCAmelCase__ ( self : List[Any] , _A : str ): """simple docstring""" if ( (cp >= 0x4E_00 and cp <= 0x9F_FF) or (cp >= 0x34_00 and cp <= 0x4D_BF) # or (cp >= 0x2_00_00 and cp <= 0x2_A6_DF) # or (cp >= 0x2_A7_00 and cp <= 0x2_B7_3F) # or (cp >= 0x2_B7_40 and cp <= 0x2_B8_1F) # or (cp >= 0x2_B8_20 and cp <= 0x2_CE_AF) # or (cp >= 0xF9_00 and cp <= 0xFA_FF) or (cp >= 0x2_F8_00 and cp <= 0x2_FA_1F) # ): # return True return False class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[str] , _A : "AutoTokenizer" , _A : bool = False , _A : Optional[float] = None , **_A : Union[str, Any] ): """simple docstring""" super().__init__(_A , _A , **_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = Queue() __SCREAMING_SNAKE_CASE : Tuple = None __SCREAMING_SNAKE_CASE : Optional[Any] = timeout def UpperCAmelCase__ ( self : Optional[Any] , _A : str , _A : bool = False ): """simple docstring""" self.text_queue.put(_A , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : List[Any] ): """simple docstring""" return self def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
303
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = OmegaConf.load(snake_case ) if display: print(yaml.dump(OmegaConf.to_container(snake_case ) ) ) return config def a__ ( snake_case , snake_case=None , snake_case=None ): """simple docstring""" if conf_path is None: __SCREAMING_SNAKE_CASE : Any = '''./model_checkpoints/vqgan_only.yaml''' __SCREAMING_SNAKE_CASE : List[str] = load_config(snake_case , display=snake_case ) __SCREAMING_SNAKE_CASE : str = VQModel(**config.model.params ) if ckpt_path is None: __SCREAMING_SNAKE_CASE : Optional[Any] = '''./model_checkpoints/vqgan_only.pt''' __SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(snake_case , map_location=snake_case ) if ".ckpt" in ckpt_path: __SCREAMING_SNAKE_CASE : Optional[Any] = sd['''state_dict'''] model.load_state_dict(snake_case , strict=snake_case ) model.to(snake_case ) del sd return model def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = model.encode(snake_case ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) __SCREAMING_SNAKE_CASE : Any = model.decode(snake_case ) return xrec def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = string.rsplit('''.''' , 1 ) if reload: __SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module(snake_case ) importlib.reload(snake_case ) return getattr(importlib.import_module(snake_case , package=snake_case ) , cls ) def a__ ( snake_case ): """simple docstring""" if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def a__ ( snake_case , snake_case , snake_case=True , snake_case=True ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = instantiate_from_config(snake_case ) if sd is not None: model.load_state_dict(snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" # load the specified checkpoint if ckpt: __SCREAMING_SNAKE_CASE : Dict = torch.load(snake_case , map_location='''cpu''' ) __SCREAMING_SNAKE_CASE : List[Any] = pl_sd['''global_step'''] print(F'''loaded model from global step {global_step}.''' ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = {'''state_dict''': None} __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Dict = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=snake_case , eval_mode=snake_case )['''model'''] return model, global_step
303
1
from __future__ import annotations def __UpperCamelCase ( _A ): lowerCAmelCase_ = len(_A ) # We need to create solution object to save path. lowerCAmelCase_ = [[0 for _ in range(_A )] for _ in range(_A )] lowerCAmelCase_ = run_maze(_A , 0 , 0 , _A ) if solved: print('''\n'''.join(str(_A ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def __UpperCamelCase ( _A , _A , _A , _A ): lowerCAmelCase_ = len(_A ) # Final check point. if i == j == (size - 1): lowerCAmelCase_ = 1 return True lowerCAmelCase_ = (not i < 0) and (not j < 0) # Check lower bounds lowerCAmelCase_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. lowerCAmelCase_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited lowerCAmelCase_ = 1 # check for directions if ( run_maze(_A , i + 1 , _A , _A ) or run_maze(_A , _A , j + 1 , _A ) or run_maze(_A , i - 1 , _A , _A ) or run_maze(_A , _A , j - 1 , _A ) ): return True lowerCAmelCase_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
167
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _A = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') _A , _A = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') _A = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: _A = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _A = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"pip install -r transformers/examples/{example_dir}/requirements.txt"]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
167
1
def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" if not isinstance(_UpperCamelCase, _UpperCamelCase ): lowercase : List[str] = f"""Input value of [number={number}] must be an integer""" raise TypeError(_UpperCamelCase ) if number < 1: lowercase : str = f"""Input value of [number={number}] must be > 0""" raise ValueError(_UpperCamelCase ) lowercase : str = 1 for i in range(1, _UpperCamelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
337
from typing import List from .keymap import KEYMAP, get_character def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" def decorator(_UpperCamelCase ): lowercase : str = getattr(_UpperCamelCase, '''handle_key''', [] ) handle += [key] setattr(_UpperCamelCase, '''handle_key''', _UpperCamelCase ) return func return decorator def __lowercase ( *_UpperCamelCase ) ->Any: """simple docstring""" def decorator(_UpperCamelCase ): lowercase : List[Any] = getattr(_UpperCamelCase, '''handle_key''', [] ) handle += keys setattr(_UpperCamelCase, '''handle_key''', _UpperCamelCase ) return func return decorator class __SCREAMING_SNAKE_CASE ( A__ ): def __new__( cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : str = super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not hasattr(SCREAMING_SNAKE_CASE__ , '''key_handler''' ): setattr(SCREAMING_SNAKE_CASE__ , '''key_handler''' , {} ) setattr(SCREAMING_SNAKE_CASE__ , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): lowercase : Dict = getattr(SCREAMING_SNAKE_CASE__ , '''handle_key''' , [] ) for key in handled_keys: lowercase : List[Any] = value return new_cls @staticmethod def __lowerCamelCase ( cls ): lowercase : Dict = get_character() if char != KEYMAP["undefined"]: lowercase : Optional[int] = ord(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = cls.key_handler.get(SCREAMING_SNAKE_CASE__ ) if handler: lowercase : Tuple = char return handler(cls ) else: return None def __lowercase ( cls ) ->Any: """simple docstring""" return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
337
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : str = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = SpeechTaTokenizer __magic_name__ = False __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : Optional[Any] = SpeechTaTokenizer(snake_case__ ) _lowerCAmelCase : Tuple = AddedToken('<mask>' , lstrip=snake_case__ , rstrip=snake_case__ ) _lowerCAmelCase : Tuple = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[str] = 'this is a test' _lowerCAmelCase : Dict = 'this is a test' return input_text, output_text def a ( self , snake_case__ , snake_case__=False , snake_case__=20 , snake_case__=5 ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = self.get_input_output_texts(snake_case__ ) _lowerCAmelCase : Optional[Any] = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) _lowerCAmelCase : int = tokenizer.decode(snake_case__ , clean_up_tokenization_spaces=snake_case__ ) return text, ids def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = '<pad>' _lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(snake_case__ ) , 81 ) def a ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=snake_case__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _lowerCAmelCase : int = tokenizer.vocab_size _lowerCAmelCase : Dict = len(snake_case__ ) self.assertNotEqual(snake_case__ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _lowerCAmelCase : List[Any] = ['aaaaa bbbbbb', 'cccccccccdddddddd'] _lowerCAmelCase : Union[str, Any] = tokenizer.add_tokens(snake_case__ ) _lowerCAmelCase : Any = tokenizer.vocab_size _lowerCAmelCase : Optional[int] = len(snake_case__ ) self.assertNotEqual(snake_case__ , 0 ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , len(snake_case__ ) ) self.assertEqual(snake_case__ , all_size + len(snake_case__ ) ) _lowerCAmelCase : Tuple = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=snake_case__ ) self.assertGreaterEqual(len(snake_case__ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _lowerCAmelCase : Union[str, Any] = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} _lowerCAmelCase : Optional[Any] = tokenizer.add_special_tokens(snake_case__ ) _lowerCAmelCase : Optional[int] = tokenizer.vocab_size _lowerCAmelCase : Union[str, Any] = len(snake_case__ ) self.assertNotEqual(snake_case__ , 0 ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , len(snake_case__ ) ) self.assertEqual(snake_case__ , all_size_a + len(snake_case__ ) ) _lowerCAmelCase : List[Any] = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=snake_case__ ) self.assertGreaterEqual(len(snake_case__ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def a ( self ): '''simple docstring''' pass def a ( self ): '''simple docstring''' pass def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : List[Any] = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(snake_case__ , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) _lowerCAmelCase : str = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) _lowerCAmelCase : str = tokenizer.convert_tokens_to_ids(snake_case__ ) # fmt: off self.assertListEqual(snake_case__ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _lowerCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off _lowerCAmelCase : Dict = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=snake_case__ , )
25
'''simple docstring''' def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[int] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] _lowerCAmelCase : int = 6 _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Optional[int] = 1_9_0_1 _lowerCAmelCase : Optional[Any] = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 _lowerCAmelCase : List[str] = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] if month > 1_2: year += 1 _lowerCAmelCase : Optional[int] = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
25
1
import baseaa def __snake_case ( _UpperCAmelCase ): return baseaa.aaaencode(string.encode('''utf-8''' ) ) def __snake_case ( _UpperCAmelCase ): return baseaa.aaadecode(_UpperCAmelCase ).decode('''utf-8''' ) if __name__ == "__main__": import doctest doctest.testmod()
49
"""simple docstring""" from __future__ import annotations _snake_case : str = [] def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): for i in range(len(UpperCamelCase ) ): if board[row][i] == 1: return False for i in range(len(UpperCamelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(UpperCamelCase , -1 , -1 ) , range(UpperCamelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(UpperCamelCase , -1 , -1 ) , range(UpperCamelCase , len(UpperCamelCase ) ) ): if board[i][j] == 1: return False return True def A__ ( UpperCamelCase , UpperCamelCase ): if row >= len(UpperCamelCase ): solution.append(UpperCamelCase ) printboard(UpperCamelCase ) print() return True for i in range(len(UpperCamelCase ) ): if is_safe(UpperCamelCase , UpperCamelCase , UpperCamelCase ): A = 1 solve(UpperCamelCase , row + 1 ) A = 0 return False def A__ ( UpperCamelCase ): for i in range(len(UpperCamelCase ) ): for j in range(len(UpperCamelCase ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) _snake_case : List[str] = 8 _snake_case : List[str] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
292
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration snake_case : Tuple = "facebook/wmt19-en-de" snake_case : Any = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model snake_case : Tuple = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) snake_case : Any = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test snake_case : Tuple = tokenizer(["Making tiny model"], return_tensors="pt") snake_case : Union[str, Any] = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save snake_case : Dict = "tiny-wmt19-en-de" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-de
41
def lowerCAmelCase_ ( _snake_case : int , _snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : Optional[Any]=0 ) -> str: '''simple docstring''' return sorted(_snake_case , key=lambda _snake_case : x[column] ) def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : Any , _snake_case : Optional[int]=float("inf" ) ) -> Tuple: '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , _snake_case ): __magic_name__ : List[str] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __magic_name__ : Any = current_dis return min_dis def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : str , _snake_case : str=float("inf" ) ) -> Dict: '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , _snake_case ): for j in range(max(0 , i - 6 ) , _snake_case ): __magic_name__ : str = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __magic_name__ : List[str] = current_dis return min_dis def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any ) -> List[Any]: '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(_snake_case , _snake_case ) # recursion __magic_name__ : Tuple = points_counts // 2 __magic_name__ : Dict = closest_pair_of_points_sqr( _snake_case , points_sorted_on_y[:mid] , _snake_case ) __magic_name__ : Optional[int] = closest_pair_of_points_sqr( _snake_case , points_sorted_on_y[mid:] , points_counts - mid ) __magic_name__ : int = min(_snake_case , _snake_case ) __magic_name__ : Optional[int] = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_snake_case ) __magic_name__ : Tuple = dis_between_closest_in_strip( _snake_case , len(_snake_case ) , _snake_case ) return min(_snake_case , _snake_case ) def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : Optional[int] ) -> Dict: '''simple docstring''' __magic_name__ : Union[str, Any] = column_based_sort(_snake_case , column=0 ) __magic_name__ : List[Any] = column_based_sort(_snake_case , column=1 ) return ( closest_pair_of_points_sqr( _snake_case , _snake_case , _snake_case ) ) ** 0.5 if __name__ == "__main__": snake_case : List[str] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
41
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __A = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __A = json.load(f) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' return FSMTTokenizer.from_pretrained(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : int) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =FSMTForConditionalGeneration.from_pretrained(UpperCAmelCase_).to(UpperCAmelCase_) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ]) @slow def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int) ->Tuple: '''simple docstring''' lowerCamelCase__: Tuple =F"""facebook/wmt19-{pair}""" lowerCamelCase__: str =self.get_tokenizer(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =self.get_model(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =bleu_data[pair]["src"] lowerCamelCase__: Optional[int] =bleu_data[pair]["tgt"] lowerCamelCase__: Union[str, Any] =tokenizer(UpperCAmelCase_ , return_tensors="pt" , truncation=UpperCAmelCase_ , padding="longest").to(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCamelCase__: Union[str, Any] =tokenizer.batch_decode( UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_) lowerCamelCase__: str =calculate_bleu(UpperCAmelCase_ , UpperCAmelCase_) print(UpperCAmelCase_) self.assertGreaterEqual(scores["bleu"] , UpperCAmelCase_)
10
"""simple docstring""" from bisect import bisect from itertools import accumulate def lowercase ( A_ , A_ , A_ , A_ )-> Union[str, Any]: '''simple docstring''' a : Any = sorted(zip(A_ , A_ ) , key=lambda A_ : x[0] / x[1] , reverse=A_ ) a , a : int = [i[0] for i in r], [i[1] for i in r] a : Union[str, Any] = list(accumulate(A_ ) ) a : Optional[Any] = bisect(A_ , A_ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
40
0
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy lowercase__ : str = logging.getLogger(__name__) def UpperCamelCase_ ( lowerCAmelCase__ : torch.nn.Module , lowerCAmelCase__ : BnbQuantizationConfig , lowerCAmelCase__ : Union[str, os.PathLike] = None , lowerCAmelCase__ : Optional[Dict[str, Union[int, str, torch.device]]] = None , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : Optional[Dict[Union[int, str], Union[int, str]]] = None , lowerCAmelCase__ : Optional[Union[str, os.PathLike]] = None , lowerCAmelCase__ : bool = False , ) -> int: """simple docstring""" lowerCAmelCase_ : str = bnb_quantization_config.load_in_abit lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) lowerCAmelCase_ : List[Any] = [] # custom device map if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(device_map.keys() ) > 1: lowerCAmelCase_ : Any = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : List[Any] = get_keys_to_not_convert(lowerCAmelCase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : int = [] lowerCAmelCase_ : Optional[int] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowerCAmelCase__ ) # compatibility with peft lowerCAmelCase_ : int = load_in_abit lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : Dict = get_parameter_device(lowerCAmelCase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ ) # convert param to the right dtype lowerCAmelCase_ : int = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowerCAmelCase_ : List[Any] = name.replace('.weight' , '' ).replace('.bias' , '' ) lowerCAmelCase_ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowerCAmelCase__ ): param.to(lowerCAmelCase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( f"The model device type is {model_device.type}. However, cuda is needed for quantization." 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( f"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} " ) else: with init_empty_weights(): lowerCAmelCase_ : Optional[Any] = replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = get_quantized_model_device_map( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , max_memory=lowerCAmelCase__ , no_split_module_classes=lowerCAmelCase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : Optional[int] = True lowerCAmelCase_ : Any = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowerCAmelCase__ , offload_state_dict=lowerCAmelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowerCAmelCase__ , device_map=lowerCAmelCase__ , offload_dir=lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : int=None ) -> str: """simple docstring""" if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : Optional[Any] = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) lowerCAmelCase_ : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : Optional[Any] = special_dtypes lowerCAmelCase_ : List[str] = no_split_module_classes lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Tuple = get_balanced_memory( lowerCAmelCase__ , low_zero=(device_map == 'balanced_low_0') , max_memory=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowerCAmelCase_ : int = max_memory lowerCAmelCase_ : Any = infer_auto_device_map(lowerCAmelCase__ , **lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Any = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : Optional[int] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def UpperCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Tuple=None ) -> int: """simple docstring""" if modules_to_not_convert is None: lowerCAmelCase_ : List[Any] = [] lowerCAmelCase_ ,lowerCAmelCase_ : List[Any] = _replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , ) -> int: """simple docstring""" lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : int = [] current_key_name.append(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : int = '.'.join(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : List[str] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : List[Any] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowerCAmelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) lowerCAmelCase_ : Any = module.weight.data if module.bias is not None: lowerCAmelCase_ : str = module.bias.data bnb_module.requires_grad_(lowerCAmelCase__ ) setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = True if len(list(module.children() ) ) > 0: lowerCAmelCase_ ,lowerCAmelCase_ : Dict = _replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase_ : Any = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> Any: """simple docstring""" with init_empty_weights(): lowerCAmelCase_ : Tuple = deepcopy(lowerCAmelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Any = find_tied_parameters(lowerCAmelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase_ : Any = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCAmelCase_ : List[str] = sum(lowerCAmelCase__ , [] ) lowerCAmelCase_ : List[str] = len(lowerCAmelCase__ ) > 0 # Check if it is a base model lowerCAmelCase_ : Optional[Any] = False if hasattr(lowerCAmelCase__ , 'base_model_prefix' ): lowerCAmelCase_ : Optional[Any] = not hasattr(lowerCAmelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : str = list(model.named_children() ) lowerCAmelCase_ : Dict = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Union[str, Any] = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = list(set(lowerCAmelCase__ ) ) + list(lowerCAmelCase__ ) # remove ".weight" from the keys lowerCAmelCase_ : Optional[Any] = ['.weight', '.bias'] lowerCAmelCase_ : Optional[Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : int = name.replace(lowerCAmelCase__ , '' ) filtered_module_names.append(lowerCAmelCase__ ) return filtered_module_names def UpperCamelCase_ ( lowerCAmelCase__ : List[Any] ) -> List[Any]: """simple docstring""" for m in model.modules(): if isinstance(lowerCAmelCase__ , bnb.nn.Linearabit ): return True return False def UpperCamelCase_ ( lowerCAmelCase__ : nn.Module ) -> Any: """simple docstring""" return next(parameter.parameters() ).device def UpperCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict ) -> List[str]: """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , 0 , dtype=lowerCAmelCase__ , value=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = param_name lowerCAmelCase_ : Optional[Any] = model if "." in tensor_name: lowerCAmelCase_ : List[Any] = tensor_name.split('.' ) for split in splits[:-1]: lowerCAmelCase_ : Optional[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if new_module is None: raise ValueError(f"{module} has no attribute {split}." ) lowerCAmelCase_ : Union[str, Any] = new_module lowerCAmelCase_ : Tuple = splits[-1] # offload weights lowerCAmelCase_ : str = False offload_weight(module._parameters[tensor_name] , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , lowerCAmelCase__ , index=lowerCAmelCase__ , ) else: offload_weight(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ ) offload_weight(lowerCAmelCase__ , param_name.replace('weight' , 'SCB' ) , lowerCAmelCase__ , index=lowerCAmelCase__ ) set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , 'meta' , dtype=lowerCAmelCase__ , value=torch.empty(*param.size() ) )
360
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str ) -> List[Any]: """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def UpperCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str=0 ) -> Union[str, Any]: """simple docstring""" return sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[column] ) def UpperCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=float('inf' ) ) -> Optional[int]: """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , lowerCAmelCase__ ): lowerCAmelCase_ : Union[str, Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCAmelCase_ : Optional[int] = current_dis return min_dis def UpperCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any]=float('inf' ) ) -> Dict: """simple docstring""" for i in range(min(6 , points_counts - 1 ) , lowerCAmelCase__ ): for j in range(max(0 , i - 6 ) , lowerCAmelCase__ ): lowerCAmelCase_ : Any = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCAmelCase_ : Union[str, Any] = current_dis return min_dis def UpperCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] ) -> Dict: """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(lowerCAmelCase__ , lowerCAmelCase__ ) # recursion lowerCAmelCase_ : int = points_counts // 2 lowerCAmelCase_ : Optional[Any] = closest_pair_of_points_sqr( lowerCAmelCase__ , points_sorted_on_y[:mid] , lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = closest_pair_of_points_sqr( lowerCAmelCase__ , points_sorted_on_y[mid:] , points_counts - mid ) lowerCAmelCase_ : Any = min(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase_ : str = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = dis_between_closest_in_strip( lowerCAmelCase__ , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) return min(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : List[str] = column_based_sort(lowerCAmelCase__ , column=0 ) lowerCAmelCase_ : Dict = column_based_sort(lowerCAmelCase__ , column=1 ) return ( closest_pair_of_points_sqr( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) ** 0.5 if __name__ == "__main__": lowercase__ : List[str] = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
289
0
"""simple docstring""" def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if index == number_of_items: return 0 A_ : Tuple = 0 A_ : Optional[int] = 0 A_ : int = knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , index + 1 ) if weights[index] <= max_weight: A_ : Dict = values[index] + knapsack( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , max_weight - weights[index] , index + 1 ) return max(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
167
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase ( unittest.TestCase): def __init__( self : int , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any]=13 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : List[Any]=2_24 , _lowerCamelCase : Tuple=30 , _lowerCamelCase : List[str]=4_00 , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : int=True , _lowerCamelCase : Any=[0.5, 0.5, 0.5] , _lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , ): """simple docstring""" A_ : int = size if size is not None else {'''height''': 18, '''width''': 18} A_ : Optional[int] = parent A_ : Any = batch_size A_ : List[str] = num_channels A_ : List[str] = image_size A_ : List[Any] = min_resolution A_ : str = max_resolution A_ : Dict = do_resize A_ : Dict = size A_ : str = do_normalize A_ : List[str] = image_mean A_ : List[str] = image_std def a_ ( self : Optional[Any] ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( __UpperCAmelCase , unittest.TestCase): __lowerCAmelCase : Optional[int] = ViTImageProcessor if is_vision_available() else None def a_ ( self : Dict ): """simple docstring""" A_ : Union[str, Any] = EfficientFormerImageProcessorTester(self ) @property def a_ ( self : List[Any] ): """simple docstring""" return self.image_proc_tester.prepare_image_processor_dict() def a_ ( self : List[Any] ): """simple docstring""" A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) def a_ ( self : str ): """simple docstring""" pass def a_ ( self : Optional[Any] ): """simple docstring""" A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : List[str] = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A_ : Dict = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def a_ ( self : List[Any] ): """simple docstring""" A_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Any = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A_ : str = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def a_ ( self : str ): """simple docstring""" A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : str = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A_ : List[str] = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
167
1
"""simple docstring""" def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] ): return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowerCamelCase_ (UpperCamelCase__ : str , UpperCamelCase__ : str=0 ): return sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : x[column] ) def lowerCamelCase_ (UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : List[Any]=float('''inf''' ) ): for i in range(points_counts - 1 ): for j in range(i + 1 , UpperCamelCase__ ): _UpperCAmelCase : Any = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _UpperCAmelCase : List[str] = current_dis return min_dis def lowerCamelCase_ (UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int=float('''inf''' ) ): for i in range(min(6 , points_counts - 1 ) , UpperCamelCase__ ): for j in range(max(0 , i - 6 ) , UpperCamelCase__ ): _UpperCAmelCase : int = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _UpperCAmelCase : Dict = current_dis return min_dis def lowerCamelCase_ (UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ): # base case if points_counts <= 3: return dis_between_closest_pair(UpperCamelCase__ , UpperCamelCase__ ) # recursion _UpperCAmelCase : Optional[int] = points_counts // 2 _UpperCAmelCase : Any = closest_pair_of_points_sqr( UpperCamelCase__ , points_sorted_on_y[:mid] , UpperCamelCase__ ) _UpperCAmelCase : str = closest_pair_of_points_sqr( UpperCamelCase__ , points_sorted_on_y[mid:] , points_counts - mid ) _UpperCAmelCase : int = min(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase : List[Any] = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(UpperCamelCase__ ) _UpperCAmelCase : int = dis_between_closest_in_strip( UpperCamelCase__ , len(UpperCamelCase__ ) , UpperCamelCase__ ) return min(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] ): _UpperCAmelCase : str = column_based_sort(UpperCamelCase__ , column=0 ) _UpperCAmelCase : Tuple = column_based_sort(UpperCamelCase__ , column=1 ) return ( closest_pair_of_points_sqr( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) ** 0.5 if __name__ == "__main__": _lowerCAmelCase :Tuple = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
68
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class _UpperCAmelCase : '''simple docstring''' def __init__( self ) -> Tuple: _UpperCAmelCase : str = {} def __lowerCAmelCase ( self , A , A , A=1 ) -> Optional[Any]: if self.graph.get(A ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _UpperCAmelCase : Optional[int] = [[w, v]] if not self.graph.get(A ): _UpperCAmelCase : List[str] = [] def __lowerCAmelCase ( self ) -> Optional[int]: return list(self.graph ) def __lowerCAmelCase ( self , A , A ) -> int: if self.graph.get(A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A ) def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> Optional[int]: if s == d: return [] _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = [] if s == -2: _UpperCAmelCase : List[str] = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A ) != 0: _UpperCAmelCase : List[str] = stack[len(A ) - 1] else: _UpperCAmelCase : Union[str, Any] = ss # check if se have reached the starting point if len(A ) == 0: return visited def __lowerCAmelCase ( self , A=-1 ) -> List[Any]: if c == -1: _UpperCAmelCase : Optional[int] = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(A ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _UpperCAmelCase : List[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(A , A , 1 ) def __lowerCAmelCase ( self , A=-2 ) -> Optional[Any]: _UpperCAmelCase : int = deque() _UpperCAmelCase : Optional[int] = [] if s == -2: _UpperCAmelCase : Tuple = list(self.graph )[0] d.append(A ) visited.append(A ) while d: _UpperCAmelCase : int = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __lowerCAmelCase ( self , A ) -> Optional[int]: _UpperCAmelCase : str = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __lowerCAmelCase ( self , A ) -> int: return len(self.graph[u] ) def __lowerCAmelCase ( self , A=-2 ) -> str: _UpperCAmelCase : int = [] _UpperCAmelCase : Union[str, Any] = [] if s == -2: _UpperCAmelCase : Any = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : List[Any] = s _UpperCAmelCase : str = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : str = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A ) != 0: _UpperCAmelCase : Optional[Any] = stack[len(A ) - 1] else: _UpperCAmelCase : List[str] = ss # check if se have reached the starting point if len(A ) == 0: return sorted_nodes def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Dict = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : Union[str, Any] = -2 _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Tuple = s _UpperCAmelCase : Tuple = False _UpperCAmelCase : Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : int = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Union[str, Any] = len(A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Tuple = True if len(A ) != 0: _UpperCAmelCase : Union[str, Any] = stack[len(A ) - 1] else: _UpperCAmelCase : Union[str, Any] = False indirect_parents.append(A ) _UpperCAmelCase : Optional[int] = s _UpperCAmelCase : int = ss # check if se have reached the starting point if len(A ) == 0: return list(A ) def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = [] _UpperCAmelCase : List[str] = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : int = -2 _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Optional[int] = s _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Optional[Any] = len(A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : str = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : List[Any] = True if len(A ) != 0: _UpperCAmelCase : int = stack[len(A ) - 1] else: _UpperCAmelCase : List[str] = False indirect_parents.append(A ) _UpperCAmelCase : List[Any] = s _UpperCAmelCase : Any = ss # check if se have reached the starting point if len(A ) == 0: return False def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> Dict: _UpperCAmelCase : Tuple = time() self.dfs(A , A ) _UpperCAmelCase : Optional[int] = time() return end - begin def __lowerCAmelCase ( self , A=-2 ) -> Dict: _UpperCAmelCase : int = time() self.bfs(A ) _UpperCAmelCase : str = time() return end - begin class _UpperCAmelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: _UpperCAmelCase : str = {} def __lowerCAmelCase ( self , A , A , A=1 ) -> str: # check if the u exists if self.graph.get(A ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _UpperCAmelCase : int = [[w, v]] # add the other way if self.graph.get(A ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _UpperCAmelCase : List[Any] = [[w, u]] def __lowerCAmelCase ( self , A , A ) -> List[str]: if self.graph.get(A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A ) # the other way round if self.graph.get(A ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A ) def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> Any: if s == d: return [] _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Tuple = [] if s == -2: _UpperCAmelCase : Optional[int] = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A ) != 0: _UpperCAmelCase : Dict = stack[len(A ) - 1] else: _UpperCAmelCase : Tuple = ss # check if se have reached the starting point if len(A ) == 0: return visited def __lowerCAmelCase ( self , A=-1 ) -> List[str]: if c == -1: _UpperCAmelCase : int = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(A ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _UpperCAmelCase : Dict = floor(random() * c ) + 1 if n != i: self.add_pair(A , A , 1 ) def __lowerCAmelCase ( self , A=-2 ) -> Tuple: _UpperCAmelCase : List[str] = deque() _UpperCAmelCase : Optional[int] = [] if s == -2: _UpperCAmelCase : Optional[int] = list(self.graph )[0] d.append(A ) visited.append(A ) while d: _UpperCAmelCase : str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __lowerCAmelCase ( self , A ) -> List[str]: return len(self.graph[u] ) def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : str = [] _UpperCAmelCase : Any = [] _UpperCAmelCase : Optional[Any] = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : Any = -2 _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = s _UpperCAmelCase : Tuple = False _UpperCAmelCase : Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Optional[int] = len(A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Dict = True if len(A ) != 0: _UpperCAmelCase : List[str] = stack[len(A ) - 1] else: _UpperCAmelCase : str = False indirect_parents.append(A ) _UpperCAmelCase : Tuple = s _UpperCAmelCase : int = ss # check if se have reached the starting point if len(A ) == 0: return list(A ) def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : str = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : Tuple = -2 _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Any = s _UpperCAmelCase : Dict = False _UpperCAmelCase : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : List[str] = len(A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : List[Any] = True if len(A ) != 0: _UpperCAmelCase : Dict = stack[len(A ) - 1] else: _UpperCAmelCase : str = False indirect_parents.append(A ) _UpperCAmelCase : List[Any] = s _UpperCAmelCase : Optional[int] = ss # check if se have reached the starting point if len(A ) == 0: return False def __lowerCAmelCase ( self ) -> int: return list(self.graph ) def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> str: _UpperCAmelCase : List[Any] = time() self.dfs(A , A ) _UpperCAmelCase : Union[str, Any] = time() return end - begin def __lowerCAmelCase ( self , A=-2 ) -> Optional[int]: _UpperCAmelCase : List[Any] = time() self.bfs(A ) _UpperCAmelCase : Optional[int] = time() return end - begin
68
1
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden SCREAMING_SNAKE_CASE__ : Union[str, Any] = deepcopy(SCREAMING_SNAKE_CASE__ ) elif os.path.exists(SCREAMING_SNAKE_CASE__ ): with io.open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE__ : Tuple = json.load(SCREAMING_SNAKE_CASE__ ) else: try: SCREAMING_SNAKE_CASE__ : Union[str, Any] = baseaa.urlsafe_baadecode(SCREAMING_SNAKE_CASE__ ).decode("""utf-8""" ) SCREAMING_SNAKE_CASE__ : Tuple = json.loads(SCREAMING_SNAKE_CASE__ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) SCREAMING_SNAKE_CASE__ : int = config self.set_stage_and_offload() def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.get_value("""zero_optimization.stage""" , -1 ) # offload SCREAMING_SNAKE_CASE__ : Any = False if self.is_zeroa() or self.is_zeroa(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = set(["""cpu""", """nvme"""] ) SCREAMING_SNAKE_CASE__ : List[str] = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: SCREAMING_SNAKE_CASE__ : Optional[int] = True def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.config # find the config node of interest if it exists SCREAMING_SNAKE_CASE__ : List[str] = ds_key_long.split(""".""" ) SCREAMING_SNAKE_CASE__ : Dict = nodes.pop() for node in nodes: SCREAMING_SNAKE_CASE__ : List[str] = config.get(SCREAMING_SNAKE_CASE__ ) if config is None: return None, ds_key return config, ds_key def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self.find_config_node(SCREAMING_SNAKE_CASE__ ) if config is None: return default return config.get(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.config # find the config node of interest if it exists SCREAMING_SNAKE_CASE__ : Optional[Any] = ds_key_long.split(""".""" ) for node in nodes: SCREAMING_SNAKE_CASE__ : Optional[int] = config SCREAMING_SNAKE_CASE__ : Optional[int] = config.get(SCREAMING_SNAKE_CASE__ ) if config is None: if must_exist: raise ValueError(F'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_value(SCREAMING_SNAKE_CASE__ ) return False if value is None else bool(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.get_value(SCREAMING_SNAKE_CASE__ ) return False if value is None else not bool(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" return self._stage == 2 def __magic_name__ (self ) -> List[Any]: """simple docstring""" return self._stage == 3 def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" return self._offload class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = engine def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" self.engine.backward(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ , device_placement=SCREAMING_SNAKE_CASE__ , scaler=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = hasattr(self.optimizer , """overflow""" ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__=None ) -> Optional[Any]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def __magic_name__ (self ) -> Optional[int]: """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.001 , SCREAMING_SNAKE_CASE__=0 , **SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = params SCREAMING_SNAKE_CASE__ : Any = lr SCREAMING_SNAKE_CASE__ : Dict = weight_decay SCREAMING_SNAKE_CASE__ : Optional[Any] = kwargs class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=0 , **SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = optimizer SCREAMING_SNAKE_CASE__ : str = total_num_steps SCREAMING_SNAKE_CASE__ : Tuple = warmup_num_steps SCREAMING_SNAKE_CASE__ : Union[str, Any] = kwargs
25
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=_snake_case ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=_snake_case ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=_snake_case ) return parser.parse_args() def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : int = parse_args() # Import training_script as a module. SCREAMING_SNAKE_CASE__ : Dict = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) SCREAMING_SNAKE_CASE__ : int = script_fpath.stem SCREAMING_SNAKE_CASE__ : Optional[Any] = importlib.import_module(_snake_case ) # Patch sys.argv SCREAMING_SNAKE_CASE__ : str = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
25
1
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _A : List[Any] =argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) _A : Dict =parser.parse_args() _A : List[str] =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _A : Any =CLIPImageProcessor() _A : Union[str, Any] =CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') _A : Union[str, Any] =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
129
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _A : Union[str, Any] =8 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=BITS ) -> Tuple: lowerCamelCase__ : List[str] = x.device lowerCamelCase__ : Any = (x * 255).int().clamp(0 , 255 ) lowerCamelCase__ : Optional[int] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase ) lowerCamelCase__ : int = rearrange(UpperCamelCase , """d -> d 1 1""" ) lowerCamelCase__ : List[str] = rearrange(UpperCamelCase , """b c h w -> b c 1 h w""" ) lowerCamelCase__ : Tuple = ((x & mask) != 0).float() lowerCamelCase__ : List[Any] = rearrange(UpperCamelCase , """b c d h w -> b (c d) h w""" ) lowerCamelCase__ : Optional[int] = bits * 2 - 1 return bits def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=BITS ) -> List[Any]: lowerCamelCase__ : List[Any] = x.device lowerCamelCase__ : Dict = (x > 0).int() lowerCamelCase__ : Optional[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase , dtype=torch.intaa ) lowerCamelCase__ : List[Any] = rearrange(UpperCamelCase , """d -> d 1 1""" ) lowerCamelCase__ : List[str] = rearrange(UpperCamelCase , """b (c d) h w -> b c d h w""" , d=8 ) lowerCamelCase__ : List[Any] = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def SCREAMING_SNAKE_CASE_ (self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 0.0 , UpperCamelCase = True , UpperCamelCase=None , UpperCamelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowerCamelCase__ : Optional[int] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowerCamelCase__ : str = self.alphas_cumprod[timestep] lowerCamelCase__ : List[str] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowerCamelCase__ : Optional[int] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowerCamelCase__ : Dict = self.bit_scale if self.config.clip_sample: lowerCamelCase__ : Optional[Any] = torch.clamp(UpperCamelCase , -scale , UpperCamelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowerCamelCase__ : Tuple = self._get_variance(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Optional[int] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowerCamelCase__ : int = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Optional[Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowerCamelCase__ : Dict = model_output.device if torch.is_tensor(UpperCamelCase ) else """cpu""" lowerCamelCase__ : str = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase ).to(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = self._get_variance(UpperCamelCase , UpperCamelCase ) ** 0.5 * eta * noise lowerCamelCase__ : int = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase="epsilon" , UpperCamelCase=None , UpperCamelCase = True , ) -> Union[DDPMSchedulerOutput, Tuple]: lowerCamelCase__ : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = torch.split(UpperCamelCase , sample.shape[1] , dim=1 ) else: lowerCamelCase__ : List[str] = None # 1. compute alphas, betas lowerCamelCase__ : str = self.alphas_cumprod[t] lowerCamelCase__ : List[str] = self.alphas_cumprod[t - 1] if t > 0 else self.one lowerCamelCase__ : str = 1 - alpha_prod_t lowerCamelCase__ : List[Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowerCamelCase__ : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowerCamelCase__ : Optional[Any] = model_output else: raise ValueError(f'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" lowerCamelCase__ : str = self.bit_scale if self.config.clip_sample: lowerCamelCase__ : List[Any] = torch.clamp(UpperCamelCase , -scale , UpperCamelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ : Tuple = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowerCamelCase__ : Tuple = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCamelCase__ : Optional[Any] = 0 if t > 0: lowerCamelCase__ : Optional[Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase ).to(model_output.device ) lowerCamelCase__ : str = (self._get_variance(UpperCamelCase , predicted_variance=UpperCamelCase ) ** 0.5) * noise lowerCamelCase__ : Optional[int] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) class _lowercase ( _lowercase ): def __init__( self: List[str] , UpperCamelCase__: UNetaDConditionModel , UpperCamelCase__: Union[DDIMScheduler, DDPMScheduler] , UpperCamelCase__: Optional[float] = 1.0 , ): super().__init__() lowerCamelCase__ : Optional[int] = bit_scale lowerCamelCase__ : List[Any] = ( ddim_bit_scheduler_step if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self: Union[str, Any] , UpperCamelCase__: Optional[int] = 256 , UpperCamelCase__: Optional[int] = 256 , UpperCamelCase__: Optional[int] = 50 , UpperCamelCase__: Optional[torch.Generator] = None , UpperCamelCase__: Optional[int] = 1 , UpperCamelCase__: Optional[str] = "pil" , UpperCamelCase__: bool = True , **UpperCamelCase__: int , ): lowerCamelCase__ : List[Any] = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=UpperCamelCase__ , ) lowerCamelCase__ : Union[str, Any] = decimal_to_bits(UpperCamelCase__ ) * self.bit_scale lowerCamelCase__ : Union[str, Any] = latents.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowerCamelCase__ : Tuple = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ : Any = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample lowerCamelCase__ : Dict = bits_to_decimal(UpperCamelCase__ ) if output_type == "pil": lowerCamelCase__ : int = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
129
1
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _lowercase ( unittest.TestCase ): a = MODEL_FOR_MASKED_LM_MAPPING a = TF_MODEL_FOR_MASKED_LM_MAPPING def lowerCamelCase_ ( self: str ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : int = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) lowerCamelCase__ : Dict = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) lowerCamelCase__ : Optional[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) lowerCamelCase__ : List[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) lowerCamelCase__ : List[Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) lowerCamelCase__ : int = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) lowerCamelCase__ : Tuple = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) lowerCamelCase__ : List[Any] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Union[str, Any] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() lowerCamelCase__ : Union[str, Any] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow @require_torch def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : str = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(UpperCamelCase__ ) @slow @require_tf def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Union[str, Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(UpperCamelCase__ ) def lowerCamelCase_ ( self: int , UpperCamelCase__: List[str] ): lowerCamelCase__ : int = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) lowerCamelCase__ : Any = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) lowerCamelCase__ : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Union[str, Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) lowerCamelCase__ : Dict = None lowerCamelCase__ : Dict = None self.run_pipeline_test(UpperCamelCase__ , [] ) @require_tf def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : List[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) lowerCamelCase__ : str = None lowerCamelCase__ : str = None self.run_pipeline_test(UpperCamelCase__ , [] ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str] ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) lowerCamelCase__ : Union[str, Any] = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: int , UpperCamelCase__: List[str] ): lowerCamelCase__ : List[str] = fill_masker.tokenizer lowerCamelCase__ : Optional[int] = fill_masker.model lowerCamelCase__ : Tuple = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( UpperCamelCase__ , [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ] , ) lowerCamelCase__ : str = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( UpperCamelCase__ , [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ] , ) lowerCamelCase__ : Union[str, Any] = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( UpperCamelCase__ , [ [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ], [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ], ] , ) with self.assertRaises(UpperCamelCase__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(UpperCamelCase__ ): fill_masker("""This is""" ) self.run_test_top_k(UpperCamelCase__ , UpperCamelCase__ ) self.run_test_targets(UpperCamelCase__ , UpperCamelCase__ ) self.run_test_top_k_targets(UpperCamelCase__ , UpperCamelCase__ ) self.fill_mask_with_duplicate_targets_and_top_k(UpperCamelCase__ , UpperCamelCase__ ) self.fill_mask_with_multiple_masks(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ): lowerCamelCase__ : Optional[int] = tokenizer.get_vocab() lowerCamelCase__ : str = sorted(vocab.keys() )[:2] # Pipeline argument lowerCamelCase__ : Any = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ , targets=UpperCamelCase__ ) lowerCamelCase__ : str = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( UpperCamelCase__ , [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ] , ) lowerCamelCase__ : List[str] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(UpperCamelCase__ ) ) # Call argument lowerCamelCase__ : str = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ] , ) lowerCamelCase__ : str = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , UpperCamelCase__ ) lowerCamelCase__ : Any = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(UpperCamelCase__ ) ) # Score equivalence lowerCamelCase__ : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=UpperCamelCase__ ) lowerCamelCase__ : int = [top_mask["""token_str"""] for top_mask in outputs] lowerCamelCase__ : Optional[int] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(UpperCamelCase__ ) == set(UpperCamelCase__ ): lowerCamelCase__ : Dict = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(UpperCamelCase__ ) , nested_simplify(UpperCamelCase__ ) ) # Raises with invalid with self.assertRaises(UpperCamelCase__ ): lowerCamelCase__ : Any = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(UpperCamelCase__ ): lowerCamelCase__ : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[""""""] ) with self.assertRaises(UpperCamelCase__ ): lowerCamelCase__ : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets="""""" ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: Dict , UpperCamelCase__: int ): lowerCamelCase__ : Union[str, Any] = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ , top_k=2 ) lowerCamelCase__ : List[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( UpperCamelCase__ , [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ] , ) lowerCamelCase__ : Dict = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( UpperCamelCase__ , [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ] , ) self.assertEqual(nested_simplify(UpperCamelCase__ ) , nested_simplify(UpperCamelCase__ ) ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: List[Any] , UpperCamelCase__: int ): lowerCamelCase__ : str = tokenizer.get_vocab() lowerCamelCase__ : Optional[Any] = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # top_k=2, ntargets=3 lowerCamelCase__ : Optional[int] = sorted(vocab.keys() )[:3] lowerCamelCase__ : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=UpperCamelCase__ ) # If we use the most probably targets, and filter differently, we should still # have the same results lowerCamelCase__ : Any = [el["""token_str"""] for el in sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : x["score"] , reverse=UpperCamelCase__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(UpperCamelCase__ ).issubset(UpperCamelCase__ ): lowerCamelCase__ : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=UpperCamelCase__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(UpperCamelCase__ ) , nested_simplify(UpperCamelCase__ ) ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple ): lowerCamelCase__ : int = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) lowerCamelCase__ : Dict = tokenizer.get_vocab() # String duplicates + id duplicates lowerCamelCase__ : Union[str, Any] = sorted(vocab.keys() )[:3] lowerCamelCase__ : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] lowerCamelCase__ : Dict = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=UpperCamelCase__ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(UpperCamelCase__ ) , 3 ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: Any , UpperCamelCase__: Any ): lowerCamelCase__ : Union[str, Any] = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) lowerCamelCase__ : str = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( UpperCamelCase__ , [ [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ], [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ], [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ], ] , )
41
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class _lowercase ( unittest.TestCase ): def __init__( self: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any=7 , UpperCamelCase__: Optional[int]=3 , UpperCamelCase__: List[str]=18 , UpperCamelCase__: Union[str, Any]=30 , UpperCamelCase__: List[str]=400 , UpperCamelCase__: Any=True , UpperCamelCase__: Union[str, Any]=None , UpperCamelCase__: List[Any]=True , UpperCamelCase__: List[Any]=False , UpperCamelCase__: Tuple=True , UpperCamelCase__: Tuple=True , UpperCamelCase__: Any=[0.5, 0.5, 0.5] , UpperCamelCase__: Optional[Any]=[0.5, 0.5, 0.5] , ): lowerCamelCase__ : int = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : Optional[int] = num_channels lowerCamelCase__ : Union[str, Any] = image_size lowerCamelCase__ : Optional[int] = min_resolution lowerCamelCase__ : Optional[Any] = max_resolution lowerCamelCase__ : Union[str, Any] = do_resize lowerCamelCase__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 20} lowerCamelCase__ : Dict = do_thumbnail lowerCamelCase__ : Optional[int] = do_align_axis lowerCamelCase__ : Any = do_pad lowerCamelCase__ : Optional[Any] = do_normalize lowerCamelCase__ : Union[str, Any] = image_mean lowerCamelCase__ : Union[str, Any] = image_std def lowerCamelCase_ ( self: str ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _lowercase ( _lowercase , unittest.TestCase ): a = DonutImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Any = DonutImageProcessingTester(self ) @property def lowerCamelCase_ ( self: Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """size""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_thumbnail""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_align_long_axis""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_pad""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """image_std""" ) ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) lowerCamelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order lowerCamelCase__ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def lowerCamelCase_ ( self: List[str] ): pass @is_flaky() def lowerCamelCase_ ( self: Union[str, Any] ): # Initialize image_processing lowerCamelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input lowerCamelCase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCamelCase__ : List[str] = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def lowerCamelCase_ ( self: Optional[int] ): # Initialize image_processing lowerCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input lowerCamelCase__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCamelCase__ : Optional[Any] = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def lowerCamelCase_ ( self: Dict ): # Initialize image_processing lowerCamelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input lowerCamelCase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCamelCase__ : Tuple = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
41
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = 4_2 class a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , __magic_name__ = 6_55_36 , __magic_name__ = None , __magic_name__ = 2 , __magic_name__ = 2 , __magic_name__ = 0 , __magic_name__ = "fourier" , __magic_name__ = True , __magic_name__ = False , __magic_name__ = 0.0 , __magic_name__ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , __magic_name__ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , __magic_name__ = "UNetMidBlock1D" , __magic_name__ = None , __magic_name__ = (32, 32, 64) , __magic_name__ = None , __magic_name__ = 8 , __magic_name__ = 1 , __magic_name__ = False , ) -> Tuple: super().__init__() _a = sample_size # time if time_embedding_type == "fourier": _a = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=__magic_name__ , log=__magic_name__ , flip_sin_to_cos=__magic_name__ ) _a = 2 * block_out_channels[0] elif time_embedding_type == "positional": _a = Timesteps( block_out_channels[0] , flip_sin_to_cos=__magic_name__ , downscale_freq_shift=__magic_name__ ) _a = block_out_channels[0] if use_timestep_embedding: _a = block_out_channels[0] * 4 _a = TimestepEmbedding( in_channels=__magic_name__ , time_embed_dim=__magic_name__ , act_fn=__magic_name__ , out_dim=block_out_channels[0] , ) _a = nn.ModuleList([] ) _a = None _a = nn.ModuleList([] ) _a = None # down _a = in_channels for i, down_block_type in enumerate(__magic_name__ ): _a = output_channel _a = block_out_channels[i] if i == 0: input_channel += extra_in_channels _a = i == len(__magic_name__ ) - 1 _a = get_down_block( __magic_name__ , num_layers=__magic_name__ , in_channels=__magic_name__ , out_channels=__magic_name__ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(__magic_name__ ) # mid _a = get_mid_block( __magic_name__ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=__magic_name__ , add_downsample=__magic_name__ , ) # up _a = list(reversed(__magic_name__ ) ) _a = reversed_block_out_channels[0] if out_block_type is None: _a = out_channels else: _a = block_out_channels[0] for i, up_block_type in enumerate(__magic_name__ ): _a = output_channel _a = ( reversed_block_out_channels[i + 1] if i < len(__magic_name__ ) - 1 else final_upsample_channels ) _a = i == len(__magic_name__ ) - 1 _a = get_up_block( __magic_name__ , num_layers=__magic_name__ , in_channels=__magic_name__ , out_channels=__magic_name__ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(__magic_name__ ) _a = output_channel # out _a = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _a = get_out_block( out_block_type=__magic_name__ , num_groups_out=__magic_name__ , embed_dim=block_out_channels[0] , out_channels=__magic_name__ , act_fn=__magic_name__ , fc_dim=block_out_channels[-1] // 4 , ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ = True , ) -> Union[UNetaDOutput, Tuple]: _a = timestep if not torch.is_tensor(__magic_name__ ): _a = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(__magic_name__ ) and len(timesteps.shape ) == 0: _a = timesteps[None].to(sample.device ) _a = self.time_proj(__magic_name__ ) if self.config.use_timestep_embedding: _a = self.time_mlp(__magic_name__ ) else: _a = timestep_embed[..., None] _a = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _a = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _a = () for downsample_block in self.down_blocks: _a , _a = downsample_block(hidden_states=__magic_name__ , temb=__magic_name__ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _a = self.mid_block(__magic_name__ , __magic_name__ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _a = down_block_res_samples[-1:] _a = down_block_res_samples[:-1] _a = upsample_block(__magic_name__ , res_hidden_states_tuple=__magic_name__ , temb=__magic_name__ ) # 5. post-process if self.out_block: _a = self.out_block(__magic_name__ , __magic_name__ ) if not return_dict: return (sample,) return UNetaDOutput(sample=__magic_name__ )
361
'''simple docstring''' def _A (lowerCAmelCase__ :list[int] , lowerCAmelCase__ :list[int] ) -> None: '''simple docstring''' _a = len(lowerCAmelCase__ ) print('The following activities are selected:' ) # The first activity is always selected _a = 0 print(lowerCAmelCase__ , end=',' ) # Consider rest of the activities for j in range(lowerCAmelCase__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowerCAmelCase__ , end=',' ) _a = j if __name__ == "__main__": import doctest doctest.testmod() a_ : List[str] = [1, 3, 0, 5, 8, 5] a_ : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
104
0
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ (a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[str] = CodeGenTokenizer __UpperCamelCase : int = CodeGenTokenizerFast __UpperCamelCase : List[str] = True __UpperCamelCase : Optional[Any] = {'''add_prefix_space''': True} __UpperCamelCase : str = False def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ : List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] SCREAMING_SNAKE_CASE__ : Any = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) SCREAMING_SNAKE_CASE__ : Dict = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] SCREAMING_SNAKE_CASE__ : List[str] = {"""unk_token""": """<unk>"""} SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(SCREAMING_SNAKE_CASE__ ) ) def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = """lower newer""" SCREAMING_SNAKE_CASE__ : Optional[Any] = """lower newer""" return input_text, output_text def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE__ : int = """lower newer""" SCREAMING_SNAKE_CASE__ : Dict = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] SCREAMING_SNAKE_CASE__ : int = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__ : Tuple = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : str = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = """lower newer""" # Testing tokenization SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE__ : int = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Testing the unknown token SCREAMING_SNAKE_CASE__ : str = tokens + [rust_tokenizer.unk_token] SCREAMING_SNAKE_CASE__ : Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" pass def __magic_name__ (self , SCREAMING_SNAKE_CASE__=15 ) -> List[str]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ : Tuple = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # Simple input SCREAMING_SNAKE_CASE__ : Any = """This is a simple input""" SCREAMING_SNAKE_CASE__ : Tuple = ["""This is a simple input 1""", """This is a simple input 2"""] SCREAMING_SNAKE_CASE__ : Dict = ("""This is a simple input""", """This is a pair""") SCREAMING_SNAKE_CASE__ : Optional[int] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE__ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE__ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" , ) def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input SCREAMING_SNAKE_CASE__ : str = """This is a simple input""" SCREAMING_SNAKE_CASE__ : int = ["""This is a simple input looooooooong""", """This is a simple input"""] SCREAMING_SNAKE_CASE__ : str = ("""This is a simple input""", """This is a pair""") SCREAMING_SNAKE_CASE__ : List[Any] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] SCREAMING_SNAKE_CASE__ : Dict = tokenizer.pad_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncate=SCREAMING_SNAKE_CASE__ , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer(*SCREAMING_SNAKE_CASE__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncate=SCREAMING_SNAKE_CASE__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = """$$$""" SCREAMING_SNAKE_CASE__ : Optional[int] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=SCREAMING_SNAKE_CASE__ , add_bos_token=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = """This is a simple input""" SCREAMING_SNAKE_CASE__ : List[str] = ["""This is a simple input 1""", """This is a simple input 2"""] SCREAMING_SNAKE_CASE__ : Dict = tokenizer.bos_token_id SCREAMING_SNAKE_CASE__ : Any = tokenizer(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = tokenizer(SCREAMING_SNAKE_CASE__ ) self.assertEqual(out_s.input_ids[0] , SCREAMING_SNAKE_CASE__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.decode(out_s.input_ids ) SCREAMING_SNAKE_CASE__ : int = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , SCREAMING_SNAKE_CASE__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) SCREAMING_SNAKE_CASE__ : str = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" SCREAMING_SNAKE_CASE__ : int = """\nif len_a > len_b: result = a\nelse: result = b""" SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] SCREAMING_SNAKE_CASE__ : Any = tokenizer.decode(SCREAMING_SNAKE_CASE__ , truncate_before_pattern=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Dict: """simple docstring""" pass
25
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
289
0
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCamelCase = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase = importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) UpperCamelCase = spec.loader.load_module() UpperCamelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` UpperCamelCase = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') UpperCamelCase = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def __lowerCamelCase ( ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = [] for config_class in list(CONFIG_MAPPING.values() ): _SCREAMING_SNAKE_CASE = False # source code of `config_class` _SCREAMING_SNAKE_CASE = inspect.getsource(snake_case__ ) _SCREAMING_SNAKE_CASE = _re_checkpoint.findall(snake_case__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = checkpoint # verify the checkpoint name corresponds to the checkpoint link _SCREAMING_SNAKE_CASE = F'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _SCREAMING_SNAKE_CASE = True break _SCREAMING_SNAKE_CASE = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(snake_case__ ) if len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = """\n""".join(sorted(snake_case__ ) ) raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
125
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = prime_factors(snake_case__ ) if is_square_free(snake_case__ ): return -1 if len(snake_case__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
125
1
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: list[int] , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: int ) -> None: '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): A__ , A__ = array[indexa], array[indexa] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: list[int] , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: int ) -> None: '''simple docstring''' if length > 1: A__ = int(length / 2 ) for i in range(SCREAMING_SNAKE_CASE_ , low + middle ): comp_and_swap(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , i + middle , SCREAMING_SNAKE_CASE_ ) bitonic_merge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) bitonic_merge(SCREAMING_SNAKE_CASE_ , low + middle , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: list[int] , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: int ) -> None: '''simple docstring''' if length > 1: A__ = int(length / 2 ) bitonic_sort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) bitonic_sort(SCREAMING_SNAKE_CASE_ , low + middle , SCREAMING_SNAKE_CASE_ , 0 ) bitonic_merge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item.strip()) for item in user_input.split(""",""")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("""\nSorted array in ascending order is: """, end="""""") print(*unsorted, sep=""", """) bitonic_merge(unsorted, 0, len(unsorted), 0) print("""Sorted array in descending order is: """, end="""""") print(*unsorted, sep=""", """)
68
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCAmelCase__ = """\ Text data. Second line of data.""" lowerCAmelCase__ = """file""" @pytest.fixture(scope="session" ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] ) -> Optional[int]: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") A__ = bytes(SCREAMING_SNAKE_CASE_ , "utf-8" ) with zstd.open(SCREAMING_SNAKE_CASE_ , "wb" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any ) -> List[str]: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , SCREAMING_SNAKE_CASE_ ) , "w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: int ) -> Any: '''simple docstring''' A__ = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} A__ = input_paths[compression_format] A__ = tmp_path / "cache" A__ = DownloadConfig(cache_dir=SCREAMING_SNAKE_CASE_ , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) A__ = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ ) as f: A__ = f.read() with open(SCREAMING_SNAKE_CASE_ ) as f: A__ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: str ) -> Dict: '''simple docstring''' A__ = "custom_cache" A__ = "custom_extracted_dir" A__ = tmp_path / "custom_extracted_path" if default_extracted: A__ = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , SCREAMING_SNAKE_CASE_ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(SCREAMING_SNAKE_CASE_ ) ) A__ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A__ = xz_file A__ = ( DownloadConfig(extract_compressed_file=SCREAMING_SNAKE_CASE_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) ) A__ = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) assert Path(SCREAMING_SNAKE_CASE_ ).parent.parts[-2:] == expected def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] ) -> Optional[int]: '''simple docstring''' A__ = str(Path(SCREAMING_SNAKE_CASE_ ).resolve() ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file # relative path A__ = str(Path(SCREAMING_SNAKE_CASE_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict ) -> List[str]: '''simple docstring''' A__ = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) # relative path A__ = "./__missing_file__.txt" with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str ) -> Union[str, Any]: '''simple docstring''' A__ = get_from_cache(F'tmp://{tmpfs_file}' ) with open(SCREAMING_SNAKE_CASE_ ) as f: A__ = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( ) -> List[Any]: '''simple docstring''' with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] ) -> int: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_get("https://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict ) -> List[Any]: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_get("ftp://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> str: '''simple docstring''' A__ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_get("s3://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_head("s3://huggingface.co" )
68
1
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): _snake_case : Union[str, Any] = IFInpaintingPipeline _snake_case : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} _snake_case : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _snake_case : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowerCAmelCase_ ( self : Optional[int] ): return self._get_dummy_components() def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any]=0 ): if str(lowerCAmelCase_ ).startswith("""mps""" ): _UpperCAmelCase = torch.manual_seed(lowerCAmelCase_ ) else: _UpperCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase_ ( self : Optional[Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCAmelCase_ ( self : Union[str, Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase_ ( self : Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCAmelCase_ ( self : List[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCAmelCase_ ( self : Dict ): self._test_save_load_local() def lowerCAmelCase_ ( self : str ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
364
"""simple docstring""" from itertools import product def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = sides_number _UpperCAmelCase = max_face_number * dice_number _UpperCAmelCase = [0] * (max_total + 1) _UpperCAmelCase = 1 _UpperCAmelCase = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): _UpperCAmelCase = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = total_frequency_distribution( sides_number=4 ,dice_number=9 ) _UpperCAmelCase = total_frequency_distribution( sides_number=6 ,dice_number=6 ) _UpperCAmelCase = 0 _UpperCAmelCase = 9 _UpperCAmelCase = 4 * 9 _UpperCAmelCase = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase = (4**9) * (6**6) _UpperCAmelCase = peter_wins_count / total_games_number _UpperCAmelCase = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
30
0
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =CanineTokenizer snake_case_ =False def lowerCAmelCase__ (self ) -> int: """simple docstring""" super().setUp() lowerCAmelCase__ : Dict = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" return CanineTokenizer.from_pretrained('''google/canine-s''' ) def lowerCAmelCase__ (self ,**__lowerCamelCase ) -> CanineTokenizer: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ,**__lowerCamelCase ) lowerCAmelCase__ : str = 10_24 return tokenizer @require_torch def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.canine_tokenizer lowerCAmelCase__ : List[Any] = ['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off lowerCAmelCase__ : List[str] = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on lowerCAmelCase__ : Any = tokenizer(__lowerCamelCase ,padding=__lowerCamelCase ,return_tensors='''pt''' ) self.assertIsInstance(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) self.assertEqual((2, 39) ,batch.input_ids.shape ) self.assertEqual((2, 39) ,batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.canine_tokenizer lowerCAmelCase__ : str = ['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] lowerCAmelCase__ : Optional[Any] = tokenizer(__lowerCamelCase ,padding=__lowerCamelCase ,return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' ,__lowerCamelCase ) self.assertIn('''attention_mask''' ,__lowerCamelCase ) self.assertIn('''token_type_ids''' ,__lowerCamelCase ) @require_torch def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.canine_tokenizer lowerCAmelCase__ : Any = [ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] lowerCAmelCase__ : int = tokenizer( text_target=__lowerCamelCase ,max_length=32 ,padding='''max_length''' ,truncation=__lowerCamelCase ,return_tensors='''pt''' ) self.assertEqual(32 ,targets['''input_ids'''].shape[1] ) def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length ,42 ) # Now let's start the test lowerCAmelCase__ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase__ : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase__ : Any = ''' He is very happy, UNwant\u00E9d,running''' lowerCAmelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) lowerCAmelCase__ : int = tokenizer.__class__.from_pretrained(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = after_tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase__ : str = tempfile.mkdtemp() lowerCAmelCase__ : List[Any] = ''' He is very happy, UNwant\u00E9d,running''' lowerCAmelCase__ : List[str] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: lowerCAmelCase__ : str = chr(0XE0_07 ) additional_special_tokens.append(__lowerCamelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowerCAmelCase__ : str = tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) lowerCAmelCase__ : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase ) lowerCAmelCase__ : Tuple = after_tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) self.assertIn(__lowerCamelCase ,after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length ,42 ) lowerCAmelCase__ : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase ,model_max_length=43 ) self.assertEqual(tokenizer.model_max_length ,43 ) shutil.rmtree(__lowerCamelCase ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : int = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_clean_sequence(__lowerCamelCase ) # a special token for Canine can be defined as follows: lowerCAmelCase__ : str = 0XE0_05 lowerCAmelCase__ : Dict = chr(__lowerCamelCase ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) lowerCAmelCase__ : Optional[int] = tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) ,1 ) lowerCAmelCase__ : Any = tokenizer.decode(ids + encoded_special_token ,clean_up_tokenization_spaces=__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) lowerCAmelCase__ : Any = tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) lowerCAmelCase__ : List[Any] = tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase ,input_encoded + special_token_id ) lowerCAmelCase__ : Union[str, Any] = tokenizer.decode(__lowerCamelCase ,skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase__ : Union[str, Any] = chr(0XE0_05 ) lowerCAmelCase__ : Union[str, Any] = chr(0XE0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] ,special_tokens=__lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) lowerCAmelCase__ : List[Any] = tokenizer.tokenize(__lowerCamelCase ) lowerCAmelCase__ : int = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) ,1 ) self.assertEqual(len(__lowerCamelCase ) ,1 ) self.assertEqual(token_a[0] ,__lowerCamelCase ) self.assertEqual(token_a[0] ,__lowerCamelCase ) @require_tokenizers def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # a special token for Canine can be defined as follows: lowerCAmelCase__ : List[str] = 0XE0_06 lowerCAmelCase__ : Optional[int] = chr(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowerCamelCase ) tokenizer.from_pretrained(__lowerCamelCase ) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Any = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase ,'''special_tokens_map.json''' ) ,encoding='''utf-8''' ) as json_file: lowerCAmelCase__ : Tuple = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase ,'''tokenizer_config.json''' ) ,encoding='''utf-8''' ) as json_file: lowerCAmelCase__ : Tuple = json.load(__lowerCamelCase ) # a special token for Canine can be defined as follows: lowerCAmelCase__ : Optional[Any] = 0XE0_06 lowerCAmelCase__ : Tuple = chr(__lowerCamelCase ) lowerCAmelCase__ : Tuple = [new_token_a] lowerCAmelCase__ : int = [new_token_a] with open(os.path.join(__lowerCamelCase ,'''special_tokens_map.json''' ) ,'''w''' ,encoding='''utf-8''' ) as outfile: json.dump(__lowerCamelCase ,__lowerCamelCase ) with open(os.path.join(__lowerCamelCase ,'''tokenizer_config.json''' ) ,'''w''' ,encoding='''utf-8''' ) as outfile: json.dump(__lowerCamelCase ,__lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase__ : str = tokenizer_class.from_pretrained(__lowerCamelCase ,extra_ids=0 ) self.assertIn(__lowerCamelCase ,tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] ,tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) ,) lowerCAmelCase__ : List[Any] = 0XE0_07 lowerCAmelCase__ : Optional[int] = chr(__lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase__ : Union[str, Any] = [AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase )] lowerCAmelCase__ : Union[str, Any] = tokenizer_class.from_pretrained( __lowerCamelCase ,additional_special_tokens=__lowerCamelCase ,extra_ids=0 ) self.assertIn(__lowerCamelCase ,tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] ,tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase__ : Dict = '''hello world''' if self.space_between_special_tokens: lowerCAmelCase__ : Tuple = '''[CLS] hello world [SEP]''' else: lowerCAmelCase__ : List[str] = input lowerCAmelCase__ : List[str] = tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = tokenizer.decode(__lowerCamelCase ,spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowerCamelCase ,[output, output.lower()] ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase__ : int = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] lowerCAmelCase__ : Any = '''a''' lowerCAmelCase__ : Dict = ord(__lowerCamelCase ) for attr in attributes_list: setattr(__lowerCamelCase ,attr + '''_id''' ,__lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase ,__lowerCamelCase ) ,__lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase ,attr + '''_id''' ) ,__lowerCamelCase ) setattr(__lowerCamelCase ,attr + '''_id''' ,__lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase ,__lowerCamelCase ) ,__lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase ,attr + '''_id''' ) ,__lowerCamelCase ) setattr(__lowerCamelCase ,'''additional_special_tokens_ids''' ,[] ) self.assertListEqual(getattr(__lowerCamelCase ,'''additional_special_tokens''' ) ,[] ) self.assertListEqual(getattr(__lowerCamelCase ,'''additional_special_tokens_ids''' ) ,[] ) lowerCAmelCase__ : List[str] = 0XE0_06 lowerCAmelCase__ : str = chr(__lowerCamelCase ) setattr(__lowerCamelCase ,'''additional_special_tokens_ids''' ,[additional_special_token_id] ) self.assertListEqual(getattr(__lowerCamelCase ,'''additional_special_tokens''' ) ,[additional_special_token] ) self.assertListEqual(getattr(__lowerCamelCase ,'''additional_special_tokens_ids''' ) ,[additional_special_token_id] ) def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" pass def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" pass def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" pass def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" pass def lowerCAmelCase__ (self ) -> int: """simple docstring""" pass def lowerCAmelCase__ (self ) -> str: """simple docstring""" pass def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" pass def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" pass
129
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __snake_case : int =logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : List[str] = 4 lowerCAmelCase__ : List[str] = 3 lowerCAmelCase__ : Any = (32, 32) lowerCAmelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } lowerCAmelCase__ : List[str] = self.dummy_input return init_dict, inputs_dict class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = 4 lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : Optional[Any] = (32, 32) lowerCAmelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" return (4, 32, 32) @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" return (4, 32, 32) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : Tuple = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } lowerCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) model_accelerate.to(__lowerCamelCase ) model_accelerate.eval() lowerCAmelCase__ : Union[str, Any] = torch.randn( 1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCAmelCase__ : Dict = noise.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = model_accelerate(__lowerCamelCase ,__lowerCamelCase )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCAmelCase__ , lowerCAmelCase__ : Tuple = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ,low_cpu_mem_usage=__lowerCamelCase ) model_normal_load.to(__lowerCamelCase ) model_normal_load.eval() lowerCAmelCase__ : List[Any] = model_normal_load(__lowerCamelCase ,__lowerCamelCase )['''sample'''] assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : List[str] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCAmelCase__ : str = noise.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : str = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : List[str] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase__ : str = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) ) class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ,__lowerCamelCase=(32, 32) ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = 4 lowerCAmelCase__ : Optional[int] = 3 lowerCAmelCase__ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa ,device=__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Tuple = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } lowerCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict @slow def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ,output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = self.dummy_input lowerCAmelCase__ : Tuple = floats_tensor((4, 3) + (2_56, 2_56) ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = noise lowerCAmelCase__ : Union[str, Any] = model(**__lowerCamelCase ) assert image is not None, "Make sure output is not None" @slow def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Dict = 4 lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : List[Any] = (2_56, 2_56) lowerCAmelCase__ : str = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ : Optional[Any] = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : Dict = 3 lowerCAmelCase__ : str = (32, 32) lowerCAmelCase__ : Tuple = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : List[Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ : Union[str, Any] = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" pass
129
1
"""simple docstring""" def lowerCamelCase_ ( UpperCamelCase__ : bytes ) -> str: """simple docstring""" return "".join([hex(lowercase__ )[2:].zfill(2 ).upper() for byte in list(lowercase__ )] ) def lowerCamelCase_ ( UpperCamelCase__ : str ) -> bytes: """simple docstring""" if (len(lowercase__ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowercase__ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowercase__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
356
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple: '''simple docstring''' super().__init__() __lowerCamelCase = num_attention_heads __lowerCamelCase = attention_head_dim __lowerCamelCase = num_attention_heads * attention_head_dim __lowerCamelCase = additional_embeddings __lowerCamelCase = time_embed_dim or inner_dim __lowerCamelCase = embedding_proj_dim or embedding_dim __lowerCamelCase = clip_embed_dim or embedding_dim __lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 ) __lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if embedding_proj_norm_type is None: __lowerCamelCase = None elif embedding_proj_norm_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if encoder_hid_proj_type is None: __lowerCamelCase = None elif encoder_hid_proj_type == "linear": __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) ) if added_emb_type == "prd": __lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) ) elif added_emb_type is None: __lowerCamelCase = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __lowerCamelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , ) for d in range(lowerCamelCase__ ) ] ) if norm_in_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) elif norm_in_type is None: __lowerCamelCase = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) __lowerCamelCase = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase_ ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return processors def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): module.set_processor(lowerCamelCase__ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int: '''simple docstring''' __lowerCamelCase = hidden_states.shape[0] __lowerCamelCase = timestep if not torch.is_tensor(lowerCamelCase__ ): __lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: __lowerCamelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase = self.time_proj(lowerCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __lowerCamelCase = timesteps_projected.to(dtype=self.dtype ) __lowerCamelCase = self.time_embedding(lowerCamelCase__ ) if self.embedding_proj_norm is not None: __lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ ) __lowerCamelCase = self.embedding_proj(lowerCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) __lowerCamelCase = self.proj_in(lowerCamelCase__ ) __lowerCamelCase = self.positional_embedding.to(hidden_states.dtype ) __lowerCamelCase = [] __lowerCamelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __lowerCamelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __lowerCamelCase = hidden_states[:, None, :] __lowerCamelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 ) additional_embeds.append(lowerCamelCase__ ) __lowerCamelCase = torch.cat( lowerCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __lowerCamelCase = F.pad( lowerCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __lowerCamelCase = hidden_states + positional_embeddings if attention_mask is not None: __lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 __lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) __lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __lowerCamelCase = self.norm_in(lowerCamelCase__ ) for block in self.transformer_blocks: __lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = self.norm_out(lowerCamelCase__ ) if self.prd_embedding is not None: __lowerCamelCase = hidden_states[:, -1] else: __lowerCamelCase = hidden_states[:, additional_embeddings_len:] __lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
348
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple: if not isinstance(A__ , A__ ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) snake_case_ = str(A__ ) snake_case_ = """""".join(sorted(A__ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _a ( _SCREAMING_SNAKE_CASE = 99 ) -> str: if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) snake_case_ = 0 snake_case_ = 1 while True: if check_bouncy(A__ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(99)}""")
347
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCAmelCase__ = random.Random() def _A ( A__ , A__=1.0 , A__=None , A__=None ): """simple docstring""" if rng is None: __lowercase = global_rng __lowercase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase_ (unittest.TestCase ): """simple docstring""" def __init__( self : List[str] ,lowercase__ : List[str] ,lowercase__ : List[Any]=7 ,lowercase__ : Dict=4_0_0 ,lowercase__ : Tuple=2_0_0_0 ,lowercase__ : Optional[int]=1_0 ,lowercase__ : Optional[int]=1_6_0 ,lowercase__ : Dict=8 ,lowercase__ : str=0.0 ,lowercase__ : Union[str, Any]=4_0_0_0 ,lowercase__ : Optional[int]=False ,lowercase__ : List[str]=True ,): __lowercase = parent __lowercase = batch_size __lowercase = min_seq_length __lowercase = max_seq_length __lowercase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowercase = padding_value __lowercase = sampling_rate __lowercase = return_attention_mask __lowercase = do_normalize __lowercase = feature_size __lowercase = chunk_length __lowercase = hop_length def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str]=False ,lowercase__ : Dict=False ): def _flatten(lowercase__ : Optional[Any] ): return list(itertools.chain(*lowercase__ ) ) if equal_length: __lowercase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowercase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: __lowercase = [np.asarray(lowercase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = WhisperFeatureExtractor if is_speech_available() else None def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = WhisperFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = feat_extract_first.save_pretrained(lowercase__ )[0] check_json_file_has_correct_format(lowercase__ ) __lowercase = self.feature_extraction_class.from_pretrained(lowercase__ ) __lowercase = feat_extract_first.to_dict() __lowercase = feat_extract_second.to_dict() __lowercase = feat_extract_first.mel_filters __lowercase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowercase__ ,lowercase__ ) ) self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = os.path.join(lowercase__ ,'''feat_extract.json''' ) feat_extract_first.to_json_file(lowercase__ ) __lowercase = self.feature_extraction_class.from_json_file(lowercase__ ) __lowercase = feat_extract_first.to_dict() __lowercase = feat_extract_second.to_dict() __lowercase = feat_extract_first.mel_filters __lowercase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowercase__ ,lowercase__ ) ) self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): # Tests that all call wrap to encode_plus and batch_encode_plus __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowercase = [floats_list((1, x) )[0] for x in range(8_0_0 ,1_4_0_0 ,2_0_0 )] __lowercase = [np.asarray(lowercase__ ) for speech_input in speech_inputs] # Test feature size __lowercase = feature_extractor(lowercase__ ,padding='''max_length''' ,return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __lowercase = feature_extractor(speech_inputs[0] ,return_tensors='''np''' ).input_features __lowercase = feature_extractor(np_speech_inputs[0] ,return_tensors='''np''' ).input_features self.assertTrue(np.allclose(lowercase__ ,lowercase__ ,atol=1e-3 ) ) # Test batched __lowercase = feature_extractor(lowercase__ ,return_tensors='''np''' ).input_features __lowercase = feature_extractor(lowercase__ ,return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowercase__ ,lowercase__ ): self.assertTrue(np.allclose(lowercase__ ,lowercase__ ,atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __lowercase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] __lowercase = np.asarray(lowercase__ ) __lowercase = feature_extractor(lowercase__ ,return_tensors='''np''' ).input_features __lowercase = feature_extractor(lowercase__ ,return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowercase__ ,lowercase__ ): self.assertTrue(np.allclose(lowercase__ ,lowercase__ ,atol=1e-3 ) ) # Test truncation required __lowercase = [floats_list((1, x) )[0] for x in range(2_0_0 ,(feature_extractor.n_samples + 5_0_0) ,2_0_0 )] __lowercase = [np.asarray(lowercase__ ) for speech_input in speech_inputs] __lowercase = [x[: feature_extractor.n_samples] for x in speech_inputs] __lowercase = [np.asarray(lowercase__ ) for speech_input in speech_inputs_truncated] __lowercase = feature_extractor(lowercase__ ,return_tensors='''np''' ).input_features __lowercase = feature_extractor(lowercase__ ,return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowercase__ ,lowercase__ ): self.assertTrue(np.allclose(lowercase__ ,lowercase__ ,atol=1e-3 ) ) def SCREAMING_SNAKE_CASE ( self : Dict ): import torch __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = np.random.rand(1_0_0 ,3_2 ).astype(np.floataa ) __lowercase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowercase = feature_extractor.pad([{'''input_features''': inputs}] ,return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __lowercase = feature_extractor.pad([{'''input_features''': inputs}] ,return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' ,'''clean''' ,split='''validation''' ) # automatic decoding with librispeech __lowercase = ds.sort('''id''' ).select(range(lowercase__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE ( self : str ): # fmt: off __lowercase = torch.tensor( [ 0.1_1_9_3, -0.0_9_4_6, -0.1_0_9_8, -0.0_1_9_6, 0.0_2_2_5, -0.0_6_9_0, -0.1_7_3_6, 0.0_9_5_1, 0.0_9_7_1, -0.0_8_1_7, -0.0_7_0_2, 0.0_1_6_2, 0.0_2_6_0, 0.0_0_1_7, -0.0_1_9_2, -0.1_6_7_8, 0.0_7_0_9, -0.1_8_6_7, -0.0_6_5_5, -0.0_2_7_4, -0.0_2_3_4, -0.1_8_8_4, -0.0_5_1_6, -0.0_5_5_4, -0.0_2_7_4, -0.1_4_2_5, -0.1_4_2_3, 0.0_8_3_7, 0.0_3_7_7, -0.0_8_5_4 ] ) # fmt: on __lowercase = self._load_datasamples(1 ) __lowercase = WhisperFeatureExtractor() __lowercase = feature_extractor(lowercase__ ,return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape ,(1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] ,lowercase__ ,atol=1e-4 ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = self._load_datasamples(1 )[0] __lowercase = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue __lowercase = feat_extract.zero_mean_unit_var_norm([audio] ,attention_mask=lowercase__ )[0] self.assertTrue(np.all(np.mean(lowercase__ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase__ ) - 1 ) < 1e-3 ) )
104
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def lowerCamelCase ( SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if subparsers is not None: __UpperCamelCase :str = subparsers.add_parser('''test''' ) else: __UpperCamelCase :List[str] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: __UpperCamelCase :List[str] = script_name else: __UpperCamelCase :Optional[Any] = f"""--config_file={args.config_file} {script_name}""" __UpperCamelCase :Optional[int] = ['''accelerate-launch'''] + test_args.split() __UpperCamelCase :Dict = execute_subprocess_async(SCREAMING_SNAKE_CASE , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :List[str] = test_command_parser() __UpperCamelCase :List[Any] = parser.parse_args() test_command(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
105
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __lowercase = '''bert-base-cased''' __lowercase = '''google/pegasus-xsum''' __lowercase = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] __lowercase = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] __lowercase = '''patrickvonplaten/t5-tiny-random''' __lowercase = '''sshleifer/bart-tiny-random''' __lowercase = '''sshleifer/tiny-mbart''' __lowercase = '''sshleifer/tiny-marian-en-de''' def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :str = '''\n'''.join(SCREAMING_SNAKE_CASE ) Path(SCREAMING_SNAKE_CASE ).open('''w''' ).writelines(SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(SCREAMING_SNAKE_CASE , f"""{split}.source""" ) , SCREAMING_SNAKE_CASE ) _dump_articles(os.path.join(SCREAMING_SNAKE_CASE , f"""{split}.target""" ) , SCREAMING_SNAKE_CASE ) return tmp_dir class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def UpperCamelCase__ ( self , __lowercase) -> List[Any]: __UpperCamelCase :Dict = AutoTokenizer.from_pretrained(__lowercase) __UpperCamelCase :Optional[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __UpperCamelCase :List[Any] = max(len(tokenizer.encode(__lowercase)) for a in ARTICLES) __UpperCamelCase :Optional[int] = max(len(tokenizer.encode(__lowercase)) for a in SUMMARIES) __UpperCamelCase :int = 4 __UpperCamelCase :Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __UpperCamelCase , __UpperCamelCase :Tuple = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. __UpperCamelCase :str = SeqaSeqDataset( __lowercase , data_dir=__lowercase , type_path='''train''' , max_source_length=__lowercase , max_target_length=__lowercase , src_lang=__lowercase , tgt_lang=__lowercase , ) __UpperCamelCase :Any = DataLoader(__lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert isinstance(__lowercase , __lowercase) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __UpperCamelCase :Optional[int] = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED]) def UpperCamelCase__ ( self , __lowercase) -> int: __UpperCamelCase :Union[str, Any] = AutoTokenizer.from_pretrained(__lowercase) __UpperCamelCase :Union[str, Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __UpperCamelCase :int = max(len(tokenizer.encode(__lowercase)) for a in ARTICLES) __UpperCamelCase :Dict = max(len(tokenizer.encode(__lowercase)) for a in SUMMARIES) __UpperCamelCase :Union[str, Any] = 4 __UpperCamelCase :List[str] = LegacySeqaSeqDataset( __lowercase , data_dir=__lowercase , type_path='''train''' , max_source_length=20 , max_target_length=__lowercase , ) __UpperCamelCase :Dict = DataLoader(__lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :List[Any] = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''') __UpperCamelCase :Union[str, Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) __UpperCamelCase :str = tmp_dir.joinpath('''train.source''').open().readlines() __UpperCamelCase :int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) pack_data_dir(__lowercase , __lowercase , 128 , __lowercase) __UpperCamelCase :Union[str, Any] = {x.name for x in tmp_dir.iterdir()} __UpperCamelCase :int = {x.name for x in save_dir.iterdir()} __UpperCamelCase :Optional[int] = save_dir.joinpath('''train.source''').open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__lowercase) < len(__lowercase) assert len(__lowercase) == 1 assert len(packed_examples[0]) == sum(len(__lowercase) for x in orig_examples) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''') def UpperCamelCase__ ( self) -> List[Any]: if not FAIRSEQ_AVAILABLE: return __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Any = self._get_dataset(max_len=64) __UpperCamelCase :Union[str, Any] = 64 __UpperCamelCase :Tuple = ds.make_dynamic_sampler(__lowercase , required_batch_size_multiple=__lowercase) __UpperCamelCase :List[str] = [len(__lowercase) for x in batch_sampler] assert len(set(__lowercase)) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__lowercase) == len(__lowercase) # no dropped or added examples __UpperCamelCase :int = DataLoader(__lowercase , batch_sampler=__lowercase , collate_fn=ds.collate_fn , num_workers=2) __UpperCamelCase :List[str] = [] __UpperCamelCase :int = [] for batch in data_loader: __UpperCamelCase :List[Any] = batch['''input_ids'''].shape __UpperCamelCase :Dict = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __UpperCamelCase :Optional[int] = np.product(batch['''input_ids'''].shape) num_src_per_batch.append(__lowercase) if num_src_tokens > (max_tokens * 1.1): failures.append(__lowercase) assert num_src_per_batch[0] == max(__lowercase) if failures: raise AssertionError(f"""too many tokens in {len(__lowercase)} batches""") def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[Any] = self._get_dataset(max_len=512) __UpperCamelCase :Any = 2 __UpperCamelCase :List[Any] = ds.make_sortish_sampler(__lowercase , shuffle=__lowercase) __UpperCamelCase :List[Any] = DataLoader(__lowercase , batch_size=__lowercase , collate_fn=ds.collate_fn , num_workers=2) __UpperCamelCase :Tuple = DataLoader(__lowercase , batch_size=__lowercase , collate_fn=ds.collate_fn , num_workers=2 , sampler=__lowercase) __UpperCamelCase :int = tokenizer.pad_token_id def count_pad_tokens(__lowercase , __lowercase="input_ids"): return [batch[k].eq(__lowercase).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__lowercase , k='''labels''')) < sum(count_pad_tokens(__lowercase , k='''labels''')) assert sum(count_pad_tokens(__lowercase)) < sum(count_pad_tokens(__lowercase)) assert len(__lowercase) == len(__lowercase) def UpperCamelCase__ ( self , __lowercase=1_000 , __lowercase=128) -> List[Any]: if os.getenv('''USE_REAL_DATA''' , __lowercase): __UpperCamelCase :Optional[Any] = '''examples/seq2seq/wmt_en_ro''' __UpperCamelCase :Dict = max_len * 2 * 64 if not Path(__lowercase).joinpath('''train.len''').exists(): save_len_file(__lowercase , __lowercase) else: __UpperCamelCase :Union[str, Any] = '''examples/seq2seq/test_data/wmt_en_ro''' __UpperCamelCase :Optional[int] = max_len * 4 save_len_file(__lowercase , __lowercase) __UpperCamelCase :str = AutoTokenizer.from_pretrained(__lowercase) __UpperCamelCase :List[Any] = SeqaSeqDataset( __lowercase , data_dir=__lowercase , type_path='''train''' , max_source_length=__lowercase , max_target_length=__lowercase , n_obs=__lowercase , ) return ds, max_tokens, tokenizer def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :List[Any] = self._get_dataset() __UpperCamelCase :List[str] = set(DistributedSortishSampler(__lowercase , 256 , num_replicas=2 , rank=0 , add_extra_examples=__lowercase)) __UpperCamelCase :Tuple = set(DistributedSortishSampler(__lowercase , 256 , num_replicas=2 , rank=1 , add_extra_examples=__lowercase)) assert idsa.intersection(__lowercase) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def UpperCamelCase__ ( self , __lowercase) -> List[Any]: __UpperCamelCase :List[Any] = AutoTokenizer.from_pretrained(__lowercase , use_fast=__lowercase) if tok_name == MBART_TINY: __UpperCamelCase :Optional[Any] = SeqaSeqDataset( __lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) __UpperCamelCase :Tuple = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __UpperCamelCase :Tuple = SeqaSeqDataset( __lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) __UpperCamelCase :Optional[int] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__lowercase) == 1 if tok_name == BART_TINY else len(__lowercase) == 0
105
1
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration snake_case_ : Union[str, Any] = 50_00_00 snake_case_ ,snake_case_ : Optional[int] = os.path.split(__file__) snake_case_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : datasets.Dataset, **SCREAMING_SNAKE_CASE__ : Dict ) -> str: UpperCAmelCase_ : List[str] = dataset.map(**SCREAMING_SNAKE_CASE__ ) @get_duration def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : datasets.Dataset, **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: UpperCAmelCase_ : Optional[int] = dataset.filter(**SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( ) -> Any: UpperCAmelCase_ : List[str] = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Optional[int] = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCAmelCase_ : Dict = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE__, '''dataset.arrow''' ), SCREAMING_SNAKE_CASE__, num_examples=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''', use_fast=SCREAMING_SNAKE_CASE__ ) def tokenize(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return tokenizer(examples['''text'''] ) UpperCAmelCase_ : List[str] = map(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = map(SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : str = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''numpy''' ): UpperCAmelCase_ : Dict = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''pandas''' ): UpperCAmelCase_ : Union[str, Any] = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''torch''', columns='''numbers''' ): UpperCAmelCase_ : Optional[int] = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''tensorflow''', columns='''numbers''' ): UpperCAmelCase_ : Optional[Any] = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = map(SCREAMING_SNAKE_CASE__, function=SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Tuple = filter(SCREAMING_SNAKE_CASE__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE__, '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
125
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer snake_case_ : List[str] = logging.get_logger(__name__) snake_case_ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} snake_case_ : Optional[int] = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } snake_case_ : Optional[Any] = { "yjernite/retribert-base-uncased": 5_12, } snake_case_ : Union[str, Any] = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class __a (lowerCamelCase ): __a : Optional[Any] = VOCAB_FILES_NAMES __a : Dict = PRETRAINED_VOCAB_FILES_MAP __a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : int = PRETRAINED_INIT_CONFIGURATION __a : Union[str, Any] = RetriBertTokenizer __a : Optional[int] = ["input_ids", "attention_mask"] def __init__( self : str , __magic_name__ : List[Any]=None , __magic_name__ : Optional[int]=None , __magic_name__ : Any=True , __magic_name__ : int="[UNK]" , __magic_name__ : List[Any]="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : Optional[int]="[CLS]" , __magic_name__ : Union[str, Any]="[MASK]" , __magic_name__ : int=True , __magic_name__ : Optional[Any]=None , **__magic_name__ : Any , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , tokenizer_file=__magic_name__ , do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , tokenize_chinese_chars=__magic_name__ , strip_accents=__magic_name__ , **__magic_name__ , ) UpperCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __magic_name__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , __magic_name__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __magic_name__ ) != tokenize_chinese_chars ): UpperCAmelCase_ : Dict = getattr(__magic_name__ , normalizer_state.pop('''type''' ) ) UpperCAmelCase_ : Optional[int] = do_lower_case UpperCAmelCase_ : Optional[int] = strip_accents UpperCAmelCase_ : Tuple = tokenize_chinese_chars UpperCAmelCase_ : Optional[int] = normalizer_class(**__magic_name__ ) UpperCAmelCase_ : List[str] = do_lower_case def UpperCAmelCase__ ( self : int , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCAmelCase_ : Dict = [self.sep_token_id] UpperCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase_ : int = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ )
125
1
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowerCamelCase__ ( _lowercase , _lowercase=0 ): '''simple docstring''' return sorted(_lowercase , key=lambda _lowercase : x[column] ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase=float('''inf''' ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , _lowercase ): UpperCAmelCase_ : Optional[int] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase_ : Optional[Any] = current_dis return min_dis def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase=float('''inf''' ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , _lowercase ): for j in range(max(0 , i - 6 ) , _lowercase ): UpperCAmelCase_ : List[str] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase_ : Optional[int] = current_dis return min_dis def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(_lowercase , _lowercase ) # recursion UpperCAmelCase_ : Optional[int] = points_counts // 2 UpperCAmelCase_ : List[Any] = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[:mid] , _lowercase ) UpperCAmelCase_ : Dict = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[mid:] , points_counts - mid ) UpperCAmelCase_ : Union[str, Any] = min(_lowercase , _lowercase ) UpperCAmelCase_ : str = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowercase ) UpperCAmelCase_ : Optional[Any] = dis_between_closest_in_strip( _lowercase , len(_lowercase ) , _lowercase ) return min(_lowercase , _lowercase ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = column_based_sort(_lowercase , column=0 ) UpperCAmelCase_ : List[Any] = column_based_sort(_lowercase , column=1 ) return ( closest_pair_of_points_sqr( _lowercase , _lowercase , _lowercase ) ) ** 0.5 if __name__ == "__main__": __a = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
235
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __a( unittest.TestCase ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=100 ,_SCREAMING_SNAKE_CASE=13 ,_SCREAMING_SNAKE_CASE=30 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=5 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=37 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=3 ,) -> Dict: UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Union[str, Any] = patch_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : Any = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Union[str, Any] = intermediate_size UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : List[str] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ : Dict = (image_size // patch_size) ** 2 UpperCAmelCase_ : List[str] = num_patches + 1 def a__ ( self ) -> str: UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_SCREAMING_SNAKE_CASE ,initializer_range=self.initializer_range ,) return config, pixel_values, labels def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = FlaxBeitModel(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = FlaxBeitForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ : Dict = self.type_sequence_label_size UpperCAmelCase_ : int = FlaxBeitForImageClassification(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : Any = 1 UpperCAmelCase_ : List[Any] = FlaxBeitForImageClassification(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ) : List[str] = config_and_inputs UpperCAmelCase_ : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def a__ ( self ) -> None: UpperCAmelCase_ : List[Any] = FlaxBeitModelTester(self ) UpperCAmelCase_ : List[str] = ConfigTester(self ,config_class=_SCREAMING_SNAKE_CASE ,has_text_modality=_SCREAMING_SNAKE_CASE ,hidden_size=37 ) def a__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def a__ ( self ) -> List[Any]: UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase_ : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_, UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : List[Any] = self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE ) @jax.jit def model_jitted(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ): return model(pixel_values=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase_ : Dict = model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase_ : List[str] = model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,len(_SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape ,output.shape ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def a__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) UpperCAmelCase_ : Optional[int] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class __a( unittest.TestCase ): """simple docstring""" @cached_property def a__ ( self ) -> Dict: return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Tuple = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) UpperCAmelCase_ : List[Any] = self.default_image_processor UpperCAmelCase_ : Optional[Any] = prepare_img() UpperCAmelCase_ : Optional[Any] = image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ).pixel_values # prepare bool_masked_pos UpperCAmelCase_ : Union[str, Any] = np.ones((1, 196) ,dtype=_SCREAMING_SNAKE_CASE ) # forward pass UpperCAmelCase_ : Optional[int] = model(pixel_values=_SCREAMING_SNAKE_CASE ,bool_masked_pos=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = outputs.logits # verify the logits UpperCAmelCase_ : List[str] = (1, 196, 8_192) self.assertEqual(logits.shape ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = np.array( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] ,_SCREAMING_SNAKE_CASE ,atol=1e-2 ) ) @slow def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Any = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) UpperCAmelCase_ : Any = self.default_image_processor UpperCAmelCase_ : Any = prepare_img() UpperCAmelCase_ : Union[str, Any] = image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) # forward pass UpperCAmelCase_ : Optional[Any] = model(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = outputs.logits # verify the logits UpperCAmelCase_ : Dict = (1, 1_000) self.assertEqual(logits.shape ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = np.array([-1.23_85, -1.09_87, -1.01_08] ) self.assertTrue(np.allclose(logits[0, :3] ,_SCREAMING_SNAKE_CASE ,atol=1e-4 ) ) UpperCAmelCase_ : Dict = 281 self.assertEqual(logits.argmax(-1 ).item() ,_SCREAMING_SNAKE_CASE ) @slow def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : str = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : Any = prepare_img() UpperCAmelCase_ : Dict = image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) # forward pass UpperCAmelCase_ : Dict = model(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = outputs.logits # verify the logits UpperCAmelCase_ : Union[str, Any] = (1, 21_841) self.assertEqual(logits.shape ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = np.array([1.68_81, -0.27_87, 0.59_01] ) self.assertTrue(np.allclose(logits[0, :3] ,_SCREAMING_SNAKE_CASE ,atol=1e-4 ) ) UpperCAmelCase_ : Dict = 2_396 self.assertEqual(logits.argmax(-1 ).item() ,_SCREAMING_SNAKE_CASE )
235
1
'''simple docstring''' from __future__ import annotations import math def _UpperCamelCase ( __A , __A , __A , __A , __A ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if not scores: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , ) ) def _UpperCamelCase ( ) -> None: '''simple docstring''' UpperCamelCase__ = [90, 23, 6, 33, 21, 65, 123, 34423] UpperCamelCase__ = math.log(len(__A ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , __A , __A , __A )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
80
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __a = logging.get_logger(__name__) def a ( snake_case__: Optional[int] , snake_case__: Dict , snake_case__: int , snake_case__: List[str]=None , snake_case__: List[Any]=None ): '''simple docstring''' # Recurse if needed if "." in tensor_name: lowercase_ = tensor_name.split('''.''' ) for split in splits[:-1]: lowercase_ = getattr(snake_case__ , snake_case__ ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) lowercase_ = new_module lowercase_ = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'''{module} does not have a parameter or a buffer named {tensor_name}.''' ) lowercase_ = tensor_name in module._buffers lowercase_ = getattr(snake_case__ , snake_case__ ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(F'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' ) lowercase_ = False lowercase_ = False if is_buffer or not is_bitsandbytes_available(): lowercase_ = False lowercase_ = False else: lowercase_ = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) lowercase_ = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: lowercase_ = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowercase_ = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): lowercase_ = value.to('''cpu''' ) if value.dtype == torch.inta: lowercase_ = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: lowercase_ = torch.tensor(snake_case__ , device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None: lowercase_ = new_value.T lowercase_ = old_value.__dict__ if is_abit: lowercase_ = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) elif is_abit: lowercase_ = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) lowercase_ = new_value if fpaa_statistics is not None: setattr(module.weight , '''SCB''' , fpaa_statistics.to(snake_case__ ) ) else: if value is None: lowercase_ = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): lowercase_ = value.to(snake_case__ ) else: lowercase_ = torch.tensor(snake_case__ , device=snake_case__ ) if is_buffer: lowercase_ = new_value else: lowercase_ = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad ) lowercase_ = new_value def a ( snake_case__: str , snake_case__: Union[str, Any]=None , snake_case__: Any=None , snake_case__: List[str]=None , snake_case__: Optional[Any]=False ): '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: lowercase_ = [] current_key_name.append(snake_case__ ) if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(snake_case__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(snake_case__ , snake_case__ ): lowercase_ , lowercase_ = module.weight.shape else: lowercase_ = module.in_features lowercase_ = module.out_features if quantization_config.quantization_method() == "llm_int8": lowercase_ = bnb.nn.LinearabitLt( snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) lowercase_ = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowercase_ = bnb.nn.Linearabit( snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) lowercase_ = True # Store the module class in case we need to transpose the weight later lowercase_ = type(snake_case__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(snake_case__ ) if len(list(module.children() ) ) > 0: lowercase_ , lowercase_ = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def a ( snake_case__: Any , snake_case__: Any=None , snake_case__: Union[str, Any]=None , snake_case__: str=None ): '''simple docstring''' lowercase_ = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert lowercase_ , lowercase_ = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def a ( *snake_case__: str , **snake_case__: Dict ): '''simple docstring''' warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , snake_case__ , ) return replace_with_bnb_linear(*snake_case__ , **snake_case__ ) def a ( *snake_case__: Any , **snake_case__: List[Any] ): '''simple docstring''' warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , snake_case__ , ) return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ ) def a ( snake_case__: Optional[Any] ): '''simple docstring''' lowercase_ = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowercase_ = find_tied_parameters(snake_case__ ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__ ): lowercase_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase_ = sum(snake_case__ , [] ) lowercase_ = len(snake_case__ ) > 0 # Check if it is a base model lowercase_ = not hasattr(snake_case__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase_ = list(model.named_children() ) lowercase_ = [list_modules[-1][0]] # add last module together with tied weights lowercase_ = set(snake_case__ ) - set(snake_case__ ) lowercase_ = list(set(snake_case__ ) ) + list(snake_case__ ) # remove ".weight" from the keys lowercase_ = ['''.weight''', '''.bias'''] lowercase_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase_ = name.replace(snake_case__ , '''''' ) filtered_module_names.append(snake_case__ ) return filtered_module_names
30
0
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class a ( unittest.TestCase ): def A_ ( self : Union[str, Any] , lowercase_ : List[str] ): snake_case_ = 3 snake_case_ = 250 snake_case_ = ids_tensor((batch_size, length) , lowercase_ ) snake_case_ = torch.ones((batch_size, length) , device=lowercase_ , dtype=torch.float ) / length return input_ids, scores def A_ ( self : Optional[int] ): snake_case_ ,snake_case_ = self._get_tensors(5 ) snake_case_ = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) snake_case_ ,snake_case_ = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) snake_case_ ,snake_case_ = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def A_ ( self : List[str] ): snake_case_ = MaxLengthCriteria(max_length=10 ) snake_case_ ,snake_case_ = self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) snake_case_ ,snake_case_ = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) snake_case_ ,snake_case_ = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def A_ ( self : Any ): snake_case_ = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) snake_case_ ,snake_case_ = self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) snake_case_ ,snake_case_ = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) snake_case_ ,snake_case_ = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) snake_case_ = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def A_ ( self : Optional[int] ): snake_case_ ,snake_case_ = self._get_tensors(5 ) snake_case_ = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) snake_case_ = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def A_ ( self : List[str] ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowercase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) snake_case_ = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowercase_ ) , 1 )
72
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList a : str = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class a ( _lowerCamelCase ): def __init__( self : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Optional[int]=None , lowercase_ : str=1 ): snake_case_ = tokenizer snake_case_ = dataset snake_case_ = len(lowercase_ ) if n_tasks is None else n_tasks snake_case_ = n_copies def __iter__( self : Optional[Any] ): snake_case_ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) snake_case_ = self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a ( _lowerCamelCase ): def __init__( self : str , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : int ): snake_case_ = start_length snake_case_ = eof_strings snake_case_ = tokenizer def __call__( self : List[Any] , lowercase_ : str , lowercase_ : Optional[int] , **lowercase_ : List[str] ): snake_case_ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) snake_case_ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowercase_ ) def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' snake_case_ = re.split('''(%s)''' % '''|'''.join(__UpperCAmelCase ), __UpperCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=20, **__UpperCAmelCase ) -> str: '''simple docstring''' snake_case_ = defaultdict(__UpperCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__UpperCAmelCase ) ): with torch.no_grad(): snake_case_ = batch['''ids'''].shape[-1] snake_case_ = accelerator.unwrap_model(__UpperCAmelCase ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']], num_return_sequences=__UpperCAmelCase, **__UpperCAmelCase ) # each task is generated batch_size times snake_case_ = batch['''task_id'''].repeat(__UpperCAmelCase ) snake_case_ = accelerator.pad_across_processes( __UpperCAmelCase, dim=1, pad_index=tokenizer.pad_token_id ) snake_case_ ,snake_case_ = accelerator.gather((generated_tokens, generated_tasks) ) snake_case_ = generated_tokens.cpu().numpy() snake_case_ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__UpperCAmelCase, __UpperCAmelCase ): gen_token_dict[task].append(__UpperCAmelCase ) snake_case_ = [[] for _ in range(__UpperCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: snake_case_ = tokenizer.decode(__UpperCAmelCase, skip_special_tokens=__UpperCAmelCase, clean_up_tokenization_spaces=__UpperCAmelCase ) code_gens[task].append(remove_last_block(__UpperCAmelCase ) ) return code_gens def __magic_name__ ( ) -> Tuple: '''simple docstring''' snake_case_ = HfArgumentParser(__UpperCAmelCase ) snake_case_ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric snake_case_ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing snake_case_ = '''false''' if args.num_workers is None: snake_case_ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate snake_case_ = Accelerator() set_seed(args.seed, device_specific=__UpperCAmelCase ) # Load model and tokenizer snake_case_ = AutoTokenizer.from_pretrained(args.model_ckpt ) snake_case_ = tokenizer.eos_token snake_case_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings snake_case_ = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0, __UpperCAmelCase, __UpperCAmelCase )] ), } # Load evaluation dataset and metric snake_case_ = load_dataset('''openai_humaneval''' ) snake_case_ = load_metric('''code_eval''' ) snake_case_ = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) snake_case_ = args.n_samples // args.batch_size snake_case_ = TokenizedDataset(__UpperCAmelCase, human_eval['''test'''], n_copies=__UpperCAmelCase, n_tasks=__UpperCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences snake_case_ = DataLoader(__UpperCAmelCase, batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: snake_case_ = code_eval_metric.compute(references=[''''''], predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception snake_case_ ,snake_case_ = accelerator.prepare(__UpperCAmelCase, __UpperCAmelCase ) snake_case_ = complete_code( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, n_tasks=__UpperCAmelCase, batch_size=args.batch_size, **__UpperCAmelCase, ) if accelerator.is_main_process: snake_case_ = [] for task in tqdm(range(__UpperCAmelCase ) ): snake_case_ = human_eval['''test'''][task]['''test'''] snake_case_ = F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric snake_case_ ,snake_case_ = code_eval_metric.compute( references=__UpperCAmelCase, predictions=__UpperCAmelCase, num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file, '''w''' ) as fp: json.dump(__UpperCAmelCase, __UpperCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
72
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = """deta""" _SCREAMING_SNAKE_CASE = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : str , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[Any]=9_0_0 , UpperCamelCase__ : str=2_0_4_8 , UpperCamelCase__ : int=6 , UpperCamelCase__ : List[Any]=2_0_4_8 , UpperCamelCase__ : Union[str, Any]=8 , UpperCamelCase__ : Optional[int]=6 , UpperCamelCase__ : Optional[int]=1_0_2_4 , UpperCamelCase__ : Union[str, Any]=8 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Any="relu" , UpperCamelCase__ : Tuple=2_5_6 , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Tuple=0.0_2 , UpperCamelCase__ : Optional[Any]=1.0 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : int="sine" , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : Any=4 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=3_0_0 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Tuple=1 , UpperCamelCase__ : str=5 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : int=1 , UpperCamelCase__ : List[Any]=5 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Union[str, Any]=0.2_5 , **UpperCamelCase__ : int , ): """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) UpperCamelCase = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = backbone_config.pop('model_type' ) UpperCamelCase = CONFIG_MAPPING[backbone_model_type] UpperCamelCase = config_class.from_dict(UpperCamelCase__ ) UpperCamelCase = backbone_config UpperCamelCase = num_queries UpperCamelCase = max_position_embeddings UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = init_xavier_std UpperCamelCase = encoder_layerdrop UpperCamelCase = auxiliary_loss UpperCamelCase = position_embedding_type # deformable attributes UpperCamelCase = num_feature_levels UpperCamelCase = encoder_n_points UpperCamelCase = decoder_n_points UpperCamelCase = two_stage UpperCamelCase = two_stage_num_proposals UpperCamelCase = with_box_refine UpperCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher UpperCamelCase = class_cost UpperCamelCase = bbox_cost UpperCamelCase = giou_cost # Loss coefficients UpperCamelCase = mask_loss_coefficient UpperCamelCase = dice_loss_coefficient UpperCamelCase = bbox_loss_coefficient UpperCamelCase = giou_loss_coefficient UpperCamelCase = eos_coefficient UpperCamelCase = focal_alpha super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def A ( self : List[str] ): """simple docstring""" return self.encoder_attention_heads @property def A ( self : Tuple ): """simple docstring""" return self.d_model def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = copy.deepcopy(self.__dict__ ) UpperCamelCase = self.backbone_config.to_dict() UpperCamelCase = self.__class__.model_type return output
28
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __snake_case = 4 __snake_case = 3 class __snake_case ( lowerCamelCase__ ): pass def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]: '''simple docstring''' for shard in shards: for i in range(__lowerCAmelCase ): yield {"i": i, "shard": shard} def lowerCAmelCase_ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =int(os.environ['''RANK'''] ) UpperCAmelCase : Optional[Any] =int(os.environ['''WORLD_SIZE'''] ) UpperCAmelCase : List[Any] =ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCAmelCase ) parser.add_argument('''--local_rank''' , type=__lowerCAmelCase ) parser.add_argument('''--num_workers''' , type=__lowerCAmelCase , default=0 ) UpperCAmelCase : Any =parser.parse_args() UpperCAmelCase : List[str] =args.streaming UpperCAmelCase : Tuple =args.num_workers UpperCAmelCase : int ={'''shards''': [f'''shard_{shard_idx}''' for shard_idx in range(__lowerCAmelCase )]} UpperCAmelCase : Optional[int] =IterableDataset.from_generator(__lowerCAmelCase , gen_kwargs=__lowerCAmelCase ) if not streaming: UpperCAmelCase : List[Any] =Dataset.from_list(list(__lowerCAmelCase ) ) UpperCAmelCase : Dict =split_dataset_by_node(__lowerCAmelCase , rank=__lowerCAmelCase , world_size=__lowerCAmelCase ) UpperCAmelCase : List[Any] =torch.utils.data.DataLoader(__lowerCAmelCase , num_workers=__lowerCAmelCase ) UpperCAmelCase : Dict =NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCAmelCase : str =full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCAmelCase : List[Any] =sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
348
0
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def __snake_case( _lowerCAmelCase ) -> Any: snake_case__ : Optional[int] = tmp_path / """file.csv""" snake_case__ : Dict = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(_lowerCAmelCase , """w""" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ : Any = tmp_path / """malformed_file.csv""" snake_case__ : List[str] = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(_lowerCAmelCase , """w""" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> str: snake_case__ : Optional[int] = tmp_path / """csv_with_image.csv""" snake_case__ : int = textwrap.dedent( f"\\n image\n {image_file}\n " ) with open(_lowerCAmelCase , """w""" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def __snake_case( _lowerCAmelCase ) -> Optional[Any]: snake_case__ : Dict = tmp_path / """csv_with_label.csv""" snake_case__ : Union[str, Any] = textwrap.dedent( """\ label good bad good """ ) with open(_lowerCAmelCase , """w""" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def __snake_case( _lowerCAmelCase ) -> List[Any]: snake_case__ : str = tmp_path / """csv_with_int_list.csv""" snake_case__ : List[Any] = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(_lowerCAmelCase , """w""" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: snake_case__ : Tuple = Csv() snake_case__ : Tuple = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def __snake_case( _lowerCAmelCase ) -> Optional[int]: with open(_lowerCAmelCase , encoding="""utf-8""" ) as f: snake_case__ : List[Any] = f.read().splitlines()[1] snake_case__ : int = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) snake_case__ : Tuple = csv._generate_tables([[csv_file_with_image]] ) snake_case__ : Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() snake_case__ : Tuple = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def __snake_case( _lowerCAmelCase ) -> str: with open(_lowerCAmelCase , encoding="""utf-8""" ) as f: snake_case__ : Any = f.read().splitlines()[1:] snake_case__ : Tuple = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) snake_case__ : Any = csv._generate_tables([[csv_file_with_label]] ) snake_case__ : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() snake_case__ : Optional[Any] = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(_lowerCAmelCase ) for label in labels] def __snake_case( _lowerCAmelCase ) -> Optional[Any]: snake_case__ : Dict = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) snake_case__ : Any = csv._generate_tables([[csv_file_with_int_list]] ) snake_case__ : int = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) snake_case__ : Dict = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
43
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = DDIMPipeline lowercase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } lowercase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowercase = False def lowerCamelCase ( self : List[str] ): torch.manual_seed(0 ) snake_case__ : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) snake_case__ : Optional[Any] = DDIMScheduler() snake_case__ : Any = {"""unet""": unet, """scheduler""": scheduler} return components def lowerCamelCase ( self : List[Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any]=0 ): if str(snake_case_ ).startswith("""mps""" ): snake_case__ : str = torch.manual_seed(snake_case_ ) else: snake_case__ : List[Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) snake_case__ : Union[str, Any] = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowerCamelCase ( self : List[Any] ): snake_case__ : Optional[Any] = """cpu""" snake_case__ : List[str] = self.get_dummy_components() snake_case__ : str = self.pipeline_class(**snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Union[str, Any] = self.get_dummy_inputs(snake_case_ ) snake_case__ : str = pipe(**snake_case_ ).images snake_case__ : str = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) snake_case__ : Union[str, Any] = np.array( [1.0_0_0E0_0, 5.7_1_7E-0_1, 4.7_1_7E-0_1, 1.0_0_0E0_0, 0.0_0_0E0_0, 1.0_0_0E0_0, 3.0_0_0E-0_4, 0.0_0_0E0_0, 9.0_0_0E-0_4] ) snake_case__ : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case_ , 1E-3 ) def lowerCamelCase ( self : List[str] ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCamelCase ( self : Tuple ): super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCamelCase ( self : Optional[int] ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCamelCase ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Any ): snake_case__ : Optional[Any] = """google/ddpm-cifar10-32""" snake_case__ : Optional[Any] = UNetaDModel.from_pretrained(snake_case_ ) snake_case__ : List[Any] = DDIMScheduler() snake_case__ : List[str] = DDIMPipeline(unet=snake_case_ , scheduler=snake_case_ ) ddim.to(snake_case_ ) ddim.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Optional[Any] = torch.manual_seed(0 ) snake_case__ : Optional[int] = ddim(generator=snake_case_ , eta=0.0 , output_type="""numpy""" ).images snake_case__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ : Optional[Any] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase ( self : List[Any] ): snake_case__ : Dict = """google/ddpm-ema-bedroom-256""" snake_case__ : Dict = UNetaDModel.from_pretrained(snake_case_ ) snake_case__ : Optional[int] = DDIMScheduler.from_pretrained(snake_case_ ) snake_case__ : Tuple = DDIMPipeline(unet=snake_case_ , scheduler=snake_case_ ) ddpm.to(snake_case_ ) ddpm.set_progress_bar_config(disable=snake_case_ ) snake_case__ : List[Any] = torch.manual_seed(0 ) snake_case__ : int = ddpm(generator=snake_case_ , output_type="""numpy""" ).images snake_case__ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) snake_case__ : Optional[Any] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
43
1
"""simple docstring""" class __A : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict ) ->str: """simple docstring""" snake_case_ = name snake_case_ = value snake_case_ = weight def __repr__( self : Any ) ->Optional[int]: """simple docstring""" return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" return self.value def lowerCAmelCase ( self : Any ) ->List[str]: """simple docstring""" return self.name def lowerCAmelCase ( self : str ) ->Optional[int]: """simple docstring""" return self.weight def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" return self.value / self.weight def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ = [] for i in range(len(A__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ = sorted(A__ , key=A__ , reverse=A__ ) snake_case_ = [] snake_case_ , snake_case_ = 0.0, 0.0 for i in range(len(A__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _a ( ) -> List[str]: pass if __name__ == "__main__": import doctest doctest.testmod()
347
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase__ = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _A ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__=False , ): """simple docstring""" output_path.parent.mkdir(parents=A__ , exist_ok=A__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , use_external_data_format=A__ , enable_onnx_checker=A__ , opset_version=A__ , ) else: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , opset_version=A__ , ) @torch.no_grad() def _A ( A__ , A__ , A__ , A__ = False ): """simple docstring""" __lowercase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowercase = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: __lowercase = '''cpu''' __lowercase = Path(A__ ) # VAE DECODER __lowercase = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) __lowercase = vae_decoder.config.latent_channels # forward only through the decoder part __lowercase = vae_decoder.decode onnx_export( A__ , model_args=( torch.randn(1 , A__ , 25 , 25 ).to(device=A__ , dtype=A__ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=A__ , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') lowerCAmelCase__ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
104
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['MaskFormerFeatureExtractor'] __UpperCAmelCase = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] __UpperCAmelCase = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
354
"""simple docstring""" from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def _snake_case ( lowercase__ : bool = True , *lowercase__ : Optional[int] , **lowercase__ : str ) -> Optional[Any]: '''simple docstring''' if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) lowerCAmelCase_ :Tuple = False if main_process_only: lowerCAmelCase_ :Dict = PartialState().local_process_index == 0 return _tqdm(*lowercase__ , **lowercase__ , disable=lowercase__ )
1
0
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a__ = logging.get_logger(__name__) # General docstring a__ = '''MobileNetV1Config''' # Base docstring a__ = '''google/mobilenet_v1_1.0_224''' a__ = [1, 1024, 7, 7] # Image classification docstring a__ = '''google/mobilenet_v1_1.0_224''' a__ = '''tabby, tabby cat''' a__ = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __UpperCAmelCase ( __a : str ,__a : Union[str, Any] ,__a : int=None ) -> Tuple: """simple docstring""" _a : Optional[int] = {} if isinstance(__a ,__a ): _a : Tuple = model.mobilenet_va else: _a : Optional[Any] = model _a : List[Any] = '''MobilenetV1/Conv2d_0/''' _a : int = backbone.conv_stem.convolution.weight _a : Optional[int] = backbone.conv_stem.normalization.bias _a : List[str] = backbone.conv_stem.normalization.weight _a : Optional[Any] = backbone.conv_stem.normalization.running_mean _a : Tuple = backbone.conv_stem.normalization.running_var for i in range(13 ): _a : Optional[int] = i + 1 _a : int = i * 2 _a : Union[str, Any] = backbone.layer[pt_index] _a : Dict = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" _a : List[Any] = pointer.convolution.weight _a : Tuple = pointer.normalization.bias _a : Union[str, Any] = pointer.normalization.weight _a : str = pointer.normalization.running_mean _a : List[Any] = pointer.normalization.running_var _a : Optional[int] = backbone.layer[pt_index + 1] _a : List[Any] = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" _a : Tuple = pointer.convolution.weight _a : Any = pointer.normalization.bias _a : List[Any] = pointer.normalization.weight _a : int = pointer.normalization.running_mean _a : List[Any] = pointer.normalization.running_var if isinstance(__a ,__a ): _a : Optional[int] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' _a : int = model.classifier.weight _a : Union[str, Any] = model.classifier.bias return tf_to_pt_map def __UpperCAmelCase ( __a : Optional[Any] ,__a : List[str] ,__a : Optional[Any] ) -> Tuple: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model _a : Optional[int] = tf.train.list_variables(__a ) _a : int = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) _a : str = tf.train.load_variable(__a ,__a ) _a : int = array # Build TF to PyTorch weights loading map _a : List[str] = _build_tf_to_pytorch_map(__a ,__a ,__a ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue _a : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) _a : int = np.transpose(__a ,(2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer _a : Optional[int] = array.squeeze().transpose() else: _a : List[str] = np.transpose(__a ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) _a : Dict = torch.from_numpy(__a ) tf_weights.pop(__a ,__a ) tf_weights.pop(name + '''/RMSProp''' ,__a ) tf_weights.pop(name + '''/RMSProp_1''' ,__a ) tf_weights.pop(name + '''/ExponentialMovingAverage''' ,__a ) logger.info(F"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}""" ) return model def __UpperCAmelCase ( __a : torch.Tensor ,__a : nn.Convad ) -> torch.Tensor: """simple docstring""" _a , _a : int = features.shape[-2:] _a , _a : Tuple = conv_layer.stride _a , _a : Optional[int] = conv_layer.kernel_size if in_height % stride_height == 0: _a : Dict = max(kernel_height - stride_height ,0 ) else: _a : int = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: _a : Optional[Any] = max(kernel_width - stride_width ,0 ) else: _a : List[str] = max(kernel_width - (in_width % stride_width) ,0 ) _a : Any = pad_along_width // 2 _a : Optional[Any] = pad_along_width - pad_left _a : List[Any] = pad_along_height // 2 _a : Any = pad_along_height - pad_top _a : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(__a ,__a ,'''constant''' ,0.0 ) class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self , _a , _a , _a , _a , _a = 1 , _a = 1 , _a = False , _a = True , _a = True , ) -> None: super().__init__() _a : List[str] = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) _a : str = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _a : Dict = nn.Convad( in_channels=_a , out_channels=_a , kernel_size=_a , stride=_a , padding=_a , groups=_a , bias=_a , padding_mode='''zeros''' , ) if use_normalization: _a : Dict = nn.BatchNormad( num_features=_a , eps=config.layer_norm_eps , momentum=0.9997 , affine=_a , track_running_stats=_a , ) else: _a : Optional[int] = None if use_activation: if isinstance(_a , _a ): _a : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , _a ): _a : str = ACTaFN[config.hidden_act] else: _a : Optional[Any] = config.hidden_act else: _a : List[str] = None def __lowercase ( self , _a ) -> torch.Tensor: if self.config.tf_padding: _a : int = apply_tf_padding(_a , self.convolution ) _a : Dict = self.convolution(_a ) if self.normalization is not None: _a : Any = self.normalization(_a ) if self.activation is not None: _a : Any = self.activation(_a ) return features class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Dict = MobileNetVaConfig UpperCAmelCase__ : Dict = load_tf_weights_in_mobilenet_va UpperCAmelCase__ : Any = "mobilenet_v1" UpperCAmelCase__ : str = "pixel_values" UpperCAmelCase__ : Union[str, Any] = False def __lowercase ( self , _a ) -> None: if isinstance(_a , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_a , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a__ = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , __lowercase , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , _a , _a = True ) -> Dict: super().__init__(_a ) _a : Union[str, Any] = config _a : Optional[int] = 3_2 _a : int = max(int(depth * config.depth_multiplier ) , config.min_depth ) _a : Tuple = MobileNetVaConvLayer( _a , in_channels=config.num_channels , out_channels=_a , kernel_size=3 , stride=2 , ) _a : Dict = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _a : Optional[Any] = nn.ModuleList() for i in range(1_3 ): _a : str = out_channels if strides[i] == 2 or i == 0: depth *= 2 _a : List[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _a , in_channels=_a , out_channels=_a , kernel_size=3 , stride=strides[i] , groups=_a , ) ) self.layer.append( MobileNetVaConvLayer( _a , in_channels=_a , out_channels=_a , kernel_size=1 , ) ) _a : Union[str, Any] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowercase ( self , _a ) -> Dict: raise NotImplementedError @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_a , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowercase ( self , _a = None , _a = None , _a = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: _a : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) _a : str = self.conv_stem(_a ) _a : List[str] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _a : Union[str, Any] = layer_module(_a ) if output_hidden_states: _a : List[str] = all_hidden_states + (hidden_states,) _a : Any = hidden_states if self.pooler is not None: _a : Dict = torch.flatten(self.pooler(_a ) , start_dim=1 ) else: _a : str = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_a , pooler_output=_a , hidden_states=_a , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __lowercase , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , _a ) -> None: super().__init__(_a ) _a : int = config.num_labels _a : List[str] = MobileNetVaModel(_a ) _a : Union[str, Any] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _a : List[str] = nn.Dropout(config.classifier_dropout_prob , inplace=_a ) _a : Tuple = nn.Linear(_a , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowercase ( self , _a = None , _a = None , _a = None , _a = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: _a : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _a : Any = self.mobilenet_va(_a , output_hidden_states=_a , return_dict=_a ) _a : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] _a : Dict = self.classifier(self.dropout(_a ) ) _a : str = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _a : Tuple = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _a : Optional[int] = '''single_label_classification''' else: _a : Union[str, Any] = '''multi_label_classification''' if self.config.problem_type == "regression": _a : Dict = MSELoss() if self.num_labels == 1: _a : Tuple = loss_fct(logits.squeeze() , labels.squeeze() ) else: _a : Union[str, Any] = loss_fct(_a , _a ) elif self.config.problem_type == "single_label_classification": _a : Optional[Any] = CrossEntropyLoss() _a : List[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _a : Union[str, Any] = BCEWithLogitsLoss() _a : List[Any] = loss_fct(_a , _a ) if not return_dict: _a : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_a , logits=_a , hidden_states=outputs.hidden_states , )
235
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[Any] = (DDPMScheduler,) def __lowercase ( self , **_a ) -> Any: _a : List[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_a ) return config def __lowercase ( self ) -> Any: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_a ) def __lowercase ( self ) -> List[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def __lowercase ( self ) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_a ) def __lowercase ( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_a ) def __lowercase ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __lowercase ( self ) -> Dict: self.check_over_configs(thresholding=_a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_a , prediction_type=_a , sample_max_value=_a , ) def __lowercase ( self ) -> Optional[Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def __lowercase ( self ) -> int: for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=_a ) def __lowercase ( self ) -> int: _a : int = self.scheduler_classes[0] _a : List[Any] = self.get_scheduler_config() _a : Dict = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __lowercase ( self ) -> Tuple: _a : int = self.scheduler_classes[0] _a : int = self.get_scheduler_config() _a : int = scheduler_class(**_a ) _a : Optional[int] = len(_a ) _a : Optional[Any] = self.dummy_model() _a : str = self.dummy_sample_deter _a : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual _a : str = model(_a , _a ) # 2. predict previous mean of sample x_t-1 _a : Optional[int] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _a : List[Any] = pred_prev_sample _a : str = torch.sum(torch.abs(_a ) ) _a : Optional[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __lowercase ( self ) -> Optional[Any]: _a : Optional[int] = self.scheduler_classes[0] _a : Optional[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _a : Union[str, Any] = scheduler_class(**_a ) _a : Dict = len(_a ) _a : int = self.dummy_model() _a : Tuple = self.dummy_sample_deter _a : List[Any] = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual _a : Dict = model(_a , _a ) # 2. predict previous mean of sample x_t-1 _a : int = scheduler.step(_a , _a , _a , generator=_a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _a : str = pred_prev_sample _a : str = torch.sum(torch.abs(_a ) ) _a : Tuple = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.scheduler_classes[0] _a : Tuple = self.get_scheduler_config() _a : Any = scheduler_class(**_a ) _a : Optional[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=_a ) _a : Optional[int] = scheduler.timesteps for i, timestep in enumerate(_a ): if i == len(_a ) - 1: _a : Dict = -1 else: _a : Tuple = timesteps[i + 1] _a : Optional[Any] = scheduler.previous_timestep(_a ) _a : Optional[Any] = prev_t.item() self.assertEqual(_a , _a ) def __lowercase ( self ) -> Optional[Any]: _a : Dict = self.scheduler_classes[0] _a : List[str] = self.get_scheduler_config() _a : Tuple = scheduler_class(**_a ) _a : str = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(_a , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_a ) def __lowercase ( self ) -> str: _a : List[str] = self.scheduler_classes[0] _a : List[str] = self.get_scheduler_config() _a : Dict = scheduler_class(**_a ) _a : Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _a : Optional[Any] = len(_a ) with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def __lowercase ( self ) -> Optional[int]: _a : Dict = self.scheduler_classes[0] _a : Union[str, Any] = self.get_scheduler_config() _a : int = scheduler_class(**_a ) _a : str = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_a )
235
1
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __magic_name__( ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
364
'''simple docstring''' import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ): assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase) __lowerCAmelCase = np.iscomplexobj(lowerCamelCase) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase, input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(lowerCamelCase) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase)) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_) return lambda_, vector def __magic_name__( ): __lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]]) __lowerCAmelCase = np.array([4_1, 4, 2_0]) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa) __lowerCAmelCase = np.triu(1J * complex_input_matrix, 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
9
0
"""simple docstring""" lowerCAmelCase__ = [0, 2, 4, 6, 8] lowerCAmelCase__ = [1, 3, 5, 7, 9] def snake_case_ ( A_ : int, A_ : int, A_ : list[int], A_ : int ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _lowerCamelCase : int = 0 for digit in range(10 ): _lowerCamelCase : List[str] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, A_, A_ ) return result _lowerCamelCase : List[Any] = 0 for digita in range(10 ): _lowerCamelCase : List[str] = digita if (remainder + digita) % 2 == 0: _lowerCamelCase : Tuple = ODD_DIGITS else: _lowerCamelCase : List[str] = EVEN_DIGITS for digita in other_parity_digits: _lowerCamelCase : int = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, A_, A_, ) return result def snake_case_ ( A_ : int = 9 ): '''simple docstring''' _lowerCamelCase : Optional[Any] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(A_, 0, [0] * length, A_ ) return result if __name__ == "__main__": print(F"""{solution() = }""")
72
"""simple docstring""" def snake_case_ ( A_ : list[list[float]] ): '''simple docstring''' _lowerCamelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(A_ ): if len(A_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(A_ ) ) return data_lists def snake_case_ ( A_ : list[list[float]], A_ : list[int] ): '''simple docstring''' _lowerCamelCase : list[list[float]] = [] for dlist, weight in zip(A_, A_ ): _lowerCamelCase : Any = min(A_ ) _lowerCamelCase : Optional[Any] = max(A_ ) _lowerCamelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: _lowerCamelCase : str = F'''Invalid weight of {weight:f} provided''' raise ValueError(A_ ) score_lists.append(A_ ) return score_lists def snake_case_ ( A_ : list[list[float]] ): '''simple docstring''' _lowerCamelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(A_ ): _lowerCamelCase : List[str] = final_scores[j] + ele return final_scores def snake_case_ ( A_ : list[list[float]], A_ : list[int] ): '''simple docstring''' _lowerCamelCase : Tuple = get_data(A_ ) _lowerCamelCase : Optional[Any] = calculate_each_score(A_, A_ ) _lowerCamelCase : str = generate_final_scores(A_ ) # append scores to source data for i, ele in enumerate(A_ ): source_data[i].append(A_ ) return source_data
72
1
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : def __init__( self : Any , _UpperCamelCase : Dict , _UpperCamelCase : Tuple=13 , _UpperCamelCase : Any=7 , _UpperCamelCase : Dict=True , _UpperCamelCase : int=True , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[Any]=99 , _UpperCamelCase : List[Any]=32 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : Tuple=37 , _UpperCamelCase : Optional[int]="gelu" , _UpperCamelCase : str=0.1 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any=512 , _UpperCamelCase : Union[str, Any]=16 , _UpperCamelCase : str=2 , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Any=3 , _UpperCamelCase : Optional[int]=4 , _UpperCamelCase : int=None , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def __snake_case( self : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case( self : Tuple ) -> Dict: '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def __snake_case( self : int , _UpperCamelCase : Any , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case( self : Dict , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Any , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BioGptForCausalLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case( self : int , _UpperCamelCase : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : int , *_UpperCamelCase : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # create attention mask SCREAMING_SNAKE_CASE = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.seq_length // 2 SCREAMING_SNAKE_CASE = 0 # first forward pass SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids SCREAMING_SNAKE_CASE = ids_tensor((1,) , _UpperCamelCase ).item() + 1 SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) SCREAMING_SNAKE_CASE = random_other_next_tokens # append to next input_ids and attn_mask SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , ) # get two different outputs SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase )["last_hidden_state"] SCREAMING_SNAKE_CASE = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )["last_hidden_state"] # select random slice SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE = output_from_no_past[:, -1, random_slice_idx].detach() SCREAMING_SNAKE_CASE = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def __snake_case( self : int , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple , *_UpperCamelCase : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() SCREAMING_SNAKE_CASE = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) # first forward pass SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase )["last_hidden_state"] SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[ "last_hidden_state" ] # select random slice SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def __snake_case( self : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , *_UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any]=False ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = BioGptForCausalLM(_UpperCamelCase ) model.to(_UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def __snake_case( self : Tuple , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = BioGptModel(_UpperCamelCase ) SCREAMING_SNAKE_CASE = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 ) def __snake_case( self : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : int , *_UpperCamelCase : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = BioGptForTokenClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case( self : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowercase ( a , a , a , unittest.TestCase ): lowercase__ : Union[str, Any] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowercase__ : List[Any] = (BioGptForCausalLM,) if is_torch_available() else () lowercase__ : Dict = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) lowercase__ : Dict = False def __snake_case( self : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BioGptModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def __snake_case( self : Tuple ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def __snake_case( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case( self : int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case( self : List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase ) def __snake_case( self : List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase ) def __snake_case( self : Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase ) def __snake_case( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase ) def __snake_case( self : Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase ) @slow def __snake_case( self : Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) SCREAMING_SNAKE_CASE = "left" # Define PAD Token = EOS Token = 50256 SCREAMING_SNAKE_CASE = tokenizer.eos_token SCREAMING_SNAKE_CASE = model.config.eos_token_id # use different length sentences to test batching SCREAMING_SNAKE_CASE = [ "Hello, my dog is a little", "Today, I", ] SCREAMING_SNAKE_CASE = tokenizer(_UpperCamelCase , return_tensors="pt" , padding=_UpperCamelCase ) SCREAMING_SNAKE_CASE = inputs["input_ids"].to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = model.generate( input_ids=_UpperCamelCase , attention_mask=inputs["attention_mask"].to(_UpperCamelCase ) , ) SCREAMING_SNAKE_CASE = tokenizer(sentences[0] , return_tensors="pt" ).input_ids.to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = model.generate(input_ids=_UpperCamelCase ) SCREAMING_SNAKE_CASE = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() SCREAMING_SNAKE_CASE = tokenizer(sentences[1] , return_tensors="pt" ).input_ids.to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase ) SCREAMING_SNAKE_CASE = [ "Hello, my dog is a little bit bigger than a little bit.", "Today, I have a good idea of how to use the information", ] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def __snake_case( self : Optional[int] ) -> Optional[int]: '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = BioGptModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __snake_case( self : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = input_dict["input_ids"] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __snake_case( self : Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = "multi_label_classification" SCREAMING_SNAKE_CASE = input_dict["input_ids"] SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class lowercase ( unittest.TestCase ): @slow def __snake_case( self : Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) SCREAMING_SNAKE_CASE = torch.tensor([[2, 4_805, 9, 656, 21]] ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase )[0] SCREAMING_SNAKE_CASE = 42_384 SCREAMING_SNAKE_CASE = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 10.4_557], [-11.0_469, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def __snake_case( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) SCREAMING_SNAKE_CASE = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(_UpperCamelCase ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = tokenizer("COVID-19 is" , return_tensors="pt" ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = model.generate( **_UpperCamelCase , min_length=100 , max_length=1_024 , num_beams=5 , early_stopping=_UpperCamelCase , ) SCREAMING_SNAKE_CASE = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase ) SCREAMING_SNAKE_CASE = ( "COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" " causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" " territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," " and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" " more than 800,000 deaths." ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
362
def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : int ): while b: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = b, a % b return a def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : int ): return a if b == 0 else euclidean_gcd_recursive(UpperCAmelCase__ , a % b ) def __lowerCamelCase (): print(F"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(F"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(F"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(F"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(F"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(F"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(F"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(F"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
206
0
import re from filelock import FileLock try: import nltk __lowercase = True except (ImportError, ModuleNotFoundError): __lowercase = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE ) )
43
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowercase = logging.get_logger(__name__) __lowercase = {'''tokenizer_file''': '''tokenizer.json'''} __lowercase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : int = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : List[str] = ["""input_ids""", """attention_mask"""] a__ : int = None def __init__( self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase="<unk>" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="<pad>" , __lowercase=False , __lowercase=False , **__lowercase , ) -> List[str]: super().__init__( __lowercase , __lowercase , tokenizer_file=__lowercase , unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , pad_token=__lowercase , add_prefix_space=__lowercase , clean_up_tokenization_spaces=__lowercase , **__lowercase , ) __UpperCamelCase :int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , __lowercase) != add_prefix_space: __UpperCamelCase :Any = getattr(__lowercase , pre_tok_state.pop('''type''')) __UpperCamelCase :str = add_prefix_space __UpperCamelCase :List[str] = pre_tok_class(**__lowercase) __UpperCamelCase :Tuple = add_prefix_space def UpperCamelCase__ ( self , *__lowercase , **__lowercase) -> BatchEncoding: __UpperCamelCase :Tuple = kwargs.get('''is_split_into_words''' , __lowercase) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''') return super()._batch_encode_plus(*__lowercase , **__lowercase) def UpperCamelCase__ ( self , *__lowercase , **__lowercase) -> BatchEncoding: __UpperCamelCase :List[str] = kwargs.get('''is_split_into_words''' , __lowercase) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''') return super()._encode_plus(*__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> Tuple[str]: __UpperCamelCase :Optional[Any] = self._tokenizer.model.save(__lowercase , name=__lowercase) return tuple(__lowercase) def UpperCamelCase__ ( self , __lowercase) -> List[int]: __UpperCamelCase :str = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowercase , add_special_tokens=__lowercase) + [self.eos_token_id]) if len(__lowercase) > self.model_max_length: __UpperCamelCase :Any = input_ids[-self.model_max_length :] return input_ids
43
1
import functools from typing import Any def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> bool: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ) or len(_UpperCamelCase ) == 0: raise ValueError('''the string should be not empty string''' ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not all( isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) > 0 for item in words ): raise ValueError('''the words should be a list of non-empty strings''' ) # Build trie snake_case_ : dict[str, Any] = {} snake_case_ : str = '''WORD_KEEPER''' for word in words: snake_case_ : Optional[int] = trie for c in word: if c not in trie_node: snake_case_ : str = {} snake_case_ : Dict = trie_node[c] snake_case_ : Optional[Any] = True snake_case_ : Optional[int] = len(_UpperCamelCase ) # Dynamic programming method @functools.cache def is_breakable(_UpperCamelCase ) -> bool: if index == len_string: return True snake_case_ : Optional[Any] = trie for i in range(_UpperCamelCase , _UpperCamelCase ): snake_case_ : int = trie_node.get(string[i] , _UpperCamelCase ) if trie_node is None: return False if trie_node.get(_UpperCamelCase , _UpperCamelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
356
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __lowerCAmelCase : lowerCamelCase_ : CommonSchedulerState # setable values lowerCamelCase_ : jnp.ndarray lowerCamelCase_ : jnp.ndarray lowerCamelCase_ : Optional[int] = None @classmethod def lowerCamelCase (cls , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' return cls(common=__magic_name__ , init_noise_sigma=__magic_name__ , timesteps=__magic_name__ ) @dataclass class __lowerCAmelCase ( _a ): lowerCamelCase_ : DDPMSchedulerState class __lowerCAmelCase ( _a, _a ): lowerCamelCase_ : List[Any] = [e.name for e in FlaxKarrasDiffusionSchedulers] lowerCamelCase_ : jnp.dtype @property def lowerCamelCase (self ) -> int: '''simple docstring''' return True @register_to_config def __init__(self , __magic_name__ = 1000 , __magic_name__ = 0.0_001 , __magic_name__ = 0.02 , __magic_name__ = "linear" , __magic_name__ = None , __magic_name__ = "fixed_small" , __magic_name__ = True , __magic_name__ = "epsilon" , __magic_name__ = jnp.floataa , ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = dtype def lowerCamelCase (self , __magic_name__ = None ) -> DDPMSchedulerState: '''simple docstring''' if common is None: snake_case_ : Any = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution snake_case_ : Any = jnp.array(1.0 , dtype=self.dtype ) snake_case_ : Optional[int] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__magic_name__ , init_noise_sigma=__magic_name__ , timesteps=__magic_name__ , ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ = None ) -> jnp.ndarray: '''simple docstring''' return sample def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ = () ) -> DDPMSchedulerState: '''simple docstring''' snake_case_ : str = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 snake_case_ : List[str] = (jnp.arange(0 , __magic_name__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__magic_name__ , timesteps=__magic_name__ , ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None ) -> int: '''simple docstring''' snake_case_ : Any = state.common.alphas_cumprod[t] snake_case_ : Dict = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample snake_case_ : Tuple = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: snake_case_ : Any = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": snake_case_ : int = jnp.clip(__magic_name__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": snake_case_ : List[str] = jnp.log(jnp.clip(__magic_name__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": snake_case_ : str = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log snake_case_ : int = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": snake_case_ : str = variance snake_case_ : Optional[Any] = state.common.betas[t] snake_case_ : Optional[Any] = (predicted_variance + 1) / 2 snake_case_ : Optional[Any] = frac * max_log + (1 - frac) * min_log return variance def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__ = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: '''simple docstring''' snake_case_ : Tuple = timestep if key is None: snake_case_ : List[Any] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: snake_case_ , snake_case_ : Any = jnp.split(__magic_name__ , sample.shape[1] , axis=1 ) else: snake_case_ : Optional[Any] = None # 1. compute alphas, betas snake_case_ : List[Any] = state.common.alphas_cumprod[t] snake_case_ : Union[str, Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) snake_case_ : List[Any] = 1 - alpha_prod_t snake_case_ : str = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": snake_case_ : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": snake_case_ : List[Any] = model_output elif self.config.prediction_type == "v_prediction": snake_case_ : Optional[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: snake_case_ : Optional[int] = jnp.clip(__magic_name__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case_ : str = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t snake_case_ : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case_ : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): snake_case_ : List[Any] = jax.random.split(__magic_name__ , num=1 ) snake_case_ : Tuple = jax.random.normal(__magic_name__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__magic_name__ , __magic_name__ , predicted_variance=__magic_name__ ) ** 0.5) * noise snake_case_ : List[str] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) snake_case_ : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__magic_name__ , state=__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> jnp.ndarray: '''simple docstring''' return add_noise_common(state.common , __magic_name__ , __magic_name__ , __magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> jnp.ndarray: '''simple docstring''' return get_velocity_common(state.common , __magic_name__ , __magic_name__ , __magic_name__ ) def __len__(self ) -> int: '''simple docstring''' return self.config.num_train_timesteps
279
0